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Abstract

The aim of this article is to study the properties of the sign gradient descent algorithms involving the
sign of the gradient instead of the gradient itself and first introduced in the RPROP algorithm. This
article provides two results of convergence for local optimization, a first one for nominal systems without
uncertainty and a second one for systems with uncertainties. New sign gradient descent algorithms including
the dichotomy algorithm DICHO are applied on several examples to show their effectiveness in terms of speed
of convergence. As a novelty, the sign gradient descent algorithms can allow to converge in practice towards
other minima than the closest minimum of the initial condition making these algorithms suitable for global
optimization as a new metaheuristic method.

Keywords: Gradient descent, discrete-time systems, optimization, metaheuristic, Lyapunov sequence.

1. Introduction

Gradient descent is one of the powerful local optimization algorithms [12, 14]. It is a first-order method
involving only the gradient and is used in many applications as optimal control [2], video coding [33],
localization [19] or robotics [40]. A fast gradient method is developed by Nesterov in [35] and used for
instance for the model predictive control [41]. Moreover, an optimized gradient method is proposed in [27]
and a gradient evolution algorithm is stated in [28]. By using the sign of the gradient instead of the gradient
itself, the RPROP algorithm for backpropagation in artificial neural networks first stated by Riedmiller and
Braun in [42] provides a new gradient descent algorithm. It has then been developed and used by many
authors [1, 24, 25]. The use of the sign of the gradient instead of the gradient itself avoids the vanishing
gradient problem in training artificial neural networks with gradient-based learning methods [37]. Stochastic
gradient descent is an iterative gradient descent optimization algorithm used for minimizing a cost function
written as the sum of differentiable functions, see for instance [48, Section 5.1.2] and [47]. It is used for
example in machine learning [45, Chapter 14], [47], deep learning [30] and localization [50].

Discontinuous differential equations have been developed by Filippov [16] and Clarke [13] and used in
automatic control for sliding mode control introduced by Utkin in the 70’s for solving Lyapunov stabilization
problems [49]. Then, sliding mode control has been developed by many authors [15, 17]. This method uses
a discontinuous controller in order to force a continuous uncertain system to reach, in finite time and in
spite of uncertainties and perturbations, a manifold called sliding surface, that is defined from the control
objectives. Several extensions of sliding mode control have been proposed as higher order sliding mode
control [31, 38] or adaptive sliding mode control [39].

Discrete-time systems involving continuous functions have been widely studied, see for instance [21, 22].
Discrete-time systems involving discontinuous functions have been first developed in the framework of sliding
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mode control for discrete-time systems in [4, 5, 44]. Then, a general Lyapunov theory of stability for this
class of systems has been performed in [20] and applied to the nonlinear model predictive control in [20, 29].

In this article, the properties of the first-order gradient descent algorithm using the sign function, whose
a first version is the RPROP algorithm, is studied by using the theory of discrete-time systems involving
discontinuous functions. The algorithm is called the sign gradient descent algorithm in this article as
proposed in [7, 32]. A first convergence result for local optimization is stated by using the same strategy as
the one used for gradient descent in [11, Section 4.2.2], i.e. a Lyapunov sequence. Moreover, a second result
of local convergence robustness is proved in case of uncertain data. The hybrid gradient descent algorithm
is introduced as an extension of the classical gradient descent algorithm having a new degree of freedom
brought by the sign gradient descent algorithm. As a novelty, the sign gradient descent algorithm allows to
converge in practice towards other minima than the closest minimum of the initial condition making these
algorithms usable for global optimization as a new metaheuristic method and this is illustrated with the
new dichotomy algorithm DICHO and the old RPROP algorithm.

The article is organized as follows. The sign gradient descent algorithms are recalled in Section 2; results
on local convergence and robustness are provided. Then, several applications are given in Section 3 showing
that the sign gradient descent algorithms can be faster than classical gradient descent and allows to converge
towards other minima then the closest minimum of the initial condition. Finally, a conclusion is addressed
in Section 4.

2. Sign gradient descent algorithms

First-of-all, some notations used in the sequel are introduced. Denoting # = (z1,...,2,)T € R", the
gradient of a differentiable function f : R™ — R is the vector

T
9o (Lo LY

Oz’ Oy,

A point z, € R™ is a critical point of f if Vf(x4) = 0. Denote

sen(V7) = (sen () s <a§xm>>T

where sgn refers to the sign function defined by

-1 if =<0,
sgn(z) =<0 if z=0,
1 if x>0.

The euclidean norm is defined by |z|? = 27 2.

The gradient descent algorithm is a first-order local optimization method which intends to minimize a
differentiable real function, i.e. it aims at solving the problem mingegn f(z). Recall the definition of the
gradient descent algorithm.

Definition 1. Consider a differentiable function f : R® — R. The gradient descent algorithm (GD) is
defined by the following discrete-time system

Tpr1 =T — Yk V(Tk), keN (1)
where x, € R™ is the state and vy, > 0 the step size to be defined.

A critical point of f is an equilibrium of (1). There are several strategies for tuning the step size, see for
instance [35, Section 1.2.3]. If the initial condition zy € R™ is close to a local minimum and under additional
assumptions on f, it is possible to prove the convergence of (1) towards the local minimum, see for instance
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[35, Theorem 1.2.4] or [10, Subsection 2.3.2]. The GD is based on the fact that, if Vf(x) # 0, then the
direction dy = —y; Vf(zk) is a descent direction of f at xj as

(Vf(xr),diy = = [V f(@e)|> <0

or equivalently f(zr — vV f(xr)) < f(xy) for v > 0 small enough. If f is not differentiable, it is possible
to apply the subgradient method defined for instance in [8, Chapter 4].

Recall the sign gradient descent algorithm whose main interest lies in its simplicity and its speed of
convergence with respect to the GD while being a first-order local optimization method.

Definition 2. Consider a differentiable function f : R™ — R. The sign gradient descent algorithm (SGD)
is defined by the following discrete-time system

Tp1 = T — Yk sgn(V f(zr)), keN (2)
where x, € R™ is the state and vy, > 0 the step size to be defined.

For tuning the step size v, one can choose a sequence independent of f(xy) or dependent on f(zy) as
proposed below in (10). Tuning the step size 7y is crucial in practice. The adaptive sign gradient descent
algorithm, first used in the RPROP algorithm [42], provides an automatic way for tuning the step size and
also a strategy which can avoid local minima as shown in Subsection 3.2.

Definition 3. Consider system (2). If vy is defined by the discrete-time system

Ye+1 =9(),  keN (3)
with g : Rsg — Rxq, then the algorithm (2)—(3) is called adaptive sign gradient descent algorithm (ASGD).

Considering V f(zy) # 0, and by using the descent direction dy, = —7; sgn(V f(zy)), one has

(Vf(zr),dp) = = [V f(ar)] <O.

So, if k41 < g for all k € N and Vf(x) = Cz is linear then the results in [26, 44] imply that the discrete-
time system (2) converges towards a local minimum x,. The speed of convergence of the SGD depends
on the tuning of the step size 7;. Special cases have been studied in [3], however this result is not enough
general to be applied to the discrete-time system (2).

In the sequel, a convergence condition, first given for the GD in [11, Section 4.2.2], is stated for the SGD

(2).
Theorem 1. Suppose that f has a unique minimum x and satisfies (v — x4)T sgn(V f(x)) > 0 for all x in
the domain of definition of f. Consider the SGD (2) and a sequence vy such that klirf Y =0,
——+00
0 < nyk < 2(zk — 24)" sgn(Vf(z)) (4)

and
V(T — x*)T sen(Vf(zk)) = c|ag — x4, c>0,a>0 (5)

for all k € N. Then the sequence xy, given by the SGD (2) satisfies klim Tk = Ty
— 400
PRrROOF. Consider the following Lyapunov sequence
V(zx) = |ax — .
By using (2) and (4), one gets
V(@per) = V(zk) = |orer — za]? = Jon — s
= zx — v sgn(Vf(zx)) — 2| = |aon — 24]?
= nyE — 2yp(xp — x4) 7 sgn(Vf(xy)) < 0.
3



We deduce that V (xy) is decreasing. As V(zy) is decreasing and bounded from below by zero, the monotone
convergence theorem given for instance in [6, Theorem 3.2] implies that V' (x) is convergent. As klim Y =0
-+

and V(xy) is convergent we deduce that

lm g (xp — :E*)T sgn(Vf(zg)) = lim (g — x*)T(xk — k1) = 0.
k—+o0 k—+o00

By using (5), we conclude that klim Tp = Ty O
— 400

Condition (4) implies that the sequence 74 of the SGD (2) must be decreasing and the function g of the
ASGD (3) must satisfy g(x) < x for having the convergence. Condition (5) is required, because decreasing
the step size too quickly could stop the convergence of the algorithm towards the minimum. However,
Theorem 1 which is based on a Lyapunov sequence provides only a sufficient condition for the convergence
of system (2). On the one hand, Conditions (4)—(5) are general conditions not too restrictive on f and its
gradient, which is desirable. On the other hand, they involve the knowledge of the minimum z* and can
only be checked a posteriori in practice. On the contrary, Wolfe conditions, studied in [36, Subsection 3.1]
for the GD algorithm and in [1] for the RPROP algorithm, are restrictive on f but they can be checked a
priori in practice.

Consider now the case where x; is only known with an uncertainty €. Indeed, if the data are given by
measurements then they may have uncertainties due to their experimental features. It leads to the following
uncertain sign gradient descent algorithm (USGD)

Tpt1 = T + € — Y& sen(V f(zr + €x)), keN. (6)
One gets the following result

Theorem 2. Suppose that f has a unique minimum x4 and for all x in the domain of definition of f there
ezists € € R"™ such that (z + ¢ — x4)T sgn(Vf(z + €)) > 0. Consider the USGD (6) and sequences v > 0
and €, € R™ such that klim Y =0, klim er =0, (zp +ex —24) T sgn(Vf(zp + ) >0,

— s> +00

(zp + ex — z4) T sgn(Vf(zp + €ex)) — \/Kk <nye < (xp + e — 24) T sgn(V(zp + ) + \/Kk (7)
with

Ay = ((a:k + € — a:*)T sen(V f(xg + e;f)))2 — 2ne£ (xk + %k - x*) >0

and
Yi(z + e — z4) sen(Vf(zk + €r)) = c|on — 24, ¢c>0,a>0 (8)

for all k € N. Then, the sequence xy, given by the USGD (6) satisfies kli)rfoo Tk = Ty-
ProOOF. Consider the following Lyapunov sequence
V(zx) = Jox — x|
By using (6), one gets
Vi(zper) = Viwr) = |zren — zal? = |an — a4]?

= ||lzg + & — Y sen(Vf(zp 4+ er)) — 24> — |lzp — 242
€
= o — D+ e — ) sV o) + 26 (e 4 E ).
Consider V(zg4+1) — V(zx) as a second order polynomial in 7, with a discriminant reading as Ay > 0. It

leads to V(zg+1) — V(zr) < 0 if and only if (7) is satisfied. So, we deduce that V(zy) is decreasing. As
V(xy) is decreasing and bounded from below by zero, the monotone convergence theorem given for instance
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in [6, Theorem 3.2] implies that V' (xy) is convergent. As klim Y =0, klim er = 0 and V (z},) is convergent
-+ -+
we deduce that
Hm v (2n 4 ex — 24) T sgn(Vf(zr + ex)) = lim (2 + e — 24) 7 (0 + € — 211) = 0.
k—+00 k—+o0
By using (8), we conclude that klim Th = Ty O
-+

It is well known in control theory that sliding mode control has good robustness properties due to the use
of the sign function, see for instance [46]; similar feature can be expected for the SGD in Theorem 2.
By choosing the following step size

e = Ve |V F(@r)] + k.2 keN

for (2) where 75,1 and 72 are two step size, one obtains hereafter the hybrid gradient descent algorithm
which is the GD (1) with a new degree of freedom brought by the SGD (2).

Definition 4. Consider a differentiable function f : R"™ — R. The hybrid gradient descent algorithm (HGD)
is defined by the following discrete-time system

Trr1 = Tk — Va1V (Tk) — k2 sen(Vf(zk)), keN 9)

where xi, € R™ is the state and vi1 > 0, yi,2 > 0 the step size to be defined.

3. Applications

The speed of convergence, given by the number of iterations, of the SGD algorithms satisfying conditions
of Theorem 1 is usually better than the one of the GD algorithms and this has been highlighted for neural
networks with the RPROP algorithm in [42] and [43, Subsection 8.3.3]. We recover this practical result
on several examples for the different gradient descent algorithms (1), (2) and (9). Moreover, if we allow
the initial step size 7o not to fulfill condition (4) of Theorem 1 then it is possible to converge towards
other minima than the closest minimum of the initial condition. This new practical result allowing global
optimization is highlighted in the examples below.

In the sequel, constant and variable steps are used for the step size of the GD (1). The same rule can
also be used for tuning the step size 7,1 of the HGD (9) which has always one more degree of freedom ~y o
than the GD (1). One chooses for the different gradient descent algorithms (1), (2) and (9) the maximum
step size ensuring the maximum speed of convergence with a given initial condition xy and a given precision
¢ providing the stopping criterion of the algorithm. Finally, we will use a special ASGD for applications
defined hereafter.

Definition 5. The ASGD with the following geometric sequence vo > 0 and yx11 = 5 is named the

dichotomy algorithm (DICHO) after the dichotomy method. Moreover, we have i, = o - 0.5".

3.1. Polynomial scalar functions
Consider the following function
fi(z) = 2%, x € [-5,5]

that is plotted on Figure 1. For all algorithms, the initial condition and the precision are taken equal to
2o = 4 and ¢ = 1072 respectively. The speeds of convergence are provided in Table 1.
Let p € N\{0} be an even integer, ¢1, c2 € R and consider the basic function

f(x) = (x + c1)? + co.
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Figure 1: Function f;
GD SGD DICHO HGD
Step size Y% =0.03 | 7% =09% [ =5 Vi1 = 2 | Y1 = 0.03 Y2 = 0.5F
Number of iterations 2177 109 19 2178
Table 1: Speeds of convergence of gradient descent algorithms for f;
There is a way for converging towards the minimum x, = —c; in only one step. If we choose the step size

Ve =p 7|V f(zp)|7T,  keN

with 0 < ﬁ < 1 for (2), it leads to the following discrete-time system

Tha1 =T —p 7T |V f(zp) |77 sgn(VE(zk) = —c1,  keN. (10)

The continuous function x — |2|*sgn(x) with 0 < o < 1 has the property to render continuous systems as
finite time stable [9]. This is also the case for the discrete-time system (10) which is finite time convergent
after the first step £ = 1. However, this strategy can only be used if p is known but not ¢; and cs.

3.2. A non convez scalar function

In this subsection, a comparison of the different gradient descent algorithms has been performed for the
following non convex function

fa(z) = 0.01312* — 0.38812% + 3.6442% — 12.55z + 19.29, x € [0, 16].

which has a local minimum in z,; = 2.8621 and a global minimum in x4 = 12.84 (see Figure 2). For all
the algorithms, the initial condition and the precision are taken equal to zo = 0 and ¢ = 10~° respectively.
The speeds of convergence are provided in Table 2.

GD SGD DICHO HGD
Step size Y =01]v%=08|~=>5 Yer1 = 2 | Ya = 0.1 Vg2 = 0.5
Number of iterations 47 51 18 38

Table 2: Speeds of convergence of gradient descent algorithms for fa

The trajectories are represented on Figure 2 where the red circle is the starting point, the cyan circle is the
optimum and the blue crosses are intermediate states.
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fo()

(b) SGD

fa(x)

fa(z)

(c) DICHO (d) HGD

Figure 2: Trajectories of gradient descent algorithms for fo with a precision of ¢ = 10~°

Notice that several initial conditions have been tested and it is observed that the HGD is always faster
in terms of number of iterations than the GD. This highlights the effect of the new degree of freedom
Vk,2 brought by the discontinuous sign function. Note that the optimum found by the different algorithms
depends on the initial condition: for zy = 0, all the algorithms converge to x4 = 2.8620.

Compare now the influence of the initial step size 79 on the DICHO. The analysis of Table 3 is the
following:

e when g is too small then the DICHO converges but not to a minimum (see Figure 3a);
e when vy is not large then the DICHO converges to the local minimum z,; (see Figure 3b);

e when 7y is large enough then the DICHO converges to the global minimum 45 even for «yy very large
(see Figure 3c).

We observe the chattering phenomenon on Figure 3b and Figure 3c when the states oscillate on both sides of
the equilibrium point. This phenomenon is well known in sliding mode control theory for continuous systems
[17]. Notice that, in the context of control systems, chattering can be damageable for the closed-loop system
performances. However, in the current context, this phenomenon has no negative effect.

As far as the speed of convergence is concerned, vo does not play a crucial role to reduce the number of
iterations for the DICHO but choosing g sufficiently large can allow to converge towards the global minimum
by avoiding the local minimum (see Table 3). For this, we allow 7o not to fulfill condition (4) of Theorem 1
and then it is possible for the DICHO to converge towards other minima than the closest minimum of the
initial condition.
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Figure 3: Trajectories of the DICHO for f> with a precision of e = 1075

Yo 011 1 3 10 20 | 100 | 1000
Number of iterations | 13 | 16 | 18 19 20 23 26
Minimum X X | Tyl | Ta1 | Ta2 | T2 | T2

Table 3: Influence of the initial step size on the DICHO for fa

From Table 4, one can see that the constant step size of the GD needs to be sufficiently small to ensure
the convergence towards the closest minimum z,; and that varying step size cannot ensure convergence of
the GD. It implies that the GD can only converge towards the local minimum closest to the initial condition
rendering this method usable for local optimization only. This is a key difference with the DICHO which
can be used for global optimization.

Vi 00101 1 [10]01-05%[1-05%]3.05F
Number of iterations | 406 | 47 [ 125 [ 5 15 15 8
Minimum Tyt | Tel | Te1 | X X X X

Table 4: Influence of the step size on the GD for fa

Remark 1. If we consider the ASGD (3) with a step size i, of the form v, = 7o - ¢° with 0 < q < 1, the
previous analysis shows that:

— the parameter ~yy determines the research domain for the minimum; a large o implies a large research
domain, without having a real impact on the speed of convergence;

— the parameter q determines the precision of the research for the global minimum; a parameter q close to 0
implies a high precision whereas a parameter q close to 1 implies a low precision, and has an impact on the
speed of convergence.

By restarting the ASGD algorithm with several initial step size g, we obtain a new metaheuristic method
[18] allowing to find the global minimum of a function.

3.83. The two dimensional Rosenbrock’s function

The Rosenbrock’s function reads as
fa(z)=(1- x1)2 + 100 (22 — x%)Q, x = (z1,22) € [-2,2] x [-1, 3]

and has a global minimum in z, = [1,1]%. It is plotted on Figure 4 and used here to compare the efficiency
of the different gradient descent algorithms. For all the algorithms, the initial condition and the precision
are taken equal to 2o = [2,0]7 and & = 107° respectively. The speeds of convergence are given in Table 5.



Figure 4: Rosenbrock’s function f3

GD DICHO HGD
Step size Vi = 0.5% Yo =3 V41 = 77’“ Ye,1 = 0.001 Vk,2 = 0.5%
Number of iterations 8270 18 7360

Table 5: Speeds of convergence of gradient descent algorithms for f3

The trajectories of the gradient descent algorithms are plotted on Figure 5 where the red circle is the
starting point, the cyan circle is the global minimum z, and the blue crosses are intermediate states. The
advantage of the DICHO algorithm is clear since it allows to reduce the number of iterations by almost 500
in comparison with the GD. Finally, if we suppose there are uncertainties of the form €; = €g - 0.5* on the
values zj then the USGD (6) with v, = 0.5% converges for all 0 < ¢y < 0.05.

3.4. The DICHO algorithm and the multivariable Rastrigin’s function

In order to provide an example in large dimension, we consider the nonlinear multivariable Rastrigin’s
function defined by

fa(z) = 10n + zn] (27 — 10 cos(2ma;)) , x = (21,...,7,) € [-5.12,5.12]". (11)
i=1

In the case of n = 2, the function is represented on Figure 6. Due to the high number of local minima, we
know that the GD is not able to find the global minimum which is known to be at z = 0 with f4(0) = 0 [34].
The simulation results for large dimension n = 100000 and precision ¢ = 10~° are given in Tables 6 and 7 for
different initial conditions. It can be seen that the GD algorithm never converges even to a local minimum.
On the contrary, the DICHO algorithm always converges to a minimum which is the global minimum if the
initial condition zy belongs to [—0.5,0.5] and a local minimum otherwise.

GD DICHO
Step size vk =0.001 | v =0.01 | % =0.1 | 79=0.8 Vetl = 5
Minimum X X X global
Number of iterations X X X 24

Table 6: Comparison between the GD and DICHO for n = 100000 and z¢ € [—0.5,0.5]™



(a) GD (b) DICHO

Figure 5: Trajectories of gradient descent algorithms for f3 with a precision of ¢ = 10~°

GD DICHO
Step size Ye =0.001 | 7 =0.01 | 7% =0.1 | 79 =0.8 Vel = 5
Minimum X X X local
Number of iterations X X X 24

Table 7: Comparison between the GD and DICHO for n = 100000 and z¢ ¢ [—0.5,0.5]™

3.5. The RPROP algorithm and the Himmelblau’s function

The RPROP algorithm is an ASGD algorithm where (k) is denoted A®) and defined in [42, Equa-
tion (4)]. Tt is mentioned in [42] that v(0) = A(® has no influence on the speed of convergence of the
RPROP algorithm. This result has also been observed on the example of Subsection 3.2 with DICHO. How-
ever, we will see that the initial step size A(®) has an influence on the convergence of the RPROP algorithm
if the function to study has several minima.

The Himmelblau’s function defined by

f5(2) = (23 + 2o — 11)? + (21 + 23 — 7)?, x = (x1,22) € [-5,5] x [—5,5] (12)

is plotted on Figure 7 and has 4 minima denoted M1, M2, M3, M4 on Figure 8.

The RPROP ™~ algorithm recalled in [23] has been implemented and tested for different values of the initial
step size yo with the initial condition xo = [0,0]7 and the precision € = 1075. We have z; = 7o - [1,1]7.
The results are displayed on Figure 8. One sees that the RPROP™ algorithm converges to the four different
minima depending on the values of the initial step size yy. Table 8 sums up the different convergence results
with respect to 7. It shows that the RPROP algorithm can be used as a new metaheuristic method.

Yo | minimum
4 M1
) M2
7 M3
8 M4

Table 8: Different minima achieved with different values of the initial step size o

4. Conclusion

In this article, the first-order gradient descent algorithm involving the sign of the gradient, called sign
gradient descent algorithm, is developed. To facilitate the tuning of the step size, the adaptive sign gradient
descent algorithm is introduced. Moreover, the hybrid gradient descent algorithm is defined and it brings
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Figure 6: Rastrigin’s function f4

an additional degree of freedom for tuning classical gradient descent. Two results of convergence for local
optimization are provided and several examples are treated. The sign gradient descent algorithms can be
faster than classical gradient descent algorithm. Moreover, they can allow to reach other minima than the
closest minimum of the initial condition making these algorithms usable for global optimization.
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