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The aim of this article is to study the properties of the sign gradient descent algorithms involving the sign of the gradient instead of the gradient itself and first introduced in the RPROP algorithm. This article provides two results of convergence for local optimization, a first one for nominal systems without uncertainty and a second one for systems with uncertainties. New sign gradient descent algorithms including the dichotomy algorithm DICHO are applied on several examples to show their effectiveness in terms of speed of convergence. As a novelty, the sign gradient descent algorithms can allow to converge in practice towards other minima than the closest minimum of the initial condition making these algorithms suitable for global optimization as a new metaheuristic method.

Introduction

Gradient descent is one of the powerful local optimization algorithms [START_REF] Boyd | Convex optimization[END_REF][START_REF] Jr | Numerical methods for unconstrained optimization and nonlinear equations[END_REF]. It is a first-order method involving only the gradient and is used in many applications as optimal control [START_REF] Arab | An adaptive gradient descent-based local search in memetic algorithm applied to optimal controller design[END_REF], video coding [START_REF] Liu | A block-based gradient descent search algorithm for block motion estimation in video coding[END_REF], localization [START_REF] Grisetti | A tree parameterization for efficiently computing maximum likelihood maps using gradient descent[END_REF] or robotics [START_REF] Ratliff | CHOMP: Gradient optimization techniques for efficient motion planning[END_REF]. A fast gradient method is developed by Nesterov in [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF] and used for instance for the model predictive control [START_REF] Richter | Computational complexity certification for real-time mpc with input constraints based on the fast gradient method[END_REF]. Moreover, an optimized gradient method is proposed in [START_REF] Kim | Optimized first-order methods for smooth convex minimization[END_REF] and a gradient evolution algorithm is stated in [START_REF] Kuo | The gradient evolution algorithm: A new metaheuristic[END_REF]. By using the sign of the gradient instead of the gradient itself, the RPROP algorithm for backpropagation in artificial neural networks first stated by Riedmiller and Braun in [START_REF] Riedmiller | A direct adaptive method for faster backpropagation learning: the RPROP algorithm[END_REF] provides a new gradient descent algorithm. It has then been developed and used by many authors [START_REF] Aristoklis D Anastasiadis | New globally convergent training scheme based on the resilient propagation algorithm[END_REF][START_REF] Igel | Empirical evaluation of the improved rprop learning algorithms[END_REF][START_REF] Yaochu | Multi-objective machine learning[END_REF]. The use of the sign of the gradient instead of the gradient itself avoids the vanishing gradient problem in training artificial neural networks with gradient-based learning methods [START_REF] Pascanu | On the difficulty of training recurrent neural networks[END_REF]. Stochastic gradient descent is an iterative gradient descent optimization algorithm used for minimizing a cost function written as the sum of differentiable functions, see for instance [START_REF] James | Introduction to stochastic search and optimization: estimation, simulation, and control[END_REF]Section 5.1.2] and [START_REF] Sopy | Stochastic gradient descent with Barzilai-Borwein update step for SVM[END_REF]. It is used for example in machine learning [START_REF] Shalev | Understanding machine learning: From theory to algorithms[END_REF]Chapter 14], [START_REF] Sopy | Stochastic gradient descent with Barzilai-Borwein update step for SVM[END_REF], deep learning [START_REF] Lecun | Deep learning[END_REF] and localization [START_REF] Valiente | A modified stochastic gradient descent algorithm for view-based slam using omnidirectional images[END_REF].

Discontinuous differential equations have been developed by Filippov [START_REF] Fedorovič | Differential equations with discontinuous righthand sides: control systems[END_REF] and Clarke [START_REF] Francis H Clarke | Nonsmooth analysis and control theory[END_REF] and used in automatic control for sliding mode control introduced by Utkin in the 70's for solving Lyapunov stabilization problems [START_REF] Vadim Utkin | Sliding modes in control and optimization[END_REF]. Then, sliding mode control has been developed by many authors [START_REF] Edwards | Sliding mode control: theory and applications[END_REF][START_REF] Fridman | Sliding modes after the first decade of the 21st century[END_REF]. This method uses a discontinuous controller in order to force a continuous uncertain system to reach, in finite time and in spite of uncertainties and perturbations, a manifold called sliding surface, that is defined from the control objectives. Several extensions of sliding mode control have been proposed as higher order sliding mode control [START_REF] Levant | Higher-order sliding modes, differentiation and output-feedback control[END_REF][START_REF] Plestan | Robust output feedback sampling control based on second-order sliding mode[END_REF] or adaptive sliding mode control [START_REF] Plestan | New methodologies for adaptive sliding mode control[END_REF].

Discrete-time systems involving continuous functions have been widely studied, see for instance [START_REF] Gu | Discrete-Time Linear Systems: Theory and Design with Applications[END_REF][START_REF] Wassim | Nonlinear dynamical systems and control: a Lyapunov-based approach[END_REF]. Discrete-time systems involving discontinuous functions have been first developed in the framework of sliding mode control for discrete-time systems in [START_REF] Bartolini | Adaptive sliding mode control in discrete-time systems[END_REF][START_REF] Bartoszewicz | Discrete-time quasi-sliding-mode control strategies[END_REF][START_REF] Sam Z Sarpturk | On the stability of discrete-time sliding mode control systems[END_REF]. Then, a general Lyapunov theory of stability for this class of systems has been performed in [START_REF] Grüne | Nonlinear model predictive control: theory and algorithms[END_REF] and applied to the nonlinear model predictive control in [START_REF] Grüne | Nonlinear model predictive control: theory and algorithms[END_REF][START_REF] Lazar | Stabilizing model predictive control of hybrid systems[END_REF].

In this article, the properties of the first-order gradient descent algorithm using the sign function, whose a first version is the RPROP algorithm, is studied by using the theory of discrete-time systems involving discontinuous functions. The algorithm is called the sign gradient descent algorithm in this article as proposed in [START_REF] Bernstein | Compression by the signs: distributed learning is a two-way street[END_REF][START_REF] Liao | Weighted synapses without carry operations for RRAM-based neuromorphic systems[END_REF]. A first convergence result for local optimization is stated by using the same strategy as the one used for gradient descent in [11, Section 4.2.2], i.e. a Lyapunov sequence. Moreover, a second result of local convergence robustness is proved in case of uncertain data. The hybrid gradient descent algorithm is introduced as an extension of the classical gradient descent algorithm having a new degree of freedom brought by the sign gradient descent algorithm. As a novelty, the sign gradient descent algorithm allows to converge in practice towards other minima than the closest minimum of the initial condition making these algorithms usable for global optimization as a new metaheuristic method and this is illustrated with the new dichotomy algorithm DICHO and the old RPROP algorithm.

The article is organized as follows. The sign gradient descent algorithms are recalled in Section 2; results on local convergence and robustness are provided. Then, several applications are given in Section 3 showing that the sign gradient descent algorithms can be faster than classical gradient descent and allows to converge towards other minima then the closest minimum of the initial condition. Finally, a conclusion is addressed in Section 4.

Sign gradient descent algorithms

First-of-all, some notations used in the sequel are introduced. Denoting x " px 1 , . . . , x n q T P R n , the gradient of a differentiable function f : R n Ñ R is the vector 

∇f " ˆBf Bx 1 , . . . , Bf Bx n ˙T . A point x ˚P R n is

˙˙T

where sgn refers to the sign function defined by sgnpxq :"

$ ' & ' % ´1 if x ă 0, 0 if x " 0, 1 if x ą 0.
The euclidean norm is defined by }x} 2 " x T x.

The gradient descent algorithm is a first-order local optimization method which intends to minimize a differentiable real function, i.e. it aims at solving the problem min xPR n f pxq. Recall the definition of the gradient descent algorithm. Definition 1. Consider a differentiable function f : R n Ñ R. The gradient descent algorithm (GD) is defined by the following discrete-time system

x k`1 " x k ´γk ∇f px k q, k P N (1)
where x k P R n is the state and γ k ą 0 the step size to be defined.

A critical point of f is an equilibrium of (1). There are several strategies for tuning the step size, see for instance [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]Section 1.2.3]. If the initial condition x 0 P R n is close to a local minimum and under additional assumptions on f , it is possible to prove the convergence of (1) towards the local minimum, see for instance [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]Theorem 1.2.4] or [START_REF] Bonnans | Numerical optimization: theoretical and practical aspects[END_REF]Subsection 2.3.2]. The GD is based on the fact that, if ∇f px k q ‰ 0, then the direction d k " ´γk ∇f px k q is a descent direction of f at x k as x∇f px k q, d k y " ´γk }∇f px k q} 2 ă 0 or equivalently f px k ´γk ∇f px k qq ă f px k q for γ k ą 0 small enough. If f is not differentiable, it is possible to apply the subgradient method defined for instance in [START_REF] Bertsekas | Convex analysis and optimization[END_REF]Chapter 4].

Recall the sign gradient descent algorithm whose main interest lies in its simplicity and its speed of convergence with respect to the GD while being a first-order local optimization method.

Definition 2. Consider a differentiable function f : R n Ñ R. The sign gradient descent algorithm (SGD) is defined by the following discrete-time system

x k`1 " x k ´γk sgnp∇f px k qq, k P N (2)
where x k P R n is the state and γ k ą 0 the step size to be defined.

For tuning the step size γ k , one can choose a sequence independent of f px k q or dependent on f px k q as proposed below in [START_REF] Bonnans | Numerical optimization: theoretical and practical aspects[END_REF]. Tuning the step size γ k is crucial in practice. The adaptive sign gradient descent algorithm, first used in the RPROP algorithm [START_REF] Riedmiller | A direct adaptive method for faster backpropagation learning: the RPROP algorithm[END_REF], provides an automatic way for tuning the step size and also a strategy which can avoid local minima as shown in Subsection 3.2.

Definition 3. Consider system (2). If γ k is defined by the discrete-time system

γ k`1 " gpγ k q, k P N (3) 
with g : R ě0 Ñ R ě0 , then the algorithm (2)-( 3) is called adaptive sign gradient descent algorithm (ASGD).

Considering ∇f px k q ‰ 0, and by using the descent direction d k " ´γk sgnp∇f px k qq, one has

x∇f px k q, d k y " ´γk |∇f px k q| ă 0.
So, if γ k`1 ă γ k for all k P N and ∇f pxq " Cx is linear then the results in [START_REF] Kaynak | Discrete-time sliding mode control in the presence of system uncertainty[END_REF][START_REF] Sam Z Sarpturk | On the stability of discrete-time sliding mode control systems[END_REF] imply that the discretetime system (2) converges towards a local minimum x ˚. The speed of convergence of the SGD depends on the tuning of the step size γ k . Special cases have been studied in [START_REF] Bandyopadhyay | High-performance tracking controller for discrete plant using nonlinear sliding surface[END_REF], however this result is not enough general to be applied to the discrete-time system (2).

In the sequel, a convergence condition, first given for the GD in [11, Section 4.2.2], is stated for the SGD (2).

Theorem 1. Suppose that f has a unique minimum x ˚and satisfies px ´x˚q T sgnp∇f pxqq ą 0 for all x in the domain of definition of f . Consider the SGD (2) and a sequence γ k such that lim kÑ`8

γ k " 0, 0 ă nγ k ă 2px k ´x˚q T sgnp∇f px k qq (4) 
and

γ k px k ´x˚q T sgnp∇f px k qq ě c}x k ´x˚} α , c ą 0, α ą 0 ( 5 
)
for all k P N. Then the sequence x k given by the SGD (2) satisfies lim kÑ`8

x k " x ˚.

Proof. Consider the following Lyapunov sequence

V px k q " }x k ´x˚} 2 .
By using ( 2) and ( 4), one gets

V px k`1 q ´V px k q " }x k`1 ´x˚} 2 ´}x k ´x˚} 2 " }x k ´γk sgnp∇f px k qq ´x˚} 2 ´}x k ´x˚} 2 " nγ 2 k ´2γ k px k ´x˚q T sgnp∇f px k qq ă 0.
We deduce that V px k q is decreasing. As V px k q is decreasing and bounded from below by zero, the monotone convergence theorem given for instance in [6, Theorem 3.2] implies that V px k q is convergent. As lim kÑ`8

γ k " 0 and V px k q is convergent we deduce that lim kÑ`8

γ k px k ´x˚q T sgnp∇f px k qq " lim kÑ`8
px k ´x˚q T px k ´xk`1 q " 0.

By using (5), we conclude that lim kÑ`8

x k " x ˚. l Condition (4) implies that the sequence γ k of the SGD (2) must be decreasing and the function g of the ASGD (3) must satisfy gpxq ă x for having the convergence. Condition ( 5) is required, because decreasing the step size too quickly could stop the convergence of the algorithm towards the minimum. However, Theorem 1 which is based on a Lyapunov sequence provides only a sufficient condition for the convergence of system (2). On the one hand, Conditions (4)-( 5) are general conditions not too restrictive on f and its gradient, which is desirable. On the other hand, they involve the knowledge of the minimum x ˚and can only be checked a posteriori in practice. On the contrary, Wolfe conditions, studied in [36, Subsection 3.1] for the GD algorithm and in [START_REF] Aristoklis D Anastasiadis | New globally convergent training scheme based on the resilient propagation algorithm[END_REF] for the RPROP algorithm, are restrictive on f but they can be checked a priori in practice. Consider now the case where x k is only known with an uncertainty k . Indeed, if the data are given by measurements then they may have uncertainties due to their experimental features. It leads to the following uncertain sign gradient descent algorithm (USGD)

x k`1 " x k ` k ´γk sgnp∇f px k ` k qq, k P N. (6) 
One gets the following result Theorem 2. Suppose that f has a unique minimum x ˚and for all x in the domain of definition of f there exists P R n such that px ` ´x˚q T sgnp∇f px ` qq ą 0. Consider the USGD (6) and sequences γ k ą 0 and k P R n such that lim kÑ`8

γ k " 0, lim kÑ`8 k " 0, px k ` k ´x˚q T sgnp∇f px k ` k qq ą 0, px k ` k ´x˚q T sgnp∇f px k ` k qq ´a∆ k ă nγ k ă px k ` k ´x˚q T sgnp∇f px k ` k qq `a∆ k (7) with ∆ k " `px k ` k ´x˚q T sgnp∇f px k ` k qq ˘2 ´2n T k ´xk ` k 2 ´x˚¯ą 0 and γ k px k ` k ´x˚q T sgnp∇f px k ` k qq ě c}x k ´x˚} α , c ą 0, α ą 0 (8)
for all k P N. Then, the sequence x k given by the USGD (6) satisfies lim kÑ`8

x k " x ˚.

Proof. Consider the following Lyapunov sequence

V px k q " }x k ´x˚} 2 .
By using (6), one gets

V px k`1 q ´V px k q " }x k`1 ´x˚} 2 ´}x k ´x˚} 2 " }x k ` k ´γk sgnp∇f px k ` k qq ´x˚} 2 ´}x k ´x˚} 2 " nγ 2 k ´2γ k px k ` k ´x˚q T sgnp∇f px k ` k qq `2 T k ´xk ` k 2 ´x˚¯.
Consider V px k`1 q ´V px k q as a second order polynomial in γ k with a discriminant reading as ∆ k ą 0. It leads to V px k`1 q ´V px k q ă 0 if and only if [START_REF] Bernstein | Compression by the signs: distributed learning is a two-way street[END_REF] is satisfied. So, we deduce that V px k q is decreasing. As V px k q is decreasing and bounded from below by zero, the monotone convergence theorem given for instance in [6, Theorem 3.2] implies that V px k q is convergent. As lim kÑ`8 γ k " 0, lim kÑ`8

k " 0 and V px k q is convergent we deduce that lim kÑ`8

γ k px k ` k ´x˚q T sgnp∇f px k ` k qq " lim kÑ`8 px k ` k ´x˚q T px k ` k ´xk`1 q " 0.
By using [START_REF] Bertsekas | Convex analysis and optimization[END_REF], we conclude that lim kÑ`8

x k " x ˚. l

It is well known in control theory that sliding mode control has good robustness properties due to the use of the sign function, see for instance [START_REF] Shtessel | Sliding mode control and observation[END_REF]; similar feature can be expected for the SGD in Theorem 2.

By choosing the following step size

γ k " γ k,1 |∇f px k q| `γk,2 , k P N for (2)
where γ k,1 and γ k,2 are two step size, one obtains hereafter the hybrid gradient descent algorithm which is the GD (1) with a new degree of freedom brought by the SGD (2).

Definition 4. Consider a differentiable function f : R n Ñ R. The hybrid gradient descent algorithm (HGD) is defined by the following discrete-time system

x k`1 " x k ´γk,1 ∇f px k q ´γk,2 sgnp∇f px k qq, k P N (9) 
where x k P R n is the state and γ k,1 ą 0, γ k,2 ą 0 the step size to be defined.

Applications

The speed of convergence, given by the number of iterations, of the SGD algorithms satisfying conditions of Theorem 1 is usually better than the one of the GD algorithms and this has been highlighted for neural networks with the RPROP algorithm in [START_REF] Riedmiller | A direct adaptive method for faster backpropagation learning: the RPROP algorithm[END_REF] and [START_REF] Rojas | Neural networks: a systematic introduction[END_REF]Subsection 8.3.3]. We recover this practical result on several examples for the different gradient descent algorithms (1), ( 2) and [START_REF] Sanjay | Finite-time stability of continuous autonomous systems[END_REF]. Moreover, if we allow the initial step size γ 0 not to fulfill condition (4) of Theorem 1 then it is possible to converge towards other minima than the closest minimum of the initial condition. This new practical result allowing global optimization is highlighted in the examples below.

In the sequel, constant and variable steps are used for the step size of the GD (1). The same rule can also be used for tuning the step size γ k,1 of the HGD (9) which has always one more degree of freedom γ k,2 than the GD (1). One chooses for the different gradient descent algorithms (1), ( 2) and ( 9) the maximum step size ensuring the maximum speed of convergence with a given initial condition x 0 and a given precision ε providing the stopping criterion of the algorithm. Finally, we will use a special ASGD for applications defined hereafter.

Definition 5. The ASGD with the following geometric sequence γ 0 ą 0 and γ k`1 " γ k 2 is named the dichotomy algorithm (DICHO) after the dichotomy method. Moreover, we have γ k " γ 0 ¨0.5 k .

Polynomial scalar functions

Consider the following function f 1 pxq " x 4 , x P r´5, 5s that is plotted on Figure 1. For all algorithms, the initial condition and the precision are taken equal to x 0 " 4 and ε " 10 ´5 respectively. The speeds of convergence are provided in Table 1.

Let p P Nzt0u be an even integer, c 1 , c 2 P R and consider the basic function f pxq " px `c1 q p `c2 . γ k " 0.03 γ k " 0.9 k γ 0 " 5 There is a way for converging towards the minimum x ˚" ´c1 in only one step. If we choose the step size

γ k`1 " γ k 2 γ k,1 " 0.03 γ k,2 " 0.
γ k " p ´1 p´1 |∇f px k q| 1 p´1
, k P N with 0 ă 1 p´1 ď 1 for (2), it leads to the following discrete-time system

x k`1 " x k ´p´1 p´1 |∇f px k q| 1 p´1 sgnp∇f px k qq " ´c1 , k P N. ( 10 
)
The continuous function x Þ Ñ |x| α sgnpxq with 0 ă α ă 1 has the property to render continuous systems as finite time stable [START_REF] Sanjay | Finite-time stability of continuous autonomous systems[END_REF]. This is also the case for the discrete-time system [START_REF] Bonnans | Numerical optimization: theoretical and practical aspects[END_REF] which is finite time convergent after the first step k " 1. However, this strategy can only be used if p is known but not c 1 and c 2 .

A non convex scalar function

In this subsection, a comparison of the different gradient descent algorithms has been performed for the following non convex function f 2 pxq " 0.0131x 4 ´0.3881x 3 `3.644x 2 ´12.55x `19.29,

x P r0, 16s.

which has a local minimum in x ˚1 " 2.8621 and a global minimum in x ˚2 " 12.84 (see Figure 2). For all the algorithms, the initial condition and the precision are taken equal to x 0 " 0 and ε " 10 ´5 respectively. The speeds of convergence are provided in Table 2. The trajectories are represented on Figure 2 where the red circle is the starting point, the cyan circle is the optimum and the blue crosses are intermediate states. Notice that several initial conditions have been tested and it is observed that the HGD is always faster in terms of number of iterations than the GD. This highlights the effect of the new degree of freedom γ k,2 brought by the discontinuous sign function. Note that the optimum found by the different algorithms depends on the initial condition: for x 0 " 0, all the algorithms converge to x ˚1 " 2.8620. Compare now the influence of the initial step size γ 0 on the DICHO. The analysis of Table 3 is the following:

GD SGD DICHO HGD Step size γ k " 0.1 γ k " 0.8 k γ 0 " 5 γ k`1 " γ k 2 γ k,1 " 0.1 γ k,2 " 0.
• when γ 0 is too small then the DICHO converges but not to a minimum (see Figure 3a);

• when γ 0 is not large then the DICHO converges to the local minimum x ˚1 (see Figure 3b);

• when γ 0 is large enough then the DICHO converges to the global minimum x ˚2 even for γ 0 very large (see Figure 3c).

We observe the chattering phenomenon on Figure 3b and Figure 3c when the states oscillate on both sides of the equilibrium point. This phenomenon is well known in sliding mode control theory for continuous systems [START_REF] Fridman | Sliding modes after the first decade of the 21st century[END_REF]. Notice that, in the context of control systems, chattering can be damageable for the closed-loop system performances. However, in the current context, this phenomenon has no negative effect. As far as the speed of convergence is concerned, γ 0 does not play a crucial role to reduce the number of iterations for the DICHO but choosing γ 0 sufficiently large can allow to converge towards the global minimum by avoiding the local minimum (see Table 3). For this, we allow γ 0 not to fulfill condition (4) of Theorem 1 and then it is possible for the DICHO to converge towards other minima than the closest minimum of the initial condition. x

˚1 x ˚1 x ˚2 x ˚2 x ˚2
Table 3: Influence of the initial step size on the DICHO for f 2

From Table 4, one can see that the constant step size of the GD needs to be sufficiently small to ensure the convergence towards the closest minimum x ˚1 and that varying step size cannot ensure convergence of the GD. It implies that the GD can only converge towards the local minimum closest to the initial condition rendering this method usable for local optimization only. This is a key difference with the DICHO which can be used for global optimization. Remark 1. If we consider the ASGD (3) with a step size γ k of the form γ k " γ 0 ¨qk with 0 ă q ă 1, the previous analysis shows that: -the parameter γ 0 determines the research domain for the minimum; a large γ 0 implies a large research domain, without having a real impact on the speed of convergence; -the parameter q determines the precision of the research for the global minimum; a parameter q close to 0 implies a high precision whereas a parameter q close to 1 implies a low precision, and has an impact on the speed of convergence. By restarting the ASGD algorithm with several initial step size γ 0 , we obtain a new metaheuristic method [START_REF] Gendreau | Handbook of metaheuristics[END_REF] allowing to find the global minimum of a function.

The two dimensional Rosenbrock's function

The Rosenbrock's function reads as f 3 pxq " p1 ´x1 q 2 `100 px 2 ´x2 1 q 2 , x " px 1 , x 2 q P r´2, 2s ˆr´1, 3s and has a global minimum in x ˚" r1, 1s T . It is plotted on Figure 4 and used here to compare the efficiency of the different gradient descent algorithms. For all the algorithms, the initial condition and the precision are taken equal to x 0 " r2, 0s T and ε " 10 ´5 respectively. The speeds of convergence are given in Table 5. The trajectories of the gradient descent algorithms are plotted on Figure 5 where the red circle is the starting point, the cyan circle is the global minimum x ˚and the blue crosses are intermediate states. The advantage of the DICHO algorithm is clear since it allows to reduce the number of iterations by almost 500 in comparison with the GD. Finally, if we suppose there are uncertainties of the form k " 0 ¨0.5 k on the values x k then the USGD (6) with γ k " 0.5 k converges for all 0 ă 0 ď 0.05.

The DICHO algorithm and the multivariable Rastrigin's function

In order to provide an example in large dimension, we consider the nonlinear multivariable Rastrigin's function defined by

f 4 pxq " 10n `n ÿ i"1 `x2 i ´10 cosp2πx i q ˘,
x " px 1 , . . . , x n q P r´5.12, 5.12s n .

In the case of n " 2, the function is represented on Figure 6. Due to the high number of local minima, we know that the GD is not able to find the global minimum which is known to be at x " 0 with f 4 p0q " 0 [START_REF] Heinz Mühlenbein | The parallel genetic algorithm as function optimizer[END_REF].

The simulation results for large dimension n " 100000 and precision ε " 10 ´5 are given in Tables 6 and7 for different initial conditions. It can be seen that the GD algorithm never converges even to a local minimum. On the contrary, the DICHO algorithm always converges to a minimum which is the global minimum if the initial condition x 0 belongs to r´0. Table 7: Comparison between the GD and DICHO for n " 100000 and x 0 R r´0.5, 0.5s n

The RPROP algorithm and the Himmelblau's function

The RPROP algorithm is an ASGD algorithm where γpkq is denoted ∆ pkq and defined in [42, Equation ( 4)]. It is mentioned in [START_REF] Riedmiller | A direct adaptive method for faster backpropagation learning: the RPROP algorithm[END_REF] that γp0q " ∆ p0q has no influence on the speed of convergence of the RPROP algorithm. This result has also been observed on the example of Subsection 3.2 with DICHO. However, we will see that the initial step size ∆ p0q has an influence on the convergence of the RPROP algorithm if the function to study has several minima. The Himmelblau's function defined by f 5 pxq " px 2 1 `x2 ´11q 2 `px 1 `x2 2 ´7q 2 , x " px 1 , x 2 q P r´5, 5s ˆr´5, 5s

is plotted on Figure 7 and has 4 minima denoted M1, M2, M3, M4 on Figure 8. The RPROP ´algorithm recalled in [START_REF] Igel | Improving the Rprop learning algorithm[END_REF] has been implemented and tested for different values of the initial step size γ 0 with the initial condition x 0 " r0, 0s T and the precision ε " 10 ´5. We have x 1 " γ 0 ¨r1, 1s T . The results are displayed on Figure 8. One sees that the RPROP ´algorithm converges to the four different minima depending on the values of the initial step size γ 0 . Table 8 

Conclusion

In this article, the first-order gradient descent algorithm involving the sign of the gradient, called sign gradient descent algorithm, is developed. To facilitate the tuning of the step size, the adaptive sign gradient descent algorithm is introduced. Moreover, the hybrid gradient descent algorithm is defined and it brings 
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  a critical point of f if ∇f px ˚q " 0. Denote

	sgnp∇f pxqq " ˆsgn	ˆBf pxq Bx 1	˙, . . . , sgn	ˆBf pxq Bx n

Table 1 :

 1 Speeds of convergence of gradient descent algorithms for f 1

	5 k

Table 2 :

 2 Speeds of convergence of gradient descent algorithms for f 2

Table 4 :

 4 Influence of the step size on the GD for f 2

Table 5 :

 5 Speeds of convergence of gradient descent algorithms for f 3

  5, 0.5s and a local minimum otherwise.

		GD	DICHO
	Step size	γ k " 0.001 γ k " 0.01 γ k " 0.1 γ 0 " 0.8	γ k`1 " γ k 2
	Minimum		global
	Number of iterations		24

Table 6 :

 6 Comparison between the GD and DICHO for n " 100000 and x 0 P r´0.5, 0.5s n

  sums up the different convergence results with respect to γ 0 . It shows that the RPROP algorithm can be used as a new metaheuristic method.

	γ 0 minimum
	4	M1
	5	M2
	7	M3
	8	M4

Table 8 :

 8 Different minima achieved with different values of the initial step size γ 0
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