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Abstract In this paper we present a static analysis of probabilistic programs to
quantify their performance properties by taking into account both the stochastic
aspects of the language and those related to the execution environment. More
particularly, we are interested in the analysis of communication protocols in lossy
networks and we aim at inferring statically parametric bounds of some important
metrics such as the expectation of the throughput or the energy consumption. Our
analysis is formalized within the theory of abstract interpretation and soundly
takes all possible executions into account. We model the concrete executions as
a set of Markov chains and we introduce a novel notion of abstract Markov chains

that provides a finite and symbolic representation to over-approximate the (possi-
bly unbounded) set of concrete behaviors. We show that our proposed formalism is
expressive enough to handle both probabilistic and pure non-deterministic choices
within the same semantics. Our analysis operates in two steps. The first step is a
classic abstract interpretation of the source code, using stock numerical abstract
domains and a specific automata domain, in order to extract the abstract Markov
chain of the program. The second step extracts from this chain particular invari-
ants about the stationary distribution and computes its symbolic bounds using
a parametric Fourier-Motzkin elimination algorithm. We present a prototype im-
plementation of the analysis and we discuss some preliminary experiments on a
number of communication protocols. We compare our prototype to the state-of-
the-art probabilistic model checker Prism and we highlight the advantages and
shortcomings of both approaches.
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1 Introduction

The analysis of probabilistic programs represents a challenging problem. The dif-
ficulty comes from the fact that execution traces are characterized by probability
distributions that are affected by the behavior of the program, resulting in very
complex forms of stochastic processes. In such particular context, programmers
are interested in quantitative properties not supported by conventional semantics
analysis, such as the inference of expected values of performance metrics or the
probability of reaching bug states.

In this work, we propose a novel static analysis for extracting symbolic quanti-
tative information from probabilistic programs. More particularly, we focus on the
analysis of communication protocols and we aim at assessing their performance
formally. The proposed approach is based on the theory of abstract interpreta-
tion [9] that provides a rigorous mathematical framework for developing sound-
by-construction static analyses. In the following, we describe informally the main
contributions of our work and we illustrate our motivations through some practical
examples.

Stationary distributions. Generally, the quantification of performance metrics for
such systems is based on computing the stationary distribution of the associated
random process [13]. It gives the proportion of time spent in every reachable
state of the system by considering all possible executions. This information is
fundamental to compute the expected value of most common performance metrics.
For instance, the throughput represents the average number of transmitted packets
per time unit. By identifying the program locations where packets are transmitted
and by computing the value of the stationary distribution at these locations, we
obtain the proportion of packets sent in one time unit. Many other metrics are
based on this distribution, such as the duty cycle (proportion of time where the
transceiver is activated) or the goodput (the proportion of successfully transmitted
data).

To our knowledge, no existing approach can obtain such information (i) auto-

matically by analyzing the source code, (ii) soundly by considering all executions
in possibly infinite systems and (iii) symbolically by expressing the distribution
in terms of the protocol parameters. Indeed, most proposed solutions focus on
computing probabilities of program assertions [44,7] or expectation invariants [8,
3]. Only Prism [30], thanks to its extension Param [25], can compute stationary
distributions of parametric Markov chains, but it is limited to finite state systems
with parametric transition probabilities, whereas we also support systems where
the number of states is a (possibly unbounded) parameter.

Example 1 To illustrate this problem, consider the simple wireless protocol shown
in Fig. 1a representing a typical backoff-based transmission mechanism used in em-
bedded sensing applications. Assume a star network topology in which a central
node collects the readings of a set of surrounding sensor nodes that periodically
send their measurements via wireless transmissions. To do that, each sensor node
repeatedly activates its sensing device and acquires some readings by calling the
sense function. To avoid collisions when sending the data, a random backoff is
used by sampling a discrete uniform distribution from the range [1, B], where B
is an integer parameter of the protocol. The node remains in sleep mode during
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1 pkt = 0;
2 ack = 0;
3 while(1) {
4 data = sense();
5 //Uniform backoff
6 t = uniform(1, B);
7 wait t;
8 //Transmission with ack
9 if (unicast(data))

10 ack++;
11 pkt++;
12 //Save energy
13 wait S;
14 }

(a)

15 //Unicast model
16 #define TX_DELAY 1
17 #define RX_DELAY 1
18
19 bool unicast(int data) {
20 //Emulate data transmission
21 wait TX_DELAY;
22 //Emulate ack reception
23 rx = bernoulli();
24 wait RX_DELAY;
25 return rx;
26 }

(b)

Fig. 1: (a) Example of a backoff-based transmission protocol. (b) Hardware model
of the unicast built-in function.

this random period, and after it wakes up, data is transmitted using the unicast

function. Such functions are generally implemented in hardware by the wireless
transceiver, so we give in Fig. 1b its model. Transmission/reception operations are
emulated with simple waiting periods; the constant TX DELAY models the transmis-
sion delay and the constant RX DELAY models the reception delay. Packet losses are
modeled using a Bernoulli distribution, meaning that a packet is transmitted and
acknowledged with some parameter probability p, or lost with probability 1 − p.
Finally, in order to save energy, the sensor node remains inactive for a duration
determined by a parameter S, and then iterates again the same process indefinitely.

A critical task for designers of such systems is to fine-tune the protocol’s pa-
rameters B and S in order to achieve optimal performance w.r.t. the requirements
of the application. Consider for instance that we are interested in the goodput Γ of
a sensor; that is, the average number of data packets that are successfully received
in one time unit. To study the variation of Γ , system designers generally derive
manually a mathematical stochastic model of the protocol. In this case, discrete

time Markov chains are a powerful model embedding many interesting properties
that help quantify the performances of our system [43,23].

We give in Fig. 2a the chain associated with the protocol. Each state of the
chain corresponds to a duration of one time unit (e.g. one millisecond). The good-
put Γ of the protocol is, therefore, the proportion of time spent in state ack, which
can be obtained by computing the stationary distribution π of the chain. This is

done by finding the eigenvector π
def
= 〈πss,πbk1

1
, . . . ,πtx,πack,πack,πsl1 , . . . 〉 as-

sociated with the eigenvalue 1 of the following stochastic matrix:
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Fig. 2: (a) Discrete time Markov chain of the protocol. ss: sensing state, { bkji | i ∈
[1, B]∧j ∈ [1, i] }: backoff states, tx: transmission state, ack: acknowledgment state,
ack: loss state, { sli | i ∈ [1, S] }: sleep states. (b) Inferred abstract Markov chain.

P =



0 1
B . . . 1
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. . .

...
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0 0 . . . 0 0 p (1− p) 0 . . . 0
0 0 . . . 0 0 0 0 1 . . . 0
0 0 . . . 0 0 0 0 1 . . . 0
0 0 . . . 0 0 0 0 0 . . . 0
...

...
. . .

...
...

...
...

...
. . .

...
1 0 . . . 0 0 0 0 0 . . . 0


which can be done by solving π = πP verifying

∑
πi = 1. Existing verification

solutions, such as Param [25], can handle symbolic entries within the stochastic
matrix P in order to find parametric solutions. However, to our knowledge, ma-
trices with parametric structures (i.e. when the size depends on some parameters;
in this case B and S) are out of the scope of existing solutions.
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Our analysis can find solutions for such problems. When applied on this par-
ticular example, it infers in finite time the following bounds of πack in terms of
parameters B, S and p:

B2(p− 1)−B(p− 3) + 2(p− 1)

3B2 + 2BS +B + 4
≤ πack ≤

(
B2 −B + 2

)
p

3B2 + 2BS +B + 4
(1)

Since Γ = πack, this parametric interval is guaranteed to cover all possible values
of the goodput.

To obtain the invariant (1), we first construct a computable, finite-size over-
approximation of the concrete chain using a novel domain of abstract Markov chains.
We proceed by abstract interpretation of the program and we obtain the abstract
Markov chain shown in Fig. 2b. Each abstract state over-approximates a set of
states of the concrete Markov chain by identifying their (i) common program
location, (ii) the invariant of reachable memory environments and (iii) the number
of time ticks ν spent in such configuration. For instance, the transition 〈l4, ack ≥

0 ∧ pkt ≥ ack, ν = 1〉
1
B→ 〈l7, ack ≥ 0 ∧ pkt ≥ ack ∧ t = 1, ν = 1〉 represents the case

of choosing a backoff window of length 1, while 〈l4, ack ≥ 0∧pkt ≥ ack, ν = 1〉
B−1
B→

〈l7, ack ≥ 0 ∧ pkt ≥ ack ∧ t ∈ [2, B], ν = t〉 aggregates the remaining B − 1 cases.
Thanks to a novel widening operator, we ensure the finite size of the abstract

chain and the convergence of computations in finite time. After convergence, we
extract from this abstract chain a number of distribution invariants that charac-
terize the boundaries of the stationary distribution vector π. These invariants are
represented as a parametric system of linear inequalities where the unknowns are
the entries of π partitioned with respect to the abstract states of the abstract
chain, and the coefficients are functions of the program parameters. Using a reso-
lution method based on a parametric Fourier-Motzkin elimination, we obtain the
invariant (1). �

Generalized Lumping. One of the most important challenges that hamper the use of
Markov chains in modeling real-life systems is the state space explosion problem.
The lumping technique [28] aims to reduce the size of a Markov chain by aggre-
gating states into partitions in a way that allows to establish a link between the
quantitative properties the original chain and the lumped one. The main challenge
of this approach is to find the appropriate partitioning that preserves (partially)
the Markov property of the lumped chain [6]. This fundamental property stipulates
that the determination of future aggregate states should depend only upon the
present aggregate state, not the past ones. This allows us to take benefit from
classic results of Markov chains on the lumped process, but limits the application
scope of the technique to a narrow range of partitioning policies.

Our extraction and resolution method of distribution invariants – not being
limited to the case of communication protocols only – can be considered also as a
generalized lumping technique of arbitrary Markovian processes. Indeed, our method
does not impose any condition on the input chain and can be applied using any
partitioning policy, even if the resulting lumped chain violates the Markov prop-
erty. This represents a key missing property in existing lumping techniques because
it decouples the analysis from the partitioning policies, which offers a means to
adjust the efficiency/precision tradeoff while keeping the soundness guarantee in
all cases.
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Fig. 3: Generalized Markov chain lumping. (a) Original chain. (b) Lumped chain.
(c) Variation bounds of πa. (d) Variation bounds of πb+πc. (e) Variation bounds
of πd.

Example 2 Consider the example Markov chain depicted in Fig. 3a and assume the
partitioning P = {{a}, {b, c}, {d}}. We notice that this chain is not lumpable w.r.t.
P since the states of the partition {b, c} do not preserve the Markov property.
Indeed, the probability distributions of b and c for choosing the future partitions
are different and cannot be merged into a single valid probability distribution,
except for the case when p = 1

2 .

Our method does not impose such restrictions, so we can construct the ab-
stract Markov chain shown in Fig. 3b that respects the partitioning P but violates
the Markov property. This is reflected by the non-standard outgoing transition

probabilities {b, c} max(p,1−p)→ {b, c} and {b, c} max(p,1−p)→ {d}, that cannot construct
a valid probability distribution since their sum exceeds 1. Informally, such a non-
standard transition A

ω→ B means that the maximal outgoing probability from a
state in partition A to any state in partition B does not exceed the probability ω.

By constructing the distribution invariants of this abstract Markov chain and
resolving the obtained parametric linear system, we find the symbolic bounds of
πa, πa + πa and πd shown in Figs. 3c, 3d and 3e respectively. We notice that the
precision of the obtained results, expressed as the distance between the upper and
the lower bound, varies depending on the value of p. However, the exact solution
is found when p = 1

2 , which corresponds to the case when the chain is lumpabale.
�
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1 pkt = 0;
2 ack = 0;
3 while(1) {
4 data = sense();
5 //Uniform backoff
6 t = uniform(1, B);
7 ndwait(t);
8 //Tx with ack
9 if (unicast(data))

10 ack++;
11 pkt++;
12 //Save energy
13 ndwait(S);
14 }

(a)

15 //Unicast model
16 #define TX_DELAY 1
17 #define RX_DELAY 1
18
19 bool unicast(int data)

{
20 //Emulate tx
21 wait TX_DELAY;
22 //Emulate ack rx
23 rx = bernoulli();
24 wait RX_DELAY;
25 return rx;
26 }

(b)

27 //Model of clock drifts
28
29 void ndwait(int t) {
30 if ? {
31 t = t + 1;
32 }
33 wait t;
34 }

(c)

Fig. 4: (a) Example of a non-deterministic backoff-based transmission protocol.
(b) hardware model of the unicast built-in function. (c) hardware clock model
with non-deterministic drifts.

Non-determinism. When the stochastic behavior of the system is not totally known,
non-determinism is a valuable tool to overcome this lack of information. However,
while probability and non-determinism have been widely studied separately in the
literature of program analysis, there exist only few works that can mix them within
a same computable semantics [38,11]. The main challenge for such analyses is the
difficulty to reason about program traces in terms of (possibly unbounded) sets of
heterogeneous probability distributions in order to infer interesting quantitative
information.

A well-known stochastic tool supporting both probabilities and non-determinism
is the model of Markov decision processes (MDP) [42]. Informally, a MDP is an
extended Markov chain model in which each state can decide which probability
distribution to use before choosing the next state according to it. In other words,
at each state of the MDP, a non-deterministic choice from a finite number of tran-
sition distributions is allowed, while in (deterministic) Markov chains only one
distribution can be used. Since (i) an MDP can be viewed as an unbounded set of
(possibly infinite) Markov chains as we will see later, and (ii) our abstract domain
can over-approximate sets of Markov chains of arbitrary sizes, our analysis can be
easily extended to handle MDPs, which allows a natural semantics formalization
for both pure non-determinism and probabilities.

Example 3 Let us go back to our first motivating example in order to introduce
non-deterministic choices. Assume that our target embedded system is equipped
with a hardware clock that may exhibit occasional drifts, but the distribution of
these events is unknown. We model this phenomenon by redefining wait using
the non-deterministic boolean operator ? as shown in Fig. 4c. For illustration
purposes, we use a basic additive drift model that simply increments the clock
by one tick in a non-deterministic way. Despite being unrealistic, it simplifies the
presentation of the main challenges of this problem. The corresponding MDP is



8 A. Ouadjaout and A. Miné
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Fig. 5: (a) Markov decision process of the protocol. Diamond nodes represent
non-deterministic choices. (b) Associated abstract Markov chain.

depicted in Fig. 5a. We can see that with this small change, the structure of model
increased significantly which makes it more difficult to study analytically 1.

The abstract Markov chain inferred by our analysis is – on the other hand –
quite similar to the deterministic case, as shown in Fig. 5b. In fact, the struc-
ture remained the same while the state invariants have changed according to the
introduction of the non-determinism. More particularly, the sojourn time in the
backoff and sleep states (identified by the program location l33) reflects such non-
determinism with the interval invariants. Using the same resolution method of
distribution invariants as the deterministic case, we obtain the new goodput in-

1 Note that the hardware model of the function unicast employs the wait primitive since
it emulates the physical delay of wireless transmissions, which is not affected by the drifts of
the system clock.
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variant:

B2(p− 1)(S + 1) + 2BS + 3(p− 1)(S + 1)

3B2(S + 1) + 2B (S2 + 3S + 1) + 5(S + 1)
≤ Γ ≤(

B2 + 3
)
p(S + 1)

3B2(S + 1) + 2B (S2 + 3S + 1) + 5(S + 1)

�

Contributions. To sum up, we propose a novel static analysis by abstract interpre-
tation based on three main contributions:

1. First, we introduce a novel notion of abstract Markov chains that approximates
a set of discrete time Markov chains. These abstract chains are inferred auto-
matically by analyzing the source code of the program. For the sake of clarity,
we start by limiting the scope of the analysis to probabilistic programs without
non-deterministic choices. Thanks to a novel widening algorithm, these chains
are guaranteed to have a finite size while covering all possible probabilistic
traces of the program.

2. Our second contribution is a result for extracting distribution invariants from an
abstract Markov chain in the form of a system of parametric linear inequalities
for bounding the concrete stationary distribution. Using a parametric-version
of the Fourier-Motzkin elimination algorithm, we can infer symbolic and guar-
anteed bounds of the property of interest.

3. Finally, we extend the previous analysis in order to support programs with
non-deterministic choices and we show how we can preserve the soundness of
the extracted distribution invariants.

The foundations of our ideas have been previously described in [40]. The present
article extends our previous work by the support of non-determinism and the full
correctness proof of the distribution invariants. Also, we provide a more compre-
hensive description of the semantics and a discussion of additional experimental
results.

Limitations. Our approach is still in a preliminary development phase and presents
some limitations. The analysis supports only discrete probability distributions,
such as Bernoulli and discrete uniform distributions. Our model supports symbolic
parameters of these distributions, but does not support dynamic modification of
the parameter of a Bernoulli distribution during execution. We limit the descrip-
tion herein to a simple C-like language and we do not support yet the analysis
of real-world implementations. Finally, we support the analysis of only one node
of the network. The interactions via messages with the remaining nodes is not
addressed in this work.

Outline. The remaining of the paper is organized as follows. We present in Section
2 the concrete semantics of the deterministic analysis. Section 3 introduces the
domain of abstract Markov chains and we detail in Section 4 the method to extract
the stationary distribution invariants from an abstract chain and how we can infer
symbolic bounds of the property of interest. We show in Section 5 how we can
extend the analysis to support non-deterministic programs. The results of the
preliminary experiments are presented in Section 6. We discuss the related work
in Section 7 and we conclude the paper in Section 8.
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expr ::= TRUE | FALSE | i ∈ Z HconstantsI
| id HidentiferI
| ◦ expr Hunaray operationsI
| expr • expr Hbinary operationsI
| bernoullil∈L() Hdiscrete Bernoulli choiceI
| uniforml∈L(expr, expr) Hdiscrete uniform sampleI

stmt ::= id = expr HassignmentI
| waitl∈L expr Hidle timeI
| if (expr) stmt else stmt HconditionalI
| while (expr) stmt HloopI

Fig. 6: Syntax of PSimpl.

2 Concrete Semantics

We consider communication protocols that can be represented as (possibly infinite)
discrete time Markov chains. For the clarity of presentation, we target a simple
probabilistic language PSimpl with a limited, albeit sufficient, set of features. The
language supports sampling from Bernoulli and uniform distributions, which are
widely used in communication protocols. We consider a discrete time scale and we
assume that all statements are instantaneous except for a statement wait. In the
following, we describe the syntax of the language, its concrete semantics and the
computation method of the stationary distribution associated to a probabilistic
program.

2.1 Language Syntax

We give in Fig. 6 the syntax of PSimpl. We consider boolean and integer expres-

sions, with standard constructs such as boolean/integer constants c ∈ V def
= B∪Z,

variables id ∈ X or results of unary/binary operations. PSimpl supports common
statements such as assignments, if conditionals and while loops, in addition to the
statement waitl e that models the fact that the program spends e ticks in the cur-
rent control location l. Probabilistic choices are provided by two built-in functions
uniforml and bernoullil, where the annotation l ∈ L represents the call site loca-
tion. The function uniforml(e1, e2) draws a random integer value from a discrete
uniform distribution over the interval [e1, e2]. A call to the function bernoullil()
returns a boolean value according to a Bernoulli distribution with parameter pl.
Note that this parameter is not an argument of the function bernoullil() because
our analysis does not support dynamic modification of the parameter of Bernoulli
distributions at runtime. Nevertheless, pl is symbolic and can represent any range
in [0, 1]. To sum up, our analysis can accept as parameter pl an interval of values,
and will give a result that is sound for any input value of pl within this interval,
as long as pl is not modified during the execution.

2.2 Markov Chains

PSimpl allows defining programs representing discrete time Markov chains over
possibly unbounded state spaces. Two key features of the language are important
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to achieve that. First, the ability to draw values from probability distributions
allows creating probabilistic control flows, similarly to Markov chains. This leads
us to the definition of the following notion of events:

Definition 1 (Events) The set of all possible random outcomes that can occur
during execution defines the set of events:

Ξ
def
= { bl, bl | l ∈ L↓bernoulli } ∪ {u

i,a,b
l | l ∈ L↓uniform ∧ i ∈ [a, b] }

where L↓f ⊆ L is the set of call site locations of function f. Events bl and bl denote

the two outcomes of a call to bernoullil(). An event ui,a,bl denotes the ith outcome
of a call uniforml(e1, e2), where a and b are the evaluation in the current execution
environment of e1 and e2 respectively.

The second feature of the language is the function wait that expresses time
elapse. While communication protocols frequently use waits of more that one time
unit, this can be modeled without loss of generality as sequences of waits of one
time unit, hence classic Markov chains assume, for simplicity, that the sojourn time
in each state is always one. However, an important feature of our language is the
ability to use symbolic expressions as parameters of wait, hence, this simplification
is no longer possible: we need to explicitly tag each state of our Markov chains
with a symbolic, possibly non-unit sojourn time.

Dually, all non-waiting operations in a communication protocol correspond to
a change of program state that does not advance time, and is thus not observable
at the time scale of Markov chains. Therefore, we adopt a two-level trace semantics,
as introduced by Radhia Cousot in her thesis [12, Section 2.5.4], that makes a
distinction between observable and non-observable transitions. We give here a
definition of these two types of traces adapted to our settings:

Definition 2 (Observable states) Let E def
= X → V be the set of memory envi-

ronments mapping variables in X to their values in V. An observable state (l, ρ, ν) ∈
Σ

def
= L× E ×N+ represents the memory environment ρ that the program reaches

at location l while spending a sojourn time of ν time ticks.

Definition 3 (Scenarios) A sequence of non-observable transitions is called a

scenario and is defined as ω ∈ Ω
def
= Ξ∗ expressing sequences of random events

that occur between two observable states. In the sequel, we denote by ε the empty
scenario word.

Definition 4 (Observable traces) The observable traces are the set T ΩΣ
def
= {σ0

ω1→
σ1

ω2→ · · · | σi ∈ Σ∧ωi ∈ Ω }∪{ ε } composed of transitions among observable states
labeled with scenarios. An empty observable trace is denoted by ε.

2.3 Semantics Domain

The concrete semantics domain of our analysis is defined as D def
= ℘(T ΩΣ ×E ×Ω).

An element (τ, ρ, ω) ∈ T ΩΣ × E × Ω encodes the set of traces reaching a given
program location and is composed of three parts: (i) the observable trace τ ∈ T ΩΣ
containing the past transitions of the Markov chain before the current time tick,
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E J c ∈ V KR def
= { (c, ω) | (τ, ρ, ω) ∈ R }

E J id ∈ X KR def
= { (ρ(id), ω) | (τ, ρ, ω) ∈ R }

E J ◦ e KR def
= { ( ◦ v, ω1) | (τ, ρ, ω) ∈ R ∧ (v, ω1) ∈ E J e K{ (τ, ρ, ω) } }

E J e1 • e2 KR
def
= { (v1 • v2, ω2) | (τ, ρ, ω) ∈ R ∧

(v1, ω1) ∈ E J e1 K{ (τ, ρ, ω) } ∧ (v2, ω2) ∈ E J e2 K{ (τ, ρ, ω1) } }
E J bernoullil() KR

def
= { (b, ω.ξ) | (τ, ρ, ω) ∈ R ∧ (b, ξ) ∈ { (TRUE, bl), (FALSE, bl) } }

E J uniforml(e1, e2) KR def
= { (n, ω2.u

n,a,b
l ) | (τ, ρ, ω) ∈ R ∧ (a, ω1) ∈ E J e1 K{ (τ, ρ, ω) } ∧

(b, ω2) ∈ E J e2 K{ (τ, ρ, ω1) } ∧ n ∈ [a, b] }

Fig. 7: Concrete semantics of expressions.

S Jx = e KR def
= { (τ, ρ[x 7→ v], ω1) | (τ, ρ, ω) ∈ R ∧ (v, ω1) ∈ E J e K{ (τ, ρ, ω) } }

S J if (e) s1 else s2 KR
def
= (S J s1 K ◦ filter(e))R ∪ (S J s2 K ◦ filter(¬e))R

S J while (e) s KR def
= filter(¬e)(lfp λX.R ∪ (S J s K ◦ filter(e))X)

S J waitl e KR
def
= {(τ ω1→ (l, ρ, ν), ρ, ε) | (τ, ρ, ω) ∈ R ∧ (ν, ω1) ∈ E J e K{ (τ, ρ, ω) }}

where:

filter(e)R
def
= { (τ, ρ, ω1) | (τ, ρ, ω) ∈ R ∧ (TRUE, ω1) ∈ E J e K{ (τ, ρ, ω) } }

Fig. 8: Concrete semantics of statements.

(ii) the current memory environment ρ ∈ E, and (iii) the partial scenario ω ∈ Ω of
non-observable random events that occurred between the last tick and the current
execution moment.

To obtain the set of all traces of a program, we proceed by induction on its
abstract syntax tree using a set of concrete evaluation functions E J . K ∈ D →
℘(V × Ω) for expressions and a set of concrete transfer functions S J . K ∈ D → D
for statements as follows:

Expressions. We give in Fig. 7 the concrete semantics of expression evaluation
over a concrete element R ∈ D. Since expressions do not generate new time ticks
but may involve probabilistic events, evaluation functions E J . K ∈ D → ℘(V × Ω)
return a set of evaluated values along with the updated scenarios. Two cases are
particularly interesting. The semantics of a call bernoullil() is to fork the current
partial scenarios ω depending on the result of the function. We append the event
bl in the true case, or the event bl in the false case and we return the corresponding
truth value. For the expression uniforml(e1, e2), we also fork the partial scenarios,
but the difference is that the number of branches depends on the evaluations of e1
and e2 in the current memory environment. More precisely, the number of forks
corresponds to the number of integer points between the values of e1 and e2.

Statements. The semantics of statements is shown in Fig. 8. Most cases have a
standard definition. The assignment statement updates the current memory en-
vironment by mapping the left-hand variable to the evaluation of the expression.
For the if statement, we filter the current environments depending on the evalu-
ation of the condition, and we analyze each branch independently before merging
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the results. Also, a loop statement is formalized as a fixpoint on the sequences of
body evaluation with a filter to extract the iterations violating the loop condition.
Finally, the semantics of the statement waitl e is to extend the observable traces
with a new transition to a state where the sojourn time is equal to the evaluation
of the expression e. The label of this new transition is simply the computed partial
scenario, which is reset to the empty word ε since we keep track of events traces
only between two wait statements.

2.4 Stationary Distributions

Informally, the stationary distribution of a discrete time Markov chain, also called
limiting or steady-state distribution, is the probability vector giving the proportion
of time that the chain will spend in each state after running for a sufficiently long
period. However, in the case where a program P ∈ stmt contains uninitialized
parameters in a given initial set of states I ⊆ E, the resulting traces S JP K may
represent several distinct Markov chains. More precisely, each initial environment
ρ ∈ I corresponds to exactly one Markov chain. Therefore, we will not obtain
a single stationary distribution corresponding to P, but a parametric stationary
distribution function that maps initial values of parameters to the distribution of
the corresponding chain.

Let us define the extraction function M JP K ∈ E → ℘(T ΩΣ ) that computes the
traces of a single Markov chain as the output of S JP K on a given initial environment
and an empty trace:

M JP Kρ def
= { τ | ∃(τ, ρ′, ω) ∈ S JP K{ (ε, ρ, ε) } }

Let π JP K ∈ E → Σ → [0, 1] be the probability vector representing the station-
ary distribution of the Markov chain corresponding to a given initial environment.
To find this distribution, we first define the notion of scenario probability:

Definition 5 (Scenario probability) The function Pr Jω K ∈ E → [0, 1] gives the
probability of a scenario ω ∈ Ω by combining the probabilities of its individual
events. Let pl be a symbolic variable representing the probability parameter of a
Bernoulli distribution at call site l ∈ L. We define Pr Jω K by structural induction
as follows:

Pr Jω Kρ def
=



1 if ω = ε

ρ[pl] if ω = bl

1− ρ[pl] if ω = bl
1

b−a+1 if ω = ui,a,bl

Pr Jω Kρ Pr J ξ K ρ if ω = ωξ

Empty scenario ε has probability 1 since it represents a deterministic choice.
The probability of a Bernoulli outcome bl is the evaluation of the associated pa-
rameter variable pl in the current environment ρ. Outcomes ui,a,bl of a uniform
distribution are equiprobable over the interval [a, b]. Finally, the probability of a
composed sequence ωξ is the joint probability of ω and ξ.

Afterwards, we construct a non-standard stochastic matrix that characterizes
the transitions between observable states:
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Definition 6 (Non-standard stochastic matrix) We denote by P JP K ∈ E →
Σ ×Σ → R+ the square matrix function defined as:

P JP K def
= λρ. λ(si, sj).

νj
νi

∑
si
ω→sj∈MJP Kρ

Pr Jω Kρ

where νi and νj denote the sojourn time in states si and sj respectively.

Note that this definition differs slightly from the classic construction of the
stochastic transition matrix of discrete time Markov chains. This is due to the
fact that states in our model embed the information of sojourn time ν, which is
assumed to be equal to one time unit in classic Markov chains.

In order to compute the family of distributions {π JP Kρ | ρ ∈ I } for a set of
initial environments I ⊆ E, as for the classic matrix, we solve the system:

∀ρ ∈ I :

{
∀si ∈ Σ : π JP K(ρ)(si) =

∑
sj∈Σ π JP K(ρ)(sj)× P JP K(ρ)(sj , si)∑

s∈Σ π JP K(ρ)(s) = 1
(2)

Since the reachable state space in Σ can be unbounded, both P JP K and π JP K
may not be computable. In addition, system designers are generally interested in
analyzing the system for wide ranges of parameter settings I, which makes the
problem more difficult. In the following, we propose a computable abstraction
of Markov chains to over-approximate the traces {M JP Kρ | ρ ∈ I } for any initial
setting. Afterwards, we show how we can construct a finite stochastic matrix using
information provided by our abstract chain, that helps infer symbolic, guaranteed
bounds of all distributions {π JP Kρ | ρ ∈ I }.

3 Abstract Semantics

In order to analyze a program statically, we need a computable abstraction of
the concrete semantics domain D. The basic idea is to first partition the set of
observable program states ℘(L×E ×N) with respect to the program locations, re-
sulting into the intermediate abstraction L → ℘(E ×N). For each location, the set
of associated environments is then abstracted with a stock numerical domain N],
by considering the sojourn time as a program variable ν. We obtain the abstract

states domain Σ]
def
= L → N]. As a consequence of this partitioning, observable

states at the same program location will be merged. Therefore, we obtain a spe-
cial structure in which observable abstract states are connected through possibly
multiple scenarios coming from the merged concrete states.

Example 4 We illustrate this fact in Fig. 9a depicting a more complex probabilistic
modeling of the previous sense() function using a bounded geometric distribution
that works as follows. We start by warming up the sensing device during one
tick. After that, we check whether the sensor detects some external activity (high
temperature, sound noise, etc.) and we perform this check for at most 10 times.
We assume that these external activities follow a Bernoulli distribution. At the
end, we perform some processing during 4 ticks in case of detection and 2 ticks in
case of non-detection.

We can see in Fig. 9b that between the observable program locations 2 and
11 many scenarios are possible, which are abstracted with the regular expression
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1 void* sense() {
2 warmup(); //~ wait 1
3 int count = 0, success = 0;
4 do {
5 if (check()) //~ bernoulli()
6 success = 1;
7 else
8 count++;
9 } while (count < 10 && !success);

10 if (success)
11 return doDetection(); //~ wait 4
12 else
13 return doAbsence(); //~ wait 2
14 }

(a)

l = 2

ν = 1

l = 11

ν = 4
count ∈ [0, 9]
success = 1

l = 13

ν = 2
count = 10
success = 0

b
∗
5 b5 b

+
5

(b)

Fig. 9: (a) A simple probabilistic model for the sense() function. (b) An abstraction
of observable traces represented as a hierarchical automaton.

b
∗
5 b5 that encodes the pattern of having a number of Bernoulli failure outcomes

at line 5 before a successful one. However, between lines 2 and 13, we can have

only a sequence of failures, which is expressed as b
+
5 . �

The presence of these multi-word transitions leads to a hierarchical automata

structure representing an automaton over an alphabet of automata. On the one
hand, one automata structure is used to encode the transitions between observ-
able abstract states. On the other hand, for each observable transition, another
automata structure is used to encode the regular expressions of scenarios connect-
ing the endpoints of the transition.

In the section, we formalize this structure through our novel domain of abstract
Markov chains. For modularity reasons, we begin by presenting a generic data
structure, called abstract automata, for representing languages over an abstract
alphabet. Afterwards, we employ this data structure to instantiate two abstract
domains that will be composed into a two-level hierarchy. At a bottom level, we
develop an abstract scenario domain as an automaton over an alphabet of abstract
probability events to over-approximate traces of non-observable states. On top of
it, we build our abstract Markov chain domain as an automaton over the alphabet
of abstract scenarios.

3.1 Abstract Automata

Le Gall et al. proposed a lattice automata domain [31] to represent words over an
abstract alphabet having a lattice structure. We extend this domain to support
also abstraction at the state level by merging states into abstract states, which is
important to approximate Markov chains having an infinite state space.

Let A] be an abstract alphabet domain and S] an abstract state domain. We
assume that A] is an abstraction of some concrete alphabet symbols A, having a
concretization function γA] ∈ A] → ℘(A), a partial order vA] , a join operator tA] ,
a meet operator uA] , a least element ⊥A] and a widening operator OA] . Similarly,
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S] is assumed to be an abstraction of some concrete states S equipped with a
concretization function γS] ∈ S] → ℘(S), a partial order vS] , a join operator
tS] , a least element ⊥S] and a widening operator OS] .

We define the functor domain A (A],S]) of abstract automata over alphabet
A] and states S] as follows:

Definition 7 (Abstract automata) An abstract automaton A ∈ A (A],S]) is a

finite state automaton A = (S, s]0, F,∆), where S ⊆ S] is the set of states, s]0 ∈ S is
the initial state, F ⊆ S is the set of final states and ∆ ⊆ S×A]×S is the transition
relation. The meaning of A is provided by two concretization functions:

1. The sets of accepted traces abstracted by A is given by the concretization
function γT ∈ A (A],S])→ ℘(T A

S ) defined by:

γTA (A)
def
= { s0

a0→ s1 . . .
an−1→ sn | ∃s]0

a]0→ s]1 . . .
a]n−1→ s]n ∈ T(A) :

∀i ∈ [0, n] : si ∈ γS](s
]
i) ∧ ∀i ∈ [0, n) : ai ∈ γA](a

]
i) }

where T(A)
def
= { s]0

a]0→ s]1 . . .
a]n−1→ s]n | ∀i ∈ [0, n) : (s]i , a

]
i , s

]
i+1) ∈ ∆ ∧ s]n ∈ F }

gives the set of traces accepted by A.
2. The set of accepted words abstracted by A is given by the concretization func-

tion γL ∈ A (A],S])→ ℘(A∗) defined by:

γLA (A)
def
= { a0a1 . . . an−1 | ∃a]0a

]
1 . . . a

]
n−1 ∈ L(A), ∀i ∈ [0, n) : ai ∈ γA](a

]
i) }

where L(A)
def
= { a]0a

]
1 . . . a

]
n−1 | ∃s

]
0

a]0→ s]1 . . .
a]n−1→ s]n ∈ T(A) } gives the set of

words accepted by A.

This dual view of traces vs. words is important in our semantics since scenarios
are considered as words (sequence of events) and observable traces as traces. Let us
now define some important operators of the functor domain A . In the following,
we denote by A = (S, s]0, F,∆), A1 = (S1, s

]
0, F1,∆1) and A2 = (Q2, q

]
0, F2,∆2)

three instances of A (A],S]).

3.1.1 Order

To compare two abstract automata, we define the following simulation relation that
extends the classic simulation concept found in transition systems by considering
the abstraction in alphabet and states:

Definition 8 (Simulation relation) A binary relation SA2

A1
⊆ S] ×S] is a simu-

lation between A1 and A2 iff ∀(s]1, q
]
1) ∈ SA2

A1
we have s]1 vS] q

]
1 and:

∀s]1
a]1→ s]2 ∈ ∆1, ∃q]1

a]2→ q]2 ∈ ∆2 :
(
a]1 vA] a

]
2

)
∧
(

(s]2, q
]
2) ∈ SA2

A1

)
Definition 9 (Partial order) Let 4A2

A1
denotes the smallest simulation relation

between A1 and A2 verifying (s]0, q
]
0) ∈ 4A2

A1
. We define the partial order relation

vA as:

A1 vA A2 ⇔ 4A2

A1
6= ∅ ∧ ∀(s], q]) ∈ 4A2

A1
: s] ∈ F1 ⇒ q] ∈ F2

which means that A2 should simulate and accept every accepted trace in A1.
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s]1

[0, 1]

s]2

[5, 7]

a

b

A1

A2
q]1

[0, 7]
ab

(a) A1 6vA A2

s]1

[0, 1]

s]2

[5, 7]

a

b

A1

A2
q]1

[0, 1]

q]2

[6, 7]

a+ b

b

(b) A1 6vA A2

s]1

[0, 1]

s]2

[5, 7]

a

b

A1

A2
q]1

[0, 5]

q]2

[5, 10]

a+ b

b

(c) A1 vA A2

Fig. 10: Examples of order comparison between abstract automata.

Example 5 Consider the abstract automata shown in Fig. 10. For illustration pur-
pose, we use the integer intervals domain as state abstraction, and the set of regular
expressions over two symbols { a, b } as alphabet abstraction.

In the first case (a), no simulation relation exists between A1 and A2 since

the transition 〈s]1 : [0, 1]〉 a→ 〈s]2 : [5, 7]〉 cannot be simulated by the transition

〈q]1 : [0, 7]〉 ab→ 〈q]1 : [0, 7]〉 given that a 6v]A ab violates the condition of Definition 8.

In case (b), A1 6vA A2 because the transition 〈s]1 : [0, 1]〉 a→ 〈s]2 : [5, 7]〉 in A1 cannot

be simulated by the transition 〈q]1 : [0, 1]〉 a+b→ 〈q]2 : [6, 7]〉 since [5, 7] 6v]S [6, 7]. Note
that in both cases (a) and (b), L(A1) ⊆ L(A2), but this is not sufficient to verify
the order relation vA , in contrast to the automata domain proposed by Le Gall
et al. [31]. Finally, in case (c), the condition of Definition (8) is fulfilled for every
transition in A1, which implies that A1 vA A2. �

3.1.2 Join

To compute the union of two abstract automata A1 and A2, we need to extend the
simulation-based traversal in a way to consider all traces of both automata, includ-
ing those violating the simulation condition (i.e. traces belonging to one automaton
only). To do so, we introduce the concept of product relation that builds a transition
relation defined over the Cartesian product S] × S] that over-approximates the
transitions that can be performed simultaneously by A1 and A2. A naive approx-
imation is to map every couple transitions s]1

a1→ s]2 ∈ ∆1 and q]1
a2→ q]2 ∈ ∆2 into

(s]1, q
]
1)

a1tA]
a2→ (s]2, q

]
2). While being sound, this approximation is too coarse and

we can gain in precision by separating singular transitions where we can guaran-
tee that both automata cannot move simultaneously. Note that detecting singular
transitions is not always possible since the abstract alphabet domain A] may lack
a complement operator necessary to extract them precisely. Nevertheless, we pro-
pose a heuristic that can detect singularity in a number of situations, while always
preserving soundness.

Example 6 The intuition behind the heuristic is depicted in Fig. 11. In the first

case (a), singularity between the input transitions s]1
ab∗→ s]2 and q]1

a∗b→ q]2 cannot
be decided because the intersection ab∗ uA] a

∗b is nonempty. Consequently, both
transitions are combined into a single over-approximated product transition that
accepts the merged alphabet symbol ab∗+a∗b. However, in the second case (b), no
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s]1

[1, 2]

s]2

[2, 3]

q]1

[0, 1]

q]2

[0, 2]

=tA
(s]1, q

]
1)

[0, 2]

(s]2, q
]
2)

[0, 3]

ab∗

a∗b

ab∗ + a∗b

(a)

s]1

[1, 2]

s]2

[2, 3]

q]1

[0, 1]

q]2

[0, 2]

=tA
(s]1, q

]
1)

[0, 2]

(s]2,⊥S] )

[2, 3]

(⊥S] , q
]
2)

[0, 2]

a

b

a

b

(b)

Fig. 11: Cases of constructing a product transition.

intersection exists between the transitions s]1
a→ s]2 and q]1

b→ q]2. This means that

both input automata – when in states s]1 and q]1 respectively – cannot perform a

simultaneous transition, which is expressed as two singular transitions from (s]1, q
]
1)

to (s]2,⊥S]) and (⊥S] , q
]
2). �

Note that comparing alphabet symbols is not the only means to detect singu-
lar transitions. Indeed, in some situations, destination states s]2 and q]2 should be
kept separated in order to preserve some of semantic precision of the analysis. To
illustrate this point, let us consider the computation of the goodput of a protocol.
In order to obtain a precise quantification of this metric, it is necessary to avoid
merging states encapsulating different situations of packet transmission status (re-
ception, loss). To do so, we assume that the abstract states domain S] is provided
with some equivalence relation ≡S] that partitions the states into a finite set of
equivalence classes depending on the property of interest. Using this information,
we define our product relation as follows:

Definition 10 (Product relation) A binary relation PA2

A1
⊆ S]×S] is a product

of A1 and A2 iff ∀(s]1, q
]
1) ∈ PA2

A1
we have s]1 ≡S] q

]
1 and:

(s]2, q
]
2) ∈ PA2

A1
if ∃s]1

a]1→ s]2 ∈ ∆1, ∃q]1
a]2→ q]2 ∈ ∆2 :

(
s]2 ≡S] q

]
2

)
∧
(
a]1 uA] a

]
2 6= ⊥A]

)
(s]2,⊥S]) ∈ P

A2

A1
if ∃s]1

a]1→ s]2 ∈ ∆1, ∀q]1
a]2→ q]2 ∈ ∆2 :

(
s]2 6≡S] q

]
2

)
∨
(
a]1 uA] a

]
2 = ⊥A]

)
(⊥S] , q

]
2) ∈ PA2

A1
if ∃q]1

a]2→ q]2 ∈ ∆2,∀s]1
a]1→ s]2 ∈ ∆1 :

(
s]2 6≡S] q

]
2

)
∨
(
a]1 uA] a

]
2 = ⊥A]

)
with the convention that s] ≡S] ⊥S] , ∀s

] ∈ S].

Definition 11 (Join) Let >A2

A1
denote the smallest product relation containing

(s]0, q
]
0) . We define the structure of the join automaton (J, j]0,∆, F ) = A1 tA A2

as follows:

J
def
= { s] tS] q

] | (s], q]) ∈ >A2

A1
}

j]0
def
= s]0 tS] q

]
0

∆
def
= { j]1

a]→ j]2 |
∃(s]1, q

]
1) ∈ >A2

A1
, (s]2, q

]
2) ∈ >A2

A1
:

∃s]1
a]1→ s]2 ∈ ∆1, q

]
1

a]2→ q]2 ∈ ∆2 :

j]1 = s]1 tS] q
]
1 ∧ a

] = a]1 tA a
]
2 ∧ j

]
2 = s]2 tS] q

]
2 }

F
def
= { s] tS] q

] | (s], q]) ∈ >A2

A1
∧ (s] ∈ F1 ∨ q] ∈ F2) }
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In other words, we simply map each product state (s], q]) ∈ >A2

A1
to s] tS] q

]. The

final states are the subsets of these images where at least s] or q] is final.

3.1.3 Append

We introduce also the append operator �φ ∈ A (A],S]) × A] → A (A],S]) that
extends a given abstract automaton with a set of new outgoing transitions. In
addition to the abstract alphabet symbol that will decorate the new transitions,
the append operator requires an additional parameter φ ∈ S] → S] that encodes
the effect of the transition at the state level. By doing so, the functor A externalizes
the definition of the semantics of transitions, which is left to the instantiating
domain.

Formally, we define the append operator as follows:

A�φ a]
def
=

let F ′ = {φ(s]) | s] ∈ F } in

(S ∪ F ′, s]0, F
′,∆ ∪ { s] a

]

→ φ(s]) | s] ∈ F })

which means that from every final state s] ∈ F of A, a new edge is created, labeled
with with a], that leads to a new final state computed as the image of s] through
the parameter transfer function φ that annotates the operator �φ.

3.1.4 Widening

Finally, we present a widening operator to avoid growing an automaton indefi-
nitely during loop iterations. The original lattice automata domain [31] proposed
a widening operator, inspired from [49,18], that employs a bisimulation-based
minimization to merge similar states by comparing their transitions at some given
depth. However, it assumes that the abstract alphabet domain is provided with
an equivalence relation that partitions the symbols into a finite set of equivalence
classes. We believe that it is more meaningful to perform this partitioning on the
abstract states as explained earlier for the computation of the product relation.
Therefore, we employ a different approach inspired from graph widening [48,32,50].
We compare the result of successive loop iterations and we try to detect the incre-
ment transitions to extrapolate them by creating cycles. However, existing graph
widenings are limited to finite alphabets and may not ensure the convergence on
ascending chains, so we propose an extension to alleviate these shortcomings.

The proposed algorithm is executed in two phases. Firstly, we perform a struc-

tural widening to extrapolate the language recognized by the input automata and
we ignore for the moment the abstract states. We show in Fig. 12 the main steps of
this widening. Assume that A1 and A2 are the results of two successive iterations.
Without loss of generality, we assume that A1 vA A2 (if this is not the case, we
replace A2 by A1 tA A2). First, we compare A1 and A2 in order to extract the
increment transitions using the following function:

incr(A1, A2)
def
= { (s]1, q

]
1

a]2→ q]2) |
(

(s]1, q
]
1) ∈ >A2

A1

)
∧
(
s]1, q

]
1 6= ⊥S]

)
∧

∃q]1
a]2→ q]2 ∈ ∆2,∀s]1

a]1→ s]2 ∈ ∆1 :
(
s]2 6≡S] q

]
2

)
∨
(
a]2 6vA] a

]
1

)
}
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Input : Two abstract automata A1 and A2

Output : Widened abstract automaton A

1 A : (S, s]0, F,∆)← A1;
H Find the increment transitions I

2 δ ← incr(A,A2);
3 while δ 6= ∅ do

H Select one increment transition I

4 (s]1, q
]
1

a
]
2→ q]2)← head(δ);

H q]2 is the default endpoint candidate for the missing transition I
5 s]≡ ← q]2;

H Search for better candidates in A I
6 S≡ ← { s] ∈ S | s] ≡S] q

]
2 };

7 if S≡ 6= ∅ then

8 s≡ ← (head ◦ sort)(IA,A2

q
]
2

, S≡);

9 end

10 S′ ← S ∪ { s]≡ };
H Add s]≡ to finals if necessary I

11 F ′ ← F ∪
(

(s]≡ ∈ F2)?{ s]≡ } : ∅
)

;

H Add the missing transition I
12 ∆′ ←∆ ∪

{ s]1
a]−→ s]≡ | s

]
1

a
]
1→ s]≡ ∈ ∆ ∧ a] = a]1OA]a

]
2 } ∪

{ s]1
a
]
2−→ s]≡ | ∀a

]
1 : s]1

a
]
1→ s]≡ 6∈ ∆ };

A← (S′, s]0, F
′,∆′);

H Find new increment transitions I
13 δ ← incr(A,A2);

14 end

Fig. 12: Structural widening algorithm for abstract automata.

Essentially, an increment (s]1, q
]
1
a]→ q]2) means that A1 at state s]1 cannot recognize

the symbol a] while A2 recognizes it through a transition from q]1 to q]2.
Now, we need to extrapolate A1 in order to recover this difference, which is

done by adding the missing word suffix a]2 while trying not to grow A1 in size.
The basic idea is to sort states in A1 depending on how they compare to the
missing state q]2. The comparison is performed with the following similarity index

expressing the proportion of common partial traces that a state shares with q]2:

IA1,A2

q]2
(s])

def
=
∥∥∥{ a]1 . . . a]n ∈→LA2,k (q]2) | ∃b]1 . . . b

]
n ∈
→
LA1,k (s]), ∀i : a]i vA] b

]
i }
∥∥∥+∥∥∥{ a]1 . . . a]n ∈←LA2,k (q]2) | ∃b]1 . . . b

]
n ∈
←
LA1,k (s]), ∀i : a]i vA] b

]
i }
∥∥∥

where
→
LA,k (s]) (resp.

←
LA,k (s])) is the set of words starting from (resp. ending

at) s] of length less than k, where k is a parameter of the analysis. In other words,
these two utility functions denote respectively the set of reachable and co-reachable
words of a given state at some depth k.

After selecting the state s]≡ with the highest similarity index, we add the miss-
ing transitions after widening the alphabet symbol if a transition already exists in
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Iteration Inputs δ s≡

# 1

s]1

[1, 1]

s]2

[1, 2]

s]3

[2, 3]

a b

q]1

[1, 1]

q]2

[1, 2]

q]3

[2, 3]

q]4

[1, 4]

q]5

[2, 5]

OA

a b a b+ bb

{ (s]3, q
]
3
a→ q]4) } s]2

# 2

s]1

[1, 1]

s]2

[1, 2]OS] [1, 4]

s]3

[2, 3]

a

b

a

q]1

[1, 1]

q]2

[1, 2]

q]3

[2, 3]

q]4

[1, 4]

q]5

[2, 5]

a b a b+ bb

OA { (s]2, q
]
4
b+bb→ q]5) } s]3

# 3

s]1

[1, 1]

s]2

[1,+∞[

s]3

[2, 3]OS] [2, 5]

a

bOA] (b+ bb) = b+

a

q]1

[1, 1]

q]2

[1, 2]

q]3

[2, 3]

q]4

[1, 4]

q]5

[2, 5]

a b a b+ bb

OA ∅ –

Fig. 13: Example of abstract automata widening.

A. By iterating over all increment transitions, we obtain an automata structure
that does not grow indefinitely since we add new states only if no existing one is
equivalent. By assuming that the number of equivalence classes of ≡S] is finite,
the widening ensures termination.

After the structural widening, we inspect the states of the resulting automaton
to extrapolate them if necessary. We simply compute the simulation relation 4AA2

between A2 and the widened automaton A, and we replace every state s] ∈ S with
s]OS](s

]
1 tS] s

]
2 tS] . . . ) where s]i 4

A
A2

s], ∀i.

Example 7 The different steps of the proposed widening algorithm are illustrated in
Fig. 13 in which we consider two example automata A1 and A2, where A1 vA A2.
Let us assume that the similarity depth parameter is k = 1. During the first iter-
ation, the algorithm detects the increment transition (s]3, q

]
3
a→ q]4). By comparing

the reachable and co-reachable k-words of the states of A1 to those of q]4, we obtain
the following similarity indices:

IA1,A2

q]4
(s]1) = 0 IA1,A2

q]4
(s]2) = 2 IA1,A2

q]4
(s]3) = 0
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Therefore, s]2 is selected as the most similar state to q]4 and the missing transition

s]3
a→ s]2 is added. Note that we can combine structural and state widening at this

point, which allows as to over-approximate s]2 by s]2OS](s
]
2 tS] q

]
4) to accelerate

convergence.
During the second iteration, we use the resulting automaton as the left argu-

ment of the widening operator and we iterate the same process. The algorithm

selects (s]2, q
]
4
b+bb→ q]5) as the increment transition and computes the following

similarity indices:

IA,A2

q]5
(s]1) = 0 IA,A2

q]5
(s]2) = 0 IA,A2

q]5
(s]3) = 1

The state s]3 being the most comparable one to q]5, the automaton A is enriched

with the transition s]2
b+bb→ s]3. Since a transition s]2

b→ s]3 already exists, we just
need to compute the widening of its alphabets bOA](b + bb) and endpoint state

s]3OS]q
]
5. By doing so, no increment transition can be found, which means that no

more widening iterations are required. �

3.2 Abstract Scenarios

Using the functor domain A , we instantiate an abstract scenario domain for ap-
proximating words of random events. Two considerations are important to take
into account. First, the length of these words may depend on some variables of the
program. It is clear that ignoring these relations may lead to imprecise computa-
tions of the stationary distribution. Consequently, we enrich the domain with an
abstract Parikh vector [41] to count the number of occurrences of random events
within accepted words. By using a relational numerical domain, such as octagons
[35] or polyhedra [10], we preserve some relationships between the number of events
and program variables.

The second consideration is related to the uniform distribution. As shown previ-
ously in the concrete evaluation function of Fig. 7, the number of outcomes depends
on the bounds provided as argument to the function uniform. Since these argu-
ments are evaluated in the running environment, we can have an infinite number
of outcomes at a given control location when considering all possible executions.

We perform a simplifying abstraction of the random events Ξ in order to
obtain a finite size alphabet and avoid the explosion of the uniform distribution
outcomes. Assume that we are analyzing the statement x = uniforml(e1, e2) in
abstract environment ρ]. Several abstractions are possible. In this work, we choose
to partition the outcomes into a fixed number U of abstract outcomes, where U
is a parameter of the analysis. The first U − 1 partitions represent the concrete
individual outcomes {min(e1 + i− 1, e2) | i ∈ [1, U − 1]}, to which we associate the
abstract events {uil | i ∈ [1, U − 1] }. For the remaining outcomes, we merge them
into a single aggregate abstract event uI

l .

Formally, we obtain a simple finite set of abstract events Ξ]
def
= {bl,bl | l ∈

L↓bernoulli } ∪ {uil ,u
I
l | l ∈ L↓uniform ∧ 1 ≤ i ≤ U − 1 }. For the Parikh vector, we

associate to every abstract event ξ] ∈ Ξ] a counter variable κξ] ∈ N that will be

incremented whenever the event ξ] occurs.
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S]Ω Jx = bernoullil() Kω]
def
=

let φTRUE = λ(−, ρ]). (l, S]N
q
κbl = κbl + 1

y
◦ S]

N]
Jx = TRUE Kρ]) in

let φFALSE = λ(−, ρ]). (l, S]N
r
κbl

= κbl
+ 1

z
◦ S]

N]
Jx = FALSE Kρ]) in(

ω] �φTRUE {bl }
)
tA

(
ω] �φFALSE {bl }

)
S]Ω Jx = uniforml(e1, e2) Kω] def

=

let φi = λ(−, ρ]). (l, S]N
r
κui

l
= κui

l
+ 1

z
◦ filter]N(x ≤ e2) ◦ S]N Jx = e1 + i− 1 Kρ]) in

let φI = λ(−, ρ]). (l, S]N
r
κuI

l
= κuI

l
+ 1

z
◦ filter]N(e1 + U ≤ x ≤ e2) ◦ S]N Jx = > Kρ]) in( ⊔

1≤i≤U−1

ω] �φi {u
i
l }
)
tA

(
ω] �φI

{uI
l }
)

S] Jx = waitl e K(τ ], fΩ] )
def
=

let φ = λ(−, ρ]). (l, S]N J ν = e Kρ]) in
(

⊔
s]∈F (τ])

(τ ] ↓ s]) �φ fΩ] (s]), λs]. ε])

Fig. 14: Some abstract transfer functions.

Therefore, we define the domain of abstract scenarios as Ω]
def
= A (℘(Ξ]), Σ]),

where Σ] is our previous mapping L → N] from program locations to a stock
numeric abstract domain N]. We assume that N] has a concretization function
γN] ∈ N] → ℘(E), transfer functions S]N J . K ∈ N] → N] of numeric statements and

a filtering function filter]N(e) ∈ N] → N] that keeps numeric environments that
satisfies the condition expression e.

Let us now describe transfer functions S]Ω J . K ∈ Ω] → Ω] shown in Fig. 14
formalizing the impact of probability distributions on an abstract scenario. To
over-approximate the effect of an assignment x = bernoullil() on an abstract
scenario ω], we process each possible outcome of the distribution separately. Let
us illustrate with the case of bl. We extend the input abstract automaton ω] with
a new outgoing transition annotated with the state transfer function φTRUE that
computes the new final states of ω]. In each numeric environment ρ] of the current
final states, φTRUE sets variable x to value TRUE and increments the Parikh counter
κbl associated to the outcome bl. The same process is applied for the outcome bl.
The final result is obtained by joining the obtained pair of abstract automata.

Let us now consider the assignment x = uniforml(e1, e2). For the case of an
outcome uil, we update the variable x with the evaluation of min(e1 + i − 1, e2),
which is done by first performing the assignment x = e1 + i−1 in the environment
of a final state of ω], and then apply the filter x ≤ e2 on the result. The Parikh
counter κuil

is also incremented. The aggregate outcome uI
l is handled by assigning

to x the evaluation of the interval [e1 + U, e2] and incrementing the counter κuI
l
.

3.3 Abstract Markov Chains

To provide a computable abstraction of the concrete semantics domain D =
℘(T ΣΩ ×E ×Ω) we proceed in two steps. We start by abstracting the set of observ-
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able traces ℘(T ΣΩ ) with an abstract automaton T ] def
= A (Ω], Σ]) defined over the

alphabet of abstract scenarios Ω] and the abstract state space Σ]. To approximate
the partial scenarios starting from the last wait statement, we may use the domain
of abstract scenarios Ω]. Since the states of an abstract scenario already embed
an abstraction of the program environments E, the product T ] × Ω] constitutes
an abstraction of D having the following concretization function:

γ(τ ], ω])
def
= { (τ, ρ, ω) | τ ∈ γTA (τ ]) ∧ ∃(l1, ρ]1)

ξ]1→ . . .
ξ]n−1→ (ln, ρ

]
n) ∈ T(ω]) :

ρ ∈ γN](ρ
]
n) ∧ ω ∈ γLA (ξ]1 . . . ξ

]
n−1) }

This abstraction is sound but may lead to coarse results. Indeed, by choos-
ing a product abstraction T ] × Ω], we decouple environments from traces: all
reachable environments are merged together regardless of the taken trace. We can
enhance the precision of the analysis by maintaining some relationships through
partitioning: we simply separate environments depending on the final states of the
observable traces automaton T ]. More formally, we define our abstract semantics
domain as follows:

D] def
= T ] × (Σ] → Ω])

Let F ∈ A (A],S]) → ℘(S]) be a function returning the set of final states of
an abstract automaton and A ↓ s] the projection of an abstract automaton A on
a final state s] (obtained by restricting the final states of A to the singleton {s]}).
The concretization function of D] is given by:

γ(τ ], fΩ])
def
= { (τ, ρ, ω) | ∃s] ∈ F(τ ]) : ∃(l1, ρ]1)

ξ]1→ . . .
ξ]n−1→ (ln, ρ

]
n) ∈ T(fΩ](s

])) :

τ ∈ γTA (τ ] ↓ s]) ∧ ρ ∈ γN](ρ
]
n) ∧ ω ∈ γLA (ξ]1 . . . ξ

]
n−1) }

For the abstract transfer functions S] J . K ∈ D] → D] of D], we focus on the
case waitl e since it is the only one that modifies the structure of the abstract
Markov chain. The definition is shown in Fig. 14. Given a current abstract element
(τ ], fΩ]) ∈ D

], the function iterates over every observable final state s] ∈ F(τ ])
to add a new transition labeled with the associated partial scenario fΩ](s

]) that
points to a new observable state with a sojourn time equal to the current evaluation
of e. Finally, since the chain is in a new time tick, all entries of the output scenario
map are set to ε] representing the empty scenario word where all Parikh counters
are reset to 0.

We can show that the following soundness condition is preserved:

Theorem 1 (Soundness)

(S J s K ◦ γ) (τ ], ω]) ⊆
(
γ ◦ S] J s K

)
(τ ], ω]), ∀s ∈ stmt, ∀(τ ], ω]) ∈ D]

Example 8 Let us go back to our first motivating example in order to illustrate
the inference process of the resulting abstract Markov chain shown in Fig. 2b. The
intermediate abstract chains of the most important steps are depicted in Fig. 15.

The sense statement at line 4 generates a first abstract chain with a single
state representing a one-tick time duration for retrieving data from the sensing
device. After that, two new transitions are added to over-approximate the un-
bounded number of outcomes of the uniform distribution at line 6. The abstract
event u1

6 represent the case of choosing a backoff window of length 1, and the
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sense() → wait7 t → wait21 TX DELAY

l4

ack = 0
pkt = 0

ν = 1

l4

ack = 0
pkt = 0

ν = 1
l7

ack = 0
pkt = 0

ν = 1

l7

ack = 0
pkt = 0

ν ∈ [2, B]

u1
6

uI
6

l4

ack = 0
pkt = 0

ν = 1
l7

ack = 0
pkt = 0

ν = 1

l7

ack = 0
pkt = 0

ν ∈ [2, B]
l21

ack = 0
pkt = 0

ν = 1

u1
6

uI
6

ε]

ε]

→ wait24 RX DELAY → wait13 S →

l4

ack = 0
pkt = 0

ν = 1
l7

ack = 0
pkt = 0

ν = 1

l7

ack = 0
pkt = 0

ν ∈ [2, B]
l21

ack = 0
pkt = 0

ν = 1

l24

ack = 0
pkt = 0
rx = TRUE

ν = 1

l24

ack = 0
pkt = 0
rx = FALSE

ν = 1

u1
6

uI
6

ε]

ε]

b23

b23

l4

ack = 0
pkt = 0

ν = 1
l7

ack = 0
pkt = 0

ν = 1

l7

ack = 0
pkt = 0

ν ∈ [2, B]
l21

ack = 0
pkt = 0

ν = 1

l24

ack = 0
pkt = 0
rx = TRUE

ν = 1

l24

ack = 0
pkt = 0
rx = FALSE

ν = 1

l13

ack ∈ [0, 1]
pkt = 1

ν = S

u1
6

uI
6

ε]

ε]

b23

b23

ε]

ε]

. . . → OA

l4

ack ≥ 0

pkt ≥ ack

ν = 1
l7

ack ≥ 0
pkt ≥ ack

ν = 1

l7

ack ≥ 0
pkt ≥ ack

ν ∈ [2, B]
l21

ack ≥ 0
pkt ≥ ack

ν = 1

l24

ack ≥ 0
pkt ≥ ack
rx = TRUE

ν = 1

l24

ack ≥ 0
pkt ≥ ack
rx = FALSE

ν = 1

l13

ack ≥ 0
pkt ≥ ack

ν = S

u1
6

uI
6

ε]

ε]

b23

b23

ε]

ε]

ε]

Fig. 15: Analysis iterations of the motivating example.

abstract event uI
6 over-approximates the remaining cases of lengths in [2, B]. Note

that it is important to employ relational numerical domains, such as octagons or
polyhedra, in order to represent such conditions. Nevertheless, an analysis using a
non-relational domains, such as intervals, is still sound but less precise.

When the backoff mechanism terminates, the packet is sent by calling the
function unicast. The transmission step is translated by our domain as a transition
to a one-tick state, since we defined TX DELAY = 1. The transition is annotated with
the empty abstract scenario ε] because no event occurred since the last time tick
at line 7. The Bernoulli model of packet loss is represented as two transitions with
the events b23 and b23 generated by the statement bernoulli() at line 23. These
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transitions point to two new abstract states with a one-tick sojourn time modeling
the time consumed by the reception operation at line 24.

After the unicast function returns, the energy saving sleep statement at line 13
is represented by a single state with a sojourn time ν = S. As we iterate the while

again, the size of the abstract automaton grows but after applying the widening
operator OA a fixed point is reached that over-approximates the family of concrete
Markov chains shown in Fig. 2a. �

4 Stationary Distributions

In this section, we present a method for extracting safe bounds of the stationary
distribution of an abstract Markov chain. We do so by deriving a distribution in-

variant that establishes a system of parametric linear inequalities over the abstract
states. Using the Fourier-Motzkin elimination algorithm, we can find guaranteed
bounds of time proportion spent in a given abstract state.

4.1 Distribution Invariants

We begin with some preliminary definitions. For each statement uniforml(e1, e2),

we denote by
←
u l

def
= e1 and

→
u l

def
= e2 the bounds expressions of the distribution.

Also, we define the functions min] J e K,max] J e K ∈ Σ] → expr giving respectively
the evaluation of the maximal and minimal values of an expression e in a given
abstract state, which is generally provided for free by the underlying numerical
domain. In the case of relational domains, the returned bounds can be symbolic.
For the sake of simplicity, we write also min]? J e K,max]? J e K ∈ expr to denote
respectively the minimal and maximal evaluations over the set of all reachable
abstract states. The abstract Markov chain obtained after the analysis of P is
given by:

M] JP KR] def
= λR]. let (τ ],−) = S] JP KR] in τ ]

The following definition gives a means to compute the probability of given
abstract scenario:

Definition 12 (Abstract scenario probability) The symbolic probability Pr]
r
ω]

z
∈

expr of abstract scenarios ω] ∈ Ω] is defined by structural induction on its regular
expression:

Pr]
r
ω]

z
def
=



1 if ω] = ε]

pl if ω] = bl

1− pl if ω] = bl
1

min
]
?

r→
u l

z
−max

]
?

r←
u l

z
+1

if ω] = uil

max

(
0,

max]?

r→
u l

z
−min]?

r←
u l

z
+2−U

min
]
?

r→
u l

z
−max

]
?

r←
u l

z
+1

)
if ω] = uI

l

Pr]
r
ω]0

z
× Pr]

r
ξ]
z

if ω] = ω]0ξ
]

Pr]
r
ω]1

z
+ Pr]

r
ω]2

z
if ω] = ω]1 + ω]2
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By combining the sojourn and probability invariants embedded in the abstract
chain, we construct an abstract transition matrix that characterizes completely
the stochastic properties of the program inside one finite data structure:

Definition 13 (Abstract transition matrix) The abstract transition matrix P] JP K ∈
D] → Σ] ×Σ] → expr is a square symbolic matrix defined as:

P] JP K def
= λR]. λ(s]i , s

]
j).

max] J ν Ks]j
min] J ν Ks]i

∑
s]i
ω]→s]j∈M]JP KR]

Pr]
r
ω]

z

Example 9 Let P be our first motivating example shown in Fig. 1a and let I] be
the initial empty abstract state. Let S = 〈ss, bk1, bkI, tx, ack, ack, sl〉 be the vector
of abstract states of the resulting chain shown in Fig. 2b. To obtain the matrix
Pr] JP KI], we iterate over all the transitions of the abstract chain. Consider for

example the case of the transition ss
uI

5→ bkI. First, we apply Definition 12 to

compute the transitions probability Pr]
r

uI
5

z
= B−1

B . Afterwards, we extract the

sojourn time bounds max] J ν K(bkI) = B and min] J ν K(ss) = 1 from the embed-
ded numeric environments. Finally, we apply Definition (13) to obtain the matrix

cell P] JP K(I])(ss, bkI) = B(B−1)
B = B − 1. By iterating the same process for all

transitions we obtain:

P] JP KI] =



0 1
B B − 1 0 0 0 0

0 0 0 1 0 0 0
0 0 0 1

2 0 0 0
0 0 0 0 p23 1− p23 0
0 0 0 0 0 0 S

0 0 0 0 0 0 S
1
S 0 0 0 0 0 0


(3)

�

Let us now introduce the concept of abstract stationary distribution that gives
the proportion of time spent in every abstract state. In the sequel, we denote
I] ∈ D] an abstraction of the initial states.

Definition 14 (Abstract stationary distribution) The abstract stationary dis-
tribution of an abstract chain M] JP KI] is defined as the symbolic vector π] JP KI] ∈
Σ] → expr verifying:

∀ρ ∈ { ρ | (−, ρ,−) ∈ γ(I]) },∀s] ∈ Σ] :

EE
r
π] JP K(I])(s])

z
ρ =

∑
s∈γΣ(s])

π JP K(ρ)(s)

where EE J . K ∈ E → V is the classic evaluation of numeric expressions.

It is important to note that since spurious concrete states s ∈ γΣ(s]) have a null
concrete stationary probability π JP K(ρ)(s), the abstract stationary probability
π] JP K(I])(s]) represents the exact sum of the stationary probabilities of the real
concrete states abstracted by s]. Therefore, any lower and/or upper bounds that
can be found about π] JP K(I])(s]) are also valid for the concrete states abstracted
by s]. To compute such bounds, we use P] JP KI] with the following result:
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Theorem 2 (Distribution invariant)

∀ρ ∈ { ρ | (−, ρ,−) ∈ γ(I]) } :
∀s]i ∈ Σ

] : EE
r
π] JP K(I])(s]i)

z
ρ ≤

∑
s]j∈Σ]

EE
r
π] JP K(I])(s]j)× P] JP K(I])(s]j , s

]
i)
z
ρ

∑
s]∈Σ]

EE
r
π] JP K(I])(s])

z
ρ = 1

Proof See Appendix A.

Simply stated, this theorem allows us to establish two important invariants.
The first one is a weak form of the Markov property and can be informally written
in vector algebra as π] J . K ≤ π] J . KP] J . K, which means that the probability of
being at some abstract state is always upper-bounded by the sum of the probabil-
ities of moving from previous states. The upper-bound is guaranteed by the sound
over-approximation of abstract scenarios and sojourn times. The second invariant
is the normalization condition that stipulates that the abstract states cover the
entire space of concrete states, and therefore, the sum of the probabilities of ab-
stract states in a given parameter valuation should be equal to 1 (since spurious
states introduced by concretization have a null concrete probability).

Example 10 By applying Theorem 2 on the abstract stochastic matrix (3), we
obtain the following parametric system of linear inequalities:

π]ss ≤ 1
Sπ

]
sl

π]bk1 ≤
1
Bπ

]
ss

π]bkI
≤ (B − 1)π]ss

π]tx ≤ π
]
bk1

+ 1
2π

]
bkI

π]ack ≤ pπ
]
tx

π]
ack
≤ (1− p)π]tx

π]sl ≤ Sπ
]
ack + Sπ]

ack

π]ss + π]bk1 + π]bkI
+ π]tx + π]ack + π]

ack
+ π]sl = 1

where the vector 〈π]ss, π]bk1 , π
]
bkI

, π]tx, π
]
ack, π

]

ack
, π]sl〉 is the vector of unknown limiting

probabilities. �

The obtained system of parametric linear inequalities can be used to find safe
bounds of the property of interest. Without loss of generality, assume that the
time proportion of this property is associated with the stationary probability of
some state s]. To compute a safe symbolic range of π] JP K(I])(s]), we just have
to perform a projection of the linear system that keeps only π] JP K(I])(s]) and
removes the other unknowns while preserving all constraints. Many off-the-shelf
symbolic environments, such as Sage and Mathematica, can solve such problems
symbolically. However, in practice we have experienced very low performances even
for small scale inequality systems. To overcome this problem, we have implemented
a parametric Fourier-Motzkin projection algorithm [24,47] that performs better
than tested symbolic environments.



Quantitative Static Analysis of Protocols using Abstract Markov Chains 29

Input : Inequalities I0 = {cj +
∑

1≤i≤n ai,jxi ≤ 0 | 1 ≤ j ≤ m}
Input : Constraints C0

Output : Set I of inequalities-constraints tuples 〈C, I〉
1 I ← {〈C0, I0〉};
2 for i = 1 to n− 1 do

H Eliminate unknown xi I
3 I′ ← ∅;
4 foreach 〈C, I〉 ∈ I do

H Decompose I depending on the sign of the coefficient of xi I
5 I+ ← {〈cj +

∑
i≤k≤n ak,jxk ≤ 0〉 ∈ I | ai,j > 0};

6 I− ← {〈cj +
∑
i≤k≤n ak,jxk ≤ 0〉 ∈ I | ai,j < 0};

7 I0 ← {〈cj +
∑
i≤k≤n ak,jxk ≤ 0〉 ∈ I | ai,j = 0};

8 I? ← I \ (I+ ∪ I− ∪ I0);

H For each possible sign combination in I?, we generate a new case I
9 P ← {〈I+, I−, I0, C〉};

10 foreach 〈cj +
∑
i≤k≤n ak,jxk ≤ 0〉 ∈ I? do

11 x← 〈cj +
∑
i≤k≤n ak,jxk ≤ 0〉;

12 P ←{〈I+∪{x}, I−, I0, C∧ai,j > 0〉 | 〈I+, I−, I0, C〉 ∈ P∧check(C∧ai,j > 0)}∪
{〈I+, I−∪{x}, I0, C∧ai,j < 0〉 | 〈I+, I−, I0, C〉 ∈ P∧check(C∧ai,j < 0)}∪
{〈I+, I−, I0∪{x}, C∧ai,j = 0〉 | 〈I+, I−, I0, C〉 ∈ P ∧check(C∧ai,j = 0)};

13 end
H We can apply now the classic Fourier-Motzkin elimination on each case I

14 foreach 〈I+, I−, I0, C〉 ∈ P do
15 I ← I0;

16 foreach 〈c+ +
∑
i≤k≤n a

+
k xk ≤ 0〉 ∈ I+ do

17 foreach 〈c− +
∑
i≤k≤n a

−
k xk ≤ 0〉 ∈ I− do

18 I ← I ∪ {〈(c−a+
i − c

+a−i ) +
∑
i+1≤k≤n (a−k a

+
i − a

+
k a
−
i )xk ≤ 0〉};

19 end

20 end
21 I′ ← I′ ∪ {〈C, I〉};
22 end

23 end
24 I ← I′;
25 end

Fig. 16: Algorithm of the parametric Fourier-Motzkin elimination.

4.2 Parametric Fourier-Motzkin Algorithm

We give in Fig. 16 the algorithm of the Fourier-Motzkin elimination. We have as
inputs a set I0 of m parametric inequalities of the form {cj +

∑
1≤i≤n ai,jxi ≤ 0 |

1 ≤ j ≤ m} where each xi is an unknown and each cj and ai,j are parametric
coefficients of arbitrary form. Additionally, we also provide a (possibly empty) set
of constraints C0 that gives initial information about the parameters (for example,
a parameter pl of a Bernoulli distribution is always in the range [0, 1]). The aim of
the algorithm is to return a set of constraints equivalent to I0 where all variables
were eliminated except a single one (assume xn). To do so, the algorithm elimi-
nates the other variables sequentially. At each iteration, a variable is eliminated
and we obtain a set of parametric solutions {〈C, I〉} where I are a set of linear con-
straints on the remaining unknowns and C are the conditions on the parameters
for obtaining the solution I.
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For the sake of clarity, let us first describe the classical non-parametric version
of the algorithm. To eliminate a variable xi, we examine its coefficients ai,j in I

and we partition the inequalities depending on the sign of these coefficients (lines
5 – 8). The idea is that when having two inequalities 〈cj1 +

∑
i≤k≤n ak,j1xk ≤ 0〉

and 〈cj2 +
∑
i≤k≤n ak,j2xk ≤ 0〉 where the signs of the target coefficients ai,j1 and

ai,j2 are different and not null (let say ai,j1 > 0 and ai,j2 < 0), we can generate a
new inequality 〈ai,j1cj2 − ai,j2cj1 +

∑
i≤k≤n (ai,j1ak,j2 − ai,j2ak,j1)xk ≤ 0〉 that is

implied by the previous inequalities and where the coefficient of xi is null. So, if we
perform the same merging operation on every couple of sign-opposite inequalities,
while keeping the inequalities that have already a null coefficient on xi, we obtain a
set of inequalities equivalent to the previous ones and where xi has been eliminated
(lines 14 – 19).

When the coefficients of the unknowns are not constant, we cannot always
determine their signs. Consequently, we collect the set of undetermined inequalities
I? (line 9) and we eliminate the ambiguity by pushing the sign conditions into the
parameters constraints C. In other words, we fork the inequalities I into a set
of new inequalities: one for every possible sign combination of the undertermined
coefficients. For each case, the conditions of the sign combination are accumulated
with the current parameters conditions C, and the undetermined inequalities are
classified depending on these sign conditions (line 12). To improve precision, the
function check is used to test the satisfiability of the conjunction of C with the
sign condition; cases with invalid formula are rejected. After resolving all coefficient
signs, the classic Fourier-Motzkin elimination can be applied.

5 Non-deterministic Semantics

In this section, we explain how we can extend our previous analysis to handle pure
non-determinism. We enrich the previous syntax of PSimpl shown in Fig. 6 with a
boolean non-deterministic choice operator ? , and we show that previous concrete
and abstract semantics can be easily adapted to preserve the correctness of the
inferred distribution invariants.

5.1 Concrete Semantics

Markov decision processes are a well-known formalism for enriching the model of
discrete time Markov chains with non-determinism [38]. Essentially, they represent
stochastic processes that perform a non-deterministic choice at each state to select
the transition probability distribution to employ. We can view such a system as if
it were some adversary, called a policy scheduler, that tries to control its behavior
[42]. Therefore, for a given policy scheduler that fixes all non-deterministic choices
that will be made by the process, the system becomes a discrete time Markov
chain.

Let B∞ denote infinite sequences of boolean values and :: the append operator

on sequences. We define the set of policy schedulers as Ψ
def
= L → B∞ mapping

control locations of the operator ? to a sequence of resolved boolean choices. We
lift our previous pure probabilistic domain D to a non-deterministic probabilistic
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semantics domain D̂ def
= Ψ → D by resolving a priori all non-deterministic choices

depending on a given policy scheduler.
The concrete semantics of the operator ? is given by the following transfer

function:

Ŝ J l : x = ? ; KR̂ def
=

let pred = λψ. λb. ψ[l′ 7→ ((l = l′)?(b :: ψ(l)) : (ψ(l′)))] in

λψ.
⊔
b∈B

S J l : x = b; KR̂(pred(ψ)(b))

Essentially, the utility function pred(ψ)(b) creates the predecessor policy scheduler
of ψ that extends ψ with the boolean choice b at location l. The deterministic
assignment is then applied on the Markov chains associated to the input schedulers
that are predecessors of the output schedulers (used for the next resolution of ? ).
For the remaining statements, the corresponding transfer functions are obtained
by a straightforward pointwise extension of their deterministic counterpart:

Ŝ J s KR̂ def
= λψ. S J s K (R̂(ψ))

A similar lifting is employed to obtain the concrete stationary distribution π̂ J . K
from π J . K.

5.2 Policy Encoding

Since the set of sequences of natural numbers N → N has the same cardinality
as R, we can encode each policy scheduler as a distinct real number in [0, 1]. By
considering this number as a parameter of the program and by a specific syntac-
tical transformation of the operator ? , we can build a deterministic probabilistic
program equivalent to the original non-deterministic one.

Formally, let l ∈ L be the program location of some non-deterministic choice
expression ? . We assume without loss of generality that every expression contains
at most one occurrence of the ? operator, and that this operator can appear only
in the right-hand-side part of assignments. We attach to every occurrence three
fresh auxiliary variables βl ∈ B, µl ∈ R and µl,0 ∈ R. The boolean variable βl
stores the result of the non-deterministic choice. The real variable µl, initialized
by the parameter value µl,0 ∈ [0, 1], is used to encode the sequence of values of
βl. We replace every occurrence of ? with the variable βl, and we add before this
occurrence the following code that extracts a new random bit from µl, stores it
into βl, and shifts µl by one bit:

l : x = ? ; →

if (µl >= 0.5) {

βl = TRUE;

} else {

βl = FALSE;

}

µl = 2 * fmod(µl, 0.5);

x = βl;

where fmod(a, b) is the floating-point remainder of the division a/b. By doing so,
each initial value µl,0 generates an infinite and unique sequence of boolean values.
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Since we encoded a non-deterministic program into an parametric deterministic
one that is equivalent, all our previous analysis can be applied. Safe bounds for the
original program can be obtained by extracting the worst case values when varying
the policy-encoding parameter in [0, 1], i.e., by projecting out this parameter.

Abstraction. We use a naive abstraction that allows simple and efficient compu-
tations while keeping the analysis sound. Instead of maintaining precise informa-
tion about the encoding of boolean choices and the auxiliary variables βl and µl,
we simply forget their values and we join the results of both non-deterministic
branches to cover all possible policies of the process. For instance, we can abstract
non-deterministic assignments as follows:

S] J x = ? ; K(τ ], ω]) def
=

⊔
b∈B

S] J x = b; K(τ ], ω])

which is similar to the classic abstraction of non-determinism in non-probabilistic
programs. Since the auxiliary variables are not referenced in the abstract seman-
tics, no special processing is required to eliminate them and we are guaranteed to
cover all possible sequences of non-deterministic choices. Therefore, we can apply
the previous extraction/resolution method in order to compute the bounds of the
stationary distribution.

6 Experiments

The proposed approach has been implemented in a prototype analyzer called
Marchal (MARkov CHains AnaLyzer) composed of two parts. The first one is
an abstract interpreter implemented in the OCaml language and based on the
CIL frontend [39] and the Apron library [27]; it operates by structural induction
on an input C-like probabilistic program in order to infer its abstract Markov
chain. The second part is an implementation in Mathematica [26] of the para-
metric Fourier-Motzkin elimination algorithm that finds symbolic bounds of the
stationary distribution of the abstract Markov chain of interest.

We have considered a wireless transmission scenario over lossy links charac-
terized by a drop probability p. Five well-known backoff mechanisms have been
considered, that will be denoted by C1 , C∞, Cn, Ln and Lt∞. The first mecha-
nism C1 is our motivating example of Fig. 1a that uses a single constant backoff
window of length B and does not retransmit the packet in case of loss. The mech-
anism C∞ uses also a constant backoff window to avoid collisions but improves
reliability by trying to send the packet until an acknowledgement is received. The
mechanism Cn denotes a constant backoff window with a limited number of re-
transmissions fixed by a parameter n. Additionally, we have tested two backoff
mechanisms with a dynamic window that increases linearly at each failed trans-
mission. The mechanism Ln bounds the number of transmissions by a parameter
n, while the mechanism Lt∞ uses a truncated policy in which the number of at-
tempts is unbounded but the maximal window length is limited by a parameter t.
For all mechanisms, a sleep period of duration S follows every transmission phase.
The programs of these mechanisms are presented in Appendix B.

Our prototype Marchal has been compared to the state-of-the-art probabilis-
tic model checker Prism [30]. More specifically, we used its parametric engine based
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on Param [25] that can produce closed-form stationary distributions when the
transition probabilities are symbolic. For Marchal, we have varied the partition-
ing parameter U of uniform distributions and we have performed a non-relational
analysis using the interval domain Box and a relational analysis using the poly-
hedra domain Poly. In order to highlight the differences between Marchal and
Prism, we have selected four deterministic scenarios for each backoff mechanism
with various ranges of parameters: fixed small values, fixed large values, large
ranges and open ranges. In addition, one non-determinisitic case with large ranges
has been analyzed using the same non-perfect clock model as presented earlier in
Fig. 4. Note that the cases of open ranges and non-determinism are not supported
by Prism.

6.1 Efficiency

The efficiency of both tools is measured in terms of analysis time. The obtained
results are summarized in Table 1 and are reported in seconds. For Marchal, we
have also divided the overall analysis time into two parts: the abstract Markov
chain (AMC ) extraction phase and the parametric Fourier-Motzkin (PFM ) res-
olution phase. A timeout of 30 mins is used as a limit for the overall analysis
time.

Prism. It is important to note that Prism performs a precise analysis in all cases.
On the one hand, this allows fast analysis times of simple cases such as configu-
rations with fixed small values. However for the other cases, the models increase
in size and complexity, and the scalability of Prism is affected due to the absence
of approximation mechanisms. More specifically, Prism has to perform a separate
analysis for every possible value of the parameters, resulting in systematic time-
outs for the range cases. Also, as an obvious consequence, open range cases are not
supported. Another limitation of Prism is its partial support for non-determinism
that was not useful for the analysis of our benchmark protocols. More precisely,
despite the fact that Prism does support non-determinism modeled as Markov de-
cision processes, the extraction of the stationary distribution is available only for
discrete and continuous time Markov chains, not for Markov decision processes.

Marchal. For fixed values scenarios, Prism performs better than Marchal in
most cases. The strength of our approach becomes more clear for the cases of
ranges, where Marchal was able to return an answer before the timeout in all
cases, at least using the Box domain. Some timeouts occurred, however, with
the relational domain Poly. As we can notice from the convergent cases, the
PFM proportion is always predominant in the overall analysis time. Most of these
computations are performed when checking the signs of parametric coefficients
during the resolution process (lines 5, 6 and 7 in Fig. 16), for which we use the
Mathematica API.

However, since it is always sound to remove constraints from a system of in-
equalities, a simple optimization consists in ignoring inequalities for which the sign
check procedure consumes an excessive amount of time. This is done by constrain-
ing the duration of the evaluation of constraints ai,j > 0, ai,j < 0 and ai,j = 0 in
lines 5, 6 and 7 respectively in Fig. 16. In our experiments, this duration guard
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Table 1: Analysis time, reported in seconds.
Legend: AMC : abstract Markov chain extraction, PFM : parametric Fourier-Motzik
resolution, Q: presence of non-determinism,∞: timeout of 30 mins, 8: unsupported
analysis case.

Protocol Prism
Marchal

U
Box Poly

AMC PFM Total AMC PFM Total

C1: Constant single backoff

B = 3, S = 102 1.72
2 0.71 2.59 3.3 1.46 2.87 4.3
3 0.99 2.62 3.6 2.38 2.70 5.1

B = 20, S = 103 10.80
2 0.68 2.60 3.3 1.47 2.71 4.2
3 0.82 2.94 3.8 2.39 2.82 5.2

B ∈ [3, 20], S ∈ [102, 103] ∞ 2 0.77 2.53 3.3 2.04 2.50 4.5
3 1.06 2.68 3.7 3.29 2.74 6.0

B ∈ [3, 20], S ∈ [102, 103] Q 8
2 0.85 2.61 3.5 2.79 2.80 5.6
3 1.05 2.60 3.7 4.87 3.00 7.9

B ≥ 3, S ≥ 102 8
2 0.68 2.41 3.1 1.66 2.63 4.3
3 0.87 2.56 3.4 3.12 2.78 5.9

C∞: Constant unbounded backoffs

B = 3, S = 102 1.59
2 0.95 3.16 4.1 2.54 3.38 5.9
3 1.79 4.82 6.6 4.85 3.31 8.2

B = 20, S = 103 10.32
2 1.07 3.33 4.4 2.70 3.36 6.1
3 1.84 5.09 6.9 4.92 4.47 9.4

B ∈ [3, 20], S ∈ [102, 103] ∞ 2 1.16 3.20 4.4 3.49 5.02 8.5
3 1.92 3.39 5.3 6.61 5.50 12.1

B ∈ [3, 20], S ∈ [102, 103] Q 8
2 1.07 4.79 5.9 5.08 8.97 14.1
3 2.03 5.26 7.3 10.28 21.13 31.4

B ≥ 3, S ≥ 102 8
2 1.06 2.50 3.6 2.81 5.21 8.0
3 1.81 2.52 4.3 5.98 5.68 11.7

Cn: Constant bounded backoffs

B = 3, S = 102, n = 2 1.74
2 2.49 10.77 13.3 8.10 10.30 18.4
3 4.21 14.63 18.8 14.75 15.12 29.9

B = 20, S = 103, n = 6 38.07
2 5.96 13.72 19.7 23.08 13.55 36.6
3 11.22 25.22 36.4 48.46 24.75 73.2

B ∈ [3, 20], S ∈ [102, 103], n ∈ [2, 6] ∞ 2 5.39 10.37 15.8 39.90 180.84 220.7
3 10.40 14.36 24.8 74.55 1136.72 1211.3

B ∈ [3, 20], S ∈ [102, 103], n = 2 ∞ 2 2.60 10.47 13.1 11.14 168.97 180.1
3 4.42 15.67 20.1 22.72 809.66 832.4

B ∈ [3, 20], S ∈ [102, 103], n = 2 Q 8
2 2.96 10.42 13.4 16.44 95.43 111.9
3 4.99 9.55 14.5 29.03 397.72 426.8

B ≥ 3, S ≥ 102, n ≥ 2 8
2 5.08 2.73 7.8 26.58 167.51 194.1
3 9.46 2.86 12.3 50.18 991.01 1041.2

Ln: Linear bounded backoffs

B = 3, S = 102, n = 2 1.74
2 2.33 10.69 13.0 8.15 10.60 18.8
3 4.20 15.51 19.7 15.01 15.77 30.8

B = 20, S = 103, n = 6 13.36
2 5.99 5.09 11.1 22.84 28.88 51.7
3 11.11 7.25 18.4 45.63 51.17 96.8

B ∈ [3, 20], S ∈ [102, 103], n ∈ [2, 6] ∞ 2 5.60 3.26 8.9 ∞
3 10.19 7.56 17.8 ∞

B ∈ [3, 20], S ∈ [102, 103], n = 2 ∞ 2 2.65 11.06 13.7 11.34 135.54 146.9
3 4.24 15.51 19.8 20.92 669.55 690.5

B ∈ [3, 20], S ∈ [102, 103], n = 2 Q 8
2 2.95 8.86 11.8 16.48 58.10 74.6
3 4.93 10.32 15.2 30.94 395.34 426.3

B ≥ 3, S ≥ 102, n ≥ 2 8
2 5.22 2.80 8.0 ∞
3 9.75 3.01 12.8 ∞

Lt∞: Linear truncated backoffs

B = 3, S = 102, t = 2 1.74
2 2.01 13.60 15.6 5.85 13.34 19.2
3 3.64 19.96 23.6 11.73 19.14 30.9

B = 20, S = 103, t = 6 9.74
2 7.06 5.48 12.5 29.57 5.57 35.1
3 13.27 6.31 19.6 61.76 7.05 68.8

B ∈ [3, 20], S ∈ [102, 103], t ∈ [2, 6] ∞ 2 3.54 3.39 6.9 ∞
3 6.40 5.44 11.8 ∞

B ∈ [3, 20], S ∈ [102, 103], t = 2 ∞ 2 2.12 11.96 14.1 8.28 160.09 168.4
3 3.76 12.81 16.6 16.23 268.40 284.6

B ∈ [3, 20], S ∈ [102, 103], t = 2 Q 8
2 2.27 10.19 12.5 11.85 122.16 134.0
3 4.12 11.65 15.8 23.96 1682.07 1706.0

B ≥ 3, S ≥ 102, t ≥ 2 8
2 3.28 2.90 6.2 ∞
3 6.08 3.04 9.1 29.52 1054.99 1084.5
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was fixed to 5 seconds; when this guard is reached, the constraint is not added to
the system P , and the algorithm continues the elimination process with the other
constraints. In most cases, this ensured that the overall analysis does not reach
the global 30 mins time limit; however, a few timeouts remained.

Another issue of our approach is its inefficiency in the presence of a bounding
parameter that limits the number of transmissions, such as parameter n for cases
Cn and Ln, and parameter t for Lt∞. In most experiments, a timeout occurred
using the relational domain Poly. The main reason behind this problem is that
our abstract domain is not able to reflect the impact of such parameters on the
stationary distribution invariants. When analyzing a loop while (e) s where state-
ment s contains a sequence of observable states, we are not able to reflect the
impact of the exit condition e on the aggregate sojourn time of those states, be-
cause sojourn times are attached to observable states individually. Consequently,
the bounded loop is approximated with an unbounded one and the information of
the bounding parameter is ignored. This results in complex stationary distribution
invariants that are not well adapted for the resolution algorithm. For this reason,
we have added an additional scenario for Cn, Ln and Lt∞ in which the bounding
parameter has a small fixed value of 2. This allows us to perform an unrolling
of the transmission loop. As a consequence, the analysis time of Marchal was
improved and all timeouts disappeared, while Prism was not able to analyze these
scenarios.

6.2 Precision

In this section, we quantify the loss of precision induced by the approximations of
our analysis. Note that the outcome of Marchal is a symbolic expression of the
stationary distribution that is always in the range [0, 1]. Measuring the imprecision
of such expressions is not obvious because it varies depending on the value of
the parameters. Therefore, we compute numerically the average gap between the
obtained upper and lower bounds over the entire ranges of the parameters for each
configuration. The smaller is the gap, the better is the precision: 0 means finding
the exact solution, while 1 means that no interesting one was found. Obviously, by
doing so, the precision of open range scenarios cannot be computed, so we omit
them in this study.

The obtained results are shown in Table 2. Note that we do not present the
results of Prism because it produces always precise results with no errors. Instead,
we show the relative performance speedup of Marchal over Prism to illustrate
the precision/efficiency tradeoff of the analysis (positive numbers indicating that
Marchal was faster).

In 12 of the 23 cases, Marchal produced small error gaps (< 0.2): Prism was
faster in 5 of these cases; while in 6 of them, Prism was not able to find a solution. In
the remaining 11 of the 23 cases, the results obtained by Marchal were too coarse.
This is due to (i) the naive partitioning abstraction of the uniform distribution, and
(ii) the presence of bounded loops that are not handled properly by our semantics
as discussed earlier in the efficiency study. Nevertheless, in 7 of these 11 cases,
Prism was not able to return an answer within the fixed timeout. In summary,
we can conclude that the approaches of Marchal and Prism are complementary:
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Table 2: Analysis error, computed as the average gap between the upper and lower
bounds of the stationary distribution. The speedup column gives the improvement
in time when comparing with Prism. The column Box ⊕ Poly reports the result
of combining both domains.
Legend: bold: minimal error per case, Q: presence of non-determinism, ∞: Mar-

chal timeout, ++: Prism timeout.

Protocol U
Box Poly Box ⊕ Poly

Error Speedup Error Speedup Error Speedup

C1: Constant single backoff

B = 3, S = 102 2 0.003 −1.6s 0.003 −2.6s 0.003 −5.9s
3 0.000 −1.9s 0.000 −3.4s 0.000 −7.0s

B = 20, S = 103 2 0.008 +7.5s 0.008 +6.6s 0.008 +3.3s
3 0.005 +7.0s 0.005 +5.6s 0.005 +1.8s

B ∈ [3, 20], S ∈ [102, 103]
2 0.218 ++ 0.010 ++ 0.010 ++
3 0.154 ++ 0.006 ++ 0.006 ++

B ∈ [3, 20], S ∈ [102, 103] Q
2 0.222 ++ 0.012 ++ 0.012 ++
3 0.158 ++ 0.007 ++ 0.007 ++

C∞: Constant unbounded backoffs

B = 3, S = 102 2 0.236 −2.5s 0.237 −4.3s 0.237 −8.4s
3 0.000 −5.0s 0.000 −6.6s 0.000 −13.2s

B = 20, S = 103 2 0.894 +5.9s 0.894 +4.3s 0.894 −0.1s
3 0.834 +3.4s 0.834 +0.9s 0.834 −6.0s

B ∈ [3, 20], S ∈ [102, 103]
2 0.978 ++ 0.739 ++ 0.740 ++
3 0.963 ++ 0.600 ++ 0.600 ++

B ∈ [3, 20], S ∈ [102, 103] Q
2 0.978 ++ 0.792 ++ 0.792 ++
3 0.967 ++ 0.680 ++ 0.680 ++

Cn: Constant bounded backoffs

B = 3, S = 102, n = 2
2 0.007 −11.5s 0.007 −16.7s 0.007 −29.9s
3 0.000 −17.1s 0.000 −28.1s 0.000 −47.0s

B = 20, S = 103, n = 6
2 0.898 +18.4s 0.898 +1.4s 0.898 −18.2s
3 0.838 +1.6s 0.838 −35.1s 0.838 −71.6s

B ∈ [3, 20], S ∈ [102, 103], n ∈ [2, 6]
2 0.982 ++ 0.749 ++ 0.749 ++
3 0.961 ++ 0.667 ++ 0.667 ++

B ∈ [3, 20], S ∈ [102, 103], n = 2
2 0.321 ++ 0.039 ++ 0.039 ++
3 0.237 ++ 0.950 ++ 0.223 ++

B ∈ [3, 20], S ∈ [102, 103], n = 2 Q
2 0.323 ++ 0.044 ++ 0.044 ++
3 0.240 ++ 0.022 ++ 0.022 ++

Ln: Linear bounded backoffs

B = 3, S = 102, n = 2
2 0.009 −11.3s 0.010 −17.0s 0.010 −30.0s
3 0.001 −18.0s 0.001 −29.0s 0.001 −48.8s

B = 20, S = 103, n = 6
2 1.000 +2.3s 0.935 −38.4s 0.935 −49.4s
3 1.000 −5.0s 0.893 −83.4s 0.893 −101.8s

B ∈ [3, 20], S ∈ [102, 103], n ∈ [2, 6]
2 1.000 ++ ∞ ∞
3 1.000 ++ ∞ ∞

B ∈ [3, 20], S ∈ [102, 103], n = 2
2 0.322 ++ 0.041 ++ 0.041 ++
3 0.238 ++ 0.237 ++ 0.068 ++

B ∈ [3, 20], S ∈ [102, 103], n = 2 Q
2 0.323 ++ 0.046 ++ 0.046 ++
3 0.240 ++ 0.023 ++ 0.023 ++

Lt∞: Linear truncated backoffs

B = 3, S = 102, t = 2
2 0.414 −13.9s 0.414 −17.4s 0.414 −33.1s
3 0.124 −21.9s 0.124 −29.1s 0.124 −52.7s

B = 20, S = 103, t = 6
2 1.000 −2.8s 1.000 −25.4s 1.000 −37.9s
3 1.000 −9.8s 1.000 −59.1s 1.000 −78.7s

B ∈ [3, 20], S ∈ [102, 103], t ∈ [2, 6]
2 1.000 ++ ∞ ∞
3 1.000 ++ ∞ ∞

B ∈ [3, 20], S ∈ [102, 103], t = 2
2 0.970 ++ 0.782 ++ 0.782 ++
3 0.942 ++ 0.653 ++ 0.653 ++

B ∈ [3, 20], S ∈ [102, 103], t = 2 Q
2 0.962 ++ 0.815 ++ 0.814 ++
3 0.944 ++ 0.712 ++ ∞
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Marchal is not always the most optimal, but can compute interesting results that
are out-of-the scope of Prism’s approach.

These preliminary results show the importance of tunable approximations that
allow Marchal to tradeoff precision and efficiency, contrary to Prism that returns
always precise results. Three factors influenced the tradeoff of Marchal:

– Even though the partitioning approach of the uniform distribution is a naive
abstraction, many cases were improved by adjusting properly its parameter U .

– The relational invariants provided by the Poly impacted considerably the pre-
cision, but at the cost of efficiency.

– The number of unrollings of while loops was also an important tuning param-
eter of the analysis.

Some few particular cases violate the monotony of this tradeoff. For instance,
consider the Cn protocol and the case B ∈ [3, 20], S ∈ [102, 103], n = 2. The pre-
cision decreased from 0.321 using Box/U = 2 to 0.950 using Poly/U = 3, which
is counter-intuitive. Essentially, by increasing the precision of the domain, the
distribution invariants can become more complex and difficult to handle by Math-
ematica. Therefore, some constraints are ignored to ensure convergence, which
leads to partial solutions not covering all the range of the parameters. For the
uncovered region, the trivial bound [0, 1] is assumed so that we are nevertheless
sound, albeit we decrease the precision of the overall result. Nevertheless, the in-
variants of both cases can be merged by considering the most precise bounds. The
result of this combination is reported in the column Box ⊕ Poly in Table 2 and
shows an improvement of the precision in these particular cases.

7 Related Work

The analysis of probabilistic programs has gained great interest over the last years.
Many techniques have been proposed with varying precision/scalability tradeoffs.
Overall, two kinds of quantitative properties have been considered:

Distribution inference. Most existing tools aim at inferring the probability of reach-
ing particular program states. This kind of analysis extends the classic (qualita-
tive) notion of state reachability to provide more refined (quantitative) answers
about the program safety, e.g. the likelihood of violating an assertion. In the liter-
ature, this is designated as distribution inference, bayesian inference or probabilistic

reachability.

Expectation invariants. Other works focus on finding invariants about the expecta-
tion of some program variable or expression. An expectation gives the mean value
of an expression by considering all scenarios weighted with their probabilities. Note
that a distribution inference analysis can be used to obtain expectation invariants.
However, a tailored expectation analysis can be more efficient.

It is worth noting that the kind of properties investigated in our work is dif-
ferent from those two notions. We are interested in computing rates at which
performance indicators change during time (e.g. rates of packet transmission, en-
ergy consumption, etc.). Computing such rates is based on finding the stationary
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distribution of the process, which is different than computing reachability prob-
abilities or expectations. For this reason, existing verification techniques are not
adequate to infer the kind of properties we are interested in, except Prism as we
will discuss later.

In the following, we give an overview of the most representative solutions in
the literature:

7.1 Model Checking

Daws [14] presented a theoretic-language approach to find exact symbolic probabil-
ities of events expressed in PCTL. The analysis is limited to parametric discrete
time Markov chains with finite state spaces unlike our approach. By consider-
ing a chain as an automaton over the alphabet of probability events, symbolic
reachability probabilities can be encoded as regular expressions using a state elim-
ination algorithm. The obtained regular expressions are evaluated symbolically by
structural induction to extract rational functions giving the desired parametric
reachability probability. Several enhancements of this approach were proposed to
support non-determinism [25] and conditional probabilities [16].

Prism [30] is a famous model checker that has been successfully applied for an-
alyzing many probabilistic systems. It supports several stochastic models, such as
discrete and continous Markov chains, Markov decision processes and probabilistic
timed automata. In addition to a numeric resolution engine, Prism integrated the
parametric reachability analysis of Param [25] which allows computing symbolic
stationary distribution of discrete time Markov chains, but it is limited to finite
state spaces.

7.2 Symbolic Execution

Geldenhuys et al. [22] extended the Symbolic PathFinder engine [2] to compute
exact reachability probabilities. The analysis targets (non-probabilistic) functions
with symbolic input parameters drawn from finite uniform distributions. Symbolic
execution traces are enriched with path probabilities computed by dividing the
number of reaching paths by the total space of values of the inputs. To do so,
volume counting techniques [15] are required, which limits the scalability of the
approach. Several other techniques extend this approach to support multi-threaded
programs [20], to handle non-determinism [33], or to use Monte Carlo sampling
for better efficiency [21].

Sankaranarayanan et al. [44] proposed another symbolic approach that can in-
fer formally guaranteed bounds of reachability probabilities. It targets infinite state
probabilistic programs with various discrete and continous distributions. Also, the
authors propose a branch-and-bound technique to perform sound and approximate
volume counting.

More recently, Barthe et al. [3] described a symbolic execution based on mar-
tingales in order to derive post-loop expectations of program variables. Informally,
a martingale is an expression having an expectation that does not change. The
proposed technique uses Doob’s decomposition in order to infer martingale expres-
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sions automatically. After that, post-loop expectations are computed by applying
the optional stopping theorem.

7.3 Static Analysis

Abstract interpretation of probabilistic programs was introduced by Monniaux [36]
to compute upper-bounds of reachability probabilities. The analysis lifts standard
concrete non-probabilistic semantics to probabilistic semantics by extending the
measure-based formalization of Kozen [29] in order to handle non-determinism.
Later, Monniaux extended this work to support backward reachabilty analysis
[37] and LTL properties on Markov decision processes [38].

In the same line, Bouissou et al. [4] developed a probabilistic abstract inter-
pretation of numeric programs. The aim of the analysis is to quantify rounding
errors during numeric computations by propagating noise-related uncertainties as
probabilities. The analysis is based on p-boxes [19] and Dempster–Shafer struc-
tures [45], but lacks a widening operator. An enhancement of this approach was
proposed in [5] that employs concentration of measure inequalities [17].

In [11], Cousot et al. proposed a systematic framework for formalizing proba-
bilistic abstract interpretations by introducing the concept of law abstraction as a
means to approximate probability distributions on program states. This formalism
provides general theoretic guidelines to build sound probabilistic abstract inter-
pretations, but does not provide practical solutions for widening loop iterations.

Chakarov et al. [7] presented a static analysis that extends the weakest pre-
expectation calculus of McIver and Morgan [34] to compute reachability probabili-
ties and to prove almost sure termination. In [8], Chakarov et al. proposed another
pre-expectation based analysis using abstract interpretation for discovering expec-
tation invariants through the abstract domain of polyhedra with an appropriate
widening operator.

Wang et al. [51] proposed another systematic framework for backward data
flow analysis of probabilistic programs. Domains are formalized as measurable
spaces over program states, and transfer functions correspond to kernels giving the
probability that execution of a statement will hit some target environment. The
analysis is intra-procedural and modular by computing function summaries that
maintain sound input-output relations. The framework makes distinction between
three kinds of widenings, depending on the exit condition of the loop: (classic)
conditional, non-deterministic or probabilistic. Two instances of the framework are
presented: a bayesian inference computing lower-bounds of probability reachability
distributions, and a linear expectation invariant analysis over polyhedra.

7.4 Minimization of Markov Chains

In addition to verification approaches, conservative minimization techniques for
Markov chains have been extensively investigated. Chain lumping [28] consists in
downsizing a Markov chain by constructing a quotient Markov chain over some
equivalence relation. By imposing particular constraints on this relation, one can
relate the stationary distribution of the lumped chain to the original concrete one.
In our approach, no constraint is imposed on the equivalence relation, albeit the
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obtained stationary distribution bounds may be too coarse if the relation is not
carefully designed. In addition, the construction of the lumped chain is performed
dynamically by structural induction on the program syntax, which is not the case
for classic lumping techniques that require a prior knowledge of the entire concrete
chain.

Abate et al. [1] proposed another conservative minimization technique for dis-
crete time Markov process with general (uncountable) state spaces. The basic
idea is to derive a finite state Markov chain that enjoys particular approxima-
tion guarantees. Using classic probabilistic model checkers, such as Prism, the
approximate chain is analyzed to derive the desired reachability probability. The
result is combined with the approximation guarantees to provide a guaranteed er-
ror bound w.r.t. the reachability probability of the same property on the original
Markov process. Soudjani et al. [46] extended this approach to approximate the
state probability as a function of time. However, it not clear how these results can
be adapted to bound the stationary distribution of the original process.

8 Conclusion

We have presented a novel approach for obtaining guaranteed bounds of perfor-
mance metrics of communication protocols. The method is based on the framework
of abstract interpretation and proposes an abstract Markov chain domain for ap-
proximating the semantics of programs with probabilistic and non-deterministic
choices. We have also explained how to exploit the information encapsulated within
this domain in order to infer a sound approximation of the stationary distribution
of the protocol, which is the key ingredient for computing a large range of perfor-
mance metrics such as the throughput and the energy consumption. A prototype
of the analysis has been presented along with some preliminary results.

Many problems about enhancing the proposed approach are still open. As re-
ported by our benchmarks results, the efficiency and the precision of the prototype
analyzer are significantly affected in cases where the program uses a bounding pa-
rameter to limit transmission attempts. To overcome this limitation, we can enrich
our abstraction by inferring invariants about macro sojourn time that reflect the
relations between the overall sojourn time in particular sequences of states (e.g.
within a while loop). Another problem is related to the parametric resolution
step of our analysis. In general, the required time to perform the projection is
predominant in the overall analysis time, and we believe that the efficiency of
the resolution algorithm can still be improved by introducing approximations.
Also, the presented analysis targeted a simple C-like language and we would like
to extend it to support real-world programs in full-fledged C and more complex
probability distributions. Finally, our work supports a single process model and
we are interested in extending it to communicating concurrent programs.

References

1. A. Abate, J.-P. Katoen, J. Lygeros, and M. Prandini. Approximate model checking of
stochastic hybrid systems. European Journal of Control, 16(6):624 – 641, 2010.
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21. A. Filieri, C. S. Păsăreanu, W. Visser, and J. Geldenhuys. Statistical symbolic execution
with informed sampling. In FSE ’14, pages 437–448. ACM, 2014.

22. J. Geldenhuys, M. B. Dwyer, and W. Visser. Probabilistic symbolic execution. In ISSTA
’12, pages 166–176. ACM, 2012.

23. G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford University
Press, 2001.

24. A. Gr̈ıßlinger. Extending the polyhedron model to inequality systems with non-linear
parameters using quantifier elimination. Master thesis, University of Passau, 2003.

25. E. Hahn, H. Hermanns, and L. Zhang. Probabilistic reachability for parametric markov
models. International Journal on Software Tools for Technology Transfer, 13(1):3–19,
2011.

26. Wolfram Research, Inc. Mathematica, Version 11.2, 2017. Champaign, IL.
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A Proof of Theorem 2

Let ρ ∈ { ρ | (−, ρ,−) ∈ γ(I]) } be a concrete initial environment. We divide the proof into
two parts.

A.1 Proof of the Weak Markov Property

First, we want to prove that:

∀s]i ∈ Σ
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] be an abstract state of the final abstract Markov chain M] JP KI]. We start by

linking the evaluation of the abstract distribution π] JP K(I])(s]i) to the value of the concrete
one π JP Kρ(si):
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where νi and νj are the sojourn times at states si and sj respectively.
By exploiting the over-approximation of these sojourn times provided by the abstract

numeric domain, we can infer the following:
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Using the soundness condition guaranteed by Theorem 1 we can derive:
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For the next step, we need to over-approximate the concrete transition probabilities Pr Jω Kρ,
which is done using the following lemma:
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Proof We proceed by induction on the structure of ω] using Definition 12 of abstract scenar-
ios probabilities. An important notice that allows building this proof is that, starting from a
concrete state sj , outgoing transitions could be labeled only by outcomes of the same distri-
bution. Indeed, because we are dealing with transitions from only one discrete time Markov
chain M JP Kρ, we can have only a pure probabilistic behavior with no non-determinism and
with a single distribution at each state. So, we have the following cases:

– Case ω] = ε]:

∑
si∈γΣ(s

]
i)

ω∈γLA (ε])

sj
ω→si∈MJ P Kρ

Pr Jω Kρ =
∑

si∈γΣ(s
]
i)

sj
ε→si∈MJ P Kρ

Pr J ε Kρ

≤ Pr J ε Kρ HSince ε is the only possible outcomeI
= 1 HDefinition 5I
= EE J 1 Kρ

= EE
r

Pr]
r
ε]
zz

ρ HDefintion 12I

– Case ω] = bl:

∑
si∈γΣ(s

]
i)

ω∈γLA (bl)

sj
ω→si∈MJ P Kρ

Pr Jω Kρ =
∑

si∈γΣ(s
]
i)

sj
bl→si∈MJ P Kρ

Pr J bl K

≤ Pr J bl Kρ
= ρ[pl]

= EE J pl Kρ

= EE
r

Pr] Jbl K
z
ρ

– Case ω] = bl:

∑
si∈γΣ(s

]
i)

ω∈γLA (bl)

sj
ω→si∈MJ P Kρ

Pr Jω Kρ =
∑

si∈γΣ(s
]
i)

sj
bl→si∈MJ P Kρ

Pr
r
bl

z
ρ

≤ Pr
r
bl

z
ρ

= 1− ρ[pl]

= EE J 1− pl Kρ

= EE
r

Pr]
r
bl

zz
ρ



Quantitative Static Analysis of Protocols using Abstract Markov Chains 45

– Case ω] = uil :∑
si∈γΣ(s

]
i)

ω∈γLA (uil)

sj
ω→si∈MJ P Kρ

Pr Jω Kρ =
∑

si∈γΣ(s
]
i)

sj
u
i,a,b
l−→ si∈MJ P Kρ

Pr
r
ui,a,bl

z
ρ

≤ Pr
r
ui,a,bl

z
ρ

=
1

b− a+ 1

≤ EE

u

v 1

min]?

r→
u l

z
−max]?

r←
u
z

+ 1

}

~ρ

= EE
r

Pr]
q
uil
yz
ρ

– Case ω] = uI
l :

∑
si∈γΣ(s

]
i)

ω∈γLA (uI
l )

sj
ω→si∈MJ P Kρ

Pr Jψ K(ω) =
∑

si∈γΣ(s
]
i)

i∈[U,b−a+1]

sj
u
i,a,b
l−→ si∈MJ P Kρ

Pr
r
ui,a,bl

z
ρ

≤
∑

i∈[U,b−a+1]

1

b− a+ 1

= max

(
0,
b− a+ 1− U + 1

b− a+ 1

)
= max

(
0,
b− a+ 2− U
b− a+ 1

)

≤ EE

u

vmax

0,
max]?

r→
u l

z
−min]?

r←
u l

z
+ 2− U

min]?

r→
u l

z
−max]?

r←
u l

z
+ 1

}

~ρ

= EE
r

Pr]
r
uI
l

zz
ρ

– Case ω] = ω]0ξ
]:

∑
si∈γΣ(s

]
i)

ω∈γLA (ω
]
0ξ
])

sj
ω→si∈MJ P Kρ

Pr Jω Kρ =
∑

si∈γΣ(s
]
i)

ω0∈γLA (ω
]
0)

ξ∈γLA (ξ])

sj
ω0ξ→ si∈MJ P Kρ

Pr Jω0 Kρ Pr J ξ K ρ

≤
∑

sk∈γΣ(s
]
k

)

ω0∈γLA (ω
]
0)

sj
ω0→sk∈MJ P Kρ

Pr Jω0 Kρ
∑

si∈γΣ(s
]
i)

ξ∈γLA (ξ])

sk
ξ→si∈MJ P Kρ

Pr J ξ Kρ

≤ EE
r

Pr]
r
ω]0

zz
ρ× EE

r
Pr]

r
ξ]
zz

ρ HInduction hypothesisI

= EE
r

Pr]
r
ω]0

z
× Pr]

r
ξ]
zz

ρ

= EE
r

Pr]
r
ω]0ξ

]
zz

ρ
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– Case ω] = ω]1 + ω]2:∑
si∈γΣ(s

]
i)

ω∈γLA (ω
]
1+ω

]
2)

sj
ω→si∈MJ P Kρ

Pr Jω Kρ =
∑

si∈γΣ(s
]
i)

ω∈γLA (ω
]
1)∪γLA (ω

]
2)

sj
ω→si∈MJ P Kρ

Pr Jω Kρ

≤
∑

si∈γΣ(s
]
i)

ω1∈γLA (ω
]
1)

sj
ω1→si∈MJ P Kρ

Pr Jω1 Kρ+
∑

si∈γΣ(s
]
i)

ω2∈γLA (ω
]
2)

sj
ω2→si∈MJ P Kρ

Pr Jω2 Kρ

≤ EE
r

Pr]
r
ω]1

zz
ρ+ EE

r
Pr]

r
ω]2

zz
ρ

= EE
r

Pr]
r
ω]1

z
+ Pr]

r
ω]2

zz
ρ

= EE
r

Pr]
r
ω]1 + ω]2

zz
ρ

ut

Finally, using this lemma as an over-approximation of concrete scenario probabilities, we
can derive from (4) the following:

EE
r
π] JP K(I])(s]i)

z
ρ ≤

∑
s
]
j∈Σ

]

max] J ν K(s]i)

min] J ν K(s]j)

∑
s
]
j
ω]→s]j∈M

]J P KI]

sj∈γΣ(s
]
j)

π JP K(ρ)(sj)×
∑

si∈γΣ(s
]
i)

ω∈γLA (ω])

sj
ω→si∈MJ P Kρ

Pr Jω Kρ

≤
∑
s
]
j∈Σ

]

max] J ν K(s]i)

min] J ν K(s]j)

∑
s
]
j
ω]→s]j∈M

]J P KI]

EE
r

Pr]
r
ω]

zz
ρ×

∑
sj∈γΣ(s

]
j)

π JP K(ρ)(sj)

HDefinition 14 I

=
∑
s
]
j∈Σ

]

max] J ν K(s]i)

min] J ν K(s]j)

∑
s
]
j
ω]→s]j∈M

]J P KI]

EE
r

Pr]
r
ω]

zz
ρ× EE

r
π] JP K(I])(s]j)

z
ρ

=
∑
s
]
j∈Σ

]

EE
r
π] JP K(I])(s]j)

z
ρ× EE

u

www
v

max] J ν K(s]i)

min] J ν K(s]j)

∑
s
]
j
ω]→s]j∈M

]J P KI]

Pr]
r
ω]

z

}

���
~
ρ

HDefintion 13 I

=
∑
s
]
j∈Σ

]

EE
r
π] JP K(I])(s]j)

z
ρ× EE

r
P] JP K(I])(s]j , s

]
i)
z
ρ

=
∑
s
]
j∈Σ

]

EE
r
π] JP K(I])(s]j)× P] JP K(I])(s]j , s

]
i)
z
ρ

ut

A.2 Normalization Constraint

The second part of the theorem is the normalization constraint:∑
s]∈Σs

EE
r
π] JP K(I])(s])

z
ρ = 1
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We have:∑
s]∈Σs

EE
r
π] JP K(I])(s])

z
ρ =

∑
s]∈Σ]
s∈γΣ(s])

π JP K(ρ)(s) HDefintion (14)I

=
∑
s∈Σ

π JP K(ρ)(s) HSpurious states have null probabilityI

= 1

ut

B Benchmarks Programs

(a) C∞: Constant Unbounded Backoffs

1 while (1) {
2 data = sense();
3 while(1) {
4 t = uniform(1, B);
5 wait t;
6 if(unicast(data)) {
7 break;
8 }
9 wait S;

10 }
11 }

(b) Cn: Constant Bounded Backoffs

1 while (1) {
2 data = sense();
3 i = 0;
4 while(i < n)
5 {
6 t = uniform(1, B);
7 wait t;
8 if(unicast(data)) {
9 break;

10 } else {
11 i = i + 1;
12 }
13 }
14 wait S;
15 }

(c) Ln: Linear Bounded Backoffs

1 while (1) {
2 data = sense();
3 i = 0;
4 while(i < n) {
5 t = uniform(1, B + i);
6 wait t;
7 if(unicast(data)) {
8 break;
9 } else {

10 i = i + 1;
11 }
12 }
13 wait S;
14 }

(d) Lt∞: Linear Truncated Backoffs

1 while (1) {
2 data = sense();
3 i = 0;
4 while(1) {
5 b = uniform(1, B + i);
6 wait b;
7 if(unicast(data)) {
8 break;
9 }

10 if (i < t - 1) {
11 i = i + 1;
12 }
13 }
14 wait S;
15 }

Fig. 17: Programs of the analyzed backoff mechanisms.


	Introduction
	Concrete Semantics
	Language Syntax
	Markov Chains
	Semantics Domain
	Stationary Distributions

	Abstract Semantics
	Abstract Automata
	Abstract Scenarios
	Abstract Markov Chains

	Stationary Distributions
	Distribution Invariants
	Parametric Fourier-Motzkin Algorithm

	Non-deterministic Semantics
	Concrete Semantics
	Policy Encoding

	Experiments
	Efficiency
	Precision

	Related Work
	Model Checking
	Symbolic Execution
	Static Analysis
	Minimization of Markov Chains

	Conclusion
	Proof of Theorem 2
	Proof of the Weak Markov Property
	Normalization Constraint

	Benchmarks Programs

