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THE EXTRINSIC GEOMETRY OF DYNAMICAL SYSTEMS
TRACKING NONLINEAR MATRIX PROJECTIONS

FLORIAN FEPPON AND PIERRE F.J. LERMUSIAUX∗

Abstract. A generalization of the concepts of extrinsic curvature and Weingarten endomorphism
is introduced to study a class of nonlinear maps over embedded matrix manifolds. These (nonlinear)
oblique projections, generalize (nonlinear) orthogonal projections, i.e. applications mapping a point
to its closest neighbor on a matrix manifold. Examples of such maps include the truncated SVD,
the polar decomposition, and functions mapping symmetric and non-symmetric matrices to their lin-
ear eigenprojectors. This paper specifically investigates how oblique projections provide their image
manifolds with a canonical extrinsic differential structure, over which a generalization of the Wein-
garten identity is available. By diagonalization of the corresponding Weingarten endomorphism, the
manifold principal curvatures are explicitly characterized, which then enables us to (i) derive explicit
formulas for the differential of oblique projections and (ii) study the global stability of a governing
generic Ordinary Differential Equation (ODE) computing their values. This methodology, exploited
for the truncated SVD in [22], is generalized to non-Euclidean settings, and applied to the four
other maps mentioned above and their image manifolds: respectively, the Stiefel, the isospectral, the
Grassmann manifolds, and the manifold of fixed rank (non-orthogonal) linear projectors. In all cases
studied, the oblique projection of a target matrix is surprisingly the unique stable equilibrium point
of the above gradient flow. Three numerical applications concerned with ODEs tracking dominant
eigenspaces involving possibly multiple eigenvalues finally showcase the results.

Key words. Weingarten map, principal curvatures, Polar Decomposition; dynamic dominant
eigenspaces; Isospectral, Grassmann and bi-Grassmann manifolds; normal bundle.
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1. Introduction. Continuous time matrix algorithms have been receiving a
growing interest in a wide range of applications including data assimilation [43], data
processing [66], machine learning [26] and matrix completion [65]. In many applica-
tions, a time dependent matrix R(t) is given, for example in the form of the solution
of an ODE, and one is interested in continuous algorithms tracking the value of an
algebraic operation ΠM (R(t)): in other words one wants to compute efficiently the
update ΠM (R(t+ ∆t)) at a later time t+ ∆t from the knowledge of ΠM (R(t)).

For such purpose, a large number of works has focused on deriving dynamical
systems that, given an input matrix R, compute an algebraic operation ΠM (R), such
as eigenvalues, singular values, or polar decomposition [16, 9, 14, 58, 19, 31]. Typical
examples of maps ΠM specifically considered in this paper include:
1. The truncated Singular Value Decomposition (SVD) mapping an l-by-m matrix

R ∈ Ml,m to its best rank r approximation. Denoting σ1(R) ≥ σ2(R) ≥ . . . ≥
σrank(R) > 0 the singular values of R, and (ui), (vi) the corresponding orthonormal
basis of right and left singular vectors, ΠM is the map

(1) R =

rank(R)∑
i=1

σi(R)uiv
T
i 7−→ ΠM (R) =

r∑
i=1

σi(R)uiv
T
i .

2. Given p ≤ n, the application mapping a full rank n-by-p matrix R ∈ Mn,p to its
polar part, i.e. the unique matrix P ∈Mn,p such that PTP = I and R = PS with
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S ∈ Symp, a symmetric positive definite p-by-p matrix:

(2) R =

p∑
i=1

σi(R)uiv
T
i 7−→ ΠM (R) =

p∑
i=1

uiv
T
i .

3. The application replacing all eigenvalues λ1(S) ≥ λ2(S) ≥ . . . ≥ λn(S) of a n-by-n
symmetric matrix S ∈ Symn with a prescribed sequence λ1 ≥ λ2 ≥ . . . ≥ λn.
Denoting (ui) an orthonormal basis of eigenvectors of S:

(3) S =

n∑
i=1

λi(S)uiu
T
i 7−→ ΠM (S) =

n∑
i=1

λiuiu
T
i .

4. The application mapping a real n-by-n matrix R ∈Mn,n to the linear orthogonal
projector UUT ∈ Mn,n on the p dimensional, dominant invariant subspace of R
(invariant in the sense Span(RU) = Span(U)). Denote λi(R) the eigenvalues of
R ordered according to their real parts, <(λ1(R)) ≥ <(λ2(R)) ≥ . . . ≥ <(λn(R)),
and (ui) and (vTi ) the bases of corresponding right and left eigenvectors. Then,
the p-dimensional dominant invariant subspace is Span(ui)1≤i≤p, i.e. the space
spanned by the p eigenvectors of maximal real parts. ΠM is the map

(4) R =

n∑
i=1

λi(R)uiv
T
i 7−→ ΠM (R) = UUT ,

for any U ∈Mn,p satisfying Span(U) = Span(ui)1≤i≤p and UTU = I.
5. The application mapping a real n-by-n matrix R to the linear projector whose im-

age is the p-dimensional dominant invariant subspace Span(ui)1≤i≤p and whose ker-
nel is the complement invariant subspace (Span(vi)1≤i≤p)

⊥ = Span(up+j)1≤j≤n−p:

(5) R =

n∑
i=1

λi(R)uiv
T
i 7−→ ΠM (R) =

p∑
i=1

uiv
T
i = UV T ,

for matrices U, V ∈ Mn,p such that V TU = I, Span(U) = Span(ui)1≤i≤p, and
Span(V )⊥ = Span(up+j)1≤j≤n−p.

Dynamical systems tracking the truncated SVD (1) have been used for efficient en-
semble forecasting and data assimilation [42, 7] and for realistic large-scale stochastic
field variability analysis [44]. Closed form differential systems were initially proposed
for such purposes in [40, 60] and further investigated in [22, 23] for dynamic model
order reduction of high dimensional matrix ODEs. Tracking the polar decomposition
(2) (with p = n) has been the interest of works in continuum mechanics [11, 59, 29].
The map (3) has been initially investigated by Brockett [10] and used in adaptive
signal filtering [42]. Recently, a dynamical system that computes the map (4) has
been found in the fluid mechanics community by Babaee and Sapsis [6]. As for (5),
differential systems computing this map in the particular case of p = 1 have been
proposed by [28] for efficient evaluations of ε−pseudospectra of real matrices.

A main contribution of this paper is to develop a unified view for analyzing
the above maps ΠM and deriving dynamical systems for computing or tracking their
values. As we shall detail, each of the above maps ΠM : E →M can be geometrically
interpreted as a (nonlinear) projection from an ambient Euclidean space of matrices
E onto a matrix submanifold M ⊂ E: for instance E = Ml,m and M = {R ∈
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Ml,m | rank(R) = r} is the fixed rank manifold for the map (1). The maps (1)–(3)
turn to be orthogonal projections, in that ΠM (R) minimizes some Euclidean distance
|| · || from R ∈ E to M :

(6) ||R−ΠM (R)|| = min
R∈M

||R−R||.

The maps (4) and (5) do not satisfy such property but still share common mathemat-
ical structures; in this paper, we more generally refer to them as (nonlinear) oblique
projections.

We are concerned with two kinds of ODEs. For a smooth trajectory R(t), it is
first natural to look for the dynamics satisfied by ΠM (R(t)) itself:

(7)

 Ṙ =
d

dt
ΠM (R(t))

R(0) = ΠM (R(0)) .

The explicit computation of the right hand side dΠM (R(t))/dt requires the differ-
ential of ΠM . In the literature, its expression is most often sought from algebraic
manipulations, using e.g. derivatives of eigenvectors that unavoidably require simplic-
ity assumptions for the eigenvalues [18, 14, 15]. As will be detailed further on, it is
however possible to show that (1)–(5) are differentiable on the domains where they
are non ambiguously defined, including cases with multiple eigenvalues: for example,
(1) is differentiable as soon as σr(R) > σr+1(R), even if σi(R) = σj(R) for some
i < j ≤ r [22]. Differentiating eigenvectors is expected to be an even more difficult
strategy for (4), since it includes implicit reorthonormalization of the basis (ui)1≤i≤p.

Second, if a fixed input matrix R is given, we shall see that ΠM (R) can be
obtained as an asymptotically stable equilibrium of the following dynamical system:

(8) Ṙ = ΠT (R)(R−R),

where ΠT (R) : E → T (R) is a relevant linear projection operator onto the tangent
space T (R) at R ∈ M . If ΠM is an orthogonal projection, then (8) coincides with
a gradient flow solving the minimization problem (6), hence R(t) converges asymp-
totically to ΠM (R) for sufficiently close initializations R(0). In the general, oblique
case, (8) is not a gradient flow but we shall show that ΠM (R) still remains a stable
equilibrium point. A question of practical interest regarding the robustness of (8) lies
in determining whether ΠM (R) is globally stable.

In this work, we highlight that both the explicit derivation of (7) and the stabil-
ity analysis of (8) can be obtained from the spectral decomposition of a single linear
operator LR(N) called the Weingarten map (respectively in Propositions 5 and 6
below). In the Euclidean case, LR(N) is a standard object of differential geometry
whose eigenvalues κi(N) characterize the extrinsic curvatures of the embedded man-
ifold M [39, 62]. The relevance of the Weingarten maps LR(N) for matrix manifolds
in relation to the minimum distance problem (6) has been initially observed by Hen-
driks [32, 33], and later by Absil [3] for computing Riemannian Hessians. In the, less
standard, non-Euclidean case, it turns out that an oblique projection ΠM provides
intrinsically a differential structure on its image manifold M , and a generalization of
LR(N) sharing analogous properties.

In fact, this paper is an extension of our recent work concerned with the trun-
cated SVD (1): in [22], the eigendecomposition of LR(N) is computed explicitly for
the fixed rank manifold, which yields an explicit expression for (7) and a global stabil-
ity result for (8). Here, we further investigate explicit spectral decompositions of the
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Weingarten map for relevant matrix manifolds related to the maps (2)–(5), and we
use these to obtain (i) the Fréchet derivatives of the corresponding matrix decompo-
sitions as well as (ii) the stability analysis of the dynamical system (8) for computing
them. We shall highlight in particular how this unified view sheds new lights on some
previous convergence results [9, 31, 6, 28], or previous formulas available for the dif-
ferential of matrix decompositions [11, 18], which become elementary consequences of
the curvature analysis of their related manifolds.

The paper is organized as follows. Definitions and properties of abstract oblique
projections are stated in section 2 and the differences with the more standard orthog-
onal case are highlighted. We introduce our generalization of the Weingarten map
to non-Euclidean ambient spaces before making explicit the link between its spectral
decompositions and the ODEs (7) and (8).

The subsequent three sections then examine the value of the Weingarten maps
LR(N) and of the curvatures κi(N) more specifically for the each of the four maps
above. Sections 3 and 4 are respectively concerned with (2) and (3), which are orthog-
onal projections onto their manifold M . These are respectively the Stiefel manifold
(the set of n-by-p orthogonal matrices) and the isospectral manifold (the set of sym-
metric matrices with a prescribed spectrum). The application of Proposition 5 below
then allows obtaining explicit expressions for the Fréchet derivatives of the polar de-
composition (2), and of the map (3) or equivalently of the projectors over the invariant
spaces spanned by a selected number of eigenvectors. The gradient flow (8) for com-
puting these maps is then made explicit, and global convergence is obtained for almost
every initial data (located in the right-connected component for (2) with n = p). We
relate our analysis of the isospectral manifold to the popular Brockett flow introduced
in the seminal paper [9] and to some works of Chu [13] and Absil [4].

The non-Euclidean framework is then applied in section 5 in order to study the
maps (4) and (5). The image manifold M of (4) is the set of orthogonal linear rank
p linear projectors, which is again the Grassmann manifold, but embedded in Mn,n

instead of Symn. For (5), M is the set of rank p linear projectors (not necessary
orthogonal), referred to as “bi-Grassmann” manifold in this paper, since it can also
be interpreted as the set of all possible pairs of two supplementary p dimensional sub-
spaces. Generalized Weingarten maps and their spectral decompositions are obtained
explicitly, yielding fully explicit formulas for their differential. The flow (8) is then
derived and again found to admit only ΠM (R) as a locally stable equilibrium point.

Finally, three numerical applications are investigated in section 6. First, we show
how gradient flows on the isospectral manifold can be used for tracking symmet-
ric eigenspaces involving possibly eigenvalue crossings. Then we examine a reduced
method which generalizes the dynamical low rank or DO method of [40, 22] on the
isospectral manifold. This method allows approximating the dynamic of eigenspaces
of clustered eigenvalues of a symmetric matrix S(t). Finally, we discuss the corre-
spondence with iterative algorithms and the loss of global convergence issues for the
non-Euclidean setting of the map (5).

Notations used in this paper are summarized in Appendix A. It is important
though, to state here those used for differentials. As in [22], the differential of a
smooth function f at the point R belonging to some manifold M embedded in a
space E (this includes M = E) in the direction X ∈ T (R) is denoted DXf(R):

DXf(R) =
d

dt
f(R(t))

∣∣∣∣
t=0

= lim
∆t→0

f(R(t+ ∆t))− f(R(t))

∆t
,
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Fig. 1: An embedded manifold M ⊂ E with its tangent spaces T (R) and a given bundle of
normal spaces N (R). The associated oblique projection ΠM defined on an open neighbor-
hood V maps all points R of the portion of the normal affine space (the ”hair”) V∩(R+N (R))
to the point R on the manifold (the ”root”).

where R(t) is a curve of M such that R(0) = R and Ṙ(0) = X. The differential of
a linear projection operator R 7→ ΠT (R) at R ∈ M , in the direction X ∈ T (R) and
applied to Y ∈ E is denoted DΠT (R)(X) · Y :

DΠT (R)(X) · Y =

[
d

dt
ΠT (R(t))

∣∣∣∣
t=0

]
(Y ) =

[
lim

∆t→0

ΠT (R(t+∆t)) −ΠT (R(t))

∆t

]
(Y ).

2. Oblique projections. This section develops oblique projections and their
main properties in relation with the differential geometry of their their image manifold.
A smooth manifold M ⊂ E embedded in a finite-dimensional vector space E is
given, where E is not necessarily assumed to be Euclidean (i.e. equipped with a scalar
product).

Definition 1. An application ΠM : V → M defined on an open neighborhood
V such that M ⊂ V ⊂ E is said to be an oblique projection onto M if at each point
R ∈M is attached a (normal) vector space N (R) ⊂ E such that the portion of affine
subspace V ∩ (R+N (R)) is let invariant by ΠM :

∀R ∈ V such that R = R+N with N ∈ N (R),ΠM (R) = R.

The concepts of oblique projection, normal space N (R), and neighborhood V where
ΠM is defined, are illustrated on Figure 1. Geometrically, ΠM maps all points of the
portion of affine subspace R + N (R) sufficiently close to R onto R. Formally, the
bundle of normal spaces N (R) can be understood as a set of straight “hairs” on the
manifolds, and ΠM maps a point R of the hair to its root R on the manifold. When
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two (affine) normal spaces intersect (i.e. on the skeleton in the Euclidean case, see
[17, 22]), there is an ambiguity in the definition of ΠM (R), which explains why the
domain where ΠM is defined is restricted to a neighborhood V.

In the previous definition, nothing is required regarding the dimension of the nor-
mal spaces N (R). A first elementary but essential remark is that these are necessarily
in direct sum with the tangent spaces T (R) (see Proposition 2.4 in [21] for the proof):

Proposition 2. If ΠM is a differentiable oblique projection, then for any
R ∈M , the direct sum decomposition E = T (R)⊕N (R) holds, and

ΠT (R) : X 7→ DXΠM (R)
E → T (R)

is the linear projector whose image is T (R) and whose kernel is N (R).

Conversely, it is possible to construct a unique oblique projection ΠM associated
to any smooth bundle of normal spaces R 7→ N (R) satisfying E = T (R) ⊕ N (R)
(Proposition 2.7 in [21]), by using a variant of the tubular neighborhood theorem [8].
The following proposition shows that oblique linear projectors R 7→ ΠT (R) onto the
decompositions T (R)⊕N (R) define a relevant differential structure on M .

Proposition 3. Let M ⊂ E be an embedded smooth manifold equipped with
a differentiable map R 7→ ΠT (R) of linear projectors over the tangent spaces at M .
Consider X and Y two differentiable tangent vector fields in a neighborhood of R ∈M .
Then ΠT (R) defines a covariant derivative [62] on M by the formula

(9) ∀X,Y ∈ T (R), ∇XY = ΠT (R)(DXY ).

One has the Gauss formula

∀X,Y ∈ T (R), ∇XY = DXY + Γ(X,Y ),

where the Christoffel symbol Γ(X,Y ) depends only on the values of X and Y at R
and satisfies:

∀X,Y ∈ T (R), Γ(X,Y ) = Γ(Y,X) = −DΠT (R)(X) · Y ∈ N (R).

For any normal vector N ∈ N (R), the Weingarten map LR(N) defined by

(10) ∀X ∈ T (R), LR(N)X = DΠT (R)(X) ·N ∈ T (R)

is a linear application of the tangent space T (R) into itself.

Proof. These properties, classical for ΠT (R) being an orthogonal projection oper-
ator [62], are easily obtained for the non Euclidean case by differentiating ΠT (R)(Y ) =
Y and ΠT (R)(N) = 0 with respect to X for given tangent and normal vector fields Y
and N , and by using the fact that the Lie bracket is a tangent vector.

It is not clear that one can find a Riemannian metric associated with the torsion-free
connection ∇ defined from ΠT (R) (see [61] about this question), hence this setting is
fundamentally different than the one of fully intrinsic approaches e.g. [2, 54]. Never-
theless, we find that the duality bracket 〈 · , ·〉 over E plays the role of the metric in
this embedded setting, as shown in the next proposition. In the following, the dual
space of E is denoted E∗, and it is recalled that the adjoint A∗ of a linear operator
A : E → E is defined by ∀v ∈ E∗,∀x ∈ E, 〈A∗v, x〉 = 〈v,Ax〉.
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Proposition 4. For any R ∈ M , the direct sum E∗ = T (R)
∗ ⊕ N (R)

∗
holds

where T (R)
∗

= Π∗T (R)E
∗ and N (R)

∗
= (I − Π∗T (R))E

∗. In particular, Π∗T (R) is the

linear projector whose image is T (R)
∗

and kernel is N (R)
∗
. The map of projections

R 7→ Π∗T (R) induces a connection over the dual bundle R 7→ T (R)
∗

by the formula:

(11) ∀V ∈ T (R)
∗

and ∀X ∈ T (R), ∇XV = Π∗T (R)(DXV ) .

The connection ∇ defined by (9) and (11) is compatible with the duality bracket :

∀X,Y ∈ T (R) and ∀V ∈ T (R)
∗
, DX〈V, Y 〉 = 〈∇XV, Y 〉+ 〈V,∇XY 〉.

One has the Gauss formula

∀V ∈ T (R)
∗

and ∀X ∈ T (R), ∇XV = DXV + Γ(X,V ) ,

where the Christoffel symbol depends only on the value of the tangent vector and dual
fields X and V at R, and satisfies:

∀X ∈ T (R) and ∀V ∈ T (R)
∗
, Γ(X,V ) = −DΠ∗T (R)(X) · V ∈ N (R)

∗
.

For any normal dual vector N ∈ N (R)
∗
, the dual Weingarten map L∗R(N) defined by

(12) ∀X ∈ T (R), L∗R(N)X = DΠ∗T (R)(X) ·N

defines a linear application of the tangent space T (R) into its dual T (R)
∗

and the
following Weingarten identities holds:

(13) ∀X,Y ∈ T (R), N ∈ N (R)
∗
, < N,DΠT (R)(X) · Y >= 〈DΠ∗T (R)(X) ·N,Y 〉,

(14)
∀V ∈ T (R)

∗
, X ∈ T (R), N ∈ N (R), < DΠ∗T (R)(X) · V,N >= 〈V,DΠT (R)(X) ·N〉.

Proof. The proof is a straightforward adaptation of the one of Theorem 8 of [62]
(vol. 3, chapter 1). For example, the Weingarten identities (13) and (14) are obtained
by differentiating the relations 〈N,X〉 = 0 for N ∈ N (R)

∗
, X ∈ T (R), and 〈V,N〉 = 0

for V ∈ T (R)
∗

and N ∈ N (R).

If E is Euclidean, then the dual space E∗ can be identified to E by replacing the duality
bracket with the scalar product over E. Then Propositions 3 and 4 are redundant and
express the classical Euclidean setting [62, 39, 32], where identity (13) states that the
Weingarten map LR(N) = L∗R(N) (eqn. (10) and (12)) is symmetric. In that case,
it admits an orthonormal basis of real eigenvectors (Φi) and eigenvalues κi(N) called
principal directions and principal curvatures in the normal direction N ∈ N (R).

The following two propositions state how the Weingarten map LR(N) (eqn. (10))
is related to (i) the differential of the oblique projection ΠM and (ii) the stability
analysis of a dynamical system for which ΠM (R) is a stable equilibrium point.

Proposition 5. If M is compact, ΠM is continuous and R 7→ ΠT (R) is dif-
ferentiable, then there exists an open neighborhood V ⊂ E of M over which ΠM is
differentiable with 1 /∈ sp(LR(N)) for any R ∈M , N ∈ N (R) such that R + N ∈ V.
The differential of ΠM at R = R+N ∈ V is given by

(15) X 7→ DXΠM (R) = (I − LR(N))−1ΠT (R)(X).
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In particular, if LR(N) is diagonalizable in C, and if one denotes by κi(N), (Φi),
and (Φ∗i ), respectively, the eigenvalues, a basis of respective eigenvectors, and its dual
basis, then

(16) ∀X ∈ E, DXΠM (R) =
∑
i

1

1− κi(N)
〈Φ∗i ,ΠT (R)X〉Φi.

Proof. The proof is done in three steps, see Proposition 2.7 and Theorem 2.2
in [21] for details. First, one obtains from the constant rank theorem that Q =
{(R,N) ∈M ×E|N ∈ N (R)} is a manifold. Then one checks that the differential of

the map
Φ : Q → E

(R,N) 7→ R+N
is invertible provided 1 /∈ sp(I −LR(N)). The

local inversion theorem and an adaptation of the proof of the tubular neighborhood
theorem (see e.g. Lemma 4 in [48]) allows to obtain that Φ is a diffeomorphism from a
neighborhood of Q onto a neighborhood V of M in E. The continuity of ΠM implies
that R 7→ (ΠM (R),R−ΠM (R)) is the inverse map of this diffeomorphism, and hence
is differentiable. Finally, (16) follows by differentiating ΠT (ΠM (R))(R − ΠM (R)) =
ΠM (R) with respect to X, from where (15) is obtained exactly as in [32, 22].

Remark 1. Stronger results hold in the Euclidean case, for which N (R) and
T (R) are mutually orthogonal. In that case, ΠM is equivalently defined by the mini-
mization principle (6) at all points R ∈ E yielding a unique minimizer R = ΠM (R),
and is automatically continuous on its domain (see [32, 5, 22]).

Proposition 6. Consider a given R ∈ E. The dynamical system

(17) Ṙ = ΠT (R)(R−R)

satisfies the following properties:
1. Trajectories of (17) lie on the manifold M : R(0) ∈M ⇒ ∀t ≥ 0, R(t) ∈M .
2. Equilibrium points of (17) are all R ∈ M such that N = R − R ∈ N (R).

The linearized dynamics around such equilibria reads

Ẋ = (LR(N)− I)X.

Hence R is stable if <(κi(N)) < 1 holds for all eigenvalues κi(N) of LR(N).
3. There exists an open neighborhood V of M such that for any R ∈ V, ΠM (R)

is a stable equilibrium point of (17).

Proof. 1. is a consequence of ΠT (R)(R − R) ∈ T (R). 2. is restatement of
ΠT (R)(R − R) = 0 ⇔ R − R ∈ N (R). The linearized dynamics is obtained by
differentiating (17) with respect to R along a tangent vector X ∈ T (R). 3. is a mere
consequence of the continuity of the eigenvalues of LR(N) with respect to N , noticing
that for N = 0, the linearized dynamics is Ẋ = −X and hence is stable.

The local stability of the dynamical system (17) is a powerful result, as it yields
systematically a continuous time algorithm to find the value of ΠM (R+δR) given the
knowledge of ΠM (R) and a small perturbation δR (see subsection 6.1 for numerical
applications). It may become global if R = ΠM (R) is the only point satisfying

(18) N = R−R ∈ N (R) and <(κi(N)) < 1 for all eigenvalues κi(N) of LR(N).

Indeed, in that case ΠM (R) is the only asymptotically stable equilibrium among
all stationary points of (17). In the Euclidean case, (17) is a gradient descent and
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Morse theory [36] ensures then the global convergence of the trajectories to ΠM (R)
for almost every initialization R(0). In the non-Euclidean case, such result is not
an automatic consequence of (18) and an additional boundedness assumption on M
must hold, as we shall illustrate in section 5.

In the next sections, the above results are utilized to study the maps (2)–(5) and
the matrix manifolds they are related to. The Euclidean case is used to study the
maps (2) and (3): the relevant manifolds are introduced first, and it is shown that
(2) and (3) are indeed the applications defined by the minimization principle (6).
For the maps (4) and (5), there is no ambient scalar product making the bundle of
normal spaces N (R) orthogonal to the tangent spaces T (R), hence the generalization
of oblique projections is used: the manifold M and the decomposition T (R)⊕N (R)
are first identified, which allows obtaining the corresponding linear projection ΠT (R)

and the Weingarten map LR(N).

3. Stiefel Manifold and differentiability of the Polar decomposition. In
the following, n and p are two given integers satisfying n ≥ 2 and p ≤ n. The Stiefel
manifold is the set M of orthonormal n-by-p matrices embedded in E =Mn,p:

M = {U ∈Mn,p|UTU = I}.

The extrinsic geometry of this manifold has been previously studied by a variety of
authors [20, 3, 32]. M is a smooth manifold of dimension np − p2 + p(p − 1)/2. Its
tangent tangent spaces T (U) at U ∈M are the sets

(19)
T (U) = {X ∈Mn,p|XTU +XUT = 0}

= {∆ + UΩ|∆ ∈Mn,p, Ω ∈Mp,p and ∆TU = 0, ΩT = −Ω}.

The orthogonal projection ΠT (U) on T (U) is the map

ΠT (U) : Mn,p −→ T (U)
X 7−→ (I − UUT )X + Uskew(UTX),

where skew(X) = (X− XT )/2. The normal space at U ∈M is

N (U) = {UT |T ∈ Symp}.

It is well known since Grioli [27, 64, 32, 56] that the map ΠM defined by eqn. (2) is
the non-linear orthogonal projection operator on the Stiefel manifold M . In other
words, if R ∈ Mn,p is a full-rank n-by-p matrix, the matrix P ∈ M in the polar
decomposition R = PS with S ∈ Mp,p symmetric positive definite, minimizes the
distance U 7→ ||R− U || for U ∈M (see also Proposition 2.22 in [21] for a geometric
proof). The Weingarten map LR(N) has been computed in [3] and even diagonalized
in the case p = n in [32, 33]. The following proposition provides its expression and
its spectral decomposition for the general case p ≤ n. In the following, it is assumed
in the notation X = ∆ + UΩ ∈ T (U) (eqn. (19)) that ∆TU = 0 and ΩT = −Ω.

Proposition 7. Let N = UT ∈ N (U) a normal vector where the eigenvalue
decomposition of the matrix T ∈ Symp is given by T =

∑p
i=1 λi(T )viv

T
i . The Wein-

garten map of M with respect to the normal direction N is the application

(20)
LU (N) : T (U) −→ T (U)

∆ + UΩ 7−→ −∆T − U(ΩT + TΩ)/2,
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The principal curvatures in the direction N are the p(p− 1)/2 real numbers

∀{i, j} ⊂ {1, . . . , p}, κij(T ) = −λi(T ) + λj(T )

2
,

associated with the normalized eigenvectors

Φij =
U√

2
(viv

T
j − vjvTi ).

and, if p < n, the p real numbers

∀1 ≤ i ≤ p, κi(T ) = −λi(T ),

associated with the n− p dimensional eigenspaces

{vvTi |v ∈ Span(U)⊥}.

Proof. One differentiates ΠT (U)X with respect to U in the direction X = ∆+UΩ
before setting X = N so as to obtain

DΠT (U)(X) ·N
= −2sym((∆ + UΩ)UT )N + (∆ + UΩ)skew(UTN) + Uskew((∆ + UΩ)TN)

= −(∆UT + U∆T )N − Uskew(ΩT ),

which yields (20) by setting N = UT (this expression also coincides with the one found
in [3]). Therefore an eigenvector X = ∆ + UΩ ∈ T (U) of LU (N) with eigenvalue λ
satisfies −∆T = λ∆ and − 1

2 (ΩT + TΩ) = λΩ. One then checks that the solutions

(∆,Ω) are (vvTi , 0) with v a vector in Span(U)⊥ and (0, (viv
T
j − vjv

T
i )/
√

2) with
the eigenvalues claimed. Because the total dimension formed by these eigenspaces
coincides with the dimension of the tangent space, there exists no other eigenvalues.

As a direct application, a fully explicit expression for the differential of the polar
decomposition is obtained. The proposition below provides a generalization of the
formula initially obtained by Chen [11] and later by Hendriks [32] for the particular
case of the orthogonal group (p = n).

Proposition 8. Let R = PS denote the polar decomposition of a full rank matrix
R ∈ Mn,p with S ∈ Symp positive definite and P ∈ M , and S =

∑p
i=1 σi(R)viv

T
i

the eigendecomposition of S. The orthogonal projection ΠM , namely the application
R 7→ P is differentiable at R and the derivative in the direction X is given by the
formula

(21)

DXΠM (R) =
∑
i<j

2

σi(R) + σj(R)

(
vTi skew(PTX)vj

)
P (viv

T
j − vjvTi )

+

p∑
i=1

1

σi(R)
(I − PPT )Xviv

T
i .

Proof. The result is immediately obtained by applying eqn. (16) with the normal
vector N = R− P = P (S − I), for which one finds

1− κi(N) = 1− (1− σi(R)) = σi(R),
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1− κij(N) = 1−
(
1− (σi(R) + σj(R))/2) = (σi(R) + σj(R))/2,

〈Φij ,X〉Φij = 〈P skew(viv
T
j ),X〉P (viv

T
j − vjvTi )

= 〈vivTj , skew(PTX)〉P (viv
T
j − vjvTi ),

and denoting (ej) an orthonormal basis of Span(P )⊥,∑
j

〈X, ejvTi 〉ejvTi =
∑
j

(
(eTj Xvi)ej

)
vTi = (I − PPT )Xviv

T
i .

Remark 2. The derivative (21) has already been obtained in some previous works
(e.g. eqn. (2.19) in [18] or (10.2.7) in [35]), albeit in a less explicit form featuring the
solution Ω of the Sylvester equation (S ⊕ S)Ω = SΩ + ΩS = PTX − XTP . Let us
observe that the operator S⊕S is enclosed in the Weingarten map (20), and its explicit
inverse is found from the spectral decomposition of Proposition 7.

Applying Proposition 6, we obtain a dynamical system that achieves the polar de-
composition, and which satisfies global convergence for the gradient descent. Other
dynamical systems satisfying related properties can also be found in [24] (without
global convergence) and [31] (for p = n with a gradient flow on the larger manifold
M × Sn).

Proposition 9. Consider a full rank matrix R ∈ Mn,p whose Singular Value
Decomposition is written R =

∑p
i=1 σi(R)uiv

T
i .

• If p < n, then ΠM (R) is the unique local minimum of the distance function
J : U 7→ 1

2 ||R − U ||
2, and therefore, for almost any initial data U(0) ∈M ,

the solution U(t) of the gradient flow

(22) U̇ = R− 1

2
(UUTR + URTU)

converges to the polar part ΠM (R) =
∑p
i=1 uiv

T
i of R.

• If n = p, then J admits other local minima that are the matrices

(23) U =

n−1∑
i=1

uiv
T
i − unvTn ∈M ,

where un is an arbitrary singular vector corresponding to the smallest singular
value σn(R). Therefore any solution U(t) of the gradient flow (22) converges
almost surely to the polar part ΠM (R) provided the initial data U(0) lies
in the same connected component of On. Otherwise, U(t) converges almost
surely towards an element U ∈ On of the form (23).

Proof. A necessary condition for U ∈M to be a minimizer is that N = R−U ∈
N (U), i.e. N = UT with T ∈ Symp. Then R = (I + U)T and the eigenvalues of T
satisfy λi(T ) = σi(R) − 1 or λi(T ) = −(σi(R) + 1). If p < n then the condition,
∀1 ≤ i ≤ p, κi(N) = −λi(T ) ≤ 1, required for U to be a local minimum cannot be
satisfied if there exists i such that λi(T ) = −(σi(R) + 1). This proves that the only
local minimum is achieved by ΠM (R).

If p = n, then this condition reads κij(N) = − 1
2 (λi(T ) + λj(T )) ≤ 1 for all

pairs {i, j}, which cannot be satisfied if there exists at least two indices i and j such
that λi(T ) = −(σi(R) + 1) and λj(T ) = −(σj(R) + 1). If i is an index such that
λi(T ) = −(σi(R)+1), then κij(N) ≤ 1 implies ∀j 6= i, σi(R) ≤ σj(R) therefore i = n
and U is of the form (23). Finally, the gradient flow is obtained by making (8) explicit
with ΠT (U)(R− U) = (I − UUT )(U −R) + Uskew(UT (U −R)).
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4. The isospectral manifold, the Grassmannnian, and the geometry of
mutually orthogonal subspaces. This section now considers the map (3) and its
image manifold which is the set of symmetric matrices S ∈ Symn having m prescribed
eigenvalues λ1 > · · · > λm with multiplicities n1, . . . , nm. The set of such symmetric
matrices has been called isospectral or “spectral” manifold by [9, 14, 13, 4]. Denoting
Λ a reference matrix with such spectrum, the isospectral manifold M admits the
following parameterizations :

(24)

M = {PΛPT |P ∈ On}

= {
m∑
i=1

λiUiU
T
i |Ui ∈Mn,ni

, UTi Uj = δij}.

There is a motivation for examining M in its own right: identifying the linear eigen-
projector UiU

T
i with the eigenspace Vi = Span(Ui), the isospectral manifold models

the set of all collections V1, V2, . . . Vm ⊂ V of m subspaces of a n dimensional Eu-
clidean space V with prescribed dimensions n1, . . . , nm, and orthogonal to each other
(n = n1 + · · ·+nm and V1⊕ · · · ⊕Vm = V ). This allows to include in this analysis an
embedded definition of the Grassmann manifold (the set of all p dimensional subspace
embedded in a n dimensional space), as the set {UUT ∈ Symn|UTU = I and U ∈
Mn,p} of all rank p orthogonal linear projectors. This approach, which has also been
favored by some other authors [53, 30], stands in contrast with the more usual intrinsic
definitions of the Grassmannian via quotient manifolds [20, 1, 2].

In the following, the set of m matrices Ui ∈ Mn,ni
is used to describe points

on the manifold M , where each Ui represents the eigenspace Span(Ui). The time
derivative of a trajectory Ui(t) can be decomposed along the basis given by the union
of the Uk as U̇i =

∑m
j=1 Uj∆

j
i with ∆j

i ∈ Mnj ,ni . The matrix ∆j
i can be interpreted

as the magnitude of the rotation of the subspace Span(Ui) around the axis given by
the subspace Span(Uj). So as to remain orthogonal to one another, the antisymmetry

condition ∆j
i = −(∆j

i )
T must be satisfied by the ∆j

i :

Proposition 10. The tangent space T (S) at S ∈M is the set

(25)

T (S) = {[Ω, S] = ΩS − SΩ|Ω ∈Mn,n, ΩT = −Ω}

=

∑
i6=j

(λi − λj)Uj∆j
iU

T
i

∣∣∣∣∆j
i ∈Mnj ,ni

, ∆i
j = −(∆j

i )
T

 .

The ∆j
i defined in the above expressions for each pair {i, j} ⊂ {1, . . . ,m} parameterize

uniquely the tangent space T (S). Therefore M is a smooth manifold of dimension(
n2 −

∑m
i=1 n

2
i

)
/2.

Proof. The first equality and the dimension of M can be found in [14]. Consider
S =

∑m
i=1 λiUiU

T
i with Ui ∈ Mn,ni

and UTi Uj = δij . Differentiating the constraint

UTi Uj = 0 yields (∆j
i )
T = −∆i

j , which implies that tangent vector are of the form

X =
∑m
i,j=1 λi(Uj∆

j
iU

T
i − Ui∆i

jU
T
j ), giving the other equality. Finally, if X ∈ T (S),

the formula ∆j
i = UTj XUi/(λi − λj) determines uniquely ∆j

i .

By analogy to the vocabulary of quotient manifolds [2], we call horizontal space the
set H = {(∆j

i )i,j |∆
j
i ∈Mnj ,ni , ∆j

i = −(∆j
i )
T } as it parameterizes uniquely T (S). In

the following, one denotes (∆X)ji ∈ H the coordinates of a tangent vector X ∈ T (S).
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Proposition 11. The projection ΠT (S) on the tangent space T (S) is the map

ΠT (S) : Symn −→ T (S)
X 7−→

∑
{i,j}⊂{1,...,m}

(UjU
T
j XUiU

T
i + UiU

T
i XUjU

T
j ),

that is with the coordinates of the horizontal space, ∆j
i = UTj XUi/(λi−λj). Therefore

the normal space N (S) at S is the set of all symmetric matrices N that let invariant
each eigenspace Span(Ui) of S:

N (S) =

{
m∑
i=1

UiU
T
i XUiU

T
i |X ∈ Symn

}
.

In other words, it is the set of all matrices N ∈ Symn of the form

(26) N =

m∑
i=1

ni∑
a=1

λi,a(N)ui,au
T
i,a ,

where for each 1 ≤ i ≤ m, λi,a(N)1≤a≤ni is a set of ni real eigenvalues associated
with ni eigenvectors (ui,a)1≤a≤ni forming a basis of the eigenspace Span(Ui).

Proof. This is obtained by differentiating ||X − X||2 with respect to ∆j
i , for a

tangent vector X ∈ H written with the coordinates ∆j
i of the horizontal space. The

normal space is obtained from the equality N (S) = {(I −ΠT (S))X|X ∈ Symn}.
Absil and Malick proved that ΠM (S) as defined by (3) is the orthogonal projection
operator on M for matrices S in a small neighborhood around M (Theorem 3.9 in
[4]). We propose below a short proof showing this result holds in fact for almost any
S ∈ Symn using the above geometric analysis of normal and tangent spaces:

Proposition 12. Let S ∈ Symn and denote S =
∑m
i=1

∑ni

a=1 λi,a(S)ui,au
T
i,a its

eigenvalue decomposition, where the eigenvalues have been ordered decreasingly, i.e

∀1 ≤ ai ≤ ni, λ1,a1 ≥ λ2,a2 ≥ . . . ≥ λm,am ,
∀1 ≤ i ≤ m, λi,1 ≥ λi,2 ≥ . . . ≥ λi,ni .

If for any 1 ≤ i ≤ m − 1, λi+1,1(S) > λi,ni
(S), i.e. if the eigenspaces of S are well

separated relatively to the ordering given by Λ, then the matrix ΠM (S) obtained by
replacing the eigenvalues of S by those of Λ in the same order,

ΠM (S) =

m∑
i=1

ni∑
a=1

λiui,au
T
i,a ,

minimizes the distance S 7→ ||S − S|| from S to M . Furthermore, the minimum
distance is given by ||S−ΠM (S)||2 =

∑m
i=1

∑ni

a=1(λi,a − λi)2.

Proof. For a given S ∈ M , N = S − S is a normal vector at S if S = S + N
where S and N can be diagonalized by a same orthonormal basis. Denoting by
S =

∑n
l=1 λl(S)ulu

T
l the eigendecomposition of S (no ordering assumed), one has

N =
∑n
l=1(λl(S) − Λσ(l))ulu

T
l , where the Λ1 ≥ Λ2 ≥ . . . ≥ Λn are the eigenvalues

λi of Λ (including multiplicities), and σ a permutation. Since for any given numbers
satisfying a < b and c < d, (a − c)2 + (b − d)2 < (a − d)2 + (b − c)2 holds, the norm
of N is minimized by selecting the permutation σ to be the identity.
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The Weingarten map and its spectral decomposition are now explicitly derived. This
allows to obtain an explicit formula for the differential of the map (4) in Proposition 14
and Corollary 15, and the global convergence property of gradient flows associated
with the minimization principle (6) in Proposition 16.

Proposition 13. Let N =
∑m
i=1

∑ni

a=1 λi,a(N)ui,au
T
i,a ∈ N (S) a normal vector

decomposed as in (26). The Weingarten map at S ∈M in the direction N is

(27)
LS(N) : H −→ H

(∆j
i ) 7−→

(
1

λi−λj
(UTj NUj∆

j
i −∆j

iU
T
i NUi)

)j
i
.

The principal curvatures are the real numbers

κj,bi,a =
λj,b(N)− λi,a(N)

λi − λj
,

for all pairs {i, j} ⊂ {1, . . . ,m} and couples (a, b) with 1 ≤ a ≤ ni and 1 ≤ b ≤ nj.
Corresponding normalized eigendirections are the tangent vectors

Φj,bi,a =
1√
2

(ui,au
T
j,b + uj,bu

T
i,a).

Proof. Differentiating ΠT (S)N with respect to ∆j
i ∈ H yields

DΠT (S)(X)·N =
∑
i 6=j

[
(Uk∆k

jU
T
j −Uj∆

j
kU

T
k )NUiU

T
i +UjU

T
j N(Uk∆k

i U
T
i −Ui∆i

kU
T
k )

]
,

with summation over repeated indices k. The fact that N is a normal vector implies:

DΠT (S)(X) ·N =
∑
i 6=j

[
− Uj∆j

iU
T
i NUiU

T
i + UjU

T
j NUj∆

j
iU

T
i

]
.

Expression (27) follows from (∆DΠT (S)(X)·N )ji = UTj (DΠT (S)(X) · N)Ui/(λi − λj).

One checks that ∆j,b
i,a = UTj uj,bu

T
i,aUi is a basis of eigenvectors with eigenvalues κj,bi,a.

Proposition 14. Let S ∈ Symn a symmetric matrix satisfying the conditions of
Proposition 12. The projection onto M is differentiable at S and the derivative in a
direction X ∈ Symn is given by

(28) DXΠM (S) =
∑

{i,j}⊂{1,...,m}
1≤a≤ni
1≤b≤nj

λi − λj
λi,a(S)− λj,b(S)

(uTi,aXuj,b)(ui,au
T
j,b + uj,bu

T
i,a).

Proof. One applies Proposition 5 with N =
∑m
i=1

∑ni

a=1(λi,a(S)−λi)ui,auTi,a. The
expression claimed is found from the equalities

1− κj,bi,a(N) =
λj,b(S)− λi,a(S)

λi − λj
,

〈X,Φj,bi,a〉Φ
j,b
i,a =

1

2
〈X, 2 sym(ui,au

T
j,b)〉(ui,auTj,b + uj,bu

T
i,a).
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As an application, a formula is found for the derivative of the subspace spanned by the
first p < n eigenvectors Span(ui)1≤i≤p of a time dependent matrix S(t) ∈ Symn. As
far as we know, this formula is original in the sense that no simplicity assumption is
required for the eigenvalues (only the condition λp(t) < λp+1(t)), although the reader
may find related results using resolvents in [37]. It is remarkable that a smooth
evolution of Span(ui(t)) is obtained as long as the eigenvalues of order p and p +
1 do not cross, although crossing of eigenvalues (and hence discontinuities of the
eigenvectors ui(t) themselves) may occur within the eigenspace.

Corollary 15. Consider S(t) =
∑n
i=1 λi(t)ui(t)ui(t)

T the eigendecomposition
of a smoothly varying symmetric matrix. Let p < n and assume λp(t) < λp+1(t).
Then the projector

∑p
i=1 ui(t)ui(t)

T over Span(ui(t))1≤i≤p is differentiable, and an
ODE for the evolution of an orthonormal basis U(t) ∈Mn,p satisfying Span(U(t)) =
Span(ui(t))1≤i≤p is

(29) U̇ =
∑

1≤i≤p
p+1≤j≤n

1

λi(t)− λj(t)
(uTi Ṡuj)uju

T
i U.

Proof. This is immediately obtained by applying (28) to the particular case where
M is the Grassmann manifold, i.e. with m = 2, λ1 = 1, and λ2 = 0.

The dynamical system (8) that finds the dominant subspaces of a symmetric matrix
or equivalently computes the map (3) is now provided.

Proposition 16. Consider S =
∑m
i=1

∑ni

a=1 λi,a(S)ui,au
T
i,a ∈ Symn satisfying

the conditions of Proposition 18. The distance functional S 7→ ||S − S||2 admits
no other local minimum on M than ΠM (S). Therefore, for almost any initial data
S(0) ∈ Symn, the solution S(t) =

∑m
i=1 λiUiU

T
i of the gradient flow

(30) U̇i =
∑
j 6=i

1

λi − λj
UjU

T
j SUi

converges to ΠM (S), or in other words, each of the matrices Ui(t) converges to a
matrix spanning the same subspace as Span(ui,a)1≤a≤ni

.

Proof. Denote N = S− S the residual normal vector of a critical point S of the
distance functional. The condition for S to be a local minimum is that all curvatures in
the direction N satisfy κj,bi,a(N) ≤ 1, which is equivalent to the condition

λi,a−λj,b

λi−λj
≥ 0.

This condition can be satisfied only for S = ΠM (S).

Remark 3. Proposition 16 is a reformulation and an improvement of the conver-
gence result for the Brockett flow Ḣ = [H, [H,S]] as introduced in the seminal paper
[9], where the eigenvalues of S were assumed distinct. The Brockett flow is a gradient
descent for the functional J(P ) = ||PΛPT −S||2 with respect to P ∈ On [9, 14]. The
corresponding expression in horizontal coordinates is U̇i =

∑
j 6=i(λi − λj)UjUTj SUi,

hence a rescaling of (30) by multiplication of all components of the covariant gradient
by the positive numbers (λi − λj)2.

Applying this result to the particular case of the Grassmann manifold, one obtains
that for almost any initial data U(0) ∈ Mn,p with U(0)TU(0) = I, the solution U(t)

of the gradient flow U̇ = (I−UUT )SU converges to a matrix U whose columns spans
the p dimensional dominant subspace of S. In fact, Babaee and Sapsis have found that
this result still holds for the general case of real matrices: the limit U then spans the
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p-dimensional subspace spanned by the eigenvectors associated with the p eigenvalues
of maximal real parts (Theorem 2.3 in [6]). In the next section, it is shown how this
result is related to the map (4) and can in fact be obtained and generalized within
the framework of oblique projections of section 2.

5. Non-Euclidean Grassmannian, bi-Grassmann manifold, and deriva-
tives of eigenspaces of nonsymmetric matrices. This section focuses on the
maps (4) and (5), mapping n-by-n matrices R ∈Mn,n to respectively the orthogonal
projector UUT onto the dominant p-dimensional invariant subspace, and to the linear
projector UV T onto this subspace whose kernel is the complementary invariant sub-
space. These two maps are studied respectively in subsection 5.1 and subsection 5.2.
Following section 2, the normal bundles N (R) and the respective oblique linear tan-
gent projectors ΠT (R) are first identified, which allows to compute Weingarten maps.
In both case, we are able to provide explicit (complex) spectral decompositions, there-
fore the differential of these maps and the stability analysis of the dynamical system
(17) to compute them. For the map (4), this dynamical system is found to coincide
with the one introduced by Babaee and Sapsis [6], and we retrieve a direct proof of
their result as a corollary of the computation of (complex) extrinsic curvatures.

Let us note that different dynamical system approaches have also been proposed
for solving related non-symmetric eigenvalue problems [19, 34, 28, 12].

5.1. Oblique projection on the Grassmann manifold. The image manifold
of (4) is the Grassmann manifold

M = {UUT ∈Mn,n|U ∈Mn,p and UTU = I},

embedded this time inMn,n instead of Symn. From the previous section (eqn. (19)),
its tangent spaces are given by T (UUT ) = {U∆T + ∆UT |∆ ∈ Mn,p, U

T∆ = 0}.
Following section 2, the first step to study (4) is to characterize the normal bundle
N (UUT ) of the candidate oblique projection ΠM :

Proposition 17. ΠM defined as in (4) is an oblique projection on M , and the
respective normal space N (UUT ) at UUT ∈M is the set of matrices R ∈Mn,n that
let the subspace Span(U) invariant:

N (UUT ) = {N ∈ E|Span(NU) ⊂ Span(U)}
= {N ∈ E|(I − UUT )NUUT = 0}.

Proof. One checks the conditions of Definition 1. The continuity of the eigenvalues
of a matrix implies that ΠM is unambiguously defined on an open neighborhood V ⊂
Mn,n containing M . It is clear that ΠM (UUT ) = UUT and that if N ∈ V satisfies
ΠM (UUT +N) = UUT , then the subspace spanned by U must be invariant by N =
(N + UUT ) − UUT . Reciprocally consider N ∈ N (UUT ) and denote (λi(N))1≤i≤n
the eigenvalues of N where the first p are associated with the invariant subspace
Span(U). Span(U) is invariant by N+UUT , with eigenvalues λi(N)+1 for 1 ≤ i ≤ p,
while Span(U)⊥ is invariant by NT + UUT , with associated eigenvalues λp+j(N) for
1 ≤ j−p ≤ n−p. SinceNT+UUT andN+UUT share the same eigenvalues, it is found
by continuity that for N ∈ N (R) in a neighborhood of 0, <(1+λi(N)) > <(λp+j(N))
for 1 ≤ i ≤ p and 1 ≤ j ≤ n− p. Hence ΠM (UUT +N) = UUT .

Proposition 18. The linear projector ΠT (UUT ) whose image is the tangent space

T (UUT ) and whose kernel is N (UUT ) is given by:

(31)
ΠT (UUT ) : Mn,n → T (UUT )

X 7→ (I − UUT )XUUT + UUTXT (I − UUT ).
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Proof. The relation ΠT (UUT ) = ΠT (UUT )◦ΠT (UUT ) shows that ΠT (UUT ) is a linear

projector. One then checks that Ker(ΠT (UUT )) = N (UUT ) and Span(ΠT (UUT )) ⊂
T (UUT ). The result follows by noticing that T (UUT ) ∩ N (UUT ) = {0}, which
implies Span(ΠT (UUT )) = T (UUT ).

The knowledge of ΠT (UUT ) allows then to compute the Weingarten map, and its
spectral decomposition.

Proposition 19. The Weingarten map in a direction N ∈ N (UUT ) for the
manifold M equipped with the map of projectors UUT 7→ ΠT (UUT ) is given by

LUUT (N) : T (UUT ) → T (UUT )
X 7→ 2× sym((I − UUT )NXUUT −XUUTNUUT ).

If N =
∑n
i=1 λiuiv

T
i is diagonalizable and Span(U) = Span(ui)1≤i≤p, then LUUT (N)

is also diagonalizable and the p(n− p) eigenvalues are given by

κi(p+j)(N) = λp+j(N)− λi(N), 1 ≤ i ≤ p and 1 ≤ j ≤ n− p.

A corresponding basis of eigenvectors Φij ∈ T (UUT ) is given by

Φi(p+j) = UUT viu
T
p+j(I − UUT ) + (I − UUT )up+jv

T
i UU

T ,

associated with the dual basis of left eigenvectors defined by:

∀X ∈ T (R), 〈Φ∗i(p+j), X〉 = vTp+jXui.

Proof. The derivation of the expression of the Weingarten map is analogous to
Proposition 13 and is omitted. It is straightforward to check that the Φij are indeed
eigenvectors of LUUT (N). The dual basis is found by considering a linear combination
X =

∑
ij αijΦij ∈ T (UUT ) and by checking that αij = vTj Xui as claimed.

As a corollary, one obtains a dynamical system satisfied by the subspace spanned by
a fixed number of dominant eigenvectors of non-symmetric matrices, which includes
instantaneous reorthonormalization of a representing basis.

Corollary 20. Let R(t) =
∑n
i=1 λi(t)uiv

T
i ∈ Mn,n the spectral decomposition

of a time dependent diagonalizable matrix with eigenvalues λi(t) ordered such that
<(λ1(t)) ≥ . . . ≥ <(λn(t)). If <(λp(t)) > <(λp+1(t)), then the p-dimensional dom-
inant invariant subspace U(t) = Span(ui)1≤i≤p of R(t) is differentiable with respect
to t and an ODE for the evolution of a corresponding orthonormal basis of vectors
U(t) ∈Mn,p satisfying Span(U(t)) = Span(ui)1≤i≤p and U(t)TU(t) = I is

(32) U̇ =
∑

1≤i≤p
1≤j≤n−p

1

λi − λp+j

[
vTp+jṘui

]
(I − UUT )fp+jg

T
i U,

where (fi)1≤i≤n and (gi)1≤i≤n are the right and left eigenvectors of R(t)−U(t)U(t)T ,
associated with the eigenvalues λi(t)− 1 for 1 ≤ i ≤ p and λp+j(t) for 1 ≤ j ≤ n− p.

Proof. Proposition 5 (and in particular the implicit function theorem) ensures the
existence of a differentiable trajectory V (t)V T (t) such that V (t) is invariant by R(t)
and V (0) = U(0). The continuity of eigenvalues implies V (t)V (t)T = U(t)U(t)T =
ΠM (R(t)). Formula (32) follows identically as in Corollary 15.
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Remark 4. Note that in eqn. (32), (ui)1≤i≤p and (vTp+j)1≤j≤n−p in (32) are also

right and left eigenvectors of R(t)−U(t)U(t)T , but not (up+j)1≤j≤n−p and (vTi )1≤i≤p.

Applying now Proposition 6, and examining the eigenvalues of the Weingarten map,
we retrieve Theorem 2.3 of [6], that is that ΠM (R) is in fact the unique stable equi-
librium points, and the generalization of (30) to non-symmetric matrices.

Corollary 21 (see also [6]). Let R =
∑n
i=1 λi(R)uiv

T
i ∈Mn,n a diagonalizable

matrix satisfying <(λp(R)) > <(λp+1(R)). Then ΠM (R) as defined by (4) is the
unique stable equilibrium point of the dynamical system (17), which can be written as
an ODE for a representing basis U(t) as

(33) U̇ = (I − UUT )RU.

Proof. (33) is obtained by writing (17) with ΠT (UUT ) being given by (31). Equi-

librium points UUT are those for which N = R − UUT ∈ N (UUT ), i.e. such that
Span(U) is a subspace of R spanned by p eigenvectors. Denote (λi)1≤i≤p the eigenval-
ues of R within Span(U) and (λp+j)1≤j≤n−p the remaining ones. Then the eigenval-
ues of the Weingarten map are κi(p+j)(N) = λp+j − (λi − 1). The stability condition
<(κi(p+j)(N)) < 1 is therefore satisfied for all eigenvalues only if UUT = ΠM (R).

Note that global convergence, although expected because of the boundedness of M ,
is not completely clear since (33) is not a gradient flow.

5.2. Oblique projection on the bi-Grassmann manifold. The focus is now
on map (5), whose image manifold is the set of linear projectors (not necessary or-
thogonal) over a p dimensional subspace. Next, we rely on the remark that any rank
p projector can be factorized as R = UV T where U, V ∈ Mn,p are n-by-p matri-
ces satisfying the orthogonality condition V TU = I. Such matrices U and V can
be obtained from any basis of respectively right and left eigenvectors of R. UV T is
then the unique projector whose image is Span(UV T ) = Span(U) and whose kernel
is Ker(UV T ) = Span(V )⊥. Since this set identifies a rank p projector to a pair of p-
dimensional subspaces of a n dimensional vector space, we refer to it as bi-Grassmann
manifold.

Definition 22. The bi-Grassmann manifold is the set M of rank-p linear pro-
jectors of Mn,n:

(34)
M = {R ∈Mn,n|R2 = R and rank(R) = p}

= {UV T |U ∈Mn,p, V ∈Mn,p, V
TU = I}.

A tangent vector X ∈ T (UV T ) can be written as X = XUV
T +UXT

V where XU and
XV can be understood as the time derivatives of the matrices U and V . Similarly
to the case of the Grassmann manifold, a gauge condition (analogous to that of the
fixed rank manifold, see [22]) is required on the matrices XU and XV to uniquely
parameterize the tangent spaces of M :

Proposition 23. The tangent space of M is

T (UV T ) = {XUV
T + UXT

V |XU ∈Mn,p, XV ∈Mn,p , V
TXU + UTXV = 0}

= {XUV
T + UXT

V |XU ∈Mn,p, XV ∈Mn,p , V
TXU = UTXV = 0}

The set HUV T = {(XU , XV ) ∈Mn,p ×Mn,p|XT
UV = XT

V U = 0} is referred to as the
horizontal space at R = UV T . The map (XU , XV ) 7→ XUV

T + UXT
V from HUV T to

T (UV T ) is an isomorphism. Hence M is a smooth manifold of dimension 2p(n− p).
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Proof. Only the inclusion ⊂ is proven, the inclusion ⊃ being obvious. Consider
two matrices XU , XV ∈Mn,p such that V TXU + UTXV = 0. One can always write{

XU = (I − UV T )XU + UΩ

XV = (I − V UT )XV − V ΩT

where Ω = V TXU = −UTXV . Denote now X ′U = (I − UV T )XU and X ′V = (I −
V UT )XV . Since V TX ′U = UTX ′V = 0 and XUV

T + UXT
V = X ′UV

T + U(X ′V )T , one
obtains the inclusion ⊂. Now, if X = XUV

T + UXT
V with UTXV = V TXU = 0, one

obtains XU = XU and XV = XTV showing the uniqueness of the parameterization
by the horizontal space.

The next step is to identify the normal space of the candidate oblique projection (5).

Proposition 24. Consider ΠM as defined by (5). ΠM is an oblique projection
on M , and the corresponding normal space N (UV T ) at R = UV T ∈M is the set of
matrices R ∈Mn,n letting both subspaces Span(U) and Span(V )⊥ invariant:

N (UV T ) = {N ∈Mn,n|Span(NU) ⊂ Span(U) and N [Span(V )⊥] ⊂ Span(V )⊥}
= {N ∈Mn,n|N = (I − UV T )N(I − UV T ) + UV TNUV T }.

In the following, results analogous to Proposition 19 and Corollaries 20 and 21 are
derived for the bi-Grassmann manifold equipped with the bundle of normal spaces of
the map (5). The proofs are almost strictly identical and are omitted.

Proposition 25. The linear projector ΠT (UV T ) whose image is the tangent space

T (UV T ) and whose kernel is N (UV T ) is given by:

(35)
ΠT (UV T ) : Mn,n → T (UV T )

X 7→ (I − UV T )XUV T + UV TX(I − UV T ),

or in the horizontal coordinates, XU = (I − UV T )XU and XV = (I − V UT )XTV .

Remark 5. In [28], the word “oblique projection” is used to refer to the linear
tangent projection ΠT (UV T ) while ours refers to the nonlinear map ΠM .

Proposition 26. The Weingarten map LUV T (N) with respect to a normal vector
N ∈ N (UV T ) is given by

LUV T (N) : X 7→ NXUV T + UV TXN −XUV TNUV T − UV TNUV TX,

If N is diagonalizable over C and N =
∑n
i=1 λi(N)uiv

T
i denotes its eigendecomposi-

tion, written such that UV T =
∑p
i=1 uiv

T
i , then LUV T (N) is diagonalizable and its

eigenvalues are the n(n− p) numbers

κij = λj(N)− λi(N) ∀1 ≤ i ≤ p, p+ 1 ≤ j ≤ n.

Each eigenvalue is associated with two independent eigenvectors:

Φij,U = uiv
T
j , Φij,V = ujv

T
i ,

with their respective dual eigenvectors

∀X ∈ T (UV T ), 〈Φ∗ij,U , X〉 = vTi Xuj , 〈Φ∗ij,V , X〉 = vTj Xui.
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As a result, another generalization of (29) to non-symmetric matrices is obtained.

Corollary 27. Let R(t) =
∑n
i=1 λi(t)uiv

T
i ∈ Mn,n the spectral decomposi-

tion of a diagonalizable time-dependent matrix with <(λ1(t)) ≥ . . . ≥ <(λn(t)). If
<(λp(t)) > <(λp+1(t)), then the p-dimensional dominant invariant subspace U(t) of
R(t) and its invariant complement V(t) are differentiable with respect to t. An ODE
for the evolution of corresponding bases U(t), V (t) ∈ Mn,p satisfying Span(U(t)) =
U(t) and Span(V (t))⊥ = V(t) is

(36)



U̇ =
∑

1≤i≤p
1≤j≤n−p

1

λi(t)− λp+j(t)
(vTp+jṘui)up+jv

T
i U

V̇ =
∑

1≤i≤p
1≤j≤n−p

1

λi(t)− λp+j(t)
(vTi Ṙup+j)vp+ju

T
i V.

Finally, the dynamical system (17) that allows to compute the invariant subspaces U
and V is explicited, before investigating its numerical implementation in section 6.

Corollary 28. If R =
∑n
i=1 λi(R)uiv

T
i is a real matrix diagonalizable in C and

such that <(λp(R)) > <(λp+1(R)), then UV T =
∑p
i=1 uiv

T
i = ΠM (R) is the unique

asymptotically stable equilibrium point of the dynamical system

(37)

{
U̇ = (I − UV T )RU

V̇ = (I − V UT )RTV.

It is important to note that the above corollary does not guarantee, in contrast with
the previously derived dynamical systems, global convergence almost everywhere. In-
deed, the bi-Grassmann manifold is unbounded (for example any matrix of the form
R = UUT + UWT with U,W ∈ Mn,p, U

TU = I, and WTU = 0 belongs to M ).
Nevertheless convergence towards ΠM (R) holds as soon as the initial point is suffi-
ciently close, which may be acceptable in numerical algorithms for smoothly evolving
two matrices U(t) and V (t) such that U(t)V (t)T = ΠM (R(t)).

6. Three numerical applications. We now present numerical examples that
illustrate how the extrinsic framework provides tools for numerically tracking the
values ΠM (R(t)) of oblique projections (2)–(5) on evolving matrices R(t). We show-
case generalizable methods on three applications: two on the isospectral manifold
concerned respectively with the gradient flow (8) and an approximation of the exact
dynamic (17), and one on the “bi-Grassmann” manifold concerned with convergence
issues and the conversion of the local dynamic (37) to a convergent iterative algo-
rithms.

Note that we do not make any efficiency claim about the above dynamical sys-
tems over more classical iterative algorithms [25] which can also make use of good
initial guesses. A useful feature of these continuous methods though, is that they
guarantee smooth evolution of their values, for example when tracking a basis U(t) of
eigenvectors representing a subspace as in (30). This property can be very important
e.g. when integrated with high-order time discretizations of dynamical systems which
require smooth evolutions of U(t) (see e.g. [23]).

6.1. Example 1: revisiting the Brockett flow. We illustrate here the use of
the gradient flow (8). Denote S(t) =

∑n
i=1 λi(t)ui(t)ui(t)

T the eigendecomposition
as in Corollary 15 with λ1(t) > · · · > λn(t). The objective is to track an eigenspace
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decomposition Rn = ⊕mi Vi(t) of m smoothly evolving subspaces Vi(t) spanned by
successive eigenvectors ui(t) and with fixed given dimensions ni:

(38) Vi(t) = Span(uj(t))j∈Ii with Ii = {1 + n1 + · · ·+ ni−1 ≤ j ≤ n1 + · · ·+ ni}.

Following section 4, we label the eigenspaces Vi(t) with m distinct real numbers
λ1 > · · · > λm, and we consider M the isospectral manifold of symmetric matri-
ces S with prescribed eigenvalues λi of multiplicities ni (definition (24)). Tracking
the subspaces Vi(t) then becomes equivalent to tracking the orthogonal projection
ΠM (S(t)) =

∑m
i=1 λiUi(t)Ui(t)

T where Ui(t) are n-by-ni orthonormal matrices satis-
fying Span(Ui(t)) = Vi(t).

Let n = 10, T = 1, and define, for t ∈ [0, T ]:

(39)

dk(t) =


sin

(
3π

4
t+

2kπ

n

)
for 1 ≤ k ≤ 5

1− k

2
− 1

2
sin(πt), for 6 ≤ k ≤ 10

,

D(t) = diag(dk(t)),

P (t) = exp(8πtΩ),

for a given antisymmetric matrix Ω taken as random. Since P (t) is an orthonormal
matrix, we obtain a time-dependent symmetric matrix S(t) whose eigenvalues are the
dk(t) associated with rotating eigenvectors P (t) by setting: S(t) = P (t)D(t)P (t)T .
Notably, S(t) has been especially designed for admitting crossing eigenvalues at vari-
ous times as visible on Figure 2. We consider the following two settings:

Case 1: Rn = V1(t)⊕ V2(t)⊕ V3(t)⊕ V4(t)
with (λ1, λ2, λ3, λ4) = (3, 2, 1, 0) and (n1, n2, n3, n4) = (1, 1, 3, 5):

(40)


V1(t) = Span(u1(t))

V2(t) = Span(u2(t))

V3(t) = Span(u3(t), u4(t), u5(t))

V4(t) = Span(u6(t), . . . , u10(t))

Case 2: Rn = V1(t)⊕ V2(t)⊕ V3(t)
with (λ1, λ2, λ3) = (2, 1, 0) and (n1, n2, n3) = (2, 3, 5):

(41)


V1(t) = Span(u1(t), u2(t))

V2(t) = Span(u3(t), u4(t), u5(t))

V3(t) = Span(u6(t), . . . , u10(t))

We report on Figure 3 the convergence of a single performance of the gradient flow (30)
for fixed S = S(T ), solved on a pseudo-time window s ∈ [0, 20] with Euler step ∆s =
0.1 and initialized with some orthonormal matrices Ui(0) satisfying Span(Ui(0)) =
Vi(0). Figure 3b illustrates how the pseudo-time solutions Ui(s) smoothly align on
the eigendecomposition of S = S(T ).

Regarding the numerical discretization of the flow (30), the only difficulty is
to maintain the orthogonality UTi (t)Ui(t) = I which is not preserved after a stan-
dard Euler time-step. This issue is addressed by the introduction of suitable retrac-
tions during the time stepping [2, 4]. For our purpose, maintaining the orthogonality
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(a) Ordered eigenvalues λi(t):
λ1(t) ≥ λ2(t) ≥ . . . ≥ λ10(t) and
{λ1(t), . . . , λ10(t)} = {d1(t), . . . , d10(t)}.
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(b) Trajectories of the first coordinate of the
eigenvectors u1(t) and u2(t) (obtained from
eqn. (39)). These are discontinuous when
λ1(t) = λ2(t) or λ2(t) = λ3(t).

Fig. 2: Variations of the ordered spectrum of S(t) = P (t)D(t)P (t)T (eqn. (39)). Non smooth
behaviors occur when eigenvalues become multiple.
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(a) Distance ||S(s)− S||
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(b) Coefficients U1[k, 1](s) for k ∈ {1, 2, 3}

Fig. 3: Convergence of the gradient descent (30) on the isospectral manifold M (24) for the
fixed symmetric matrix S = S(T ). The distance function S 7→ ||S − S|| is minimized on M ,
by evolving smoothly basis matrices Ui(s) which align at convergence with eigenspaces of S.

Ui(t)
TUi(t) = I for U ∈Mn,r can be directly addressed by various reorthonormaliza-

tion procedures preserving the continuous evolution of the matrices Ui(t) [4, 23, 49].
Note that in general, the time step of the discretization of ODEs such as (8) must
be selected sufficiently small with respect to the Lipschitz constant of the right-hand
side vector field. A simple rule of thumb used e.g. in [23] is to scale it proportionally
to the inverse of the curvature locally experienced on the manifold. More elaborate
schemes can also be used to specifically address such issues [52, 38].

We then use this gradient flow so as to smoothly evolve bases Ui(t) represent-
ing the projection ΠM (S(t)). The time interval [0, T ] is discretized into time steps
tk = k∆T for a uniform increment ∆t = T/300. From the knowledge at time tk of
orthonormal matrices Ui(t

k) satisfying Span(Ui(t
k)) = Vi(t

k), we obtain continuous
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(a) Case 1: V1(t) = Span(u1(t)) and V2(t) =
Span(u2(t)). Discontinuities occur whenever
λ1(t) = λ2(t) or λ2(t) = λ3(t).
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(b) Case 2: V1(t) = Span(u1(t), u2(t)). Dis-
continuities occur only when λ2(t) = λ3(t).
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(c) Intermediate gradient iterations: case 1.
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(d) Intermediate gradient iterations: case 2

Fig. 4: Tracking dominant eigenspaces of S(t) = P (t)D(t)P (t)T (39) by successive converged
solutions U(t) of the gradient flow (30). The number of iterations required for convergence
shown in panel (c)-(d) confirms that it is slower at discontinuities of V1(t)/ V2(t).

updates Ui(t
k+1) as converged solutions of inner-iterations of the gradient flow (30)

with S = S(tk+1). Results are reported on Figure 4. As expected, we observe that the
matrices Ui(t) (or equivalently, the projection ΠM (S(t))) become discontinuous at the
exact instants where crossing of specific eigenvalues occur in between the eigenspaces
Vi(t), for which the decomposition Rn = ⊕mi=1 Vi(t) becomes ill-defined (eigenvectors
ui(t) corresponding to crossed eigenvalues could be attributed indistinctly to two dif-
ferent Vi(t)). Near these instants, the gradient flow (30) converges more and more
slowly. Nevertheless and importantly, crossings of eigenvalues are not an issue when
they occur within the eigenspaces Vi(t): Vi(t) and its representing basis Ui(t) evolve
smoothly, and the convergence of the gradient flow is not altered, as visible on Fig-
ure 4d. For example, the crossing of λ1(t) and λ2(t) near t = 0.4 is not felt in the
Case 2 designed to track the subspace spanned by the first two eigenvectors without
tracking specifically the individual trajectories of u1(t) and u2(t). Interestingly, global
convergence of the gradient flow (30) allows to recapture correct bases Ui(t) after
passing through such discontinuities (which could not have been done using e.g. the
ODE (28)), although the use here of an iterative algorithm reinitializing directly the
matrices Ui(t) would certainly prove more efficient computationally.
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6.2. Example 2: dynamic approximation on the isospectral manifold.
In this part, we assume the trajectory S(t) is given by an ODE

(42) Ṡ = L(t,S)

for some smooth symmetric vector field L. Suppose it is known a priori that the
trajectory S(t) lies close to some isospectral manifold M , in the sense that the eigen-
values λi(t) of S(t) are organized in m fixed clusters of size n1, . . . , nm centered around
fixed reals λ1 > · · · > λm. If the objective is to track these clustered eigenspaces Vi(t)
but not the precise, potentially discontinuous, trajectories of each eigenvectors of S(t),
then a possible solution is to approximate the ODE (29) satisfied by ΠM (S(t)) by
projected dynamical systems on the isospectral manifold:

(43) (a)

{
Ṡ = ΠT (S(t))(L(t, S(t)))

S(0) = ΠM (S(0))
or (b)

{
Ṡ = ΠT (S(t))(Ṡ)

S(0) = ΠM (S(0)).

The autonomous dynamical system (43)(a) is known as the DO approximation [22] or
dynamical low-rank [40] method when M is the fixed rank manifold, while the non-
autonomous (43)(b) offers a slightly better approximation if one has direct access to
the derivative Ṡ of the non-reduced dynamic Ṡ = L(t,S), i.e. (42). (43)(b) is obtained
by assuming the normal component can be neglected in (16) (||N || ' 0), and (43)(a)
by additionally approximating L(t,S) by L(t, S). Each offers a convenient approx-
imation of the true dynamic (7) of ΠM (S(t)) which avoids computing and storing
the full spectral decomposition κi(N),Φi of the Weingarten map. For the isospectral
manifold, one solves the coupled system of ODEs for the trajectories of representing
n-by-ni matrices Ui(t) such that S(t) =

∑m
i=1 λiUi(t)Ui(t)

T (Proposition 11), which
in the case of (43)(b) writes as

(44) U̇i =
∑
j 6=i

1

λi − λj
UjU

T
j ṠUi.

Note that (44) is a generalization of the “OTD” equation proposed by [6]. In this
Euclidean setting, it is possible to show that error ||S(t)−ΠM (S(t))|| remains “con-
trolled” as long as the projection ΠM (S(t)) stays continuous (we refer the reader to
[22, 21] for precise statements on this topic). This means that one can expect the
approximation Span(Ui(t)) ' Vi(t) to hold if the eigenvalues of S(t) do not cross in
between the spaces Vi(t). As a numerical example, we consider the same setting as
subsection 6.1, but with

(45) dk(t) =


1 + 0.05 sin

(
4πt+

2kπ

n

)
for 1 ≤ k ≤ 5

0.05 sin

(
4πt+

2kπ

n

)
for 6 ≤ k ≤ 9

1.2 exp(−(t− 0.5)2/0.04) for k = 10 .

The corresponding trajectories of the eigenvalues dk(t), clustered near 0 and 1, are
plotted on Figure 5a. We aim at tracking the decomposition

(46) Rn = V1(t)⊕ V2(t) with

{
V1(t) = Span(u1(t), . . . , u5(t))

V2(t) = Span(u6(t), . . . , u10(t)) ,
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Fig. 5: “Dynamic approximation” method (43)(b) on the isospectral manifold M for tracking
dynamic eigenspaces associated with clustered eigenvalues around 0 and 1.

which corresponds to the setting m = 2, (λ1, λ2) = (1, 0), and (n1, n2) = (5, 5). In
our implementation, we use of the approximate dynamics (44) with the analytical
value of Ṡ. We report on Figure 5b the time evolution of the approximation error
||ΠM (S(t)) − S(t)||. As observed in [55, 22], for approximate dynamics on the fixed
rank manifold, the approximation S(t) ' ΠM (S(t)) holds till a discontinuity of the
projection ΠM (S(t)) occurs, which cannot be captured by the continuous evolution of
S(t). For this example, this happens at the exact instants t where λ5(t) = λ6(t). Fig-
ure 5c displays the evolution of the best achievable error ||S(t)−ΠM (S(t))|| between
the non-reduced matrix S(t) and its projection ΠM (S(t)), versus the dynamical error
||S(t) − S(t)||, which further illustrates the somewhat independent evolution of the
approximate solution S(t) after the first discontinuity.

6.3. Application 3: issues with the non-Euclidean bi-Grassmann man-
ifold. The ODE (37) associated with the map (5) is of interest for tracking the dual
subspaces of dominant left and right eigenvectors of a dynamic matrix R(t). How-
ever, (37) does not behave as smoothly for reasons examined now and related to the
non-boundedness of the bi-Grassmann manifold. We will still show how this problem
can be fixed, since its discretization allows guessing a convergent iterative algorithm
of equivalent complexity (note we will not prove here the “convergence” claim).
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Going back to the setting and the notations of subsection 5.2, a first issue oc-
curring when discretizing the dynamical system (37) for n-by-p matrices U(t) and
V (t) is maintaining the property V TU = I during the time discretization. For this,
we propose a simple retraction for the bi-orthogonal manifold (we refer to [4] for a
precise definition of retraction):

Proposition 29. For U, V ∈Mn,p with V TU = I, the map

(47)
ρUV T : HUV T −→ M

(XU , XV ) 7−→ (U +XU )[(V +XV )T (U +XU )]−1(V +XV )T

is a retraction on the bi-orthogonal manifold M .

Proof. First, denoting U1 = U+XU and V1 = (V +XV )[(V +XV )T (U+XU )]−T ,
one has ρUV T (XU , XV ) = U1V

T
1 with U1, V1 ∈ Mn,p and V T1 U1 = I, ensuring

ρUV T (XU , XV ) ∈M . Since V TU = I and for (XU , XV ) ∈ HUV T , XT
V U = XT

UV = 0,
one can write ρUV T (XU , XV ) = (U + XU )(I + XT

VXU )−1(V + XV )T . Hence the
following asymptotic expansion holds:

(48) ρUV T (tXU , tXV ) = (U + tXU )(I − t2XT
VXU + o(t2))(V T + tXV )

= UV T + t(XUV
T + UXT

V ) + o(t2)

which implies that ρUV T is a first order retraction.

The above retraction ρUV T can be used to obtain a discretization of (37) preserving
the property V TU = I. At a time step k, the time derivatives U̇k and V̇k given by
(37) are first computed according to

(49)

{
U̇k = RUk − Uk(V Tk RUk)

V̇k = RTVk − Vk(UTk R
TVk) ,

where parentheses highlight products rendering the evaluation efficient (e.g. for n
possibly much greater than p, see [44]). A possible discretization of (37) using a
first-order Euler scheme and the retraction ρUV T (47) could therefore be:

(50)


Uk+1 = Uk + ∆tU̇k

Vk+1 = (Vk + ∆tV̇k)A−Tk

Ak = (Vk + ∆tV̇k)T (Uk + ∆tU̇k) = I + ∆t2V̇ Tk U̇k.

We observe that the use of the retraction (47) induces only a second-order correction
on the first-order Euler scheme, necessary to ensure consistency and the smooth evo-
lutions of the matrices U and V . The computation of the inverse matrix A−Tk ∈Mp,p

is not costly for moderate values of p. Nevertheless the implementation of (50) can
be numerically unstable for initial values U0 and V0 too far from the equilibrium
point (confirmed numerically, not shown here). This is no surprise, because in spite
of ΠM (R) being the unique stable equilibrium point of the flow (37), trajectories can
possibly escape to infinity. This lack of global convergence emphasizes that the benefit
of the approach mainly holds to find small corrections to add to sufficiently good initial
guesses U0, V0 such that U0V

T
0 ' ΠM (R). For one shot computations or if continuous

updates are not required, one may rather rely on direct iterative algorithms such as
the one we propose now and detailed in Algorithm 1. The discretization (49) featur-
ing matrix vector products RUk and RTVk suggests a variant of the power method
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for computing left and right eigenvectors; our Algorithm 1 implements this idea with
a computational complexity analogous to that of (50). Here, numerical stability is
obtained by adding the normalization step (51) (results confirmed in examples, not
shown here). We note that Guglielmi and Lubich [28] relied on restarting procedures
in their implementation of a dynamical system analogous to (37).

Algorithm 1 Computing dominant invariant subspaces of non-symmetric matrices

Given a real matrix R ∈Mn,p:

1: Grow the part of the p dominant subspace already present in Uk, Vk:

Uk+1 = RUk, Vk+1 = RTVk

2: Rotate the columns of Vk+1 such that V Tk+1Uk+1 = I:

(51) Vk+1 ← Vk+1(UTk+1Vk+1)−1

3: Normalize Uk+1 and Vk+1 such that UTk+1Uk+1 = I and V Tk+1Uk+1 = I:

(52)


Ak+1 = UTk+1Uk+1

Vk+1 ← Vk+1A
1
2

Uk+1 ← Uk+1A
− 1

2

Hence Uk+1 and V Tk+1 are normalized such that Uk+1V
T
k+1 is a rank-p projector,

where ||Uk+1||2 = p and ||Vk+1||2 = ||Uk+1V
T
k+1||2 (|| · || is the Frobenius norm).

7. Conclusion. A geometric framework was introduced for studying the dif-
ferentiability of (nonlinear) oblique projections, and dynamical systems that allow
their efficient tracking on smoothly varying matrices. This was achieved by obtaining
explicitly the spectral decomposition of the Weingarten map for various image man-
ifolds equipped with the natural extrinsic differential structure associated with the
oblique projection. The non-requirement of the ambient space to be Euclidean allowed
studying non-symmetric matrix maps that are not characterized by a minimization
problem. Popular matrix manifolds were studied with respect to a natural embedding
yielding new interpretations. Global stability analysis of the dynamical systems that
compute oblique projections was performed for all these manifolds. Their relevance
and numerical implementations for tracking smooth decompositions was discussed.
Possible future applications of the derived dynamic matrix equations abound over a
rich spectrum of needs, from dynamic reduced-order modeling [57, 22] and data sci-
ences [41] to adaptive data assimilation [45, 7, 51] and adaptive path planning and
sampling [50, 63, 46, 47].
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Appendix A. Notations.

E Finite dimensional ambient space
E∗ Dual space of E
A∗ Dual operator of a linear map A
sp(A) Set of (complex) eigenvalues of a linear map A
M Embedded manifold M ⊂ E
R ∈ E Point of the ambient space
R ∈M Point of the manifold
T (R) Tangent space at R
N (R) Normal space at R
X ∈ E Vector of the ambient space E
X ∈ T (R) Tangent vector X at R
Ker(A) Kernel of a linear operator A
Span(A) Image of a linear operator A
ΠT (R) Linear projector with Span(ΠT (R)) = T (R)

and Ker(ΠT (R)) = N (R)
LR(N) Weingarten map at R ∈M in the direction N ∈ N (R)
〈 , 〉 Duality bracket or scalar product on E

|| || =
√
〈 , 〉 Euclidean norm

ΠM Oblique projection onto M
I Identity mapping
Mn,p Space of n-by-p matrices
Symn Space of n-by-n symmetric matrices
AT Transpose of a square matrix A
〈A,B〉 = Tr(ATB) Frobenius matrix scalar product
||A|| = Tr(ATA)1/2 Frobenius norm
σ1(A) ≥ . . . ≥ σrank(A)(A) Non zeros singular values of A ∈Mn,p

(λi(A))1≤i≤n Eigenvalues of a n-by-n matrix A ordered according to
<(λ1(A)) ≥ <(λ2(A)) ≥ . . . ≥ <(λn(A)) their real parts.
sym(X) = (X + XT )/2 Symmetric part of a square matrix X
skew(X) = (X− XT )/2 Skew-symmetric part of a square matrix X
δij Kronecker symbol. δii = I and δij = 0 for i 6= j

Ṙ = dR/dt Time derivative of a trajectory R(t)
DXf(R) Differential of a function f in direction X
DΠT (R)(X) · Y Differential of the projection operator ΠT (R) applied to Y
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