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Abstract

We address the problem of determining functional framing of experi-
mental data points in view of robust time-varying predictions, which is of
crucial importance in bioprocess monitoring. We propose a method that
provides guaranteed functional bounds, instead of sets of parameters val-
ues of Monod or Haldane growth functions commonly used in bioprocess
modeling. We illustrate the applicability of the method with bioreactor
simulations in batch and continuous mode. We also present two exten-
sions of the method adding flexibility in its application, and discuss its
efficiency in providing guaranteed state estimations.

1 Introduction and motivations

Interval analysis has recently gained a lot of popularity for the robust estima-
tion of state variables in dynamical models. Bioprocesses are typically subject
to various kind of variations or disturbances which are not always easy to model
[11, 17]. The idea to determine or compute bounds for uncertain systems is
not new [38, 28, 48], but a recent renewed focus has been brought to estimate
with intervals state variables or parameters from real-time observations, despite
uncertainties on the dynamics [23, 24, 40, 26, 46]. In situations for which the
usual random representations (based on probability measures, Gaussian pro-
cesses, white noise...) are not appropriate or cannot be justified for modeling
the perturbations, interval observers give a simple and attractive alternative
[20]. Instead of (non-robust) single-valued observers or stochastic filters which
both provide single estimates expected to represent average values (provided
that hypotheses on the randomness are satisfied), interval observers give a set
of plausible trajectories and/or parameters [20, 32, 36, 16, 51]. Typically, for a
given deterministic model

dX

dt
= F (t,X), X ∈ Rn, (1)
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where some terms of the map F are badly known or subject to fluctuations, and
an observation vector

Y (t) = G(t,X(t)) ∈ Rp (2)

that is available at each time t, the interval approach consists in designing two
estimators, a “lower” and a “upper” ones, of the form

dX−

dt
= F−(t,X−, Y (t)),

dX+

dt
= F+(t,X+, Y (t)), (3)

when the dynamics F is monotone [50, 27], or in a coupled form

dX−

dt
= F−(t,X−, X+, Y (t)),

dX+

dt
= F+(t,X−, X+, Y (t)) (4)

when F is non monotone (applying Muller’s Theorem, see [38, 52, 32]). In this
formulation, X−, X+ are vectors in Rn which provide a guaranteed framing of
the solutions X(·) of (1) in the following sense{

X−i (0) ≤ Xi(0) ≤ X+
i (0), (i = 1 · · ·n)

}
=⇒

{
X−i (t) ≤ Xi(t) ≤ X+

i (t), (i = 1 · · ·n)
}
, t > 0

(5)

This approach is particularly well suited to “slow” processes or dynamics with
long transients, such as bioprocesses, because it guarantees bounds during the
transients. It has been successfully applied to several models of bioprocesses
[20, 13, 22, 42, 34, 41, 31, 18, 29, 14]. A possible drawback of this approach is
that it could provide quite conservative bounds that could be then uninformative
for practitioners. However, in recent years, much progress has been made to
improve the width of the guaranteed intervals, playing with different structures
of the systems [39, 30, 21, 53] (there exist also several results for the class of
linear dynamics), changes of coordinates [44, 16], considerations of bundles of
observers [12, 35] or with the help of purely numerical methods [25, 26, 40, 41, 32]
based on interval analysis [37, 24].

In mass balance models for bioprocesses [11, 15], the most critical uncertainty
is primarily found on the specific growth functions of the micro-organisms, often
denoted by µ(·). Consider for instance the classical chemostat model

dX

dt
= F (t,X) :=

[
µ(t,X)X1 −D(t)X1

− 1
rµ(t,X)X1 +D(t)(Xin

2 −X2)

]
(6)

where X1, X2 denote the concentrations of biomass and substrate, respectively.
The dilution rate D(·), the input substrate concentration Xin

2 and the yield
factor r, are supposed to be known. Several contributions among the ones cited
previously have considered that the effective growth functions µ(·) depends on
time and on the substrate concentration s = X2 in an unknown manner, but
are bounded by two “extreme” functions µ−(·), µ+(·) so that the inequalities

µ−(s) ≤ µ(t, s) ≤ µ+(s), s ≥ 0 (7)

are fulfilled at time t. Robust state estimations can then be derived from the
knowledge of µ−(·) and µ+(·) (instead of µ(·)), designing the maps F−, F+
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in (3)-(4), as illustrated in [43, 10, 42]. However, one may wonder how to
obtain these functional bounds from experimental data. Let us underline that
it is particularly relevant to make a good choice of the functions µ−, µ+ as it
impacts on the width of the frame (5). Take as an example the class of Monod
growth functions

µ(s) =
µmaxs

s+Ks
(8)

for which uncertainty is typically on the parameters µmax and Ks. In the
context of state or parameter estimation, several studies have focused on de-
veloping techniques to improve the computational efficiency when fitting mod-
els to measurement data, assuming arbitrary but bounded error distribution
[8, 6, 3, 5, 7, 4]. Central of these approaches is overcoming convergence to local
optima and inferring joint confidence intervals or regions [8, 9, 7]. It consists
then in obtaining either parameter intervals [µ−max, µmax+], [K−s ,K

+
s ] in R+ or

a region of R+×R+. Differently from these techniques of guaranteed parameters
estimations, the approach we propose here revolves around a functional framing.
In fact, it is no longer a matter of looking for a set of parameters, but rather
ensuring that there would be functions µ(·) (depending on time in an unknown
way) that guarantee that experimental data can be generated by a functional
frame. This amounts to look for functional intervals [µ−(·), µ+(·)] within a given
class of functions. Although we shall consider classes of functions described by
parameters, such as µmax and Ks for the Monod functions, we shall simply look
for two functions µ−(·), µ+(·) belonging to this class. Each of them is given
by a parameters pair (µ−max,K

−
s ), (µ+

max,K
+
s ), but this does not means that

we shall consider that the unknown µ(·) is a Monod function with unkwnown
parameters (µmax,Ks) belonging to a particular subset. We rather state that
the unknown growth function is any function µ(·) verifying the condition (7). In
particular µ(·) is not necessarily a Monod function. Moreover, let us underline
that the parameters are not necessarily such that µ+

max > µ−max, K+
s > K−s to

obtain inequalities (7). To our knowledge, the question of determining func-
tional intervals from experimental data in this way has not been yet addressed
in the literature. Functional bounds rather than a parameters set appear to be
better suited to the the method of interval estimators described above in the
context of bioprocesses.

The purpose of the present work is to propose a generic method to fit two
models (an “upper” and a “lower” one) that wrap data within lower and up-
per functions µ−(·) and µ+(·) instead of a single average µ(·). To avoid too
conservative bounds, we also introduce some flexibility in the application of the
method for choosing the framing quality, either considering different upper and
lower classes of growth functions, or forcing to have tightened bounds across the
data sets, or both. We apply our framing method on synthetic data generated
by random Monod [1] or Haldane [2] growth functions, this later one including
the effect of substrate inhibition. Then, we compute time-varying predictions
through numerical simulations of batch and continuous operating mode, pro-
viding bounded state estimations. As recalled previously, we mainly target
situations for which the usual statistical hypotheses (reproducibility, uniform
distribution of samples, unbiased noise...) are not necessarily met to justify the
usual identification methods (least-squares, coefficient of determination, confi-
dence intervals, maximum likelihood... see for instance [19, 49]). The approach
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we propose is purely geometrical and does not rely on any statistical property,
even though there are some similitude with least-square methods in the choice
of the fitting criterion.

The paper is organized as follows. In Section 2, we present the method in
a general framework and its theoretical justification (Proposition 1).In Section
3, we provide two extensions of the method while we show the application to
growth curves in Section 4. Then, in Section 5, we report numerical data and
simulations for two kinds of bioprocesses (batch and continuous) before we come
to a conclusion and some perspectives.

2 Presentation of the method

We describe here the method in a general setting of an unknown scalar function
f : x 7→ y = f(x), to be bounded by two functions f−, f+, given a set of n
experimental measurements

S := {(xi, yi)}i∈1···n.

We consider a class C of scalar functions parameterized by a vector of pa-
rameters p ∈ P , where P is a subset of Rm:

C :=
⋃
p∈P
{f(x, p) : x ∈ R 7→ R}. (9)

and require minimal regularity conditions.

Assumption 1. P is a compact subset of Rm. f is continuous with respect to
(x, p) ∈ R× P .

Let us denote the range interval of x in the set S by

I :=
[

min
i=1···n

xi , max
i=1···n

xi

]
.

For each p ∈ P , we define the functions

L(p) =

n∑
i=1

min(yi − f(xi, p), 0)2, U(p) =

n∑
i=1

max(yi − f(xi, p), 0)2 . (10)

Note that L(p) = 0 amounts to say that the graph of the function f(·, p) is
below S. Similarly, U(p) = 0 amounts to say that the graph of the function
f(·, p) is above S. Therefore, any pair (p−, p+) such that

L(p−) = U(p+) = 0 (11)

provides a frame of S in the sense that one has

f(xi, p
−) ≤ yi ≤ f(xi, p

+), i = 1 · · ·n. (12)

Several pairs (p−, p+) ∈ P 2 could satisfy the frame condition (11), and provide
frames that could be more or less loose. We look now for the tightest frames.
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For each pair (p−, p+) ∈ P 2, we define a “distance” function:

D(p−, p+) :=

n∑
i=1

(
f(xi, p

+)− f(xi, p
−)
)2

(13)

and for each γ ≥ 0, we consider the criterion

J(p−, p+, γ) := L(p−) + U(p+) + γD(p−, p+). (14)

We then define the family of optimization problems

J?(γ) := min
(p−,p+)∈P 2

J(p−, p+, γ), γ ≥ 0 (15)

parameterized by γ. Note that J is continuous w.r.t. (p−, p+) and P is a
compact set, which guarantee that the minimum in J?(γ) exists for any γ.

Let us also denote the classical least-square criterion by

JLS(p) :=

n∑
i=1

(
yi − f(xi, p)

)2
and define the number

J?LS := min
p∈P

JLS(p).

We first assume that the class C is rich enough to wrap all the data.

Assumption 2. There exists (p−, p+) ∈ P 2 such that (12) is fulfilled.

We shall consider cases for which all the data do not belong exactly to the
graph of single function in C (otherwise the classical least-square method would
do the job of providing µ(·) = µ−(·) = µ+(·)).

Assumption 3. There does not exist p ∈ P such that one has yi = f(xi, p) for
any i ∈ {1, · · · , n}.

We give now our main result concerning the construction of the functional
framing.

Proposition 1. Under Assumptions 1-2-3, the supremum

sup
{
γ ≥ 0, ∃(p−, p+) ∈ P 2 s.t. J?(γ) = γD(p−, p+)

}
(16)

is reached for γ? ∈ [0, 12 ] and any pair (p−, p+) such that J(p−, p+, γ?) = J?(γ?)
verifies the framing (12), minimizing the function D(p−, p+) among all pairs
(p−, p+) ∈ P 2 satisfying the frame condition (11).

Proof. For convenience, define for any γ ≥ 0 the set

E(γ) :=
{

(p−, p+) ∈ P 2 s.t. J?(γ) = γD(p−, p+)
}
.

Remark first that having p− = p+ = p gives J(p, p, γ) = JLS(p) whatever is γ,
which is the usual least-squares criterion. Let p̃ be a solution of the least-square
fitting, that is p̃ satisfying

JLS(p̃) = J?LS := min
p∈P

JLS(p).
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As S does not belong to the graph of a single function in C (Assumption 3), one
has J?LS > 0. For any pair (p−, p+) that satisfies the frame condition (11), one
can write

J(p−, p+, γ) = γD(p−, p+)

= γ

n∑
i=1

( (
f(xi, p

+)− yi
)

+
(
yi − f(xi, p

−)
) )2

= γ

n∑
i=1

(
yi − f(xi, p

+)
)2

+
(
yi − f(xi, p

−)
)2

+2
(
f(xi, p

+)− yi
) (
yi − f(xi, p

−)
)

= γ
(
JLS(p−) + JLS(p+) + 2

(
f(xi, p

+)− yi
) (
yi − f(xi, p

−)
) )

Property (11) implies that each term (f(xi, p
+)− yi) (yi − f(xi, p

−)) is non-
negative, and one has then the inequality

J(p−, p+, γ) ≥ γ(JLS(p−) + JLS(p+)) ≥ 2γJLS(p̃) = 2γJ(p̃, p̃, γ)

which shows that for γ > 1
2 , an optimal solution for (15) cannot verify the frame

condition (11). On another hand, for γ = 0, any pair (p−, p+) satisfying the
frame condition (11) gives J?(0) = 0 and is thus optimal. We deduce that one
has

γ? = sup{γ ≥ 0, E(γ) 6= ∅} ∈
[
0, 12
]

Let us show now that this supremum is reached. Consider the subsets

P+ =

n⋃
i=1

{p ∈ P, f(xi, p) ≥ yi}, P− =

n⋃
i=1

{p ∈ P, f(xi, p) ≤ yi}

By Assumption 2, P− and P+ are non-empty. Thanks to Assumption 1, P−

and P+ are closed sets and the number

D? = min{D(p−, p+), (p−, p+) ∈ P− × P+}

is well defined. Moreover, there exist (p−? , p
+
? ) ∈ P− × P+ such that D? =

D(p−? , p
+
? ), and by Assumption 3, D? is positive.

Clearly, one has E(γ) ⊂ P− × P+ for any γ ≥ 0. If J?(γ) < γD?, then for
any (p−, p+) ∈ P− × P+, one has J(p−, p+, γ) = γD(p−, p+) ≥ γD? > J?(γ)
and E(γ) is thus empty. If J?(γ) ≥ γD?, then the pair (p−? , p

+
? ) realizes the

equality J? = J(γ, p−? , p
+
? ) = γD(p−? , p

+
? ) and one has (p−? , p

+
? ) ∈ E(γ) with

J?(γ) = γD?. Therefore, one has

{γ ∈ [0, 12 ] E(γ) 6= ∅} = {γ ≥ 0, J?(γ) = γD?}

and as J? is continuous, we deduce that max{γ ∈ [0, 12 ], E(γ) 6= ∅} exists.
Finally, the pair (p−? , p

+
? ) satisfies (12) and minimizes D(·) among P−×P+,

which ends the proof.

In practice, one may easily approximate γ? with a good accuracy by a di-
chotomy method, as follows.

6



Algorithm 1 Estimate γ?

Require: n > 1
1: γ− ← 0, γ+ ← 1/2
2: for i = 1 · · ·n do
3: γ ← γ−+γ+

2
4: let p−, p+ be such that J(p−, p+, γ) = J?(γ)
5: if D(p−, p+) > 0 then
6: γ+ ← γ
7: else
8: γ− ← γ
9: end if

10: end for
11: return γ−, γ+

This algorithm gives numbers γ−, γ+ such that γ? ∈ [γ−, γ+] with γ+−γ− <
2−n−1.

For each pair (p−, p+) verifying the frame condition (11), we measure the
width of the frame by the area delimied by the graphs of the functions f(·, p+)
and f(·, p−):

A(p−, p+) :=

∫
x∈I

f(x, p+)− f(x, p−) dx (17)

This allows to discriminate between between pairs (p−? , p
+
? ) realizing the min-

imum of D(·) when they are non unique. Moreover, one can associate to the
class of functions C a “quality” as the number

Q(C) := min
{
A(p−, p+); (p−, p+) ∈ P 2 s.t. J(p−, p+, γ?) = J?(γ?)

}
.

This allows to compare the adequacy of each class. For two classes C1, C2 of
functions, we shall say that C1 gives a better framing of the set S than the class
C2 when one has Q(C1) < Q(C2).

Finally, let us draw some comparisons with the classical least-square method.

Lemma 1. Under Assumptions (1)-(2)-(3), one has

lim
γ→+∞

J?(γ) = J?LS . (18)

Proof. Notice that γ 7→ J?(γ) is non decreasing, as the family of functions
(J(·, ·, γ)) is non-decreasing w.r.t. γ, and is bounded from above by J?LQ . There-
fore the limit of J?(γ) when γ tends to +∞ exists.

Consider a sequence of optimal pairs (P ?−k , P ?+k ) for γ = k. As P is compact,
the sequence converges when k → +∞, up to a sub-sequence, to a certain
(P ?−∞ , P ?+∞ ) ∈ P 2 such that J(P ?−∞ , P ?+∞ ,∞) = limγ→+∞ J?(γ). This implies
that one has necessarily D(P ?−∞ , P ?+∞ ) = 0, that is f(xi, P

?−
∞ ) = f(xi, P

?+
∞ ) for

any i = 1 · · ·n. Consequently, one has J(P ?−∞ , P ?+∞ ,∞) ≥ J?LS and we obtain
that equality (18) is verified.

Consequently, our family of optimization problems generalizes the well-known
least-square optimization for large values of γ.
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It may happen that the data set S is too poor or that the class C is over-
parameterized. We shall say that S is rich enough for C when the following
property is fulfilled.{

f(xi, p
a) = f(xi, p

b); i = 1 · · ·n
}
⇒ pa = pb . (19)

Under this last condition, any converging sequence of optimal pairs (P ?−k , P ?+k )
satisfies P ?−∞ = P ?+∞ , i.e. the optimal frames converge when γ → +∞ to single
curves, solutions of the least-square optimization.

3 Extensions of the method

The extensions we present here bring some additional flexibility to the method,
in terms of choice of the class of functions and width of frames. For simplicity
of the presentation, we have not incorporated them in the presentation of the
overall method. Both extensions are illustrated in Section 5.

3.1 Framing with different upper and lower classes

There is no a priori reason to impose that upper and lower functions in the
frame (12) are sought among the same class of functions. Therefore, we can
consider without loss of generality two classes

C− :=
⋃
p∈P−

{f−(x, p) : x ∈ R 7→ R}, C+ :=
⋃
p∈P−

{f+(x, p) : x ∈ R 7→ R}

instead of the single class C considered in (9). Here, P− and P+ are two subsets

of Rm−
and Rm+

, such that Assumption 1 is fulfilled for each pair (P−, f−),
(P+, f+). The dimension m− is not necessarily equal to m+. In Section 5, we
shall see that this allows to consider less parameters altogether.

In short, we do not give here the corresponding assumptions and statement,
as its simply consists in replacing P × P by P− × P+ in Assumption 2 and
Proposition 1 of Section 2. We shall also consider that Assumption 3 is verified
for both P− and P+.

3.2 Relaxing with one or more points out of the frame

In practice, the frame provided by Proposition 1 might be too conservative as
it wraps all the experimental data. Practitioners might want to have tightened
bounds, allowing to have one or several points unwrapped. They could of course
choose themselves which point(s) to be redrawn and relaunch the method on a
smaller data set. We show here how to extend in a simple way the method to
have this done in a systematic way, i.e. as an automatic method choosing which
data point(s) can be forgotten to obtain tightened bounds, depending on the
maximal number of points that one accepts to be unwrapped.

For each pair (p−, p+) in P 2 (or in P−×P+), we define the sub-set of indices

O(p−, p+) =
{
i ∈ {1, · · · , n}, yi /∈ [f(xi, p

−), f(xi, p
+)
}
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As a generalization of the optimization problem considered in Section 2, we
consider the following family of problems

γ?j := sup
{
γ ≥ 0, ∃(p−, p+) ∈ P 2 s.t. J?(γ) = J(p−, p+, γ), #O(p−, p+) ≤ j

}
for j ∈ {0, n− 1}, where #E denotes the cardinality of a set E.

Clearly, one has γ?j > γ?0 = γ? for any j > 0, where γ? is given by Proposition

1. Then, for each γ?j , there exits a pair (p−j , p
+
j ) solution of the problem (15)

with γ = γ?j , which provides a frame with at most j unwrapped points. However,
notice that the optimization problem with j > 0 do not guarantee that the pair
(p−j , p

+
j ) provides the minimal value of D(p−, p+) among the pairs that exclude

exactly j points, differently to the original method for j = 0 (see Proposition 1).
For this later problem, one has to consider a different criterion which consists in
computing the functions L, U are D only for indices out of the subset O(p−, p+).
This last subset do depend on the pair (p−, p+), which makes the computation
of the optimization problem much heavier. Instead, we propose here a simpler
relaxation approach which simply consists in changing the condition on line 5
in Algorithm 2 by

#O(p−, p+) > j.

The family (p−j , p
+
j ) provides then a sensitivity of the framing with respect to

the number of unwrapped points. This will be illustrated in Section 5.

4 Application to the framing of growth curves

The knowledge of the growth functions is very useful in microbiology to predict
the evolution of micro-organisms and the performances of the bioprocesses, with
models such as (6): {

ẋ = µ(s)x−Dx

ṡ = − 1
rµ(s)x+D(sin − s)

(20)

where x and s stand here for the biomass and substrate concentrations, respec-
tively. Typically, experiments to determine the unknown growth function µ(·)
are drawn as follows.

- either in batch culture i.e. with D = 0. Experiments consist in choosing
different values si of initial substrate concentration s(0) = si and deter-
mining the quantity µi = d

dt ln(x(t))|x=0, measuring the time variation of
x(·). Data points (si,mi) are then expected to belong to the graph of the
unknown function µ(·).

- either in continuous culture i.e. with D > 0 (assumed to be constant or
slowly varying). Experiments consist in choosing different values Di of D
and wait the system to be at a quasi-steady state (x?, s?). Then, the data
point (si, µi) = (s?, Di) is expected to belong to the graph of the unknown
function µ(·).

With the set of data points (si, µi), one usually conducts a non-linear regression
to adjust the parameters of a growth model with least-square criterion [47], such

9



as for instance the Monod growth function (8), or the Haldane one

µ(s) =
µ̄s

K + s+ s2/Ki
. (21)

describing the effect of growth inhibition for large concentrations of substrate.
However, it has been underlined that the usual R-squared determination co-
efficient is not appropriate to measure the quality of the adjustment in this
non-linearity context [45]. More importantly, reproducibility and environmen-
tal fluctuations (such as pH, temperature, light...) from one experiment to
another one are common issues in microbiology.

Here, we shall consider that the experiments have been sufficiently numerous
to have faced the various possible kinds of fluctuations, so that future uses of
the micro-organisms might be subject to similar fluctuations or combinations
of them at different times. This hypothesis is important to justify the framing
approach, that we illustrate on synthetic data in the next section.

Let us now show how one can use the lower and upper functions µ−(·), µ+(·)
to obtained guaranteed predictions of x(·) and s(·). Assume that yield coefficient
r, dilution rate D (possibly time-varying) and initial condition (x0, s0) of model
(20) are known. The, one can easily show that the variable z(t) = x(t) + rs(t)
is solution of ż = D(rsin − z). Therefore, one has

z(t) = rsin + (x0 + rs0 − rsin)e−Dt, t ≥ 0. (22)

We distinguish now the predictions of x(t) and s(t).

1. Prediction of x(t). From s(t) = 1
r (z(t) − x(t)), one obtains that x(·) is

solution of the (non-autonomous) scalar differential equation:

ẋ = µ
(
1
r (z(t)− x)

)
x−Dx

Then, following [52, Th. VIII, p. 95], a frame x−(t) ≤ x(t) ≤ x+(t) is
obtained for any t ≥ 0 when x−(·), x+(·) are solutions of{

ẋ− = µ−
(
1
r (z(t)− x−)

)
x− −Dx−, x−(0) = x0

ẋ+ = µ+
(
max

(
1
r (z(t)− x+), 0

))
x+ −Dx+, x+(0) = x0

(23)

2. Prediction of s(t). Similarly, one has x(t) = z(t)− rs(t) and s(·) solution
of the scalar dynamics

ṡ = − 1
rµ(s)(z(t)− rs(t)) +D(sin − s)

which gives a frame s−(t) ≤ s(t) ≤ s+(t) where s−(·), s+(·) are solutions
of {

ṡ− = − 1
rµ

+(s−)(z(t)− rs−) +D(sin − s−), s−(0) = s0

ṡ+ = − 1
rµ
−(s+) max (z(t)− rs+, 0) +D(sin − s+), s−(0) = s0

(24)

Remark that uncertainties on the initial condition (x0, s0) ∈ [x−0 , x
+
0 ] ×

[s−0 , s
+
0 ] can be also incorporated in the framing, considering

z−(t) = rsin + (x−0 + rs−0 − rsin)e−Dt, z+(t) = rsin + (x+0 + rs+0 − rsin)e−Dt

instead of z(t) in systems (23)-(24) and initializations x−(0) = x−0 , x+(0) = x+0 ,
s−(0) = s−0 , s+(0) = s+0 .
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5 Numerical illustrations

In the section we illustrate the framing method on synthetic data and its use
for predictions as follows.

1. We generate a random set P of parameters of the growth models Monod
or Andrews, from which we generate a set S of ”synthetic” data points
(si, µi), corrupted by some noise. The set S is considered to represent a
plausible set of experimental data.

2. We apply our framing method to the data set S for determining the best
lower and upper functions µ−(·), µ+(·) (cf Proposition 1).

3. We use the functions µ−(·), µ+(·) to compute time varying intervals
[x−(·), x+(·)], [s−(·), s+(·)] for the concentrations x(·), s(·), as solutions of
equations (22)-(23)-(24).

4. We simulate the dynamical model (20) where the function µ(·) changes
randomly with time among functions (8) or (21) with parameters within
P, and compare the solution x(·), s(·) during the transients with the lower
and upper estimates provided by the previous step.

We have also determined the average growth function and its corresponding
trajectory to appreciate its position within the intervals. The optimization
problem (15) has been solved numerically with the fmincon function of Matlab
software.

5.1 Example of a batch process

We have generated randomly ten growth curves (see Fig. 1, left) and one hundred
data corrupted with noise (see Fig. 1, right).
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1.4

Figure 1: Random growths (left) and random data points (si, µi) (right).

We have wrapped all the data points among the class of Monod functions,
using the method exposed in Section 2, which gives the functions µ−, µ+ whose
graphas are depicted on Fig. 2-left. In addition, the graph of the growth curve µ̄
determined by the usual least-square method is plotted in dashed line. We have
then simulated a trajectory of the model (20) in batch mode (i.e. for D = 0)
with a random growth µ(·), along with the solutions of the frame dynamics
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(23)-(24) (see Fig. 2-right). The value of the yield coefficient r has been chosen
equal to 0.1. One can notice that the solution provided by the average growth
µ̄ (in dashed line) is not centered in the frame. This is due to the non-linearity
of the dynamics. This shows the interest of the information provided by the
guaranteed interval approach, confidence intervals of least-square method being
always centered about an average trajectory.
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Figure 2: Wrapping of the data (left) and dynamical simulation (right).

One may want to relax the frame considering that some data points are
most probably aberrant. As explained in Section 3, the extension of the method
chooses which points to be out of the frame. On Fig 3 one can appreciate the
impacts on the interval width, allowing only two data points to be unwrapped.
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Figure 3: Data wrapping (left) and corresponding simulation (right) allowing
two data points to be out of the frame.

In batch process, the asymptotic value of the biomass x is known, equal to
x∞ = x0 + rs0 according to (22), but guaranteed intervals allow to estimate the
time necessary to reach a given level of production xl < x∞, which is of primer
utility in industrial applications.
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5.2 Example of a continuous process

We have generated another set of random growth curves and random data (see
Fig. 4).

s

0 0.5 1 1.5 2 2.5 3 3.5

µ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

0 0.5 1 1.5 2 2.5 3 3.5

µ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4: Random growth curves (left) and random points (si, µi) (right).

As previously, we have wrapped the data points in between the graphs of
two functions µ−, µ+ among the class of Monod growth functions, depicted on
Fig. 5-left (the average growth determined by the least-square criterion is plotted
in dashed line). We have then considered the model (20) in continuous mode
for the input parameters D = 0.7 and sin = 4 (with the same yield coefficient
r = 0.1 than before). Fig. 5-right shows a trajectory for a random growth µ(·)
lying inside the guaranteed time-varying intervals computed with the functions
µ−, µ+.
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Figure 5: Wrapping with Monod growth functions (left) and associated dynam-
ical simulation (right)

To illustrate the flexibility of the extensions of the method presented in
Section 3, we have looked for the upper function µ− in the class of Andrews
functions (21), allowing thus non monotonic growth curves (see Fig. 6). The
area criterion (17) gives an improvement of the fitting (2.66 instead of 3.01).
However, this does not impact too much the frame estimation as this concerns
only small values of s. In addition, we have relaxed the framing allowing at most
three points to be unwrapped (see Fig. 7), which has reduced more significantly
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Figure 6: Wrapping with Monod and Andrews growth functions (left) and as-
sociated simulation (right)

the frame estimation. Here also, one can see that the interval method is relevant
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Figure 7: Data wrapping (left) and corresponding simulation (right) requiring
three data points to be out of the frame.

to obtain safe transients estimates, while the use of least-square method is more
questionable in the context of unpredictable variations.

6 Conclusion and perspectives

We have proposed a methodology for the construction of functional frames from
data points and applied it microbial growth functions, which are often the major
source of variability in microbiology. However, these growth functions may
depend on other variables, such as biomass concentration in the Contois model,
or could be multi-valued, such as in the Droop model where the nutrient uptake
function ρ(·) has to be identified concomitantly to the growth rate function µ(·).
Extensions of the method in these multi-valued contexts might be the matter
of future works.
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Encadrement par intervalle de flot d’état. Journal Euroéen des Systémes
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