N
N

N

HAL

open science

Collision Resolution Protocol for Delay and Energy
Efficient LoRa Networks
Nancy El Rachkidy, Alexandre Guitton, Megumi Kaneko

» To cite this version:

Nancy El Rachkidy, Alexandre Guitton, Megumi Kaneko. Collision Resolution Protocol for Delay
and Energy Efficient LoRa Networks. IEEE Transactions on Green Communications and Networking,
2019, pp.1-10. 10.1109/TGCN.2019.2908409 .

hal-02095747

HAL Id: hal-02095747
https://hal.science/hal-02095747
Submitted on 10 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02095747
https://hal.archives-ouvertes.fr

arXiv:1809.09470v1 [cs.NI] 21 Sep 2018

SS5G: Collision Resolution Protocol for

Delay and Energy Efficient LoRa Networks

Nancy El Rachkidy"), Alexandre Guitton!), Megumi Kaneko®
(1) Université Clermont Auvergne, CNRS, LIMOS, F-63000
Clermont-Ferrand, France
(2) National Institute of Informatics, Hitotsubashi, 2-1-2, Chiyoda-ku,
101-8430 Tokyo, Japan
Emails: nancy.el_rachkidy @uca.fr, alexandre.guitton @uca.fr,

megkaneko@nii.ac.jp

Abstract

Future 5G and Internet of Things (IoT) applications will heavily rely on long-range communi-
cation technologies such as low-power wireless area networks (LPWANS). In particular, LoORaWAN
built on LoRa physical layer is gathering increasing interests, both from academia and industries, for
enabling low-cost energy efficient [oT wireless sensor networks for, e.g., environmental monitoring
over wide areas. While its communication range may go up to 20 kilometers, the achievable bit
rates in LoORaWAN are limited to a few kilobits per second. In the event of collisions, the perceived
rate is further reduced due to packet loss and retransmissions. Firstly, to alleviate the harmful
impacts of collisions, we propose a decoding algorithm that enables to resolve several superposed
LoRa signals. Our proposed method exploits the slight desynchronization of superposed signals and
specific features of LoRa physical layer. Secondly, we design a full MAC protocol enabling collision
resolution. The simulation results demonstrate that the proposed method outperforms conventional
LoRaWAN jointly in terms of system throughput, energy efficiency as well as delay. These results
show that our scheme is well suited for 5G and IoT systems, as one of their major goals is to

provide the best trade-off among these performance objectives.

Index Terms

LoRa, LoRaWAN, LPWAN, Collision Resolution, Interference Cancellation, Desynchronized

Signals.

http://arxiv.org/abs/1809.09470v1

[. INTRODUCTION

Long-range low-power communication technologies such as LoRa [1], Sigfox [2], and
Ingenu [3], are becoming widely used in Low-Power Wide Area Networks (LPWANSs) [4],
[S], [6]]. These technologies enable to cover extensive zones with very low energy consump-
tion and are thus attractive technologies for supporting the future Internet of Things (IoT)
communications and applications, in particular environmental monitoring [7]], [8], [9].

LoRa [[1] is a recent physical layer for LPWANs making use of Chirp Spread Spectrum
(CSS) modulations, which can adaptively extend the communication range by reducing the
achievable throughput. On top of this LoRa physical layer, LoORaWAN [10] defines a simple
MAC protocol based on open specification, which allows end-devices to communicate to a
network server through gateways, but with a small duty-cycle (e.g., 1%). Thus, end-devices
can save energy, and the network lifetime is increased. The main issue in LoRa and LoRaWAN
is their throughput limitation: the indicative physical bitrate varies between 250 and 11000
bps [11]. Moreover, when two end-devices transmit simultaneously using the same parameters
such as channel, Spreading Factor (SF), and are received by the gateway with a similar power,
a collision occurs and none of the signals are decoded by LoRa. Thus, both end-devices have
to retransmit, which further reduces their achievable throughput.

So far, a number of works have focused on channel and SF allocation issues for the uplink
transmissions of LoRa systems, among which [12], [13], [14]. Most of these methods rely on
a centralized scheduling unit at the gateway. The feasibility of large-scale LoRa networks has
been analyzed in [15]], [16], in particular the effect of co-SF interferences as a large number
of end-devices may use the same SF at the same time. Most previous works consider SFs
to be orthogonal, but recently, various experiments and analysis have pointed out the impact
of imperfect orthogonality of SFs whereby devices using different SFs may interfere among
themselves [17], [18], [19].

To alleviate the large performance degradations due to co-SF interferences, we have pro-
posed in [20] a method for decoding superposed LoRa signals by exploiting the specific
features of LoRa signals. The proposed algorithm was shown to provide significant perfor-
mance enhancements in terms of achievable throughput, for different SF levels. However, the
algorithm in [20] was solely designed to handle two superposed LoRa signals and we did
not consider any MAC protocol.

Therefore, in this work, we extend our preliminary proposal of [20] by designing a general

decoding algorithm for several signals, which is far more intricate than the restrictive case

of two superposed signals. In addition, we propose a tailored MAC protocol on top of our
decoding algorithm. In particular, we show that it is possible to retrieve the frames from
superposed signals that are slightly desynchronized, with reasonable assumptions on the
hardware.

Our contributions are three-fold. Firstly, we propose an algorithm that is able to cancel
the collision between two collided signals and thus retrieve entire frames without any loss.
We then generalize this algorithm for retrieving several collided frames that are sent by
several end-devices. Secondly, we propose a MAC layer slotted with beacons in order to
allow synchronized transmissions (and to compensate for the drifting of the end-devices).
This MAC layer divides time into slots in which several end-devices might send slightly
desynchronized frames. Thirdly, we propose a Cyclic Redundancy Check (CRC) decoding
scheme that can be applied in order to decode the few frames that our algorithm was unable
to decode.

The structure of this paper is as follows. Section [IIl describes the LoRaWAN technology
with the LoRa physical layer and the LoRaWAN MAC layer. Section [IIl presents the pro-
posed decoding algorithm designed to correctly decode the collided frames, followed by the
proposed MAC layer in Section Section [V] shows the simulation parameters we use and

the results we obtained. Finally, Section [VIl concludes the paper.

II. LORAWAN DESCRIPTION

In the following, we first describe the LoRa physical layer, which is the main focus of our

paper. Then, we describe the LoRaWAN MAC protocol.

A. LoRa

LoRa [[1] is a physical layer technology for LPWAN, based on a Chirp-Spread Spectrum
(CSS) modulation. Each LoRa chirp consists of a linear frequency sweep. The duration of the
sweep is called symbol duration (SD), and depends on the value of the spreading factor SF
and on the bandwidth BW. The sweep is performed over the whole bandwidth BW. Chirps
are either up-chirps, where the frequency sweep is increasing, and down-chirps, where the
frequency sweep is decreasing.

Each chirp is a symbol and can encode 257

possible values. This is achieved by shifting
the sweep by the symbol value, as shown on Figure [1l for an up-chirp. From the sharp edge
in the instantaneous frequency trajectory [21/], and assuming that the receiver is synchronized

with the transmitter, the receiver can compute the symbol value as the shift in the frequency

at the beginning of the symbol. The symbol value of an up-chirp is also proportional to the
remaining time between the sharp frequency edge and the end of the symbol, as shown on
Figure[Il The symbol value of a down-chirp is proportional to the time between the beginning

of the symbol and the sharp frequency edge.

frequency

BW
value

.............. . . time

value

SD

Figure 1. Example of a single LoRa up-chirp. Computing the symbol value requires knowing the symbol start time and

the initial frequency, or the sharp frequency edge and the symbol end time.

To decode a symbol, the receiver needs to know the frontier of the symbol. Thus, LoRa
synchronizes the transmitter and the receiver by using a preamble of a few symbols. In the
case of uplink communications, the preamble consists of three parts: (i) a series of up-chirps
(generally six), each having a symbol value of 0, (ii) two up-chirps encoding the sync word,
which is a network identification, and (iii) two and a quarter down-chirps, used to identify
the end of the preamble. The payload and a CRC follow the preamble, and are encoded
using up-chirps. LoRa allows an explicit header mode, which inserts a header between the
preamble and the payload. This header contains the payload length, the coding rate, and an
optional header CRC.

Figure [2| shows an example of an uplink communication with a shorten preamble (two
up-chirps instead of six, no sync word, and one down-chirp instead of two and a quarter)
and a few data symbols (four symbols). We chose SF3 for the sake of simplicity, leading
to 257 = 8 possible values per symbol. Let us assume that a desynchronized node starts
receiving the preamble, not necessarily at the exact beginning of the preamble. The node

detects a sharp frequency edge of the preamble, which indicates the frontier of a symbol.

From this information, the receiver can synchronize itself according to the transmitter. The
end of the preamble is detected by the inversion of the chirps. Then, the payload is decoded.
In this example, the data symbols are 6, 0, 4, 4.

sender

preamble 6 0 4 4

receiver
. = - . .

desynchronization information

Figure 2. Example of a LoRa uplink frame, with a short preamble and four data symbols, with SF3. The receiver synchronizes

itself with the sender during the preamble.

B. LoRaWAN

LoRaWAN (in version 1.0 [22] or in version 1.1 [10]) is a simple MAC layer. It is
based on the LoRa physical layer. The topology defined in LoRaWAN is a star topology
where end-devices are connected to a network server through relays called gateways. The
communication technology between the end-devices and the gateways is based on CSS
modulations. Moreover, LoORaWAN defines three classes for end-devices: class A is for low-
power uplink communications, class B is for delay-guaranteed downlink communications, and
class C is for end-devices without energy constraints. In class A, which is the only mandatory
class, the end-devices are energy-efficient. In this class, the end-devices can transmit at any
time using ALOHA mechanism: an end-device chooses a channel randomly, sends the frame,
and waits for an acknowledgement during two successive receive windows. The transmission
time of each end-device should not exceed 1%.

LoRaWAN manages the bitrate according to the quality of links. Indeed, it uses the SF of
the signal in order to have a trade-off between the robustness of the signal and the bitrate.
When an end-device experiences a low signal quality, it increases its SF in order to be able
to send frames over long distances and thus better decode the signal. However, this results
into lower bitrate. This adaptation is controlled by the datarate (DR) of LoRaWAN, which
varies from DRO (for large SF but small bitrate) to DR6 (for small SF but larger bitrate).

The European regional settings of LoRaWAN [11] define most LoRa parameters. The
bandwidth of channels, BW, is equal to 125 kHz for DRO to DRS, and 250 kHz for DR6.
SF varies from 12 down to 7 for DRO to DRS, and is equal to 7 for DR6. The preamble
length is equal to 6 symbols. The physical bitrate varies between 250 bps for DRO, to 11000
bps for DR6. The maximum MAC payload of a frame varies between 59 bytes for DRO and
230 bytes for DR6.

III. PROPOSED SUPERPOSED LORA SIGNAL DECODING

LoRa gateways are able to decode superposed LoRa signals as long as they are sent on
different channels or on different SFs. Notice however that some researchers have shown that
signals on different SFs are not completely orthogonal [[17], [18], [19].

When several signals are received on the same channel and with the same SF, a difference
of received power might cause the strongest signal to be captured [21], [23]. When several
signals have a similar receive power, a collision occurs and all signals are considered lost [[15],
[L16].

In this paper, we focus on decoding superposed LoRa signals of similar receive power, on
the same channel, with the same SF. To do so, we show that we can use timing information
to match the correct symbols to the correct end-device.

In Subsection [[II-Al we describe our assumptions. In Subsection [[II-Bl we provide our main
algorithm, and we describe how it can decode two signals that are slightly desynchronized.
In Subsection [[II-Cl we extend the algorithm for the case of three or more signals that are
slightly desynchronized. In Subsection [II-D] we show how the CRC of frames can be used

to decode additional frames.

A. Assumptions

As in [20], we assume that there are no non-linearity effects between up-chirps (respectively
down-chirps). In other words, if two up-chirps (resp. down-chirps) c; and ¢, overlap at a given
time ¢ at the receiver side, the two observed frequencies are the frequency of ¢; (at time ?)
and the frequency of cy (at time ¢). Without additional information, it is not possible to
correlate the frequency to the corresponding transmitter. We assume that when an up-chirp is
superposed with a down-chirp, it is not possible to detect any of the frequencies. We assume
that when several frequencies overlap at a given time, only one frequency is detected by
the receiver. For instance, if there are three nodes transmitting at a given time, but only two

frequencies f; and f, are detected, we assume that it is not possible to know whether two

nodes were transmitting with f; and one with f5, or one node was transmitting with f; and
two with fs.

We assume that it is possible for the hardware of the receiver to detect all frequencies of
overlapping up-chirps (resp. down-chirps) within ¢ time-units. In the following examples, we
use 0 = SD/4 unless stated otherwise. Please note that on real LoRa hardware, the decoding
of signals is not carried out by directly detecting the sharp frequency edges, but instead by
computing a fast Fourier transform and detecting the peak in the frequency domain [21]].
With our proposition, this translates into either detecting the two sharp frequency edges in
the time domain, or the two peaks in the frequency domain. In practice, it is likely that
cannot be too small, as uncertainties in frequency detection might occur.

We also assume some properties on the frames: all nodes transmit with the same preamble
duration, the frame length is included in the explicit header, and there is at least one symbol
change during the whole frame: that is, the payload (data and CRC) does not consist of a
sequence of identical symbols.

Finally, we consider that nodes are slightly desynchronized: all nodes start their transmis-
sion within S D —§ time units, and during the whole transmission duration, the transmissions
of any two nodes have a delay of at least ¢ time units. In the following examples, we assume
that each node n; starts transmitting at time ¢y, + (¢ — 1)d (for @ > 1), and we consider that

time drift between transmitters is negligible as the time on air of LoRa frames is short.

B. Case of two slightly desynchronized signals

In this subsection, we consider the superposition of two signals from two transmitters that
are slightly desynchronized (by at least J time units, and at most SD — § time units).

Figure [3] shows the superposition of two slightly desynchronized signals. The preamble
length is three symbols (2 up-chirps instead of 6, no sync word, and 1 down-chirp instead of
2.25), and SF3. The figure shows the signal of the first transmitter n; starting at ¢, the signal
of the second transmitter n, starting at ¢y + d, and the superposed signal at the receiver. Note
that the data transmitted by n; is (2,2, 6,4, 4), and the data transmitted by n, is (6,0, 4,6, 2).
We will first explain our algorithm on this example, and then proceed with a more formal
description.

Example of preamble detection and data decoding

Preamble detection: During [to;ty + 0], the receiver detects the preamble of n;. During
[to 4+ J;to + 20], the receiver is able to detect that two slightly desynchronized signals are

transmitted, and is able to deduce the symbol frontiers of both transmitters. At frontier ¢,

ny
5 6 0 4 6 2
receiver ; ; -
: : t 1 t t t 1
tO tl 2 t3 4 t5 6 t7 8 tg 10 tll 12

Figure 3. The superposition of two slightly desynchronized signals produces a complex signal, which can still be decoded

in linear time.

time F_ Fy symbol time F_ Fy symbol
to unknown | {4,6} initialization ts {2,4} | {2,4} | s1 = *,53 = 51
ts {4,6} | {0,4} | s1=6,53=01 ts | {2,6} | {6} | s3=2,55=6
to {0} {0,4} | s3=0,53=4 || tr | {2,6} | {2,4} | s3=6,51=4
ts {4,6} {6} | s5=4,53=6 | to {4} {4} st = s}
t1o {6} {2,6} | s1=6,52 =2 tun | {0,4} | {0} | st=4,56=0
t1o {2} 0 s2=2
Table T

DECODING OF THE TWO SIGNALS OF FIGURE[3]

or more precisely, during [t1;¢; +], the receiver is not able to detect the superposition of
preambles anymore (due to the presence of up-chirps superposed with down-chirps). Thus,
it knows that the preamble of n; has reached its first down-chirp at ¢;.

Data decoding: We define the sequence of decoded data for n; by s

and the sequence
of decoded data for ny by s2. t,, which is the beginning of the payload of n,, is the first
time where only up-chirps of data symbols are superposed. At frontier -, the receiver stores
the current frequencies, which correspond to F () = {4,6}. At frontier t3, the receiver
computes F_(t3) by updating the previous frequencies I, (t3) = {4, 6}, and obtains F_(t3) =
{2,4} (each frequency of F(t;) is increased by 3/4 - 25" = 6 since 3/4 time units have

passed since). The receiver detects the current frequencies F, (t3) = {2,4}. There is no

change in the frequencies (F_(t3) = F',(t3)), since the beginning of the data of n; starts with

the repeated symbol 2. Thus, the algorithm leaves * for the first symbol of n; (to be decoded
later), so s' = (x). At frontier t,, the receiver computes F_(f,) by updating the previous
frequencies F'; (t3) = {2,4}, and obtains F_(t,) = {4,6} (since 1/4 time units have passed).
It detects the current frequencies F', (t4), and obtains F'(t4) = {0,4}. Thus, one frequency
changed from 6 to 0, hence, s = (6,0), since t, is a frontier of n5. The current symbol of n;
corresponds to frequency 4 (which is translated into 2 at the beginning of the symbol frontier
of ny, which was t3). At frontier t5, the receiver computes F'_(t¢5) by updating the previous
frequencies Fy (t4) = {0,4}, and obtains F_(t5) = {2,6}. It detects the current frequencies
F,(t5) = {6}, which can also be written {6,6}. The frequency of n; changed from 2 to 6,
hence s! = (x,2,6). The current symbol of n, corresponds to frequency 6 (which translates
to 0 at the beginning of the symbol frontier of ns, ¢4, and was already known). The algorithm
continues until ¢;5, where no frequency is received. Thus, the algorithm knows that all nodes
have stopped their transmissions. The algorithm removes the last predicted symbol of n,
(indeed, at ¢y, it considered that n; was transmitting a symbol with the same frequency as
the frequency of ny). At this step, the decoded frames are s' = (x,2,6,4,4) for n; and
s> = (6,0,4,6,2) for ny. Then, the algorithm replaces all special values * with the first
known value of the frame by backtracking (since we know s3 = s1). The algorithm uses the
frame length present in each frame to truncate the frames to their correct length. Finally, the
algorithm outputs are (2,2,6,4,4) and (6,0,4,6,2), as expected.

Generalization of preamble detection and data decoding

In this paragraph, we generalize the example given above and we formulate our proposition
in Algorithm [Il

Preamble detection: The superposition of the beginning of the preambles results in the
superposition of up-chirp symbols. This superposition enables the receiver to detect two
sharp frequency edges, each sharp edge allowing the receiver to know the symbol frontier of
a transmitter. The beginning of the first data symbol of the first node is not decodable, as it
corresponds to an up-chirp (for node n;) superposed with a down-chirp (for the end of the
preamble of n,).

Data decoding: From the beginning of the first data symbol of the second node, only up-
chirps are superposed, and thus it is possible to detect all sharp edges. The difficulty relies
in correlating each frequency with the symbols of each node. To do so, we use the following
property: sharp edges can occur only at the beginning of a symbol, when the symbol changes,
or once during a symbol. When the sharp edge occurs during a symbol, it can be predicted

if the symbol value is known.

Algorithm [T describes our proposed algorithm. It starts after the superposed preambles have
been received, and thus considers that the symbol frontier of each transmitter is known. The
algorithm considers the frontiers of all data symbols sequentially, apart from the first frontier
of the first node for which the frequency cannot be obtained. At each frontier, the receiver
updates the previous frequencies (since frequencies change over time in LoRa chirps, and time
has passed since the detection of the previous frequencies). Then, the receiver compares these
(updated) previous frequencies F_ with the current frequencies F'.. Note that in practice, it
may take up to ¢ time units to obtain the current frequencies, so the receiver might have to
update the current frequencies based on the detection duration. Only two cases can occur for
the algorithm.

Case 1: Exactly one frequency has changed. This can only happen when a new symbol starts,
which can only occur at the symbol frontier. Since the receiver knows if the current frontier
is for the first or the second transmitter, it knows the new symbol for the current node (based
on the new frequency), the previous symbol for the current node (based on the frequency
that has changed), and the current symbol for the other node (based on the frequency that
did not change).

Case 2: No frequency has changed. This can only happen when the new symbol is equal to

the previous symbol (this was the case on Figure [3 at times 3 and ty).

« If the receiver knows the previous symbol of the current node (time tq of Figure [3)), the
new symbol can be deduced.

o Otherwise, the previous symbol of the current node is unknown, which corresponds to
the beginning of the algorithm when the first symbol is repeated (time ¢3 of Figure [3).
In this case, the algorithm leaves a special value (denoted by * here). As soon as one
symbol changes, the receiver is able to identify the new and previous symbols of the
end-device corresponding to that frontier, and hence to deduce the symbol of the other
end-device. In addition, the algorithm can replace all the * values of the frame of the
current node with the value of the previous symbol. This is why we assumed at least

one symbol change per frame.

The time complexity of our algorithm is linear with the number of symbols of the longest
frame. Most of the symbols are decoded on the fly, 6 time units after the beginning of the
symbol, except for the symbols repeated initially (see the last loop of the algorithm). The
space complexity of our algorithm is (1), since the storage requirement is limited to the

value of the first non-special symbol for each node. Thus, the algorithm is extremely efficient

Algorithm 1: Decoding of two slightly desynchronized superposed LoRa signals.

for each frontier t; of a data chirp do
compute currentSymbol and currentNode

if currentSymbol=0 and currentNode=1 then
| skip (frequencies cannot be detected)

else
F. (t;) <—detect current frequencies

if currentSymbol=0 and currentNode=2 then
| skip (F_(¢;) cannot be computed)

else
compute F'_(t;) by updating F, (¢;_1)

newkF « F(t;) — F_(t;)
oldF + F_(t;) — Fy(t;)

if newF = () then
| the new symbol in symb|currentNode] is equal to the previous (or to x)

else
L the previous symb. in symb|currentNode| is equal to the value of oldF

the new symbol in symb[currentNode] is equal to the value of newF

for each node n do
replace in symb[n] all the leading * values with the first defined value

| truncate the frame according to its length

in time and space, for two nodes.

C. Case of several slightly desynchronized signals

Note that with our assumptions, decoding three or more signals is not always possible. For
instance, Figure 4] shows two sets of different signals that produce the same superposition of
frequencies, and thus cannot be decoded.

Algorithm [2] describes our proposed algorithm, for three or more nodes. It is similar to
Algorithm [Il with the following main changes. (1) When F_(t) = F(t) at the frontier of
a node n, it is not possible to assume that the symbol of n remains the same. Indeed, if
the number of frequencies of F_(¢) is smaller than the number of nodes, the frequency of

node n might have changed from one superposed frequency to another superposed frequency.

TLQ

ng

receiv.

Figure 4. When three nodes that are slightly desynchronized transmit frames, it is not always possible to decode them:

these two sets of frames produce the same superposition of frequencies.

(2) Consequently, initial repeated symbols which yielded unchanging frequencies cannot be
decoded.

Algorithm [2] is able to decode many cases of slightly desynchronized signals for n trans-
mitters, when n > 3, while Algorithm[Ilis able to decode all cases of slightly desynchronized
signals for n = 2 transmitters. It only fails to do so when the number of received frequencies
is within [2;n — 1] (which never occurs when n = 2). Indeed, in this case, even if the
algorithm knows that the frequency of the current node has changed, it cannot determine
what is the new value, as it has n — 1 > 1 possibilities. It can still deduce the value of the
previous symbol for this node. At the next frontier for this node, though, the value of this
symbol might be deduced, depending on the number of other frequencies.

Figure [5l shows the superposition of three signals, and Table [IIl shows the decoding of the
three superposed signals of Figure [3 according to Algorithm 2] Initially, F', (t5) = {3,4,7}.
Then, the algorithm computes F_(t3) = {0,3,7} and obtains F, (t3) = {0,4,7}. The first
symbol s} of node n; is thus 3, and the second symbol s% of node n; is 4. Then, the algorithm
computes F_(t4) = {1,2,6} and obtains F(t4) = {1,6}. The first symbol s? of node n, is

2, but it is not possible to determine the second symbol of node n, yet. Then, the algorithm

Algorithm 2: Decoding of three or more slightly desynchronized superposed LoRa

signals.

for each frontier t; of a data chirp do
compute currentSymbol and currentNode

if currentSymbol=0 and currentNode+ lastNode then
| skip (frequencies cannot be detected)

else
F.(t;) <—detect current frequencies

if currentSymbol=0 and currentNode=IlastNode then
| skip (F_(¢;) cannot be computed)

else
compute F'_(t;) by updating Fy (¢;_1)

newF < F,(t;) — F_(t;)
oldF <+ F_(t;) — F(t;)

if oldF # () then
| the previous symb. in symb[currentN.] is equal to the value of oldF

if newF # () then
| the new symbol in symb|currentNode] is equal to the value of newF

computes F_(t5) = {0,3} and obtains F, (t5) = {0,3,4}. The second symbol s3 of node n;
is 4, but it is not possible to determine whether the first symbol of node ns is O or 3. The

algorithm continues until #,7.

time F_ Fy symbol time F_ Fy symbol

to unknown | {3,4,7} initialization t3 {0,3,7} | {0,4,7} | s1 =3,55=4
ts | {1,2,6} | {1,6} s5=2 ts {0,3} | {0,3,4} 55 =4

te | {0,4,7} | {0,1,7} | s =4,s5=11 tr | {1,2,3} | {2,3,7} | s3=1,3=7
ts | {1,4,5} | {1,2,5} | s5=4,s3 =2 to | {1,5,6} | {5,6} si=1

t10 {0,7} {0,2} | s3=7,51=2| tn {2,4} {2,4}

t12 {0, 6} {0, 6} ? tiz | {0,2} {0,2} ?

t1a {2,4} {0,2} | si=4,si=0| tis | {4,6} {4,6} ?

t16 {0,6} {6} s2=0,58 =6 | ti7 {0} 0 s5=0

Table TI

PARTIAL DECODING OF THE THREE SIGNALS OF FIGURE[3]

Table [l shows the output of Algorithm 2l The frame of ny is successfully decoded.

However, the frame of n; has its last two symbols unknown, and the frame of ng has its first

ni

ns
3 4 2 4 0
receiver | | ts ts i tiy iy
: : il tr tio itis tie
to t ty 13 lo tg 12 15

Figure 5. The superposition of three signals produce a very complex signal, which can be partially decoded.

symbol unknown.

node | symbol 1 | symbol 2 | symbol 3 | symbol 4 | symbol 5

ni 3 4 1 {5,6} {0, 6}

ng 2 1 7 2 0

n3 {0, 3} 4 2 4 0
Table TIT

OUTPUT OF ALGORITHM[Z]ON THE SIGNALS OF FIGURE ONLY ONE FRAME IS COMPLETELY DECODED.

D. Cyclic Redundancy Check for decoding

It is possible to use the CRC present in each frame in order to improve the decoding rate
of Algorithm

Let us consider the output of Table [[IIl as an example. The first symbol of the frame of
ng is unknown, but the uncertainty is limited to two possible values for this symbol. Thus,
the frame for nj is either (0,4,2,4,0) or (3,4,2,4,0). We can verify the CRC value for each
possible frame: if only one frame has a correct CRC, then this frame is the correct frame.
If both frames have a correct CRC, which is possible but unlikely, then the frame cannot be

decoded. Similarly, the possible frames for n; are either (3,4,1,5,0), (3,4,1,6,0), (3.4,1,5,6) or

(3,4,1,6,6). Since there are more uncertainties, the probability of having at least two frames
with a correct CRC is higher, and it is less likely that this frame can be decoded. In order
to avoid having to compute a large number of CRCs (with limited decoding performances),
we set a limit to how many CRCs are performed per frame.

In order to show the performance of using the CRC in our MAC protocol, we consider
the following scenario. We force situations where Algorithm 2] occurs by ensuring that all
end-devices send a colliding frame with a slight desynchronization. We set the frame size to
50 bytes, the SF to 7 and we set the number of CRC attempts per frame to 4 or 100. We
implemented random symbols for the frames, and the actual CRC algorithm of the LoRaWAN
standard, which is CCITT-16 (see Subsection 15.2 of [10]).

Figure [6] shows the average number of CRC attempts per frame. We notice that the number
of needed CRC increases with the number of collided frames. This is because the more
colliding signals, the more uncertainties there are in frames. Moreover, we notice that with a
threshold of 4, the CRC algorithm cannot be applied for more than n = 5 colliding frames,
due to a large number of uncertainties. In this case, each frame needs more than 4 CRC to
be decoded, so no CRC is actually computed. However, frames are able to be decoded by

increasing the number of authorized CRCs per frame, e.g. to 100.

(D]

g

& 16 I T

) CRC=4 =2

2‘ 14 eRC=100=2 —
g* 12 =
5

£ 10f -
% 8 -
@)

5 6 N
8 a4t .
E %

5 L i
§° 0 . = P@

§ 2 3 4 5 6 7 8 (¢
<

Number of frames in collision

Figure 6. The number of CRCs needed to decode a frame increases with the number of frames in collisions.

Figure [7] shows the number of decoded frames with and without CRC for the scenario
described above. We can notice that for a small number of authorized CRCs per frame such
as 4, we see a small improvement when the number of colliding frames is less than or equal

to 5. Above this number, the CRC algorithm is not able to decode frames and thus, it has

the same behaviour as if CRC were disabled (case of CRC=0). However, by increasing the
number of authorized CRCs per frame, we can notice that the number of decoded frames

increases slightly and can improve the throughput up to 8% when eight frames are colliding.

@)

a4 T T

O 71 CRC=0C==——=a —
= CRC=4 E=za —

‘s 6 ERC=100 " -
5 g

= | —
e 4 [

(D]

T 3r .
g

G 2 B 1
o

R 1
E o !

Z 2 3 4 5 6 7 8 (¢

Number of frames in collision

Figure 7. The CRC algorithm increases the number of decoded frames.

IV. PROPOSED COLLISION RESOLVING MAC PROTOCOL

In this section, we present a new MAC protocol which enables slightly desynchronized

LoRa signals. Then, we provide an analysis of this proposed MAC protocol.

A. Protocol Description

Algorithm [Il and Algorithm 2] require transmissions to be slightly desynchronized, by less
than one symbol, which is a rare event in LoORaWAN. Thus, we designed a new MAC protocol
called Collision Resolving-MAC (CR-MAC).

The CR-MAC protocol works as follows. Each gateway sends periodic beacons on each
SE. These beacons are sent simultaneously by all gateways, as in Class B of LoRaWAN.
Upon receiving a beacon, each end-device starts .S consecutive slots, whose duration is equal
to the maximum frame transmission