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Abstract: 

Microalgae constitute a highly diverse group of eukaryotic and photosynthetic 

microorganisms that have developed extremely efficient systems for harvesting and 

transforming solar energy into energy-rich molecules such as lipids. Although microalgae are 

considered to be one of the most promising platforms for the sustainable production of liquid 

oil, the oil content of these organismis is naturally low, and algal oil production is currently 

not economically viable. Chlamydomonas reinhardtii (Chlamydomonas) is an established 

algal model due to its fast growth, high transformation efficiency, and well-understood 

physiology and to the availability of detailed genome information and versatile molecular 

tools for this organism. In this review, we summarize recent advances in the development of 

genetic manipulation tools for Chlamydomonas, from gene delivery methods to state-of-the-

art genome-editing technologies and fluorescent dye-based high-throughput mutant screening 

approaches. Furthermore, we discuss practical strategies and toolkits that enhance transgene 

expression, such as choice of expression vector and background strain. We then provide 

examples of how advanced genetic tools have been used to increase oil content in 

Chlamydomonas. Collectively, the current literature indicates that microalgal oil content can 

be increased by overexpressing key enzymes that catalyze lipid biosynthesis, blocking lipid 

degradation, silencing metabolic pathways that compete with lipid biosynthesis, and 

modulating redox state. The tools and knowledge generated through metabolic engineering 

studies should pave the way for developing a synthetic biological approach to enhance lipid 

productivity in microalgae.  

 

Key words: Chlamydomonas reinhardtii, Genome Editing, Metabolic Engineering, Oil 

content, Transgene Expression, Triacylglycerol
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Introduction 

Microalgae represent a polyphyletic group of photosynthetic eukaryotic microorganisms, and 

are sources of a number of value-added products, including proteins, pigments, carbohydrates, 

carotenoids, vitamins, anti-oxidants, and polyunsaturated very long chain fatty acids (Chew et 

al. 2017). Due to their high biomass productivity and diverse ecological habitats, microalgae 

have recently been considered an alternative sustainable resource for biofuels. However, the 

sustainable industrial production of oil, i.e., triacylglycerols (TAGs), from any microalgal 

species has yet to be realized, due to bottlenecks at both the biological and biotechnological 

levels. One of the most challenging issues is to increase oil productivity, because most 

microalgae accumulate large amounts of oil only when subjected to stress conditions (e.g., 

nutrient depletion), when cell growth is usually impaired (Merchant et al. 2012, Siaut et al. 

2011). Therefore, current research is intensively focused on deciphering the molecular 

mechanisms underlying lipid biosynthesis and the relationship between lipid biosynthesis and 

biomass growth (Hu et al. 2008, Kong et al. 2018a).

Among microalgal species, the unicellular eukaryotic green alga Chlamydomonas 

reinhardtii (hereafter, Chlamydomonas) is a well-established algal model, due to its haploid 

genotype, fast growth, and sequenced genome (Merchant et al. 2007). Chlamydomonas is 

commonly used to study a number of biological processes, including photosynthesis and 

flagella-mediated motility. Over the past decade, spurred on by a renewed interest in 

microalgal oil, Chlamydomonas has emerged as a model organism for studies of lipid 

metabolism (Du and Benning, 2016, Li-Beisson et al. 2015). 

Furthermore, the emergence of synthetic biology provides an opportunity to expedite 

the development of Chlamydomonas and other microalgal species as a useful industrial 

biotechnology platform. Synthetic biology, which is based on a combination of standardized 

biological components (e.g., promoters, terminators, and selection markers), predictive 

modeling, and iterative design and testing, was first used in bacterial systems and has since 

advanced to eukaryotic systems, including algae (Crozet et al. 2018). A modular cloning 

toolkit, comprising 119 functionally validated genetic parts, was developed for 

Chlamydomonas based on Golden Gate cloning with standard syntax (Crozet et al. 2018). 

This toolkit has established Chlamydomonas as the next chassis for sustainable synthetic 

biology. 

Here, we present an overview of molecular approaches, such as metabolic engineering 

and gene disruption strategies, that enable the genetic manipulation of microalgae with the 
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aim of identifying metabolic pathways and elucidating physiological mechanisms. We 

provide examples of successful efforts to genetically manipulate Chlamydomonas to increase 

oil content, and discuss future challenges and directions in microalgal synthetic biology. 

Gene delivery tools and selection systems for Chlamydomonas 

Transformation methods

Various techniques have been established to deliver DNA into the Chlamydomonas nucleus, 

including biolistics, electroporation, Agrobacterium-mediated transformation, or even simply 

vortexing with glass beads, silicon carbide whiskers, or 3-aminopropyl-functionalized 

magnesium (reviewed by Jinkerson and Jonikas 2015). Biolistic transformation was the first 

method developed for this purpose and was mediated by microprojectiles, such as tungsten 

powder and gold particles, and, more recently, by size-controlled mesoporous TiO2 

nanoparticles, which are effective at lower density and are less prone to aggregation than are 

tungsten or gold particles (Hou et al. 2013). Biolistic methods can be used to transform 

nuclear, chloroplastic, and mitochondrial genomes. This method is efficient but expensive due 

to the requirement for specialized equipment. Consequently, cheaper and simpler methods 

(e.g., Agrobacterium-mediated transformation and electroporation) have been developed. 

Agrobacterium-mediated transformation yields a slightly lower proportion of transgene-

silenced transformants than does electroporation, but does not provide significant advantages 

over electroporation-mediated transformation in Chlamydomonas, due to its labor-intensive 

nature and large number of false positives (Mini et al. 2018). Thus, electroporation is 

currently one of the most efficient methods for delivering DNA into the nuclei of cells 

(Shimogawara et al. 1998, Yamano et al. 2013). 

Selectable markers and reporter genes

Several antibiotic resistance genes have been developed for nuclear or chloroplast 

transformation in Chlamydomonas. Among these, aadA, encoding an aminoglycoside 3’-

adenylyltransferase (spectinomycin and streptomycin resistance), is widely used in both 

nuclear and chloroplast transformation (Meslet-Cladière and Vallon 2011). The GC-rich ble 

gene, conferring resistance to zeocin, is an effective selectable marker for efficient transgene 

expression when fused to the target gene (Fuhrmann et al. 1999, Plucinak et al. 2015), but the 

underlying mechanism is not well understood. It is possible that bleomycin resistance proteins 

(BLEs) function by sequestering zeocin in a one-to-one ratio, but not through enzymatic 
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inactivation (Rasala et al. 2013). However, the use of ble as a selectable maker is limited, 

because zeocin is light sensitive and may function as a mutagen when applied at high 

concentrations (Lin et al. 2017). This prompted the development of other selectable markers, 

such as aphVIII and aph7″, which confer paromomycin and hygromycin-resistance, 

respectively. AphVIII is currently one of the most widely used selectable marker in 

Chlamydomonas, because it confers a stable drug-resistant phenotype (Meslet-Cladière and 

Vallon 2011). 

In addition to selectable markers, reporter genes have also become important tools in 

microalgal genetic engineering. For instance, to monitor gene expression and protein 

localization in vivo, various fluorescent proteins covering most fluorescent ranges (i.e., yellow 

YFP, blue mTagBFP, cyan mCerulean, green CrGFP, yellow Venus, orange tdTomato, and 

red mCherry) have been adapted for optimal expression in Chlamydomonas (Neupert et al. 

2009, Rasala et al. 2013).  

Forward genetics in Chlamydomonas

Mutagenesis

Mutagenesis mediated by mutagens (e.g, ethylmethanesulfonate) has been used to generate a 

library of Chlamydomonas mutants that was subjected to forward genetic screens for altered 

oil content (Xie et al. 2014, Lee et al. 2014). However, a major drawback of using these 

mutagens is that point mutations are randomly produced, making it challenging to identify the 

causative gene(s) for the phenotype. 

Random insertional mutagenesis of Chlamydomonas using drug resistance cassettes, 

which randomly integrate exogenous DNA into the nuclear genome, has been used to 

generate tens of thousands of transformants in numerous forward genetics studies. Insertional 

mutants have been generated at large scale and screened for phenotypes related to lipid 

metabolism, motility, and photosynthesis (Cagnon et al. 2013, Cheng et al. 2017, Dent et al. 

2015). An advantage of this approach is that insertional mutations can be mapped without the 

need for extensive genetic crosses.

Examples of medium-to-high-throughput screening developed for Chlamydomonas

Oil content can be estimated by staining with fluorescent dyes (e.g., Nile red and BODIPY) 

and can be combined flow cytometry analysis for high-throughput studies. This strategy has 
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been used to screen for Chlamydomonas mutants with altered oil content (Cagnon et al. 2013, 

Cheng et al. 2017, Tsai et al. 2014). Fluorescence-activated cell sorting of cells that have been 

stained with Nile red allows for the efficient screening of tens of thousands of 

Chlamydomonas mutants (Terashima et al. 2015, Xie et al. 2014). This method also allows 

for quantification of lipid content while preserving cell viability, as Nile red staining does not 

hinder growth, and requires only five weeks from mutagenesis to mutant isolation (Terashima 

et al. 2015). 

Another approach commonly used to study lipid metabolism is a screen for mutants 

with altered FA composition. Differences in FA composition can be analyzed using a gas 

chromatography-flame ionization detector (GC-FID) after lipids are converted to their fatty 

acid methyl esters. Direct transmethylation of cell pellets by acid-catalyzed transmethylation 

coupled with a robotized GC-FID was developed for high-throughput screening for 

Chlamydomonas mutants with altered FA composition (Nguyen et al. 2013). Using this 

method, we previously isolated a mutant defective in the ω-3 FA desaturase (named crfad7) 

in a screen of 2,000 insertional mutants (Nguyen et al. 2013). CrFAD7 is localized to plastids 

and contributes to the formation of all ω-3 fatty acid-containing plastidic and extraplastidic 

glycerolipid species (Nguyen et al. 2013).

Genetic mapping of insertional mutants

Various PCR-based techniques have been developed to identify insertion sites within the 

nuclear genome of Chlamydomonas, including Genome Walker, restriction enzyme site-

directed amplification-PCR (RESDA-PCR), thermal asymmetric interlaced-PCR, 3-rapid 

amplification of cDNA ends, SiteFinding-PCR, and hairpin-PCR (reviewed by Li and Jonikas 

2016). Among these methods, RESDA-PCR is the most commonly used and offers a high 

probability of identifying the insertion sites (González-Ballester et al. 2005, Kong and Li-

Beisson 2018). However, this approach is labor-intensive and only identifies a handful of 

insertion sites at once, rendering it unsuitable for the simultaneous mapping of tens of 

thousands of Chlamydomonas insertional mutants. Additionally, the success of these PCR-

based approaches is determined largely by the PCR product size, and requires intact PCR 

primer binding sites in the cassette, which are occasionally disturbed by cassette truncation, 

concatemerization after integration, and the presence of “junk DNA” from a distant locus (Li 

et al. 2016).

Prompted by these challenges, a method for mapping insertion cassettes in pools of 
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tens of thousands of Chlamydomonas mutants, named Mme1-based insertion site sequencing 

(ChlaMmeSeq), was developed (Zhang et al. 2014). Approximately >100,000 insertions were 

successfully mapped using ChlaMmeSeq (CLiP:https://www.chlamylibrary.org/). In this 

method, a type II restriction enzyme site (MmeI) that facilitates subsequent high-throughput 

sequencing is included at both ends of the transformation cassette. However, in some 

instances, upon fragmentation of the cassette, the binding sites for sequencing primers are 

eliminated, making it difficult or impossible to use ChlaMmeSeq to map that insertion site. 

Due to recent decreases in the cost of sequencing technologies, whole-genome re-sequencing 

has been used to identify point mutations and map target genes. Using this approach, we 

previously identified the site of genetic lesion for a Chlamydomonas mutant named 

constitutive-oil-accumulation 1 (coa1), which was found to harbor a >200 kb deletion (Goold 

et al. 2016).

Reverse genetics in Chlamydomonas

A successful reverse genetic approach relies on the selection of sutiable target gene(s) for 

genetic manipulation. There are two major ways to identify and select target genes in 

Chlamydomonas. First, Chlamydomonas genes that are homologous to ones already known to 

increase seed oil content in terrestrial plants or in other organisms can be identified. This case 

requires selection of the genes and rigorous confirmation of the activity of the proteins 

encoded by the genes. However, many genes in the Chlamydomonas database are not well 

annotated or characterized. In general, the Chlamydomonas genome most closely resembles 

those of plants, followed by those of animals and fungi. This is particularly the case for genes 

involved in lipid metabolism, as de novo FA synthesis occurs in the chloroplast, an organelle 

common to plants and algae. However, the flagellar and basal body proteins tend to show 

greater similarity to those of animals (Merchant et al. 2007). To select suitable target genes 

for reverse genetics, one can search for genes homologous to those already reported as being 

effective in model plant databases, such as Arabidopsis TAIR (https://www.arabidopsis.org). 

Further steps in selecting a target gene may include constructing phylogenetic trees; aligning 

the amino acid sequences of the predicted proteins; performing a subcellular localization 

analysis, using  PredAlgo (Tardif et al. 2012); and verifying the expression profiles, using the 

Chlamy Network Portal (http://networks.systemsbiology.net/chlamy-portal/) or AlCOdb 

(http://alcodb.jp/coexpression/search). Second, candidate genes can be identified in 

comparative transcriptomic studies, gene co-expression analyses, or proteomics studies. 
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Acyltransferases and lipid droplet-associated proteins are of particular interest to many 

scientists working in the field of lipid production.

Strategies to improve nuclear transgene expression

Codon optimization

Although foreign genes are easily integrated into the nuclear genome, transgene expression 

levels are notoriously poor in Chlamydomonas (Kong et al. 2014, Lumbreras et al. 1998, 

Neupert et al. 2009). The efficiency of gene expression partially depends on the nucleotide 

composition (particularly the GC content) of the inserted DNA fragment and on its 

consistency with the codon-usage of the host organism (Barahimipour et al. 2015, Neupert et 

al. 2009). Chlamydomonas coding sequences have an average GC content of 68% (Merchant 

et al. 2007). An unfavorable GC content affects gene expression at the level of chromatin 

structure. Recently, codon usage was reported to be more critical than GC content for gene 

expression efficiency in Chlamydomonas (Barahimipour et al. 2015). Codon optimization 

through gene re-synthesis improves transgene expression, even if Chlamydomonas contains a 

high GC content. 

Choice of promoters

Both constitutive and inducible promoters have been developed for Chlamydomonas. 

Established constitutive promoters present in Chlamydomonas include the Hsp70A, RbcS2, 

and PsaD promoters and the Hsp70A-RbcS2 chimeric promoter, and the inducible promoters 

include those present in the copper-(Cyc6) and alcohol-inducible (AlcR-PalcA) promoter 

systems (Fischer and Rochaix 2001, Lee et al. 2018, Quinn and Merchant 1995). The AlcR-

PalcA system is composed of a regulatory protein (AlcR) and a promoter controlling alcA 

expression (PalcA), which has previously been used for inducible transgene expression in 

plants, and was also recently used in Chlamydomonas (Lee et al. 2018). In addition to the 

aforementioned traditional promoters, Scranton et al. (2016) generated a set of synthetic algal 

promoters (e.g., sap11) that contain a new DNA motif that is essential for promoter function 

and highly conserved in Chlamydomonas. The synthetic algal promoters were shown to drive 

higher expression of transgenes in Chlamydomonas than the strongest known endogenous 

promoter, the chimeric Hsp70A-RbcS2 promoter. Endogenous gene flanking sequences in 

Chlamydomonas have also been shown to enhance the expression level of a transgene. For 
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example, a 1,425-bp upstream region of the endogenous gene ARG7 can drive the expression 

of the ARS2 reporter as strongly as the Hsp70A-RbcS2 promoter (Specht et al. 2015). López-

Paz et al. (2017) recently reported that RPL23 flanking sequences (including promoters, 

terminators, and UTRs) resulted in stable expression of luciferase or sh-ble, at levels much 

higher than Hsp70A-RbcS2 or the PsaD promoter in Chlamydomonas. 

Synthetic intron

Inclusion of a native intron in the cDNA of a transgene can improve expression level. For 

example, when the first intron of Chlamydomonas RbcS2 (RbcS2i1) is introduced into the 

coding region of ble, it dramatically increases the transformation frequency and the level of 

ble expression in a manner independent of orientation (Lumbreras et al. 1998). Interestingly, 

Eichler-Stahlberg et al. (2009) found that the addition of RbcS2i1 (e.g., one to three copies) 

resulted in increased expression levels of the luciferase gene in Chlamydomonas. They also 

showed that a particular number and genomic placement of the inserted RbcS2i1 had an over-

proportionally stimulating effect on expression. 

Recently, it was reported that the repetitive dispersal of RbcS2i1 throughout the 

codon-optimized coding sequences (CDS) of transgenes enabled robust expression from the 

nuclear genome of Chlamydomonas. Using this strategy, the large sesquiterpene synthase 

gene AgBs as well as genes encoding two farnesyl pyrophosphate synthases, ERG20 and ispA, 

were efficiently expressed (Lauersen et al. 2016a, Wichmann et al. 2018).  The optimal 

RbcS2i1 insertion site (...NG/GN...) in the codon-optimized transgene CDS for efficient 

splicing was also systematically determined (Baier et al. 2018). Possible reasons for the 

“intron-mediated efficient transgene expression” phenomenon could either be that introns 

contain enhancers or that introns facilitate transcript maturation and export from the nucleus; 

however, the mechanism remains to be elucidated. 

Cleavable fusion peptide system

Nuclear transgene expression levels can be improved by incorporating resistance to a 

selective agent. Rasala et al. (2012) developed the ble2A system in Chlamydomonas, which 

enables efficient selection of transformants by transcriptional fusion of the heterologous gene 

to the ble selectable marker via self-cleavage of viral 2A peptides (20 amino acids). The 

effectiveness of this system was demonstrated by expressing various fluorescent proteins in 

Chlamydomonas (Rasala et al. 2013). A significantly improved ble2A system, either using an 
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extended 2A peptide (39 amino acids) or combining it with an improved ultraviolet-mutant 

strain (UVM4), was reported to drive the high-level expression of dicistronic nuclear genes 

(Kong et al. 2015, Plucinak et al. 2015). However, the ability to use only one selectable 

marker limits the utility of the ble2A system. 

Recently, Dong et al. (2017) developed the IFT25P-IFT25-2AE system, which uses the 

Chlamydomonas endogenous intraflagellar transport 25 (IFT25) gene instead of ble. They 

showed that combining a more efficient endogenous gene that is expressed at high levels (e.g., 

IFT25) in-frame with the 2A peptide improves transgene expression levels (Dong et al. 2017). 

A viral 2A peptide-based toolbox has also been used in Nannochloropsis salina (Unkefer et 

al. 2017). A modified 2A peptide, P2A (60 amino acids), was found to be most efficient when 

placed in-frame with either the ble or aph7″ marker for bicistronic expression in 

Nannochloropsis oceanica (Poliner et al. 2018). The viral 2A peptide system is a useful tool 

for transgene expression in Chlamydomonas; however, the self-cleavage efficiency of the 2A 

peptide varies based on the transgene used, and the mechanism by which the 2A system 

drives high expression of the transgene is unclear (Rasala et al. 2013, Kong et al. 2015).  

Background strains

Mutants defective in gene silencing mechanisms are useful recipients for efficient transgene 

expression. Several Chlamydomonas mutant lines that show improved transgene expression 

levels have been generated (e.g., UVM4 and UVM11) (Neupert et al. 2009). These strains 

have been used as background strains for protein subcellular localization studies, as host 

strains for protein secretion, and for the production of terpene squalene (Kajikawa et al. 2015, 

Lauersen et al. 2013). However, these UVM strains are still subjected to transgene silencing, 

probably because the gene silencing mechanisms have not been completely knocked out 

(Kong et al. 2015, Kurniasih et al. 2016). 

We previously found that the met1 mutant, which is deficient in one of the key 

enzymes mediating epigenetic gene silencing, showed significantly improved expression 

levels of nuclear transgenes, similar to UVM strains (Kong et al. 2015). When the met1 strain 

was further mutated by UV irradiation, we obtained met1(UVM)-47A and B mutants, which 

enable robust expression of nuclear transgenes regardless of the genomic position of the 

insertion, due to disruption of DNA methylation-dependent and -independent silencing 

systems. Moreover, met1(UVM) mutants were more capable of robustly expressing native, 
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fluorescent, or heterologous proteins than were other Chlamydomonas strains tested 

(Kurniasih et al. 2016).

Tools for targeted gene repression or disruption

In the case of essential genes, full disruption of the target gene results in cell lethality; 

therefore, RNAi-mediated gene repression is a more useful approach for assigning functions 

to these genes. RNAi approaches include expressing the antisense sequence or an inverted 

repeat of a gene targeted for knockdown (Schroda 2006). The Maa7/X-IR (NE-537) plasmid 

tool and web-based RNAi design software (e.g., THE RNAi WEB, http://www.rnaiweb.com/) 

facilitate the use of RNAi technology to modulate transgene expression in Chlamydomonas 

(Rohr et al. 2004). Despite their effectiveness, transgenes are often not stable in 

Chlamydomonas, and are subsequently silenced. For example, we and others have reported 

that RNAi silencing efficiency is reduced in Chlamydomonas after successive mitotic cell 

divisions (Schroda 2006, Yamasaki et al. 2008). Unstable RNAi effects, including off-target 

effects, limit applications of RNAi in genetic engineering of Chlamydomonas. To overcome 

this obstacle, a novel artificial microRNA (amiRNA) system based on ligation of DNA 

oligonucleotides was developed, because microRNA is normally not associated with 

transcriptional silencing (Molnar et al. 2009). To inactivate genes with higher accuracy and 

efficiency, CRISP (clustered regularly interspaced short palindromic repeats)-interference 

(CRISPi), which evolved from CRISPR/Cas9 (CRISPR associated nuclease 9) and uses the 

same type of guide RNA (gRNA), but nuclease-deficient Cas9 (Kao and Ng 2017), has 

recently been applied in Chlamydomonas.

           Homologous recombination enables targeted gene integration, but under normal 

conditions, high-efficiency homologous recombination occurs only in a few algal species, 

such as Nannochloropsis sp. (Kilian et al. 2011). Although homologous recombination has 

been shown to occur during nuclear transformation in Chlamydomonas (Sodeinde and Kindle 

1993), the frequency of homologous recombination is very low compared to that of random 

insertion (Zorin et al. 2005). 

            Site-specific nuclease-mediated genome editing technologies, such as the ZFN (zinc 

finger nuclease), TALEN (transcription activator-like effector nuclease), and CRISPR/Cas9 

systems, are emerging as important alternative tools for gene knockout in microalgae. ZFN 

was initially used in a specially designed mutated Chlamydomonas strain, which is 

transformed by a non-functional aphVIII selectable marker interspaced with a short 
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channelrhodopsin gene (COP3). The nonfunctional aphVIII was restored through ZFN-

mediated cleavage of COP3, when the cells were co-transformed with ZFNs and an aphVIII 

DNA template (Sizova et al. 2012). Recently, the same group optimized ZFN editing 

protocols for several Chlamydomonas strains (i.e., CC3403 and CC503), making ZFN-based 

editing a reliable and predictable tool for homologous recombination (Greiner et al. 2017). 

However, ZFN methodology is somewhat laborious, as a specific ZFN protein must be 

engineered for each target and the targeting efficiency and specificity are poor. 

            The TALEN system is composed of a variable number of four different DNA 

recognition domains, each specifically recognizing one of the four nucleotides. Gene 

activation induced by artificially designed TALE (dTALE) has been studied in multiple 

organisms including Chlamydomonas. For example, dTALE was used to target the promoters 

of periplasmic arylsulfatase (ARS) genes in Chlamydomonas, resulting in their overexpression 

at both the mRNA and protein levels (Gao et al. 2014). In another study, a putative inorganic 

carbon transporter (HLA3), proposed to be involved in inorganic carbon uptake, was 

overexpressed using dTALE in Chlamydomonas (Gao et al. 2015). Furthermore, TALE in the 

form of TALEN was also used to induce the targeted knockout of a gene involved in a 

carbohydrate storage pathway (e.g., the gene encoding UDP-glucose pyrophosphorylase) in 

Phaeodactylum tricornutum, resulting in a strain producing higher levels of TAG (Daboussi et 

al. 2014). 

The CRISPR-Cas9 system, consisting of two key molecules, cas9 protein and gRNA, 

is a faster and more accurate genome-editing tool than ZFN and TALEN. Since its discovery 

in 2012, the CRISPR-Cas9 system has been widely applied to land plants (Langner et al. 

2018). The first trial of the CRISPR-Cas9 system in microalgae was carried out in 

Chlamydomonas, but resulted in a low targeting efficiency, with no surviving transformants. 

This is probably due to the toxicity of constitutive Cas9 expression (Jiang et al. 2014). 

Cytotoxicity was avoided by directly delivering Cas9 protein-gRNA ribonucleoproteins 

(RNPs) assembled in vitro into Chlamydomonas. However, the gene targeting efficiency 

(targeted colonies/preselected colonies) was still low, ranging from 0.17% to 1.4% (Shin et al. 

2016). To disrupt genes in a cost-effective, routine manner, Greiner et al. (2017) optimized 

CRISPR/Cas9 protocols, improving the targeting efficiency (ranging from 5% to 15%). Using 

this modified method, the team disrupted eight photoreceptor genes in four different 

Chlamydomonas strains (Greiner et al. 2017). Deliverng another pre-assembled RNP, 

Lachnospiraceae Cpf1 (an ortholog of Cas9), along with single-stranded DNA repair 
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templates, resulted in efficient editing and replacement of the targeted DNA at frequencies of 

as high as 10% in Chlamydomonas. Moreover, this method allows for transgene-free 

generation of sequence-specific mutations and for epitope tagging of endogenous genes 

(Ferenczi et al. 2017). Some examples of nuclease-directed genome editing in 

Chlamydomonas are provided in Table 1.

Plastidial genome engineering 

The chloroplast genome of Chlamydomonas is a primary target in efforts to produce useful 

recombinant proteins, predominantly because it can be readily engineered via homologous 

recombination and lacks transgene silencing (Rasala and Mayfield 2011). Robust 

heterologous protein accumulation (≥ 5% total soluble protein) by Chlamydomonas 

chloroplasts was achieved by using the endogenous psbA promoter and the corresponding 5' 

UTR to drive expression of the target gene; however, the endogenous psbA gene had to be 

removed, rendering the cells non-photosynthetic (Minai et al. 2006, Rasala and Mayfield 

2011). To address this problem, the 16S rRNA-atpA UTR hybrid promoter and synthetic 

regulatory elements (i.e., UTRs) have been developed to efficiently drive transgene 

expression in chloroplasts without having to remove enodgenous psbA (Rasala et al. 2011, 

Specht and Mayfield 2013). Cleavable fusion of the target gene to the C-terminal of rbcL also 

increased foreign protein accumulation. Using this approach, the luciferase activity was 

increased up to 5-fold in the wild type and 33-fold in the rbcL knock-out background (Muto et 

al. 2009). 

Modification of the N-terminus of a transgene can also enhance foreign protein 

accumulation in algae. Recently, fusion of the downstream box (the first 15 codons following 

the start codon) of the TetC gene to the N-terminus of a transgene was shown to enhance 

foreign protein accumulation in Chlamydomonas chloroplasts. Its effect is probably related to 

translation or to other post-transcriptional processes (Richter et al. 2018). Two intercistronic 

expression elements from psbN-psbH and tscA-chlN have recently been identified (Macedo-

Osorio et al. 2018) that enable the expression of foreign genes (i.e., aphA-6 and gfp) in 

Chlamydomonas chloroplasts in a synthetic operon-like manner. This approach could be 

useful for stacking genes for metabolic engineering or synthetic biology circuits in 

Chlamydomonas chloroplasts (Macedo-Osorio et al. 2018). However, chloroplasts are 

deficient in post-translational modifications, such as glycosylation of proteins, which limits 

chloroplasts as a robust platform for protein production.
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         In addition to being a suitable expression platform for efficient protein production, 

plastids can be used to produce lipids in Chlamydomonas. For example, plastid enigineering 

through overexpressing plastid-localized 2-lysophosphatidic acid acyltransferase 1 

(CrLPAAT1) (Yamaoka et al. 2016) can increase oil content in Chlamydomonas, as discussed 

below. 

Examples of genetic approaches for increasing oil content in Chlamydomonas 

Over the past decade, significant advances in metabolic engineering have been made to 

modify microalgal genomes to increase oil content.  For instance, the genetic engineering 

tools detailed above have been used to modify lipid metabolism in Chlamydomonas through 

the following main approaches (Figure 1): (1) Enhancing TAG biosynthesis; (2) Increasing 

acetyl-CoA supply; (3) Manipulating transcription factors/regulators; (4) Blocking competing 

pathways; (5) Reducing lipid degradation; and (6) Modulating redox state. Some examples of 

engineering attempts are described below. 

Enhancing TAG biosynthesis

Glycerolipids are one of the most abundant lipid classes in microalgae. Their assembly starts 

with the stepwise acylation of glycerol 3-phosphate (G3P) to phosphatidic acid (PA) using 

fatty acyl donors. The 2-lysophosphatidic acid acyltransferase (LPAAT) catalyzes the 

acylation at the sn-2 position of 2-lysophosphatidic acid to produce PA, the first common 

precursor of membrane and storage lipids. We reported that Chlamydomonas encodes a 

plastid-targeted LPAAT (CrLPAAT1) and that overexpression of CrLPAAT1 in plastids led to 

a more than 20% increase in oil content under nitrogen (N)-deficient conditions (Yamaoka et 

al. 2016). Likewise, transgenic Chlamydomonas strains overexpressing CrLPAAT2 showed 

greater accumulation of TAG than the parental strain (Kim et al. 2018). By contrast, RNAi-

mediated suppression of CrLPAAT2 reduced the TAG content of the RNAi lines under N 

deprivation (Kim et al. 2018).

G3P dehydrogenase (GPDH) catalyzes the reversible redox conversion of 

dihydroxyacetone phosphate to G3P. Recently, the codon-optimized LPAAT gene from 

Brassica napus and GPDH1 from Saccharomyces cerevisiae were heterologously expressed 

in Chlamydomonas driven by the Hsp70A-RbcS2 chimeric promoter, respectively. The 

LPAAT and GPDH1 transgenetic lines showed a 44.5% and 67.5% increase in lipid contents, 

respectively, after triple heat-shock treatments (Wang et al. 2018). These results are consistent 
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with those of an earlier transcriptome analysis in which GPDH and LPAAT were found to be 

significantly upregulated when high levels of lipids accumulated in Chlamydomonas (Lv et al. 

2013). 

Phospholipid:diacylglycerol acyltransferase (PDAT), an acyl-CoA-independent 

acyltransferase, catalyzes the transfer of an acyl group from the sn-2 position of a 

phospholipid to a diacylglycerol to make TAG. This PDAT pathway is considered to be 

another important source of TAG biosynthesis from DAG, in addition to the acyl-CoA-

dependent pathway catalyzed by diacylglycerol acyltransferase (DGAT) (Li-Beisson et al. 

2015). Heterologous expression of  Saccharomyces cerevisiae PDAT in Chlamydomonas 

increased the contents of total fatty acids (FAs) and TAG by 22% and 32%, respectively, 

under N-replete conditions (Zhu et al. 2018). 

The FAs used for TAG biosynthesis can also be derived from recycled membrane 

lipids (i.e., monogalactosyldiacylglycerol [MGDG] and digalactosyldiacylglycerol [DGDG]). 

It was reported that PGD1 (PLASTID GALACTOGLYCEROLIPID DEGRADATION 1) 

from Chlamydomonas can hydrolyze MGDG to produce free FAs and lyso-MGDG in vitro, 

and the PGD1 knockout mutant had lower levels of TAG than the wild type following N 

deprivation (Li et al. 2012a). 

Furthermore, perturbing lipid trafficking or altering membrane lipid composition has 

been shown to result in TAG over-accumulation. For example, in tgd2 

(trigalactosyldiacylglycerol) mutants, which are defective in lipid trafficking, excess levels of 

MGDG are produced that are postulated to contribute to additional acyl-groups for TAG 

synthesis (Warakanont et al. 2015). Additionally, the Chlamydomonas fdx5 mutant, which has 

a defect in the ferredoxin5 gene, was shown to have changes in thylakoid membrane 

ultrastructure and lipid profiles in darkness (e.g., the ratio of MGDG to DGDG strongly 

declined), resulting in strains that hyper-accumulate TAG (Yang et al. 2015).

Increasing acetyl-CoA supply

Acetyl-CoA is an essential carbon precursor for de novo FA biosynthesis; therefore, 

increasing the acetyl-CoA supply by metabolic engineering could improve oil content. 

Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme belonging to the family of 

decarboxylases in plants and microalgae. PEPC controls the carbon flux that enters the 

tricarboxylic acid (TCA) cycle, and plays an important role in carbon partitioning of 

substrates in competition with lipid synthesis (Deng et al. 2014, Izui et al. 2004). In 
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Chlamydomonas, inhibiting PEPC1 activity by RNAi or CRISPRi-based techniques increased 

the oil content by 20%, probably by enhancing the flow of carbon to FA synthesis (Deng et al. 

2014, Kao and Ng 2017). Down-regulating both PEPC isoforms (CrPEPC1 and CrPEPC2) 

by amiRNA resulted in a 29% to 48% increase in total FA levels, respectively, which was 

suggested to occur due to the flux of carbon away from the TCA cycle, and the subsequent 

increase in the availability of acetyl-CoA for FA biosynthesis (Wang et al. 2017). Consistent 

with this hypothesis, the expression levels of TAG biosynthesis-related genes, such as DGAT2 

and phosphatidate phosphatase (PAP2), were increased in CrPEPC1 RNAi strains (Deng et 

al. 2014). 

Manipulating transcription factors/regulators

Manipulating the expression of transcription factor (TF) genes usually affects multiple 

steps/genes of the same pathway, thereby upregulating the entire pathway rather than a 

specific enzymatic step. TF engineering is a promising strategy, because it can circumvent the 

secondary bottlenecks commonly observed when only a single gene is targeted (Courchesne 

et al. 2009). TFs showing positive or negative correlations with lipid biosynthetic genes at the 

RNA expression level could be potential targets for engineering of oil content (Hu et al. 2014). 

Dof-binding sequences are abundant in the promoter regions of many genes related to lipid 

biosynthesis (Wang et al. 2006), indicating that Dof genes might contribute to lipid 

biosynthesis by upregulating genes associated with FA biosynthesis. Indeed, a study in higher 

plants showed that overexpression of Dof-type TF genes (GmDof1 and GmDof14) from 

soybean (Glycine max) enhanced TAG accumulation in the seeds of transgenic Arabidopsis 

plants (Wang et al. 2007). A codon-optimized soybean DOF-type TF gene (GenBank ID: 

DQ857261.1) was subsequently heterologously expressed in Chlamydomonas, and the 

resulting transgenic lines had an up to 2-fold increase in lipid content (Ibáñez-Salazar et al. 

2014). Ngan et al. (2015) identified another TF named PSR1 (PHOSPHORUS STRESS 

RESPONSE 1), which triggers cytosolic lipid accumulation, as a pivotal switch in carbon 

storage metabolism in Chlamydomonas. Overexpression of PSR1 increased TAG 

accumulation 2-fold (on a dry weight basis) in cells grown under normal culture conditions 

without growth inhibition (Ngan et al. 2015). 

We recently isolated a Chlamydomonas mutant (starch degradation 1, std1) deficient 

in a dual-specificity tyrosinephosphorylation-regulated kinase (DYRK) (Schulz-Raffelt et al. 

2016). The std1 mutant accumulates higher levels of oil than the wild type under 
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photoautotrophic N starvation conditions. By contrast, another DYRK, named TAR1 (TAG 

ACCUMULATION REGULATOR 1), was found to positively regulate TAG accumulation 

under mixotrophic N and S deficiency, and the tar1-1 mutant accumulated lower levels of 

TAG than did the wild-type strain (Kajikawa et al. 2015b). The effect on oil content has not 

yet been evaluated for tar1 under photoautotrophic conditions. This plant-specific DYRK 

kinase (DYRKP), which has been proposed to act as a positive or negative regulator of sink 

capacity and thereby integrate nutrient and energy signals (Schulz-Raffelt et al. 2016), 

represents a promising target for improving energy density in microalgae. 

           Additionally, VIP1, an inositol hexakisphosphate/diphosphoinositol phosphate kinase 

involved in phosphatidylinositol signaling, has recently been reported to show synergism with 

target of rapamycin kinase signaling, which governs carbon metabolism and lipid 

accumulation in Chlamydomonas. The null vip1-1 mutant exhibits increased levels of TAG 

and a higher content of lipid droplets in both N-replete and -deplete conditions (Couso et al. 

2016).  A comprehensive understanding of the underlying mechanism by which TFs regulate 

lipid alteration and the discovery of TFs regulating algal lipid metabolism will facilitate 

targeted engineering strategies to improve lipid production in microalgae.

Blocking competing pathways 

Disrupting competing metabolic pathways of lipid biosynthesis has been routinely used to 

enhance lipid productivity. In addition to TAG, starch is another primary carbon sink in green 

microalgae. Previous work showed that knocking-out starch synthesis could increase oil 

content (Li et al. 2010, Work et al. 2010); however, this does not always seem to be the case 

(Siaut et al. 2011, Vonlanthen et al. 2015), and varied depending on the background strains 

and cultivation conditions. The relationship between starch synthesis and TAG accumulation 

merits further investigation.

Reducing lipid degradation

Cellular lipid content is the end result of an equilibrium between synthesis and degradation. 

Therefore, lipid hydrolytic enzymes (i.e., lipases) are also potential targets for engineering 

efforts to increase TAG content. In Chlamydomonas, the lipase CrLIP1 was found to be a 

DAG lipase with broad substrate specificity. Silencing of CrLIP1 resulted in an increase in oil 

content following N replenishment upon N starvation due to the arrest of TAG hydrolysis (Li 

et al. 2012). TAG degradation is also directly linked to the cell cycle in Chlamydomonas. The 
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insertional null mutant cht7 (compromised hydrolysis of triacylglycerols 7) is severely 

impaired in TAG degradation, and the TAG level in this mutant remains 10-fold higher than 

that of wild-type cells upon N resupply after N starvation, due to a defect in exiting 

quiescence (Tsai et al. 2014). 

Recently, we reported that functional FA -oxidation is involved in lipid homeostasis 

during nutrient stress in Chlamydomonas. In the insertional knockout mutants for ACX2 

(ACYL-COA OXIDASE 2), a key enzyme in peroxisomal FA -oxidation, oil remobilization 

is severely blocked (by 60–80%) upon N resupply after N starvation and oil content is 

increased by 20% during N starvation (Kong et al. 2017). In Chlamydomonas, with the 

exception of isocitrate lyase (ICL), all other enzymes of the glyoxylate cycle are localized in 

peroxisomes (Lauersen et al. 2016b). The null icl mutant overaccumulated total FAs when 

cultivated mixotrophically, presumably due to a reduction in the -oxidation of FAs (Plancke 

et al. 2014). Overall, reduced lipid turnover may enhance the net oil content; therefore, 

identifying and engineering genes involved in lipid degradation is a promising avenue toward 

increasing oil content in microalgae.  

Modulating redox state

The FA synthase complex is activated by NADPH (Rawsthorne 2002), and a positive link 

between the level of NADPH and FA content has been established in microalgae (Osada et al. 

2017, Xue et al. 2015). Malic enzyme (ME) catalyzes the conversion of malate to pyruvate 

and simultaneously reduces NADP+ to NADPH. The total lipid content and the neutral lipid 

content were increased 2.5-fold and 3.2-fold via transgenic overexpression of PtME in 

Phaeodactylum tricornutum and Chlorella pyrenoidosa, respectively (Xue et al. 2015, 2016). 

Recently, the enzyme glucose-6-phosphate dehydrogenase (G6PD), which is involved in the 

formation of NADPH in the pentose phosphate pathway, was reported to contribute to lipid 

synthesis in the oleaginous diatoms Phaeodactylum tricornutum and Fistulifera solaris. 

Overexpression of G6PD elevated lipid productivity 2.7-fold in Phaeodactylum tricornutum 

during the stationary phase, and 1.5-fold in Fistulifera under N depletion (Osada et al. 2017, 

Xue et al. 2017). 

           Malate dehydrogenase (MDH) catalyzes the reversible conversion of NAD(P)H to 

NAD(P)+ via the reduction of oxaloacetate to malate (Mettler and Beevers 1980). Recently, 

we isolated and characterized a Chlamydomonas mutant deficient in the peroxisomal NAD+-

dependent MDH2. In its absence, mdh2 mutant cells are compromised in TAG breakdown and 
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showed an increased capacity to make NAD(P)H, resulting in a >50% increase in storage 

lipids and a 200% increase in starch during photoautotrophic N deprivation (Kong et al. 

2018b). Enhancing the NADPH supply using metabolic engineering techniques seems to be a 

promising strategy for boosting lipid accumulation in microalgae.  

Conclusion and prospectives 

Here we reviewed the essential techniques for improving the oil content of Chlamydomonas, 

from transformation methodologies to genome engineering strategies. The state-of-the-art 

CRISPR-Cas9 system shows great potential for precise genetic engineering, and has been 

successfully used in Chlamydomonas, diatoms, and Nannochloropsis. The continued progress 

of synthetic biology in Chlamydomonas will facilitate the development of the microalgal 

biotechnology sector. 

         We also described cases in which genetic tools were succesfully used to increase oil 

content in Chlamydomonas. It is apparent that microalgae that accumulate oils have acquired 

not only divergent enzymes that produce these FAs, but also a large number of enzymes (e.g., 

acyltransferases) that can effectively channel these FAs into oil. Understanding and 

manipulating the regulatory processes of lipid metabolism may turn out to be even more 

effective than manipulating specific enzymes. Thus, boosting oil accumulation in microalgae 

may require a combination of strategies involving both genetic engineering tools and 

synthetic biology approaches employing many genes. A breakthrough in this technology is 

hopefully not far off.
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Table 1. Summary of current uses of nuclease-directed genome editing in 
Chlamydomonas.

Editing 

method

Chlamydomonas 

species

Targeted 

gene/Marker gene

Transformation 

method

Comment Reference

ZNF CC4350 COP3/aphVIII Glass beads The first application of 

ZNF to knockout gene in  

Chlamydomonas

Sizova et 

al. (2012)

CC3403, CC503 COP3/ARG7, aphVIII Electroporation ZNF mediated-targeting 

of photoreceptor genes

Greiner et 

al. (2017)

TALEN CC849 ARS1, ARS2/ble Electroporation The first success case of  

TALEN mediated-gene 

expression activation in  

Chlamydomonas

Gao et al. 

(2014)

CC849 HLA3/ble Electroporation TALE mediated gene 

activation

Gao et al. 

(2015)

CRISPR/Cas9 CC503 FKB12/--- Electroporation First trail of 

CRISPR/Cas9 system in  

Chlamydomonas, but 

lack of surviving 

transformants

Jiang et 

al. (2014)

CC124 MAA7, CpSRP43, 

ChlM /aph7″

Electroporation Succeeded in obtaining 

stable Chlamydomonas 

transformants by 

delivering preassembled 

Cas9-gRNA RNPs

Shin et al. 

(2016)

CC4349 ZEP, CpFTSY/--- Electroporation Generation of two-gene 

knockout mutant by 

delivering Cas9-gRNA 

RNPs

Baek et al. 

(2016)

CC3403 COP1/2, COP5, 

PHOT, PSY1/aphVIII

Electroporation Targetting photoreceptor 

genes in 

Chlamydomonas via 

CRISPR/Cas9

Greiner et 

al. (2017)

CC3403, CC125, 

SAG73.72

aCRY, COP1/2, 

COP5, MAT3, PHOT,  
POLQ, KU80, UVR8, 

VGCC/ARG7, aph7″, 

aphVIII

Electroporation Targetting photoreceptor 

genes by delivering 

exogenously supplied 

recombinant Cas9-gRNA 

RNPs

Greiner et

al. (2017)

CC1883 FKB12, CpFTSY, 

CpSRP43, PHT7/---

Electroporation The first CRISPR/Cpf1 

RNPs-mediated efficient 

genome editing in 

Chlamydomonas

Ferenczi 

et al. 

(2017)

CC4349 LTD/--- Electroporation Photosynthesis gene Jeong et 
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Abbreviations: 

aCRY, animal-like cryptochrome; aph7″, hygromycin B resistance gene; aphVIII, 

aminoglycoside 3-phosphotransferase (paromomycin resistance gene); ALS, acetolactate 

synthase; ARG, argininosuccinate lyase; ARS, arylsulfatase; ble, bleomycin resistance gene; 

CRISPR/Cas9, clustered regularly interspersed palindromic repeats associated protein 9; COP, 

light-gated proton channel rhodopsin; CpSRP, chloroplast signal recognition particle; ChlM, 

Mg-protoporphyrin IX S-adenosyl methionine O-methyl transferase; CpFTSY, signal 

recognition particle receptor; FKB12, peptidyl-prolyl cis–trans isomerase; HLA3 (also known 

as MRP1), a putative inorganic carbon transporter; KU80, ATP-dependent DNA helicase 2 

subunit 2; LTD, light-harvesting chlorophyll- and carotenoid-binding proteins translocation 

defect gene; MAT3, retinoblastoma; MAA7, beta subunit of tryptophan synthase; PSY1, 

PHYTOENE SYNTHASE 1 ; PLA2, phospholipase A2; POLQ, DNA polymerase theta; 

PHOT, photoreceptor phototropin; PHT7, a putative phosphate transporter; TALEN, 

transcription activator-like effector nuclease; UVR8, a homomultimeric UV-B photoreceptor; 

VGCC, voltage-gated calcium channel; ZEP, zeaxanthin epoxidase, ZNF, zinc finger nuclease. 

“---” indicates selectable marker gene was not used.  

targeting by delivering 

Cas9-gRNA RNPs

al. (2018)

CC503, CC4530 FKB12, ALS,

ARG7-8/---

Electroporation The Cas9/intron-sgRNA  
hybrid construct (i.e., 

gene-within-a-gene) 

enables gene editing in  

Chlamydomonas

Jiang and 

Weeks. 

(2018)

CC4349 PLA2/ aph7″ Electroporation The first success case  of  

increased overall

lipid productivity from  

Chlamydomonas mutant 

generated by 

CRISPR/Cas9 RNPs

Shin et al. 

(2019)

Page 32 of 34Plant & Cell Physiology



For Peer Review

33

Legends to figure

Figure 1. The main approaches of genetic engineering of Chlamydomonas for altered oil 

content.

Abbreviations: amiRNAi, artificial microRNA interference; CRISPRi, clustered regularly 

interspaced short palindromic repeats interference; cht7, compromised hydrolysis of 

triacylglycerols 7; CrPEPC1/2, Chlamydomonas phosphoenolpyruvate carboxylase1/2; 

CrLPAAT1 and 2, Chlamydomonas lysophosphatidic acid acyltransferase 1 and 2; CrLIP1, 

Chlamydomonas lipase 1; cracx2, Chlamydomonas acyl-CoA oxidase 2; DOFs, Dof-type 

transcription factor genes; ER, endoplasmic reticulum; FA, fatty acid; fdx5, ferredoxin5; icl, 

isocitrate lyase; lcs2, long-chain acyl-CoA synthetase; LD, lipid droplet; mldp, major lipid 

droplet protein; mdh2, malate dehydrogenase 2; nrr1, nitrogen-responsive regulator 1; OE, 

over-expressing strains; PSR1, phosphorus stress response 1; pgd1, plastid galactoglycerolipid 

degradation 1; pdat1, phospholipid:diacylglycerol acyltransferase 1; RNAi, RNA interference; 

std1, starch degradation 1; sta6 and 7; starch-less mutant 6 and 7; TAG, triacylglycerol; tgd2, 

trigalactosyldiacylglycerol 2; tar1, triacylglycerol accumulation regulator 1; vip1, a predicted 

diphosphoinositol pentakisphosphate kinase.
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Figure 1. The main approaches of genetic engineering of Chlamydomonas for altered oil content. 
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