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We present here a numerical study dedicated to the fluidization of a submerged granular medium induced by
a localized fluid injection. To this end, a two-dimensional (2D) model is used, coupling the lattice Boltzmann
method (LBM) with the discrete element method (DEM) for a relevant description of fluid-grains interaction.
An extensive investigation has been carried out to analyze the respective influences of the different parameters
of our configuration, both geometrical (bed height, grain diameter, injection width) and physical (fluid viscosity,
buoyancy). Compared to previous experimental works, the same qualitative features are recovered as regards the
general phenomenology including transitory phase, stationary states, and hysteretic behavior. We also present
quantitative findings about transient fluidization, for which several dimensionless quantities and scaling laws are
proposed, and about the influence of the injection width, from localized to homogeneous fluidization. Finally, the
impact of the present 2D geometry is discussed, by comparison to the real three-dimensional (3D) experiments,
as well as the crucial role of the prevailing hydrodynamic regime within the expanding cavity, quantified through
a cavity Reynolds number, that can presumably explain some substantial differences observed regarding upward
expansion process of the fluidized zone when the fluid viscosity is changed.

DOI: 10.1103/PhysRevE.97.052902

I. INTRODUCTION

Particle fluidization is commonly implemented in a large
variety of industrial processes including drying [1], biomass
gasification [2,3], and elutriation [4,5]. Most of these applica-
tions, and an overwhelming majority of the related literature,
involve homogeneous fluidization, generally induced by a uni-
form upward fluid flow. By contrast, few studies have focused
on partial fluidization generated by a localized fluid flow even
if several industrial processes are directly concerned with such
situations as spouted beds [6,7], tapered beds [8], or specific
fluidizers designed for maintenance of navigable waterways
and sand bypassing [9]. The existence of fluid escape structures
is also widely encountered in natural geological formations
[10–14] and in some undesired problematic cases including
channelling in fluidized reactors [15] and expansion, possibly
leading to collapse, of underground cavities in the vicinity of
a leaking buried pipeline [16] and in the foundation of an
embankment dam subject to seepage flow [17,18]. That last
example is of high relevance in the general context of dyke and
dam safety since one of the two main threats of such hydraulic
structures is internal erosion, a generic term covering four
identified mechanisms of soil erosion within an embankment
dam, or its foundations, under the action of infiltration water
flows [17,18]. Among these mechanisms of internal erosion,
backward erosion denotes a regressive pipe expansion process
within a sandy foundation of a levee, whose precursory stage is
precisely a localized fluidization, more commonly called sand
boiling, located at or not far behind the downstream side of the
dike [19–21].

In all these situations of partial fluidization within a granular
material, the common scientific issue deals with the interactive
coupling between an interstitial fluid flow and a surrounding
particle matrix which, at an intermediate scale, can be either
a static pack, with an internal stress capable of withstanding
the fluid flow loading, or a concentrated suspension where
the particulate medium gets locally destabilized and fluidized
by the fluid flow. Moreover, any structural change within
the granular material affects the permeability and modifies in
turn the fluid flow in a direct and complex feedback loop. In
particular, it is both a challenging fundamental question and
a practical issue to determine the location of the dynamical
frontiers between these static and fluidized zones as well as
their evolution in time and space, especially in the immediate
vicinity of the localized fluidization onset, at a rather moderate
fluid flow rate. Several previous studies have focused more or
less distantly on this topic but there is still work to be done for
an overall and satisfactory understanding of the problem at the
grain scale.

From an experimental perspective, most investigations were
based on a quasi-2D geometry in narrow cells, or at a transpar-
ent wall, to allow for direct visual observation, either for a liq-
uid fluidized case [13,22–25] or more often for fluidization by
a gas [14,26–30], even with a cohesive material [31]; some of
these studies aimed exclusively at validating a numerical model
[26,29,30]. However, huge wall effects may occur in such
confined configurations and they are likely to interfere with the
fluidization process. To overcome this difficulty and minimize
boundary effects, some other experiments have used a real
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3D geometry but at the expense of the visualization, which
remained limited to the top surface of the particle bed and/or to
a lateral window, again for either gas fluidization [12] or liquid
fluidization [23,25,32–34]. More recently, some noninvasive
volume probing techniques have been implemented, such as
positron emission particle tracking and electrical capacitance
tomography in a study focusing on bed elevation in steady
spout-fluidized beds [30] and magnetic resonance imaging for
the identification of a fluidized chimney during its formation
[35,36]. A direct observation of localized fluidization through
an artificial granular medium has also been obtained [37,38],
combining two optical techniques, refractive index matching
and planar laser induced fluorescence [38–40]. The available
experimental data and phenomenological observations given
in Ref. [38] about the transient expansion of a fluidized cavity,
its final steady state, and some related hysteresis effects, also
studied in Ref. [36], provided valuable benchmarks to validate
the numerical modeling detailed in the present study.

Many numerical models have been developed so far to
simulate fluidized beds: continuous modeling based on the
two-phase theory [41] or, more recently, methods combining
discrete and continuous approaches for the solid and fluid
phases respectively [41,42]. Nevertheless, only a few of these
studies have focused on localized fluidization. Apart from a
very recent work based on Computational Fluid Dynamics
(CFD) computation including granular kinetic theory with
Eulerian approach [43], all other previous numerical investiga-
tions used a discrete particle approach to model related systems
such as multiple spout-fluidized beds [29], gas-fluidized bed
by DEM-CFD algorithm [44], fluidization of a cohesionless
particulate bed by a localized fluid influx [45,46], or even
partial fluidization of a cohesive soil layer by DEM-LBM
simulation [47,48]. As in these two latter studies, combining
the discrete element method and the lattice Boltzmann method
appears to be a highly efficient strategy for simulating fluid-
grain coupling in relation to soil mechanic issues [49–51]
including porous flow [52], immersed granular flows [53,54],
and soil erosion [55–57]. Building on some previous works of
DEM-LBM modeling [54,58], the present study proposed a 2D
modeling of partial fluidization inside a cohesionless granular
sample by an upward fluid flow injected at the bottom of the
grain layer with a variable width. Part of the numerical results
were directly compared to previous experiments carried out in
similar configurations [22–24,34,37,38].

The paper is organized as follows. First, the principles of
the numerical methods are introduced in Sec. II, including brief
descriptions of the lattice Boltzmann method (Subsec. II A) and
the discrete element method (Subsec. II B), followed by some
details about how both methods are coupled together in the
present 2D geometry (Subsec. II C), and finally some validation
tests (Subsec. II D). Then, Sec. III focuses on the application
of the model to the situation of localized fluidization, succes-
sively presenting the simulation configuration, the parameters
under study, and the protocol of the numerical experiments
to be carried out. The numerical results obtained from a
comprehensive parametric analysis, notably by variation of
the fluid flow injection width, are next detailed in Sec. IV,
including successively the different steady-state regimes of
fluidization and some related hysteresis effects when the flow
rate is decreased (Subsec. IV A), the determination of the onset

for chimney fluidization and the subsequent transient regime
duration (Subsec. IV B), and finally the influence of injection
size on the fluidization threshold (Subsec. IV C). All these
results are systematically discussed in the light of previous
experimental, theoretical, and numerical data. A summary
of successful comparisons and also substantial differences is
presented in Sec. V, pointing out some limitations of our 2D
modeling as well as the dependence of the chimney fluidization
behavior to fluid flow injection size and hydrodynamic regime
within the fluidized cavity. Finally, Sec. VI gives an overview
of the present study and suggests some conclusions and
perspectives.

II. DESCRIPTION OF NUMERICAL METHODS

In the following sections, a brief introduction to the two
numerical methods is given. For more detailed description, we
refer to the literature cited.

A. Lattice Boltzmann method (LBM)

1. Principles of the LBM

The lattice Boltzmann method is a relatively new numerical
approach to simulate quasi-incompressible fluid flows that can
be used as an alternative to the more traditional computational
fluid dynamics (CFD) methods based on a direct resolution of
the Navier-Stokes equations. Historically, the LBM originated
as an extension of lattice gas cellular automata models and kept
the basic idea that the fluid is modeled as a large number of
small particles located at the nodes of a regular lattice [59,60].
For the general purpose of tracking the time evolution of the
population of fluid particles, a distribution function f (�x,�c,t)
was introduced by Boltzmann as the probability density to
find a particle at the position �x, with the velocity �c at the given
time t . Then the fluid dynamics can be simply described by
the Boltzmann equation which, once discretized on a regular
lattice using a finite set of directional vectors �ei and associated
velocity vectors �ci = c �ei reads

∂fi

∂t
+ �ci · �∇fi = �i(f ), (1)

where fi(�x, �ci,t) denotes the distribution function in direction
i, �i is the corresponding collision operator, and c is the so-
called lattice velocity.

The LBM uses a specific time and space discretization of
Eq. (1) given by [59,61,62]

fi(�x + �ci�t,t + �t) − fi(�x,t) = �i(f ), (2)

where the characteristic lattice velocity c and the time step �t

are chosen so that c = h/�t , with h denoting the lattice grid
spacing. Consequently, during each time step, a fluid particle
is allowed either to stay at rest ( �c0 = �0) or to move to one
of the neighboring nodes along the direction �ei . Note also
that h = �t = c = 1 in lattice units (space and time). In the
literature, the LB formulation is often described in lattice units
where all the variables can be dimensionless, thereby offering
an implementation advantage.

For the present study, the D2Q9 lattice scheme was used. In
this scheme, the space is divided into square domains where
each node has a set of distribution functions fi , representing
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FIG. 1. The LBM cell of the D2Q9 lattice showing the direction
of each one of the nine discrete velocities.

the density of fluid particles going through one of the nine
discrete velocities �ci shown in Fig. 1. The discrete velocities
are given by

�ci = c

⎧⎨
⎩

(0,0) i = 0
(cos[−1)π/2], sin[(i − 1)π/2]) i = 1–4,

(cos[(2i − 9)π/4], sin[(2i − 9)π/4]) i = 5–8.

(3)

At each lattice node, the macroscopic fluid quantities such
as the density ρ and the velocity �u can be recovered from the
moments of the distribution functions. In lattice units, we have

ρ =
8∑

i=0

fi,ρ �u =
8∑

i=0

fi �ei . (4)

To determine the fluid pressure p, the fluid is assumed to
be slightly compressible. The pressure is then derived directly
from the density using the following state equation for an ideal
gas:

p = cs
2ρ, (5)

where cs is the sound celerity and is defined in the D2Q9 model
as cs = c/

√
3.

More or less sophisticated collision models can be intro-
duced to solve Eq. (2) provided that conservation laws are
satisfied. A simple and very popular model was originally
proposed by Bhatnagar et al. [59,63] and is referred to as
the BGK or single-relaxation-time model. It is based on the
assumption that the distribution function fi(�x,t) tends to relax
toward its equilibrium value f

eq
i (�x,t) with a characteristic time

τ , as reflected in the following expression used for the collision
operator �i :

�i = − 1

τ

[
fi(�x,t) − f

eq
i (�x,t)

]
. (6)

The equilibrium distribution function f
eq
i (�x,t) can be writ-

ten as a function of the macroscopic quantities [59,64]:

f
eq
i (ρ,�u) = ωiρ

[
1 + 3( �ei · �u) + 9

2 ( �ei · �u)2 − 3
2 �u2], (7)

where the weighting factors ωi for the D2Q9 model are
assigned as follows: ωi = 4/9 for || �ci || = 0, ωi = 1/9 for
|| �ci || = 1, and ωi = 1/36 for || �ci || = √

2. In practice, Eq. (2)
is usually solved in two steps, namely a collision step and a
streaming step, as detailed below for the BGK scheme:

Collision step:

fi(�x,t+) = fi(�x,t) − 1

τ

[
fi(�x,t) − f

eq
i (�x,t)

]
, (8)

Streaming step:

fi(�x + �ci�t,t + �t) = fi(�x,t+), (9)

where t+ denotes the postcollision time step.
The collision phase accounts for the interactions between

fluid particles, which commonly result in relaxation toward an
equilibrium distribution. With the particles being in motion,
the propagation phase consists of spreading the postcollision
distribution functions over the neighboring lattice nodes along
different discrete velocity directions �ei .

The highly attractive benefit of the BGK collision model
is mostly its ability to lead to Navier-Stokes equations by a
Chapman-Enskog expansion [51,59,65,66], provided that the
fluid incompressibility condition is almost satisfied. In this
sense, the LBM is equivalent to solving the Navier-Stokes
equations. Intrinsically, and notably regarding Eq. (5), the
LBM modeling of a fluid flow requires the existence of a slight
spatial density variation. As a consequence, an approximate
incompressibility situation can be achieved only under the
condition that the Mach number Ma = umax/c is small, i.e.,
Ma � 1, and in practice Ma � 0.1 [57,66], with umax being
the maximum velocity in the flow. Then, the following relation
holds between the relaxation time τ and the kinematic viscosity
νf of the fluid:

τ = 1

2
+ 3νf

hc
. (10)

The BGK model is, however, based on a unique relaxation
time τ and consequently all dynamic variables evolve with the
same characteristic time. This shortcoming may cause numer-
ical instabilities when the relaxation time parameter τ is close
to 1/2. Several alternative collision models exist, which retain
the capability to simulate fluid flows obeying incompressible
Navier-Stokes equations and whose numerical solutions are
more robust. Among them, the multi-relaxation-time (MRT)
model [67–69], which has been used for the present simulations
with the D2Q9 model, consists in evaluating nine different
variables, or moments mi , at every fluid node, defined directly
from the distribution functions fi through a matrix of moments
M . For each of these moments, a relaxation collision step is
implemented similarly to Eq. (8) with a specific relaxation time
τi and an equilibrium value m

eq
i which can be expressed as a

function of ρ and �u. The same relation as Eq. (10) holds for the
kinematic viscosity with τ = τ7 = τ8. More details about the
MRT model in 2D LBM simulation can be found in Ref. [68].
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FIG. 2. Bounce-back rule for stationary solid wall.

2. Fluid domain boundary conditions

Classical and commonly used boundary conditions were
implemented in this study. In the LB method, the pressure
or velocity boundary conditions cannot be directly imposed
since they derive from the particle distribution functions fi .
Consequently, the distribution functions must be defined to
set the desired values of the hydrodynamic quantities at the
boundary nodes. Here we chose to use pressure and velocity
boundary conditions similar to the ones proposed by Zou and
He [70], based on a bounce-back scheme of the nonequilibrium
part of distribution functions. The pressure boundary condition
is imposed in LB by specifying a fluid density at the pressure
boundary and the velocity boundary condition can be given in
a similar way [59,60,70]. Other boundary conditions, such as
periodic and free-slip conditions, can be found, for instance,
in Refs. [60,71–75].

The nonslip boundary condition between the fluid and a
stationary solid wall is imposed through the so-called bounce-
back rule. In its simplest version, the solid-fluid interface is as-
sumed to be located exactly at the middle of the boundary link,
between the fluid boundary nodes and solid boundary nodes
(see Fig. 2). In this work, we used the halfway bounce-back
scheme for the sake of simplicity and reducing the computation
cost. The solid nodes are inactive except those belonging to
the boundary which reflect any incoming distribution fi( �xf ,t)
during the streaming step from a liquid node according to the
following relation:

f−i( �xf ,t + �t) = fi( �xf ,t+), (11)

where, by convention, -i denotes the opposite direction of i,
and fi( �xf ,t+) is the postcollision distribution function at the
fluid node [see Eq. (9)].

B. Discrete element method

The discrete element method (DEM) was initially devel-
oped by Cundall and Strack [76] to deal with problems in rock
mechanics. Though this method was originally proposed to
predict the behavior of soil, it has been found to be applicable
to many other phenomena concerned with granular materials.
Today, it is becoming widely accepted as an effective alter-

native solution to address engineering problems. The DEM
treats bulk solid as a system of distinct interacting bodies. Each
particle is identified separately having its own mass, velocity,
and contact properties. The particles are assumed to be rigid,
but a slight overlap is allowed during a collision. When a
contact occurs between two particles, a local constitutive law
determines the interparticle contact forces and consequently
the resulting motions of the particles involved in the contact.

The particle’s motion can be described through Newton’s
equations, boundaries, or external forces such as hydrody-
namic forces. If all forces �Fi acting on a particle i by other
particles or the fluid are known, the problem is reduced to
the integration of the equations of translational and rotational
particle motions given by

mi

d2 �ri

dt2 = �Fi + mi �g, (12)

Ii

d �ωi

dt
= �Ti, (13)

with the mass mi of particle i, its position �ri , its moment of
inertia Ii , its angular velocity �ωi , the acceleration due to volume
forces like gravity �g, and the total force and torque �Fi and �Ti .

For each particle, Newton’s laws can be solved numerically
by explicit numerical integration. The standard velocity-Verlet
scheme is used here. The total force �Fi and torque �Ti acting on
the particle i are given by

�Fi = �Fc
i + �Fh

i (14)

and

�Ti = �T c
i + �T h

i , (15)

where �Fc
i is the total contact force with the neighboring

particles and �Fh
i is the hydrodynamic force applied on the

particle, as detailed in the next section. �T c
i and �T h

i denote the
torques generated by the contact and hydrodynamic actions,
respectively.

The contact force models commonly used in the DEM
are discussed in detail in the literature [76–82]. The contact
force �Fc

ij between two neighboring particles i and j results
from elastic, viscous, and frictional resistances which can be
modeled as a spring, a dashpot, and a shear slider respectively.
The spring deals with elastic interaction law while the dashpot
models energy dissipation at the contact. The shear slider
accounts for the frictional force at the contact point (see Fig. 3).

More precisely, the contact force �Fc
ij between particles i

and j is composed of normal and tangential components:

�Fc
ij = Fn

ij �nij + F t
ij

�tij . (16)

The contact forces exists only when the two particles overlap.
For circular particles, it requires the following condition for
the normal overlap δn

ij :

δn
ij = 1

2 (di − dj ) − |�ri − �rj | · �n � 0, (17)

where δn
ij is the relative displacement between the two particles

i and j in the normal direction; di , dj , �ri , and �rj are the radius
and position vector of particles i and j respectively; and the
unit vector �nij is defined by �nij = (�ri − �rj )/||�ri − �rj ||.
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FIG. 3. Models of a contact force between a particles i and a
particle j : (a) normal force and (b) tangential force.

The normal component Fn
ij of the contact force is modeled

as a linear function of the overlap δn
ij and of the relative normal

velocity between the particles vn
ij = ( �vi − �vj ) · �n:

Fn
ij = −knδ

n
ij − γnv

n
ij , (18)

where kn is the normal spring stiffness and γn is the normal
coefficient of viscous dissipation.

The tangential component F t
ij of the contact force is calcu-

lated using a viscous-regularized Coulomb model, the details
of which can be found in literature [76–83], and reads

F t
ij = − min

(
Ktv

t
ij ,μFn

ij

)
sgn

(
vt

ij

)
, (19)

where Kt is the so-called coefficient of regularization, vt
ij =

( �vi − �vj ) · �t is the tangential velocity, and μ is the friction
coefficient.

The time step used in the time integration of Newton’s
equations given in Eqs. (12) and (13) should be appropriately
selected to describe the particle motion correctly. In particular,
to ensure numerical stability, it should be below a critical value
that is the oscillation period of the spring-mass system used to
model two contacting particles [83,84]:

�tcr = 2π
√

m/kn, (20)

where m is the smallest particle mass.
Note that the normal coefficient γn of viscous dissipation is

related to the coefficient of restitution e [81]:

γn = −2 ln e
√

knm√
(ln e)2 + (π )2

. (21)

The computation time step of particle motion used in our
DEM simulations is consequently taken as �tD = λ�tcr with
a time step factor λ chosen around 0.1 to ensure stability
and reasonable accuracy of the solution [47,85,86] as well as
acceptable computation duration.

C. LBM and its coupling with DEM

The coupling between the LB and DE methods is a powerful
numerical tool to efficiently describe the physical behavior
of fluid dynamics in pore scale and intensive fluid-structure
interaction. It requires the exchange of information from
one method to the other. Hydrodynamic forces and torques
are deducted from the LB computation and used in the DE

framework to compute new positions and velocities of solid
particles, which in turn define the new boundary conditions. In
literature, more details on the coupled DEM-LBM technique
and its applications can be found [47,48,51,52,85–90]. Here,
we give only the details necessary for understanding the
numerical model.

For the particle transport problems concerned, it is very
important to correctly model the interactions between fluid
and particles in order to capture and explain essential physical
behavior of the system. This requires a physically exact nonslip
boundary condition to be imposed at fluid-solid interface. For
a stationary solid surface, the nonslip condition can be easily
imposed by applying bounce-back rule as already mentioned
earlier. When the solid boundary is moving, it is more difficult
to model the interaction between the fluid and moving particles.
The immersed moving boundary (IMB) scheme proposed by
Noble and Torczynski [91] is adopted in the present work.
This scheme treats the particles as moving solid boundaries
in fluid flows. It provides more accurate and smooth lattice
representation of solid particles to reduce the fluctuation of the
computed hydrodynamic forces and torques acting on a moving
particle, as well as the modification of the LBM equation
at the lattice nodes fully or partially covered by a moving
solid particle to enforce the nonslip condition at the fluid-solid
interface. The detailed implementation of this coupling scheme
was illustrated in Refs. [47,52,57,58,72,85–87,92–94].

In the present work, the interpolated bounce-back boundary
conditions proposed by Bouzidi et al. [87] is considered. The
equations of linear interpolation are

f−i( �xf ,t + �t) = 2�fi( �xf ,t) + (1 − 2�)fi( �xf − �ci,t
+)

+ 6ωiρ �ci �uw/c2,� < 1/2, (22)

f−i( �xf ,t + �t) = 1

2�
fi( �xf ,t) + (1 − 2�)

2�
fi( �xf − �ci,t

+)

+ 3

�
ωiρ �ci �uw/c2,� � 1/2, (23)

where � = || �xf − �xw||/|| �xf − �xs || is the distance of the fluid
node from the boundary surface, normalized by the grid
spacing, and where the local velocity of the wall �uw is given
as

�uw = �uc + ω × (�x + �ci�t/2 − �xc) (24)

in which �uc and ω are the translational and angular velocities,
respectively. �xc and �x + �ci�t/2 are, respectively, the coor-
dinates of the particle center of mass and the midboundary
link. The momentum exchange information between fluid and
solid is used to compute correctly the fluid force acting on
a solid particle. For more detailed information, please refer
to Refs. [47,57,58,71,74,75,85,86,92–94]. Note also that, at
low to moderate Reynolds numbers, hydrodynamic actions
on a particle are satisfactorily accounted for by the present
numerical scheme provided that a resolution R/h > 5 is
reached, with R being the particle radius [89].

In a 3D granular medium assembly, the pore space between
the disks is interconnected, whereas in a 2D assembly, the par-
ticles are in contact with each other and consequently no fluid
path exists throughout the densely packed particles. In order to
overcome this difficulty, Boutt et al. [49,50] proposed to use a
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hydraulic radius, Rh, in the fluid-solid two-way coupling. Rh

is chosen smaller than the actual radius of a particle, R, which
is adopted for a cylinder to give an equivalent drag force to a
sphere [47,49,50,95]. The reduced value of the real particle size
introduced by the hydraulic radius is used only during LBM
computation to deal with the fluid-particle interaction but it has
no effect on the particle interaction. For the DEM calculation,
the real particle radius is employed in the computation. Hence,
for generating artificially the fluid paths between the particles
in two dimensional simulation, the hydraulic radius Rh = 0.8R

is adopted as in Refs. [47,49,50,95]. This value allows to keep a
minimal gap between two particles larger than four lattice cells,
in line with the requirements of the no-slip moving boundary
[95]. With the different sets of parameters used in the present
study, it also systematically preserves a resolution Rh/h larger
than the minimum required limit of five [89].

The choice of the time-step parameters is also very im-
portant. There are two time steps used in the DEM-LBM
framework, �t for the fluid flow and �tD for the solid particles.
In practice, the time step used in LBM is stated to be larger
than that in DEM [47,52,57,58,85,86,90,94]. Therefore, one
should perform a number Nsub of DEM computation steps
during one LBM computation step. It is important to note that
the hydrodynamic forces and torques remain constant during
sub-cycling. With the DEM time step �t sub

D being imposed (see
Sec. II B), the LBM time step is

�t = Nsub�t sub
D . (25)

The relaxation parameter τ of the LBM algorithm then
depends on the time step �t , the lattice spacing h, and the
kinematic viscosity of fluid νf and reads

τ = 1

2
+ 3νf �t

h2
. (26)

D. Validation and benchmarking

Before presenting our numerical results on localized flu-
idization in a granular medium, we consider here the modeling
ability of the LBM and the coupled LBM-DEM technique
using immersed moving boundary method via two simple flow
problems. To test the performance of the LBM-MRT model
to simulate fluid flow, we applied it to the two-dimensional
problem of the lid-driven cavity flow in a square cavity.
Since no analytical solution is available for this problem, the
simulation result will be compared with the work carried out by
Ghia et al. [96]. Then, the performance of the hydrodynamic
coupling will be demonstrated with the simulation of the 2D
sedimentation of a circular cylinder in a channel. This flow has
been used as a standard benchmark test in CFD and the drag
coefficient of a circular cylinder as a function of the Reynolds
number was investigated and positively compared with some
previous experimental, analytical, and numerical results.

1. Two-dimensional lid-driven square cavity flow

The lid-driven square cavity flow has been used as a
benchmarking problem for many numerical methods due to
its simple geometry and complicated flow behaviors. The
principal characteristics of the 2D square cavity flow are the
emergence of the large primary vortex in the center and two

FIG. 4. Geometry and boundary conditions of the lid-driven
square cavity flow.

secondary vortices in the lower corners. The locations of the
centers of these vortices depend on the Reynolds number. The
geometry and boundary conditions are shown in Fig. 4. The
left, right, and bottom walls of the cavity are fixed (u = v = 0),
and the top wall moves from left to right with a constant
velocity (u = U , v = 0). The Reynolds number is defined as
Re = UL

νf
with L being the square length and νf being the

fluid’s viscosity.
The flow field is initialized by setting ρ = 1 and �u = 0. In

simulations, the number of lattice nodes in each coordinate
direction was taken as 129 or 257 for Reynolds numbers Re
ranging from 100 to 10 000. In Figs. 5 and 6, the velocity
profiles through the cavity center are plotted for different
values of the Reynolds number and compared to the benchmark

FIG. 5. Vertical profile at the center of the cavity of the horizontal
velocity component u normalized by the top wall velocity U . Solid
lines are our LBM-MRT solutions and symbols are benchmark
solutions from [96] for different Reynolds number values.
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FIG. 6. Horizontal profiles at half the cavity height of the vertical
velocity component v normalized by the top wall velocity U . Solid
lines are our LBM-MRT solutions and symbols are benchmark
solutions from [96] for different Reynolds number values.

solutions of Ref. [96]. One can see that our LBM calculations
nicely agree with the benchmark solutions for all simulated
values of Re. Additionally, the locations of the vortex cores (see
Fig. 4) were also quantitatively determined for different values
of Re with accurate prediction regarding previous calculations
[96,97]. These results clearly show the general ability of LBM
to simulate complex 2D fluid flows and supports validation of
our own algorithm.

2. Two-dimensional sedimentation of a circular cylinder

The drag coefficient on a free-falling circular cylinder of
diameter d within a fluid initially at rest was investigated
at increasing values of Reynolds number Re, defined by
Re = ud

νf
with u being the relative velocity between the fluid

and the cylinder and νf being the fluid’s viscosity. The flow
configuration is as follows: A disk of diameter d = 1 mm and
density ρs falls vertically in the median plane of a rectangular
box of width W and height L. Note that here the hydraulic
radius is equal to the actual disk radius. In order to reduce
the influence of inflow and outflow boundary conditions, the
height of the channel was set to L/d = 50 while its width
was W/d = 8. The no-slip boundary conditions were applied
at the lateral as well as at the top and bottom walls of the
channel. Interpolated bounce-back boundary conditions with
a first-order interpolation were used for the implementation
of momentum balance at the boundary between the fluid and
the disk. The LBM domain was finely discretized with a
lattice size step h = D/40 and the lattice speed was kept
equal to c = 1 m s−1. The cylinder, initially released at a
distance l = 2L/3 from the bottom of the box, quickly reaches
a terminal velocity denoted U . The drag coefficient CD of the
disk can therefore be calculated as

CD = 2FD

ρf U 2d
= π (ρs − ρf )gd

2ρf U 2
, (27)

where ρf = 1000 kg m−3 is the fluid density, g = 9.81 m s−2

is the gravity, and FD is the hydrodynamic force acting on

FIG. 7. Circular cylinder drag coefficient CD as a function of
Reynolds number: present results before (solid squares) and after
(open squares) wall effect correction in the range 15 � Re � 40
according to Ref. [103]; DEM-LBM computational results (gray
triangles) by Owen and coauthors [51]; direct numerical calculations
(blue circles) by Hamielec and Raal [98], Takami and Keller [99],
Dennis and Chang [100], and Fornberg [101]; and experimental data
by Tritton [102] (red diamonds); Faxén analytical expression for small
Re values [104] (dotted line).

the cylinder (per unit length of the cylinder) that simply
balances the buoyant weight in the stationary regime. By
varying the particle density ρs and fluid kinematic viscosity
νf , the Reynolds number Re calculated from the corresponding
terminal velocities, i.e., Re = Ud

νf
, ranges between 0.5 and 100.

Figure 7 shows our computational results for the drag coef-
ficient as a function of the Reynolds number. For comparison,
several previous data in the equivalent problem of fluid flow
past a circular cylinder are also plotted in the same graph: first,
the results by Owen and coauthors [51] based on the DEM-
LBM approach in rather similar conditions to our simulations;
second, several semianalytical and direct numerical resolutions
of Navier-Stokes equations by Hamielec and Raal [98], Takami
and Keller [99], Dennis and Chang [100], and Fornberg [101];
and third, the experimental data obtained by Tritton [102] using
quartz-fiber anemometers.

As can be seen from this graph, our results are quite
close to the previous ones obtained by Owen and coauthors
with similar DEM-LBM calculations. However, regarding the
overall collapse of all the other values issued either from exper-
iments or numerical resolutions of Navier-Stokes equations,
the DEM-LBM computations substantially overestimate the
drag coefficient, especially for small values of the Reynolds
number. Considering that both the present study and the
previous one by Owen and coauthors used no-slip conditions at
the lateral walls, the discrepancy could arise from wall effects,
especially in our case where the ratio of the particle diameter
to the box or channel width is d/W = 0.1 compared to a ratio
d/W = 0.01 in Owen’s simulations.

Regarding the related situation of channel flow past a
circular cylinder, Sen and coworkers [103] evaluated quan-
titatively for 15 � Re � 40 the wall effect for different values
of d/W and concluded that wall effect is insignificant as far as
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TABLE I. Numerical samples used in the simulations with the
number of particles, initial bed height H0 and solid volume fraction

0.

Sample Particle number H0 (mm) 
0

S1 504 8.0 0.79
S2 1022 17.2 0.81
S3 1539 26.3 0.81
S4 2068 36.9 0.80
S5 2578 45.4 0.81
S6 3096 53.8 0.82
S7 3606 62.7 0.82
S8 4126 72.2 0.82
S9 4644 79.9 0.83
S10 5000 85.8 0.83

d/W � 0.4. Indeed, contrary to our data, those of Owen and
coauthors do not reveal any influence of the boundary in this
range of Reynolds numbers. From Sen’s wall-effect estimate
for d/W = 0.11, a value rather close to our case where
d/W = 0.125, we can infer the unbounded drag coefficients
for our data. As can be seen in Fig. 7, the corrected values
collapse nicely on the general curve. An analytical calculation
accounting for wall-effect correction at very small Reynolds
number (i.e., Stokes flow) has also been proposed long ago
by Faxén as a function of d/W [104]. As shown in Fig. 7, a
satisfactory agreement is consistently obtained with our data
when plotting Faxén relation for d/W = 0.125 in the range
Re � 1 (in dotted line).

III. SIMULATION OF LOCALIZED FLUIDIZATION

A. Configuration

Based on the coupled LBM-DEM approach described in the
previous section, two-dimensional numerical simulations were
carried out to study the action of a localized fluid injection at
the bottom of an assembly of grains. The particle diameters
were uniformly distributed from dmin = 0.8d to dmax = 1.2d,
where d is the mean particle diameter. All the calculations
were carried out with d = 2 mm, except in one case where the
diameter was doubled.

The fluid domain was divided into a square lattice of di-
mensions Lx × Ly = 1385 × 801 with an elementary spacing
h = 0.16 mm or, equivalently, a spatial resolution dmin/h =
10. Hence, the physical dimensions of the domain were L ≈
222 mm in length and H ≈ 160 mm in height. Ten different
granular beds, denoted from S1 to S10, were created by the
following procedure. The particles were initially placed at the
nodes of a regular grid within a rectangular box and then
released under the action of gravity until complete deposition.
As specified in Table I, the number of particles was increased
by one order of magnitude, from 504 to 5000, giving rise
to initial bed heights ranging from H0 = 8.0 mm for S1 to
H0 = 85.8 mm for S10. All the initial assemblies have a
rather similar solid volume fraction 
0 = 0.82 ± 0.01, except
samples S1 and S4, which were slightly less dense. Most of the
results presented in the following have been obtained for the

FIG. 8. Definition of the geometry and integration domain under
study.

two samples S6 and S10 with initial bed heightsH0 = 53.8 mm
and H0 = 85.8 mm, respectively.

The whole domain is saturated by a fluid and the correspond-
ing boundary conditions were no-flow and no-slip on the left
and right frontiers, considered as solid walls, while periodic
boundary conditions were applied at the top and bottom
frontiers. In its initial configuration, the granular layer rested
on an horizontal wall with, at its center, an aperture of length di

that was impenetrable for the grains but perfectly permeable
to the fluid. Most of the calculations were carried out for a
small injection diameter di = 50h = 8 mm, or equivalently
di/L ≈ 0.036, except a few of them for which a systematic
study of the influence of di was undertaken (see Sec. IV C). In
all cases, a constant velocity U was imposed at the injection
hole. A sketch of the numerical configuration is shown in Fig. 8.

In addition to h, the other free LBM parameter was the
lattice speed whose value was taken equal to c = 10 m s−1.
Thus, the corresponding time step was �t = h/c = 1.6 ×
10−5 s. The substeps of integration were kept equal toNsub = 2,
meaning that the DEM time step was twice the LBM one.
Finally, the following parameters were chosen for the DEM
modeling of the particles: normal contact stiffness kn = 105

N m−1, coefficient of regularization Kt = knNsub�t , friction
coefficient μ = 0.3 (both between two particles and between a
particle and a wall), and damping coefficient γn deduced from
Eq. (21) so that a realistic coefficient of restitution e = 0.2 is
obtained.

B. Parameters under study

To reach a fluidized state, the drag forces induced by the
interstitial flow must overcome the interparticle forces within
the granular assembly. In the studied condition of purely
frictional interactions between solid particles, the internal
granular stress is solely related to the buoyant weight of the
system. Consequently, the physical parameters of the problem
are the density of the solid particles ρg , the mean particle
diameter d, the fluid kinematic viscosity νf , and the fluid
density ρf , the latter being always equal to ρf = 103 kg m−3.
The geometry parameters are the initial bed’s height H0, the
bed’s width L, and the injection hole diameter di .

In what follows, several parametric studies of the granular
bed subjected to localized fluidization are presented focusing
successively on the final steady-state regimes reached by the
system, particularly with a view to draw a phase diagram and
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TABLE II. Table of parameter sets used in our simulations.

Set νf (m2 s−1) ρg (kg m−3) g (m s−2) d (mm)

A 5 × 10−5 2500 9.81 2.0
B 1 × 10−5 2500 9.81 2.0
C 5 × 10−5 2500 1.0 2.0
D 1 × 10−5 1500 9.81 2.0
E 5 × 10−5 1500 9.81 2.0
F 5 × 10−5 2500 1.0 2.0
G 5 × 10−6 2500 9.81 2.0
H 5 × 10−6 1500 9.81 2.0
I 2 × 10−6 2500 9.81 2.0
J 2 × 10−6 1500 9.81 2.0
K 5 × 10−5 2500 9.81 4.0

on the analysis of hysteresis effects during velocity increase-
decrease procedures (see Sec. IV A), on the previous transient
regime on the route to chimney fluidization (see Sec. IV B), and
finally on the influence of the injection width on the previous
observations (see Sec. IV C).

As described in Table II, eleven different sets of the physical
parameters νf , ρg , g, and d were used in the present study.

For each configuration based on a parameters set with
a given sample, several simulations (typically from 10 to
20) were carried out where the injection velocity U was
progressively increased and used as a control parameter of
fluidization. For computational time requirements and given
the large number of individual simulations (more than 900), the
physical time simulated during each calculation was restricted
to a total duration of 10 s (except when specifically mentioned).

IV. NUMERICAL RESULTS

A. Stationary states and hysteresis

The following study of stationary states and hysteresis effect
of localized fluidization was implemented for a unique value of
injection width di , namely di/h = 50, or equivalently di/L =
0.036. Typical results obtained for a given choice of physical
and geometry parameters are shown in Fig. 9 when the injection
velocity is progressively increased. This figure, reporting the
case of sample S10 and parameters set I, provides examples
for each of the three different types of final states that can be
observed at the end of the 10-s duration of the simulations, a
priori assuming that those are almost stationary.

As observed in Fig. 9(a), a low injection velocity does not
modify the bed’s structure, or only very marginally through
a slight overall dilation of the grain packing. Then, the
sample remains static and behaves simply as a rigid porous
medium. Conversely, a stronger injection at a significantly
higher velocity induces fluidization of the grains at the flow exit
that progressively develops upward to the top of the granular
bed and reaches eventually a stationary state of fluidized
chimney as illustrated in Fig. 9(c). The transient regime will
be closely examined in Sec. IV B. In the final stationary state,
the ascending flux of fluidized grains along the chimney is
steadily balanced by lateral downward avalanches of grains
within the dense part of the sample. Between those two steady

FIG. 9. Typical steady states observed for increasing value of the
injection velocity U with sample S10 (H0 = 85.8 mm) and parameter
set I: (a) Static bed for U = 0.10 m s−1; (b) fluidized cavity for U =
0.20 m s−1; and (c) fluidized chimney for U = 0.30 m s−1.

states, a third regime can be observed for intermediate injection
velocities, where the fluidized domain does not expand until
the top of the sample but remains restricted to a cavity.
This fluidized cavity is characterized by turbulent and chaotic
motions of grains inside the cavity as well as some fluctuations
of the height of the fluidized zone. In some cases, essentially no
fluidized cavity can be noted and the system apparently jumps
directly from a static bed to a stationary fluidized chimney.

Regarding this general phenomenology, two critical injec-
tion velocities, denoted respectively Ucav and Uch, must be used
to define the frontiers between the three stationary regimes:

(1) static regime when U < Ucav;
(2) fluidized cavity regime when Ucav < U < Uch; and
(3) fluidized chimney regime when U > Uch.
It must be emphasized here that the distinction between a

fluidized cavity and a fluidized chimney is far from obvious,
especially in the present study where the duration of the
simulations is restricted to 10 s. Indeed, a fluidized chimney
whose transient evolution exceeds this time limitation will
be considered as a fluidized cavity. As a consequence, the
estimates of Ucav and Uch are somehow arbitrary whereas a
more relevant and unbiased way of defining a critical chimney
velocity will be presented in the next section dedicated to the
transient.

However, on the basis of these definitions, phase diagrams
can be plotted for different samples (or equivalently bed height
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FIG. 10. Phase diagrams discriminating the different steady
states, namely static (circles and hatched gray area), fluidized cavity
(stars and grid green area), and fluidized chimney (squares and plain
red area), obtained with sample S10 for (a) parameters set A and (b)
parameters set I.

H0 in the present study) and parameter sets A and I, as
illustrated in Fig. 10. Each point in those diagrams corresponds
to an individual 10-s simulation for a given set of physical and
geometrical parameters.

Two remarks are essential in this respect. First, the bound-
aries of the different phase domains are consistent with a
linear dependence with the bed height H0. This result will
be confirmed in the following section regarding chimney
threshold. Second, the fluidized cavity regime is only observed
for the parameter set I and virtually not for the parameters
set A whereas the only difference here is the fluid viscosity:
νf = 5 × 10−5 m2 s−1 for set A and νf = 2 × 10−6 m2 s−1 for
set I. This influence of the fluid viscosity will be discussed later
in Sec. V C. It should also be noted that the range of injection
velocity where the fluidized cavity regime is observed tends to
extend slightly with an increase in the bed height as shown
in Fig. 10(a) and is consistent with previous experimental
evidences [23,37,38].

Similar steady states are obtained when one does not use
anymore individual simulations at constant injection velocity
but a complete sequence with incremental progression of the
injection velocity U by successive stages of constant values
(for which the 10-s duration is kept). Of great interest is then the
behavior of the system when the injection velocity is decreased
back by a reverse sequence. Indeed, previous experiments
[37,38] have reported that the fluidized cavity regime is then
sustained until values of U are drastically smaller than Ucav.
This tremendous hysteresis effect was interpreted in terms of
the creation of arches within the newly formed upper grain
layer of the sample when the fluidized chimney closes back
and then as the fluidized cavity progressively diminishes [38].

The same sequences of increase and then decrease of
the injection velocity were simulated with sample S10 and
parameters set A and I. A hysteresis effect was observed, but
to a quite much lesser extent as is shown in Fig. 11, where the
ratio of the height of the fluidized area Hf (see Sec. IV B for
quantitative definition) to the initial sample height H0 is plotted
against the injection velocity U normalized by the chimney
threshold velocity Uch.

As will be further discussed in depth in Sec. V B, the reason
for this discrepancy between experimental and numerical
results could be related to the difference in terms of space
dimensionality since the experiments are intrinsically 3D
whereas our simulations are solely two dimensional. However,
similarly to previous experimental results [37,38], a fourth
stationary regime, called potential fluidized cavity, can be
observed in the velocity domain where the sample remained
static during the increasing phase but was still locally fluidized
during the decreasing phase, even if, as already mentioned, this
domain is quite limited compared to experimental findings. It
is to be noted also that this new regime exists even when the
fluidized cavity regime has not, or evanescently, been observed
during the prior increasing velocity phase, as is the case for
parameter set A in Fig. 11(a).

Despite the fact that the hysteresis effect appears to be far
much less important in our 2D simulations, its origin should
be of the same nature as suggested from the experiments
and mentioned before: Arches are continuously formed during
cessation of fluidization on top of the fluidized area, allowing
the increasing burden to be partially transmitted to the lateral
zones of the sample. As shown in Fig. 12, the normal contact
forces distribution within the sample in the potential fluidized
cavity regime is substantially consistent with this explanation.
Indeed, a comparison between the forces distribution observed
before (black arrow in Fig. 11) and after (red arrow in Fig. 11)
complete chimney fluidization seems to reveal the appearance
in the postfluidized sample of a slightly stronger upper arch
above the cavity together with several inclined lateral force
chains.

B. Transient regime and chimney threshold

Following the previous study on steady states in Sec. IV A,
the influence of the initial height H0 on the transient regime was
studied for samples 5 to 10 with the parameter set A. Then, a
first parametric study was carried out using sample S10 with all
the different parameters sets given in Table II, enabling some
of the physical parameters to be significantly varied, namely
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FIG. 11. Ratio of the height Hf of the fluidized zone to the initial
sample height H0 vs the dimensionless injection velocity U/Uch

obtained at the end of successive stages of injection velocity U during
prior increasing velocity sequence (black squares) and subsequent
decreasing velocity sequence (red circles) with sample S10 (H0 =
85.8 mm): (a) parameters set A, critical chimney velocity Uch =
0.071 m s−1, velocity increments 0.005 m s−1 (increasing sequence),
and 0.010 m s−1 (decreasing sequence); (b) parameters set I, critical
chimney velocity Uch = 0.24 m s−1, velocity increments 0.025 m s−1

(increasing sequence), and 0.020 m s−1 (decreasing sequence). The
red and black arrows denote the samples for which the normal contact
forces network is later plotted in Fig. 12.

νf , ρg , d and the gravitational acceleration g. Lastly, a second
parametric study was based on a smaller bed, namely S6 with
H0 = 53.8 mm, using only the parameter sets A, D, F, G, and
I. Here, the injection width was kept fixed for all simulations:
di = 8 mm. A few previous results of this parametric study
of the transient regime to fluidized chimney were presented
elsewhere by the authors [105]. A lot of more detail, analysis,
and discussion will be found in the following.

Our quantitative investigation of the transient regime was
carried out as follows. First, for each set of parameters, several
simulations were implemented with increasing values of the
injection velocity U . Once the velocity was high enough for

FIG. 12. Typical network of normal contact forces within sample
S10 with parameter set I during both (a) increasing and (b) decreasing
injection velocity sequences, before and after chimney fluidization
as identified in Fig. 11 by black and red arrows, respectively. In
these graphs, the thickness of each segment connecting the centers
of two grains in contact is proportional to the corresponding value of
the normal contact force. The orange arrows in panel (b) denote the
location of stronger force chains, presumably able to create an arch.

a fluidized chimney to be obtained by the end of the total
10-s duration of the computation, a space-time diagram was
constructed as in Fig. 13. For this, we used the pixel values
given by the LBM calculation in between 0 (pixel inside a
fluid cell) and 1 (pixel inside a solid cell). These values were
averaged to evaluate the mean void fraction on each horizontal
line inside a region of interest (ROI), a rectangular area of width
equal to di , located just above the injection hole and slightly
higher than the initial bed height H0 [see Fig. 13(a)]. Then,
the space-time diagram was constructed by arranging all the
mean void fraction profiles of the ROI calculated at successive
times [see Fig. 13(b)]. At last, a manual detection allowed us to
obtain the evolution of the fluidized height Hf above injection
as a function of time and to define accurately the characteristic
transient time t0 needed for the fluidized area to reach the initial
bed height H0, i.e., Hf (t = t0) = H0 [see Fig. 13(c)].

As can be seen in Fig. 14, the time t0 systematically tends to
diverge as the injection velocityU decreases and a critical value
Uc can be defined by adjustment with the following expression:

t0(U ) = tc

( U

Uc

− 1
)−α

, (28)

where tc is given by tc = t0(U = 2Uc) and the exponent α

varies almost always between 0.45 and 0.75 (see inset in
Fig. 14).

Note that due to the almost unavoidable restriction of the
total duration of the simulations to 10 s, it is not possible to
come very close to the divergence asymptote and to achieve
therefore a better precision for Uc, tc, and α. However, while
a significant sensitivity to fitting procedure is observed for the
exponent α, the values obtained for Uc and tc are robust and
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FIG. 13. (a) Definition of the region of interest (ROI) above the
injection hole. (b) Space-time diagram. (c) Height of the fluidized
zone Hf vs time after manual detection and practical definition of a
characteristic transient time t0 by Hf (t = t0) = H0.

reliable. For instance, when testing the same fitting procedure
with a fixed exponent α = 0.6, Uc and tc were only marginally
modified, by less than 5% in most cases.

For a given set of physical parameters, the critical velocity
Uc is observed to increase almost proportionally with H0 as
shown in Fig. 15(a) for the parameter set A. This result is

FIG. 14. Typical divergence of the transient time t0 as a function
of the injection velocity U . The data presented here correspond to the
parameters set G with sample S10. The dotted line is the divergent
power-law expression (28) with Uc = 0.1547 m s−1, tc = 0.85 s, and
α = 0.60. Inset: values of α with error bars obtained for the 11
parameter sets from A to K when α is kept as a free parameter in
the fitting form. The mean value is α = 0.58 ± 0.10.

consistent with the first experiments by Zoueshtiagh [34] and
the subsequent ones by Philippe and Badiane [38], where a
linear relationship was observed. Note that it has been shown
recently, both experimentally and theoretically, that the critical
velocity is only linear for small bed heights and it gradually
saturates for thicker granular layers up to the critical value
obtained for homogeneous fluidization [37]. Of interest is also
the behavior of the characteristic transient time tc with the
bed height H0. Compared to Uc, tc is not proportional to H0

but a linear behavior is consistent with the data as plotted in
Fig. 15(b).

To gain a better insight into the physical origin of both the
critical injection velocity Uc and the characteristic transient
time tc, a systematic variation of νf , ρg , d, and g was
investigated using all the different parameter sets of Table II
with the same particle assembly, namely sample S10 having an
initial height equal to H0 = 83.8 mm. The results can be nicely
analyzed in terms of dimensionless groups. To this end, Uc and
tc are beneficially replaced by a critical Reynolds number Rec

and a dimensionless transient time τc defined as follows:

Rec = Ucd

νf

, (29)

τc = tcνf

d2
. (30)

In addition, using νf , d, and the reduced gravity defined
by g∗ = ( ρg

ρf
− 1)g as the only physical parameters, a relevant

dimensionless group in the context of fluidization is the
Archimedes number, given by

Ar = g∗d3

νf
2

. (31)
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FIG. 15. The critical injection velocity Uc (a) and typical transient time tc (b) obtained by adjustment of the divergence law (28) as a function
of the initial bed height H0. The dotted line in panel (a) stands for the proportionality relation Uc = AH0 with A = 0.80 s−1 whereas the dotted
line in panel (b) is a linear relation given by tc = a + bH0 with a = 0.62 s and b = 13.4 s m−1.

Then, although Rec and τc vary over three orders of magnitude
according to our 11 different choices in physical parameters,
all the data gather quite nicely when both Rec and τc are plotted
versus Ar, as shown in Fig. 16.

Accordingly to the previous dimensional analysis, it can be
reasonably concluded that Rec and τc are simply functions of
the Archimedes number Ar. As can be seen in Fig. 16, the two
related functions seem to be satisfactorily approximated by the
following power law relations:

Rec ∝ Ar3/4 (32)

and

τc ∝ Ar−3/4 (33)

with the two proportionality coefficients being 0.103 ± 0.003
and 543 ± 35, respectively.

These empirical expressions suggest therefore the following
dimensional scalings for Uc and tc: Uc ∝ g∗3/4d5/4ν

−1/2
f and

tc ∝ g∗−3/4d−1/4ν
1/2
f . Moreover, the critical velocity Uc and

the typical transient time tc appear consequently to be very
simply related as

tc ∝ d

Uc

, (34)

where the proportionality coefficient is 	 56 ± 20. As plotted
in Fig. 17, this relation is almost correct but with less accuracy
compared to previous scaling curves in Fig. 16.

Back to previous results about Rec and τc in Fig. 16,
the relation between Rec, the critical Reynolds number for
localized fluidization, and the Archimedes number Ar was
theoretically and experimentally investigated and, for small
enough values of Rec, typically Rec < 10 [106], a linear
dependence was found due to the Darcy law for the fluid flow
through the granular bed [37]. However, for higher Reynolds
numbers, as is the case in the present study, the Darcy relation
is no more valid and, for higher efficiency, can be substituted by
the Ergun law, that proposes the following empirical relation
between Archimedes number Ar and critical Reynolds number
Rec [106]:

Ar = 150
2
0

(1 − 
0)3
Rec + 1.75
0

(1 − 
0)3
Rec

2 (35)

with 
0 the initial solid volume fraction of the granular bed.
The benefit of the use of the Ergun law compared to

the Darcy law was only marginally evidenced in previous
experiments [37,38], where the critical Reynolds number did
not exceed 10. But here, Reynolds numbers up to 240 are
obtained and the deviation from a simple linear dependency
between Rec and Ar can be more consistently understood by
use of an Ergun-type relation than with our previous empirical

FIG. 16. Plot of (a) the critical Reynolds number Rec and (b) the dimensionless transient time τc as a function of the Archimedes number
Ar. The dotted lines correspond respectively to Rec = 0.103Ar3/4 and τc = 543Ar−3/4 while the solid lines are deduced from the Ergun relation
Ar = c1Rec + c2Re2

c (with c1 = 26 and c2 = 0.52) by additional use of Eq. (34) regarding τc.
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FIG. 17. Characteristic transient time T0 vs d/Uc with Uc the
critical injection velocity. The solid line represents a proportionality
coefficient equal to 56 and the two dashed lines account for an
uncertainty ±20.

power law Rec ∝ Ar3/4. The Ergun expression in Eq. (35)
cannot be directly duplicated to our numerical results since
the geometry is 2D in the simulations. However, the general
structure, composed of both linear and quadratic contributions,
rather satisfactorily accounts for the data previously presented
in Fig. 16(a). As also shown in Fig. 16(b), the same conclusion
holds for τc when Eq. (34) is additionally used to deduced τc

from Rec.
Almost similar results are observed for the data obtained

from the second parametric study with sample S6 using param-
eters sets A, D, F, G, and I. The scaling laws given by Eqs. (32),
(33), and (34) remain fully valid, except the proportionality
coefficients that are systematically smaller compared to the
ones found for sample S10. One recovers here the influence of
the initial bed’s height H0 as evidenced at the beginning of the
present section. Note also that a larger dispersion is observed
for the exponent α of the divergent power law proposed for t0
versus U [see Eq. (28)].

To complete this analysis of transient regime to fluidized
chimney, one can go beyond the two parameters Uc and tc that

determine a critical threshold and a typical duration as we have
just seen, and pay closer attention to the kinetics of localized
fluidization. To this end, of probably greater interest than the
transient time t0 defined previously is the mean growth rate V0

that reads

V0 = H0

t0
. (36)

The quantityV0 provides an average growth rate of the fluidized
zone that is generated at injection and expands upward with
time more or less rapidly.

As can be seen in Fig. 18(a), where all the data with
sample S10 and parameters sets from A to K have been
collected, V0 can reach values as high as 0.2 m s−1 for the
largest injection velocities U explored in the present study. V0

gradually decreases for smaller values of U and finally tends
to zero at the critical velocity Uc. According to the definition
of V0 [see Eq. (36)], the evolution of V0 with U has an inverse
power law relation than the one obtained for t0 and given in
Eq. (28). Therefore, it is natural to normalize the growth rate
using the critical velocity Uc in order to collapse the data by
plotting them against U/Uc (or equivalently Re/Rec). More
precisely, regarding the power law relation in Eq. (28),V0/Uc is
preferentially plotted against U/Uc − 1 as shown in Fig. 18(b).
Then, considering the fact that for different parameter sets the
exponent α is dispersed around an average value close to 3/5
(see inset to Fig. 14), all the data of Fig. 18(a) collapse rather
convincingly around a unique curve as follows:

V0

Uc

∝
( U

Uc

− 1
)3/5

. (37)

In the first parametric study carried out with sample S10, the
proportionality coefficient of Eq. (37) is around 0.75. As can
be seen in Fig. 19, when plotting those data together with those
obtained for sample S6 using parameter sets A, D, F, G, and
I, the same collapse of the data is observed, compatible here
again with Eq. (37) but with a slightly larger proportionality
coefficient approximately equal to 0.95. This is a reminiscence
of the influence of the initial bed’s height H0 that is not
completely accounted for by the previous scaling and suggests
a more complex dependence with respect to the geometry of
the sample, in the line with the recent theoretical proposal by

FIG. 18. (a) Mean fluidized cavity growth rate V0 vs injection velocity U for all parameter sets from A to K with sample S10. (b)
Dimensionless growth rate V0/Uc vs U/Uc − 1. The solid line corresponds to Eq. (37) with a proportionality coefficient of 0.75.
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FIG. 19. Dimensionless growth rate V0/Uc vs U/Uc − 1 for
sample S10 with all parameters sets from A to K (black circles) and
for sample S6 with parameters sets A, D, F, G, and I (red squares). The
dotted lines correspond to Eq. (37) with proportionality coefficients
of 0.75 (black line) and 0.95 (red line), respectively.

Mena and coauthors [37] already mentioned previously, but
that would need here to be adapted to the present 2D modeling.

C. Influence of the injection size

In all numerical results so far analyzed, the configura-
tions under study were restricted to a small injection size
di compared to the total length L of the granular sample:
di/L ≈ 0.036. In this section, the influence of the injection size
di is specifically investigated, from di/L ≈ 0.018 to di/L = 1,
with the two samples S6 and S10, and for both parameter
sets A and I that differ only in terms of kinematic viscosity:
νf = 5 × 10−5 m2 s−1 for A and νf = 2 × 10−6 m2 s−1 for I
(see Table II). More precisely, for each of the four different
options in sample and parameters set, a systematic variation
of di was analyzed by use of the following injection sizes:
di/h = 25, 50, 100, 150, 200, 300, 400, 500, 600, 800, 1000,
1200, and 1385. Note that the calculations with sample S6

were not carried out for di/h = 150, 400, 600, 800, and 1200.
For all these configurations, simulations were successively run
with increasing injection velocity U . Then, exactly the same
fitting procedure, based on Eq. (28) and described previously
in Sec. IV B, was used to determine the critical velocity Uc,
the typical transient time tc, and the exponent α. Most of
these simulations were run with significantly less individual
calculations, each of them related to a given injection velocity
U . As a consequence, the two fitting parameters tc and α are
not always easily or accurately extracted from the adjustment.
From Fig. 20, we may plausibly assume that the characteristic
transient time tc remains more or less constant with substantial
statistical variations from one value of di to another. The same
holds also for exponent α, except for injection sizes that tend to
the total length L and for which α seems to notably decrease,
typically from 0.6 to 0.2.

On the contrary, the critical velocity Uc is much less
versatile and can be quite accurately estimated. Figure 21(a)
shows for sample S10 that, as expected, Uc rapidly decreases
when the injection size di is increased, until a plateau is
reached when di → L, i.e., when one recovers the uniform and
homogeneous fluidization situation, with a critical velocity Uh

c

(see, for instance, Ref. [37]).
Regarding the relative gap between the actual critical

velocity Uc at a given injection size di and the asymptotic
homogeneous fluidization velocity Uh

c , the following empir-
ical relation provides a reasonable agreement as shown in
Fig. 21(b):

Uc − Uh
c

Uh
c

∝
( L

di

− 1
)β

, (38)

where the exponent β remains rather close to 1, namely β ≈
0.85 and β ≈ 1.2 for parameter sets A and T. Proportionality
coefficients are approximately 0.018 and 0.060, respectively.

It is to be noted in Fig. 21 that, for a given injection size
di , the data of Uc related to parameter set I differ from Uh

c in
a much larger extent than for parameter set A. Very similar
results are obtained for sample S6, with exactly the same
discrepancy between parameter sets A and I (exponent β ≈ 1.1
and β ≈ 1.3, and proportionality coefficients around 0.007 and
0.030 for parameter sets A and I, respectively). As already

FIG. 20. (a) Characteristic transient time tc and (b) the exponent α vs the ratio of the injection size di to the total length L for parameters
sets A (black squares) and I (red triangles) with sample S10.
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FIG. 21. (a) Critical velocity Uc vs the ratio of the injection size di to the total length L. (b) Plot of the relative gap Uc−Uh
c

Uh
c

vs di/L. The data
presented are for parameters sets A (black squares) and I (red triangles) with sample S10. The dotted lines stand for Eq. (38) with exponents
β = 0.85 (set A) and β = 1.2 (set I) and proportionality coefficients of 0.018 (set A) and 0.060 (set I).

mentioned before in Sec. IV A, another change in behavior was
found regarding the existence of the fluidized cavity regime for
the same parameters configurations that only differ by their
viscosity.

This effect can also be highlighted here when the injection
size di is varied. In that respect, phase diagrams were plotted
in Fig. 22 reporting for five different sizes of injection di the
domains of existence of the static, fluidized cavity, and fluidized
chimney regimes.

The results shown in this figure, especially in Fig. 22(b), first
confirm that the fluidized cavity state is significantly promoted
at smaller injection sizes while it logically disappears as the
lateral extent di of the upward fluid flow tends to the length
of the sample (i.e., homogeneous and uniform fluidization).
This finding is fairly consistent with the interpretation in terms
of arching effect in the upper layer of the sample since this
mechanism is obviously stronger for a smaller injection width.
Moreover, it is also inferred from Fig. 22 that the fluidized
cavity regime is hardly encountered in the higher viscosity
configuration (parameter set A) and this new evidence of the
influence of fluid viscosity will be discussed more in depth
later, together with the previous reported signs of this viscosity
effect.

V. DISCUSSION

A. Synthetic comparison to previous experiments

Generally speaking, the present numerical results are
nicely consistent with the experimental phenomenology of
localized fluidization previously mentioned in earlier papers

[22–24,34,37,38]. The three different stationary regimes
were recovered, namely static, fluidized cavity, and fluidized
chimney as final sample’s state after each simulation of
10 s. A difference shall be drawn about the fluidized
cavity state that was systematically observed in the
previous experiments whereas, in the present study,
it was detected only for a very small fluid viscosity,
here νf = 2 × 10−6 m2 s−1, but disappeared for a large
viscosity, namely νf = 5 × 10−5 m2 s−1. Yet the previous
experiments which have highlighted the existence of the
fluidized cavity have used liquids with either intermediate and
higher viscosity values, namely water (νf ∼ 10−6 m2 s−1)
[22–24] and index-matched oil mixture (νf ∼ 3 ×
10−5 m2 s−1) [37,38].

Regarding more specifically the critical velocity for flu-
idized chimney, a simple proportionality relation with the
initial bed’s height H0 was found both qualitatively, by con-
struction of phase diagrams where almost linear frontiers can
be observed, and quantitatively, by a systematic analysis of
the critical chimney velocity Uc deduced from divergence of
the duration t0 of the transient regime to fluidized chimney
(see Sec. IV B). As already mentioned in Sec. IV A, this
linear dependence is consistent with the first experiments of
localized fluidization [22,23,34,38] whereas a more recent
study has shown that this relation progressively saturates for
larger bed heights, as the situation tends to the more usual
case of homogeneous fluidization [37]. It is likely that this
saturation should be recovered numerically for larger systems
that have unfortunately not been simulated here for computa-
tional time limitations. Note also that He and coauthors [23]

FIG. 22. Phase diagrams discriminating for five different injection sizes di , namely di/L = 0.018, 0.036, 0.072, 0.36, and 1 (with L being
the sample lateral length) and different steady states obtained with sample S10: (a) parameters set A (νf = 5 × 10−5 m2 s−1) and (b) parameters
set I (νf = 2 × 10−6 m2 s−1). The static, fluidized cavity, and fluidized chimney regimes are in hatched gray, light green, and red, respectively.
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adapted further the model initially proposed in Ref. [34] and
found an analytical expression that appears to be consistently
almost linear with the bed height. However, no saturation was
observed in their experiments where a somewhat different
geometry and hydrodynamic conditions were used. Note that
the 3D numerical model by Tang and coauthors [43] correctly
predicted these experimental data and the linear dependence
on the bed height.

Previous experiments [37,38] are also in qualitative agree-
ment with the observed hysteresis effect, when sequences
during injection velocity increase and decrease back. This
brings to the definition of a fourth memory-dependent steady-
state regime, referred to as potential fluidized cavity. This
regime is observed when a first chimney fluidization within the
sample occurs and it allows for a fluidized area to be observed
significantly below the critical velocity at which the first
local fluidization would be detected during a simple velocity
increase phase. As will be discussed hereafter in Sec. V B, it
should be underlined that, quantitatively, the hysteresis effect
simulated in the present study is noticeably less pronounced
than highlighted by the experimental results.

Given the lack of experimental data, the present compre-
hensive analysis of the transient regime to fluidized chimney
presented in Sec. IV B is essential for our current understand-
ing of its scaling with various system parameters. In this
comparison with previous experiments, it was found that the
divergence of transient time t0 with the injection velocity U is
compatible with the empirical expression given by Eq. (28).
This result is very similar to the scaling proposed by Philippe
and Badiane [38] in the laminar flow regime, except that the
exponent α was around 1.0 in the experiments and rather close
to 0.6 in the present study. In addition, it has been shown from
these experimental data that the critical chimney velocity Uc

simply scales with the Stokes velocity [38], and in particular
Uc ∝ d2. The empirical scaling supplied by our numerical
simulations, namely Uc ∝ d5/4, was a priori different but can
in fact be consistently rationalized with Stokes law from an
Ergun-type relation (adapted to our two-dimensional system).
Indeed, following this expression, the quadratic contribution of
the Ergun law [see Eq. (35)], that remained almost negligible in
the experiments where the Reynolds number Re did not exceed
10, seemed essential in the simulations having Re values up to
240. The proposed 2D version of the Ergun law was actually
in reasonable agreement with our data as shown in Fig. 16(a).
On the contrary, for high-Reynolds-number conditions, as in
the experiments of Alsaydalani and coauthors [22] and related
simulations by Tang and coworkers [43] where Re > 1,000,
reanalyzing the data of fluidization onset suggests that the
critical velocity at injection is approximately proportional
to the grain diameter to a power around 0.8. This result
consistently confirms a regular reduction of the d exponent
with Re until a fully turbulent case where one can reasonably
expect Uc to be proportional to

√
g∗d, or equivalently Ar ∝

Rec
2. This would also corresponds to a “constant” (i.e., apart

from dependence on di and H ) densimetric Froude number
[43].

The last contribution of the present study to better insight
of localized fluidization within a granular bed concerned
the influence of di , the lateral extent at fluid flow injection.
Previous experimental studies have tested the impact of the

injection width using different nozzle sizes: 3, 15, and 35
mm in the experiments of Zoueshtiagh and Merlen [34]; 6
and 14 mm in the experiments of Philippe and Badiane [38];
and 10, 20, 30, and 40 mm in the more recent work by Mena
and coworkers [37]. Furthermore, one can cite the experiments
of Alsaydalani and coauthors [22] using a rectangular source
with a constant width and a small aperture di = 0.33, 0.62,
and 0.92 mm. A consensual outcome was that the influence
of the nozzle diameter remained weak, if not negligible, on
the critical flow rate at fluidized chimney onset. As shown in
Sec. IV C, the same does not hold for our numerical results
where clearly neither the critical velocity Uc nor a 2D-adapted
flow rate di × Uc could be considered as constant.

This discrepancy should, however, be understood in terms
of the system dimensions. Indeed, compared to the total
lateral length of the granular sample, the ranges of injection
widths explored in the experiments remained quite limited
and did not exceed a ratio di/L < 0.2. Yet, if the injection
flow inlet continuously tends to the dimensions of the sample
(di → L), the classical situation of homogeneous and uniform
fluidization is recovered, imposing therefore a constant critical
velocity condition Uh

c at onset (see Sec. IV C). Consequently,
the apparent invariance of the critical flow rate inferred from
the experimental results obviously fails to predict fluidization
threshold when increasing further the injection size. This sug-
gests that, in the experiments, the injection velocity shall first
decrease almost as d−2

i (i.e., almost constant critical flow rate)
and then progressively saturates to the asymptotic value Uh

c .
Converted to our two-dimensional system, the same projection
remains valid for Uc but now with a starting decrease in d−1

i .
This kind of behavior is indeed consistent with our results as
evidenced by the empirical law proposed in Eq. (38), where the
exponent β was actually very close to 1. A dependance of Uc

on d−1
i is also rather consistent with the 2D numerical model by

Tang and coauthors [43] and with the 3D experimental results
of Alsaydalani and coworkers [22] based on a rectangular
source of varying small aperture di .

B. Influence of the 2D geometry

The main drawback of the present DEM-LBM simulations
most probably lies in the restriction of the model to a 2D
geometry. Nevertheless, this simplification was strictly nec-
essary in view of the goals of this study. Our key objective
was indeed first directed toward an extensive comprehensive
study and a systematic analysis of the influence of the various
parameters of the system. At the same time, we had in mind the
opportunity to study macroscopic samples, containing a rather
large number of grains, up to 5000 individual particles. To
fully achieve this task, more than 900 independent simulations
were run for, in most cases, durations of 10 s in physical time.
The present computations performed separately on one thread
of a calculation server (2.4-GHz processors) have required
typically from 96 to 120 h (4 to 5 days) for each of them and
have generated a huge amount of data. It is therefore easier
to realize that an extension to 3D was absolutely incompatible
with the original goals and objectives that motivated this study.

That being said, we believe that some already mentioned
limitations of the present modeling come from the two-
dimensional nature of our simulated systems. In terms of the
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FIG. 23. Shape of the fluidized chimney steady-state, for di/L =
0.036, 0.072, and 0.36 (from top to bottom), obtained with sample
S10: (left) parameter set A (νf = 5 × 10−5 m2 s−1) and (right)
parameter set I (νf = 2 × 10−6 m2 s−1).

general mechanical behavior of the grains, the 2D geometry
reduces the degrees of freedom accessible for the particles
and should a priori contribute to enhanced hysteresis effects
compared to the real 3D experimental observations. However,
some hydrodynamic implications must also be taken into
account, which could possibly minimize the hysteresis effects.
First, resulting from the use of the hydraulic radius in the LBM
calculation (see Sec. II C), the 2D porous system has a rather
large permeability value due to a substantially artificial pores
network with no contact or even small constrictions between
particles. Moreover, regarding the porous flow within the
granular bed, the upward injection flow diffuses only laterally
in the numerical two-dimensional system, and not radially in
the whole 3D space. The velocity magnitude consequently
decreases more slowly away from the source comparatively
to the actual 3D case. Lastly, the periodic boundary conditions
imposed on top and bottom of the integration domain (see
Fig. 8) further mitigate the lateral expansion of the flow,
especially when the injection width remains rather small, and
tend to concentrate even more the flow, especially for small
injection width conditions. To conclude, granular mechanical
behavior and porous flow provide complementary and possibly
opposite contributions to the existence of arching in 2D and
there is consequently no clear explanation for the discrepancy
reported in Sec. IV C between the present modeling and
the previous experimental results from the literature, in this
specific range di/L < 0.2.

C. Role of the hydrodynamic regime in the cavity

The previous assumption that the upward porous flow
remains highly focused is further supported by a closer analysis
of the evolution of the fluidized area versus injection width
increase. For this, the final shape of the assumed stationary
fluidized chimney is plotted in Fig. 23, for sample S10 and
parameter sets A and I, and for three different values of the
injection width di . We see that the lateral extent of the chimney
is roughly constant with height, except close to the upper
surface, and increases with the injection width di . However,

FIG. 24. Shapes of the fluidized zone during the transient regime,
at the position where the fluidized height is almost half the initial bed
height (Hf /H0 ∼ 0.5), for di/L = 0.036, 0.072, and 0.36 (from top
to bottom), obtained with sample S10: (left) parameter set A (νf =
5 × 10−5 m2 s−1) and (right) parameter set I (νf = 2 × 10−6 m2 s−1).

the chimney diameter Dch widens quite slowly and much less
rapidly than di , especially in the small injection widths region.
In particular, that means Dch clearly does not scale with di .
Moreover, regarding the influence of the fluid viscosity, it
fairly appears in Fig. 23 that, for a given injection width di ,
the fluidized chimney is narrower for νf = 5 × 10−5 m2 s−1

than for νf = 2 × 10−6 m2 s−1. By now, we do not have
any physical explanation for this result but, obviously, it
directly explains why the critical velocity Uc departs more
sharply from Uh

c when the fluid has a smaller viscosity as
highlighted in Sec. IV C. Indeed, considering that the critical
velocity Uh

c is almost reached in the chimney and assuming
roughly a flow rate balance at injection source and inside
the fluidized chimney, fluidization of a narrow zone (here for
νf = 5 × 10−5 m2 s−1) requires a smaller injection velocity
Uc compared to the situation of a significantly larger fluidized
width (here for νf = 2 × 10−6 m2 s−1). It should, however, be
noted that this explanation is unfortunately insufficient since
it does not predict a difference between the two cases as large
as that reported in Fig. 21.

Of great and probably even further interest is also the shape
of the expanding fluidized cavity during the transient regime, as
reported in Fig. 24, here again for sample S10 and parameters
sets A and I as well as for the same three injection sizes di as
reported in Fig. 23.

Interestingly, the difference observed in the final steady state
with regard to the size of the fluidized chimney proves to be
not yet notable during the transient regime, and there does not
even appear to have any strong influence of the injection width
di in this regime, at least for what concerns the size of the
top of the fluidized zone. The only difference lies in the shape
of this zone which evolves from almost rectangular for small
injection size to triangular at larger di values. But the typical
size at the roof of the fluidized expanding area appears to be
almost the same in all cases, namely Lcav ∼ 10d.

On the contrary, what seems to differ here is the interior of
the fluidized area, most specifically in the range of small injec-
tion size since both triangular fluidized cavity are very similar
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for di/L = 0.36 whatever the fluid viscosity. In the other cases,
there are few fluidized particles inside the expanding cavity
at high fluid viscosity whereas a substantially denser cloud
of moving grains is observed at smaller viscosity. This must
be directly related to the hydrodynamic conditions inside the
fluidized cavity. Considering here again that the fluid velocity
inside the fluidized area is close Uh

c , one can then define a
typical Reynolds number of the cavity as follows:

Recav = Uh
c Lcav

νf

. (39)

Then, an actually small Reynolds number is obtained for νf =
5 × 10−5 m2 s−1, Recav ∼ 20, while a significantly higher
value is found for νf = 2 × 10−6 m2 s−1, Recav ∼ 600.

This variation in hydrodynamic regimes supports the idea
that two distinct scenarios of localized fluidization could be
proposed. When examining closely our simulations during the
transient regime leading either to a fluidized cavity or, in most
cases, to a fluidized chimney, the upward expansion of the
fluidized zone seems to be created by an overall uplift of the
upper layer of the sample, induced by fluid overpressure. It
might then be thought that the group of grains above the top of
the fluidized cavity quickly gets locally unstable, but in way
that depends on the hydrodynamic regime in the cavity.

At small Reynolds numbers, the fluid flow through the
cavity that remains laminar enables the existence of well-
defined frontiers between the particle-poor cavity and the
surrounding dense and almost static grain packing. It is likely
that the roof of the expanding cavity behaves more or less as
a rigid body and destabilizes by tilting to one side, generating
at the other side an inclined fracture of limited extent. The
fluidized zone would thus successively move forward, broadly
in the vertical direction and more or less rapidly according to
the magnitude of the injection velocity. Moreover, once the
fluid overpressure is high enough to generate the first fracture,
the cavity expansion process is engaged and one can assume
that this process will progress regularly until reaching the top of
the sample. In some cases, a lateral side closure of the fluidized
conduit could be observed in its upper part, but only for a
short period. Besides, the same side closure process can also
be noticed during the decreasing sequence in the hysteresis
simulations at the time of the transition from chimney to cavity.

On the contrary, at higher Reynolds numbers, the fluid
flow within the cavity is more turbulent and consequently
removes many grains from the lateral dense area that remain
later suspended in the fluidized zone. This induces more flow
dissipation and much particle agitation, in the conduit but
also nearby, with the frontiers between dense and dilute zones
getting blurred. So the grains constituting the cavity roof are
prone to collapse downward under the combined action of the
fluid flow and collisions with particles in suspension. Then the
fluidized zone progressively expands almost vertically. But,
in these conditions, it is also likely that several previously
eroded grains can get blocked against particles already at rest,
preferentially at the top front of the fluidized cavity, creating
a new cavity roof. This purely hydrodynamic mechanism
seems capable of moderating the fluidization expansion or
even stoping it. The latter case gives rise therefore to the
fluidized cavity state where grains are regularly and almost

FIG. 25. Sketches illustrating the two scenarios of fluidized cavity
upward expansion proposed for both (left) laminar regime (Recav ∼
20) and (right) turbulent regime (Recav ∼ 600) of the fluid flow within
the cavity.

steadily removed and blocked again at the cavity roof. This
also explains why fluctuations of the fluidized zone have been
reported (see Sec. IV A).

These physically plausible interpretations are illustrated in
Fig. 25. They could explain the influence of the fluid viscosity
reported several times in this numerical study. More than the
fluid viscosity, the key parameter is actually the hydrodynamic
regime within the fluidized cavity in upward expansion, char-
acterized as we have seen by a typical Reynolds number Recav

that switches between 20 to 600 with the parameters used in
the related simulations. A last remaining question concerns the
comparison of our simulations to previous experiments and, for
that, the corresponding values of Recav are needed. Referring to
Ref. [37], the diameter of the steady fluidized chimney seems
to scale with the grain diameter d, namely Dch ∼ 6d, and
can be used as the typical size of the localized fluidization.
Additionally, from the critical flow rate Qch at chimney onset, a
characteristic velocity is obtained: Uch = 4Qch/(πD2

ch). Then
the typical Reynolds number in the fluidized cavity is

Recav = UchDch

νf

∼ 2Qch

3πdνf

. (40)

Based on the experimental data in Ref. [37] with a rather
viscous liquid, it can be stated that Recav ranges typically
between 100 and 300, and substantially higher values of Recav

will be found for other experiments using water as liquid
[23]. The corresponding cavity hydrodynamic regimes are
consequently somewhat closer to the numerical configuration
with a viscosity equal to νf = 2 × 10−6 m2 s−1 (parameter set
I) and indeed, in this case, the fluidized cavity regime is actually
observed and the hysteresis appears stronger, in agreement with
the previous experimental findings. This last point supports
and strengthens our interpretation that remains nonetheless
conditional and needs to be further confirmed later on.

VI. CONCLUSION

To briefly conclude, the our numerical model allows for
an efficient computation of particle-laden fluids. It combines
discrete element and lattice Boltzmann methods, coupled
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together in a two-dimensional geometry. After a successful
validation by comparison to different benchmarks, namely
lid-driven cavity flow and sedimentation flow of a circular
cylinder, the numerical model was used to perform an extensive
investigation of localized fluidization induced by an upward
fluid flow injection underneath a granular bed. It clearly
demonstrated its ability to satisfactorily simulate the main
physical phenomena involved in this specific situation. By
analyzing a large number of extensive simulations (more than
900) with various sets of bed heights, injection sizes, and
physical parameters, many results were obtained, including
consistent comparisons with previous experiments as well as
insights on some specific points. The major outcomes of this
study are summarized hereafter:

(1) The model is able to reproduce the general phenomenol-
ogy reported in several previous experiments, especially in
terms of the three final stationary states of localized fluidiza-
tion: static, fluidized cavity, and fluidized chimney regimes, that
have all been recovered.

(2) New specific features of the fluidized cavity regime were
highlighted, regarding its range of existence versus injection
velocity. It was observed indeed that this range increases with
bed’s height while it decreases both with injection size and
even more with fluid viscosity. The fluidized cavity state was,
for instance, hardly if ever obtained in computations where the
fluid viscosity was 50 times higher than that of water.

(3) Although less pronounced than in real 3D experiments,
a notable hysteresis effect was observed in the simulations
and a typical picture of the normal force network within
the sample supported the previously proposed explanation
based on arching mechanism. Limitations arising from the 2D
geometry of the model are believed to be responsible for the
reduced strength observed here.

(4) The transient regime toward fluidized chimney was
quantitatively and systematically analyzed. Compared to pre-
vious experimental works, the same qualitative power-law
divergence of the duration time t0 with injection velocity U

was obtained but with an exponent closer to 0.6 than 1, as
reported in the experiments. This divergence law has helped
to provide characteristic injection velocity Uc and expansion
time tc for eleven different sets of physical parameters. Once
converted into dimensionless groups, namely Rec = Ucd/νf

and τc = tcνf /d2, a general collapse was obtained for Rec

and τc against Archimedes number Ar (Ar = g∗d3/νf with g∗
being the reduced gravity). An empirical power law seemed to
satisfactorily describe the data while a more physically sound
relation was also proposed, based on an Ergun-like expression,
and showed reasonable agreement.

(5) The mean expansion rate before the system reaches
a steady fluidized chimney, defined as V0 = H0/t0, was
shown to follow a dimensionless power law relation, namely

V0/Uc ∝ (U/Uc − 1)3/5, where a remaining dependency
to the initial bed’s height was only found in value of the
proportionality coefficient.

(6) An original and rather comprehensive study focused
on the influence of the injection size on the transient regime.
The characteristic transient time tc and the exponent α showed
large fluctuations but seemed, however, to remain more or
less constant, except for α that ultimately decreased, typically
from 0.6 to 0.2, when the injection width approached the total
sample’s length L. As described by an empirical dimensionless
scaling, the critical velocity Uc first decreased with the injec-
tion size roughly as the power of −1 before it progressively
saturated to the final homogeneous fluidization value Uh

c .
As discussed here, this behavior appeared consistent with
previous experimental results given the two dimensionality
of the present model. The observed gap between Uc and Uh

c

was substantially higher when the fluid viscosity used was
decreased.

(6) Finally, from a careful and detailed analysis of all
the simulations carried out in the present study, a tentative
explanation was proposed for most of the differences observed
between experimental and numerical findings, especially with
respect to the dependence on fluid viscosity and existence of
the fluidized cavity state. The upward expansion process of the
fluidized zone was consistently assumed to be directly related
to the prevailing hydrodynamic regime within the expanding
cavity. In laminar conditions, obtained here for a high-viscosity
fluid and typical Reynolds numbers of 20 inside the expanding
cavity, an almost void conduit was observed that seems to
progress by successive steps, due to local destabilization of the
cavity roof that, under the uplift action of the fluid overpressure,
tilts on one side as a rigid body and consequently generates an
opening in the granular structure at the other side. In more
turbulent conditions, here at smaller viscosity and typical
Reynolds numbers around 600, the grains at the cavity roof
easily collapse downward by both the action of the agitated
fluid flow and the collisions of grains in suspension within
the fluidized zone. The fluidized area expands upward more
straightly but can be slowed down, or even stopped, by the
reverse blockage of eroded grains at the cavity roof. This thus
explains a greater propensity to fluidized cavity regime in the
turbulent flow scenario contrary to the laminar one. Typical
cavity Reynolds numbers from 100 to 300, and even more, in
the previous experiments have consistently suggested that the
turbulent flow scenario was indeed the most relevant one in the
experimental conditions.
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