N

N

Performances VS Reliability: how to exploit
Approximate Computing for Safety-Critical applications
Gennaro Rodrigues, Fernanda Lima Kastensmidt, Vincent Pouget, Alberto

Bosio

» To cite this version:

Gennaro Rodrigues, Fernanda Lima Kastensmidt, Vincent Pouget, Alberto Bosio. Performances VS
Reliability: how to exploit Approximate Computing for Safety-Critical applications. IOLTS 2018 -
24th International Symposium on On-Line Testing and Robust System Design, Jul 2018, Platja d’Aro,
Spain. pp.291-294, 10.1109/IOLTS.2018.8474122 . hal-02095642

HAL Id: hal-02095642
https://hal.science/hal-02095642v1

Submitted on 12 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02095642v1
https://hal.archives-ouvertes.fr

Performance VS Reliability: How to Exploit
Approximate Computing for Safety-Critical
Applications

Gennaro S. Rodrigues,
Fernanda L. Kastensmidt
Instituto de Informatica, PGMicro
Universidade Federal do Rio Grande do Sul
{gsrodrigues, fglima} @inf.ufrgs.br

Abstract—Approximate Computing (AxC) paradigm aims at
designing energy-efficient systems, saving computational re-
sources, and presenting better execution times. AxC aims to
selectively violate the specifications, trading accuracy off for
efficiency. It has been demonstrated in the literature the ef-
fectiveness of imprecise computation for both software and
hardware components implementing inexact algorithms, showing
an inherent resiliency to errors. On the other hand, the hidden
cost of AxC is the reduction on the inherent resiliency to errors
of an application. This paper aims at analyzing the impact of
AXC on the reliability.

Index Terms—Fault Tolerance,
Laser, Fault Injection.

Approximate Computing,

I. INTRODUCTION

Approximate Computing (AxC) techniques [1] execute in-
exact computations results with acceptable accuracy for many
applications [2]. They have been used in many scenarios, from
big data to scientific applications [3]. AxC has been proposed
as an approach to developing energy-efficient systems [4], sav-
ing computational resources and presenting better execution
times. Many AxC implementations have been presented so far
in the literature.

At software-level, the approximation can be achieved by
selectively ignoring specific computations and/or memory ac-
cesses while assuring the acceptable quality of results. For
these approaches, one has to identify first the less-critical
portions of the software, such as variables, function calls,
loops and then approximate them by using strategies such as
reducing the computation precision, skipping tasks, skipping
memory accesses, or skipping some iterations of a loop [2].

At hardware-level, the approximation can be achieved
by using approximate circuits, such as approximate adders,
multipliers or other logical circuits, or approximate storage
strategies, where data can be stored by truncating the lower-
bits in the case of floating point data types. Another way
to achieve approximation in hardware is to exploit a given
hardware component outside its nominal operating conditions,
thus generating approximate outputs during its execution.

The common point among the above-listed techniques is
the reduction of the “intrinsic redundancy” of the application.

University of Montpellier

vincent.pouget @ies.univ-montp2.fr

Alberto Bosio
LIRMM
University of Montpellier
CNRS - France
alberto.bosio @lirmm.fr

Vincent Pouget
IES

CNRS - France

Thus, the hidden cost of approximation techniques is the
reduction of the inherent fault tolerance of the application itself
[5].

This cost has never been quantified and taken into account
as a metric by AxC techniques. However, it must be considered
specifically when the approximated application runs on a
safety-critical system.

Safety-critical systems often deal with human lives and
high-cost equipment and therefore shall provide high depend-
ability. Those systems are constantly subject to faults, given
the dangerous environment they are subjected (e.g., radiation
for aerospace systems). When a fault affects the system in
a way that it is perceived by the user or other parts of the
system, we say that an error occurs [6]. A soft error occurs
when it does not permanently damage a system. A soft error
is also called a single event upset (SEU). In some cases, such
as when exposed to intense radiation environments, electronic
systems are affected by multiple bits upset (MBU), but those
cases are rare.

In this work, we would like to prove that this cost really
exists and we also provide a quantification. This paper is
organized as follows. Section II presents the methodology.
Section III presents the experiments results and discussions.
Finally, the conclusions are presented at Section IV.

II. METHODOLOGY

As stated in the previous section, many AxC techniques
are available in the literature. In this work, we focus on the
so-called successive approximation algorithms based on nu-
merical methods. Numerical methods are algorithms essential
for all branches of science and engineering. In a matter of fact,
it is the only way to solve many computation problems, such
as derivatives and integrals. They make use of mathematical
properties and numerical analysis theory to approximate their
results to the mathematically expected one.

Successive approximation algorithms are numerical calcu-
lations for which an exact, straightforward solution is not
computationally achievable. Such is the case of the calculation

of the integral of a function. Those algorithms are iteration-
based and get closer to an acceptable result on every iteration.
Because the value is approximated for each iteration, it is
expected that if an error occurs, causing an iteration result that
is out of the expected calculation path, it will be corrected in
the following iterations. This behavior, however, is not assured.
In the event of a permanent hardware fault, all the iterations of
the algorithm might be compromised, and the algorithm would
not converge. An error affecting one of the last iterations
computations may also be not corrected, as it would be too
late for the algorithm to converge back to an acceptable result.

A. Case-Study Application

The Newton-Raphson method is an algorithm used to find
the roots of a function. It calculates the intersection of the
tangent line of the function in an initial guess point xy with
the z-axis. It is calculated iteratively, as stated in Equation 1
until it reaches a sufficient approximation.

Tn4+1 = Tnp — f’(flfn) (1)

In this work, the Newton-Raphson algorithm is used as
application casestudy providing three variants. For each vari-
ant, the number of iterations is different (and therefore the
accuracy), but the algorithm remains the same.

B. Experimental Environment

In order to evaluate the impact of the approximation on
the application fault tolerance, we artificially inject faults by
using a laser. The experiments setup is presented in Figure 1. It
consists of the DUT, a host computer, and the laser equipment.
The host computer is responsible for controlling the laser beam
and listening to messages from the DUT. Details about the
laser injection facility are out the scope of this paper but are
deeply described in [5].

The device under test (DUT) of this work is a Zyng-
7000 APSoC, designed by Xilinx. The Zynq board has em-
bedded a high-performance ARM Cortex-A9 processor with
two cache levels on the processing system (PS), alongside a
programmable logic (PL) layer. The PL presents an FPGA
based on the Xilinx 7-Series with approximately 27.7Mb
configuration logic bits and 4.5Mb Block RAM (BRAM). The
dual-core 32-bit ARM Cortex-A9 processor runs a maximum
of 666MHz and is designed with 28nm technology. It counts
with two L1 caches (data and instruction) per core with 32KB
each, and one L2 cache with 512KB shared between both
cores. A 256KB on-chip SRAM memory (OCM) is shared
between the PS and PL parts, and so is the DDR (external
memory interface). In this work, only the PS part of the board
is used. The DUT periodically sends messages to the host
computer, to report an error or to confirm it is alive.

Error messages are reported when there is a difference
between an execution output and the golden output. The
golden output is the result of a fault-free execution at the
beginning of the experiment, called golden execution. The
alive message is essential because some faults will cause the

Laser Control
» Laser Equipment
Laser Beam
DUT Control

and Error Gathering

Fig. 1. Laser Experiments Setup

DUT to be irresponsible or hang (errors definitions will be
further detailed in Section II-C), needing a reset. A reset
consists of re-programming and configuring the DUT and is
performed when a timeout occurs while the host computer
waits for an alive message from the DUT. This timeout is set
to about three minutes but may vary for different experiments
with different response times. During a reset, the DUT warns
the host computer so that the laser beam is deactivated. It
prevents any errors during the system initialization and golden
execution. The laser beam is then re-activated after the host
computer receives an alive message from the DUT.

The communication between the host computer and the
DUT is rather complex and is highly susceptible to errors
because it happens during the fault injection. To avoid errors
that are not interesting to our experiment and would make
it less efficient, we developed a strategy to reduce this com-
munication to a minimum necessary. During an application
execution, the algorithm runs N times, filling in an output
vector, which will be then compared with the result from the
fault-free execution (golden value). This way the DUT only
has to send messages to the host computer once per execution,
every N runs (and when an error is detected). The value
of N may vary for different benchmarks, according to their
execution times.

Table I provides some details about the case-study appli-
cation. The number of runs is the size of the output vector,
i.e., the value of NV times an algorithm runs per execution.
“Workload per Run” represents the size of the output values,
while the “Total Workload per Run” is the size in bytes of
the output vector. The “Execution Time” is the time of a
complete execution (/V runs). Finally, the last column presents
the average number of laser shots per execution which is
calculated dividing the execution time and the time between
laser shots (i.e., the inverse value of the laser frequency).

C. Errors

After each application execution, the output vector is com-
pared with the golden value to check for its correctness. When
the output value and the golden value are different, the DUT
sends to the host computer a message containing the details
of the error (position on the output vector and the value of
the incorrect output). The host computer receives the error
messages and saves them into a log to be further analyzed.

TABLE I
BENCHMARKS DETAILS

Number of Number | Workload Total Execution | Avg. Number
Application Variant Iterations of Runs per Run | Workload Time of Shots per
(N) [Bytes] [Bytes] [ms] Execution
1 14 100 8 800 41.72 0.417
Newton-Raphson 2 37 100 8 800 130.20 1.302
3 71 100 8 800 33791 3.3791
TABLE 11 1.0
ERROR TYPE CLASSIFICATIONS 05
.
Type Error 308
HANG || Causes the application to be stuck in a certain point. -r‘é 0.7
SDC Output difference between the golden execution and E 0.6
the exposed one. &
& 05
s
5 o4
f=4
The errors are classified into two types: HANG and SDC. 203
They are defined at Table II. So2
< 0.081
0.1 0.038
III. EXPERIMENTAL RESULTS 00 [
Variant 1 Variant 2 Variant 3

The fault tolerance of the application is evaluated in two
aspects. First, we assess how the number of iterations impacts
the error susceptibility, i.e., how each variant presented at
Table I at Section II-A behaves under fault injection. Variating
the number of iterations has a significant impact on fault
tolerance. Figures 2 presents the error relative probability (per
laser pulse) for each variant. This probability is calculated by
normalizing the error occurrence values with their maximum
for each variant. The normalization is needed because the error
occurrence depends on the execution time and the shots per
execution of the application, and those are very different for
each variant.

As expected, the variants with larger number of iterations
are more fault-tolerant. However, more iterations means more
latency. As Table I shows, the variant 3 is almost 10z times
slower, but Figure 2 shows the error occurrence does not
decrease in the same pace. It means that, for this algorithm,
increasing the number of iterations improves reliability, but the
price is high. More in detail, Figure 2 indicates that the variant
2 already achieves a considerable fault tolerance improvement,
having a relative probability two orders of magnitude smaller
than the first variant.

The second type of validation is done by relaxing the
definition of SDC. Instead to consider all the differences
between the golden and the faulty output, we classify the SDC
in critical and non-critical. The classification depends on how
much the golden and faulty output differs. If the difference is
lower than a certain threshold, the SDC is classified as non-
critical.

Figure 3 presents the critical SDC drop when variating
the output threshold for the Newton-Raphson algorithm. The
variant 3 of Newton-Raphson is the one that had the more
erroneous values. The error drop stagnates after around 4% of
output variation tolerance.

Benchmarks Variations

Fig. 2. Newton-Raphson Application Error Relative Probability (per laser
pulse)

100-

75-

50-

Total SDC Errors [%]

25-

5.0 75 10.0

Output Variation Tolerace [%]

25

0.0
Benchmark =— Variant 1 == Variant2 =+ Variant 3

Fig. 3. Error Occurrence Drop in Relation to Output Variation Tolerance for
Newton-Raphson Benchmark

IV. CONCLUSION

Approximate Computing as an hidden cost that has to be
considered especially for safety-critical systems. Therefore,
the study of this kind of approximate computing algorithms
is essential before it can be applied to safety-critical systems

as reliable software. However, the number of iterations does
affect the fault tolerance. Even for an application with a
relatively low number of iterations, such as Newton-Raphson,
its impact on fault tolerance is noticeable.

All the variants showed a trend of having a significant
drop in the number o SDC errors for small output variation
tolerances. It shows that most of the SDC type errors affecting
approximate computing by successive approximation algo-
rithms have values not very different from the expected one. In
other words, the errors are not significant. Many applications
that use this kind of algorithm may tolerate small variations
on the output without a problem. For those applications,
successive approximation arises as the perfect method for
approximate computing.

On future works, we will investigate the impact of other
Approximate Computing techniques (e.g., precision reduction)
on the fault tolerance.

REFERENCES

[1] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,” in
Proceedings of the 52Nd Annual Design Automation Conference, ser.
DAC ’15. New York, NY, USA: ACM, 2015, pp. 120:1-120:6.
[Online]. Available: http://doi.acm.org/10.1145/2744769.2751163

[2] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design Test, vol. 33, no. 1, pp. 8-22, Feb 2016.

[3] R. Nair, “Big data needs approximate computing: Technical perspective,”
Commun. ACM, vol. 58, no. 1, pp. 104-104, Dec. 2014. [Online].
Available: http://doi.acm.org/10.1145/2688072

[4] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18th IEEE European Test
Symposium (ETS), May 2013, pp. 1-6.

[5] G. S. Rodrigues and F. L. Kastensmidt, “Evaluating the behavior of
successive approximation algorithms under soft errors,” in 2017 18th
IEEE Latin American Test Symposium (LATS), March 2017, pp. 1-6.

[6] R. C. Baumann, “Radiation-induced soft errors in advanced semiconduc-
tor technologies,” IEEE Transactions on Device and Materials Reliability,
vol. 5, no. 3, pp. 305-316, Sept 2005.

https://www.researchgate.net/publication/328460191

