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Increases in tree mortality rates have been highlighted in different biomes

over the past decades. However, disentangling the effects of climate

change on the temporal increase in tree mortality from those of management

and forest dynamics remains a challenge. Using a modelling approach

taking tree and stand characteristics into account, we sought to evaluate

the impact of climate change on background mortality for the most

common European tree species. We focused on background mortality,

which is the mortality observed in a stand in the absence of abrupt disturb-

ances, to avoid confusion with mortality events unrelated to long-term

changes in temperature and rainfall. We studied 372 974 trees including

7312 dead trees from forest inventory data surveyed across France between

2009 and 2015. Factors related to competition, stand characteristics, manage-

ment intensity, and site conditions were the expected preponderant drivers

of mortality. Taking these main drivers into account, we detected a climate

change signal on 45% of the 43 studied species, explaining an average 6% of

the total modelled mortality. For 18 out of the 19 species sensitive to climate

change, we evidenced greater mortality with increasing temperature or

decreasing rainfall. By quantifying the mortality excess linked to the current

climate change for European temperate forest tree species, we provide new

insights into forest vulnerability that will prove useful for adapting forest

management to future conditions.
1. Introduction
Forests are among the most important terrestrial providers of ecosystem

services. Therefore, understanding how climate change could affect their

functioning is an urgent challenge. Climate change can influence tree mortality

through extreme events such as storms, forest fires, flooding, avalanches, or

pest outbreaks that can locally lead to important forest dieback [1]. At the oppo-

site end of catastrophe-related mortality, the mortality rates observed in stands

in the absence of severe disturbances are called background mortality. While

the link between extreme climatic events and tree mortality has been exten-

sively studied [2,3], the extent to which background mortality increases are

related to climate change remains unclear.

The link between current climatic conditions and background tree mortality

was established in the field through spatial approaches aimed at correlating the

spatial variations of observed mortality with those of average climatic con-

ditions over a given period. These studies lead to contrasting results. Tree

mortality was found to be positively correlated with water stress in forests of

North America [4], positively correlated with warm summers in Europe [5],

while significant but highly heterogeneous and species-dependent responses
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to climate conditions were evidenced in forests of the eastern

United States [6,7] and Spain [8]. At the stand scale, aerial

observations of dieback patterns were found to be positively

correlated with the intensity of climatic water deficit in tem-

perate [9] and boreal forests [10]. Although these studies

highlighted average climate effects on background tree mor-

tality, they did not take the evolution of climatic conditions

over time into account.

Other approaches characterized the evolution of back-

ground tree mortality based on the analysis of longitudinal

data, i.e. the monitoring of the tree or stand health status

over long time periods, with repeated aerial or ground sur-

veys. Several such studies showed significant background

tree mortality increases over the last decades for all tree

sizes and at different altitudinal and latitudinal ranges in for-

ests of the western and central United States [11] and in

boreal forests of Canada [12]. In Central Europe, the analysis

of Landsat data covering the years 1984 to 2016 showed that

canopy mortality rates doubled over that period [13].

It is quite hard to disentangle the different drivers of

background tree mortality over long time periods in such

temporal studies in a context of forest transition [14,15]. In

North America, because the stand development dynamics

of old-growth forests have been assumed to be at equili-

brium, temporal increases in tree mortality in these stands

were mainly attributed to increasing temperature and

decreasing water availability [11,16]. However, other tem-

poral studies in boreal and subalpine Canadian forests

found that mortality increases were not related to tempera-

ture increases, but only to increases in basal area (BA) and

stand density [17], even in mature stands [18]. Additional

studies in the same areas highlighted a predominant effect

of increased competition on increased tree mortality, with

changes in climate conditions playing a secondary role

[12,19]. Furthermore, many additional factors such as species

composition, spatial structure, species interactions [20], or sil-

vicultural practices and management intensity [21] impact

tree mortality and have evolved over the past decades, pre-

venting temporal studies from fully disentangling the

drivers of mortality. Despite the stakes, the extent to which

recent climate change has already affected background tree

mortality in temperate forests remains questionable.

Previous studies based on spatial approaches did not con-

sider the effects of climate change intensity, while temporal

studies could not reliably attribute mortality increases to

changes in the temperature and rainfall regimes owing to

the difficulties in disentangling the different drivers over

long time periods. So far, no study combining both an accu-

rate description of tree and stand characteristics and climate

change data has been performed on temperate forests. We

examined the relationships between the spatial patterns of cli-

mate change since the 1960s and the current distribution of

dead trees using ground survey data from the French national

forest inventory programme (NFI). This dataset provides an

accurate description of tree and stand characteristics, includ-

ing previously unexplored potential mortality factors like

logging intensity, stand structure, and species composition

for a large number of plots. We used a modelling approach

for a large number of species representative of the European

temperate forests to disentangle site, tree, and stand charac-

teristics effects from climate change effects on mortality.

European forests represent 26% of the world forests in

terms of growing stock [15], while a majority of European
tree species are threatened by future global warming on a

large part of their distribution range [22].
2. Material and methods
(a) Study sites and species
We used information from 41 692 forest plots with 554 133 trees,

including 37 767 dead trees inventoried in the NFI over the

2009–2015 period in France. Because our study focused on the

effects of temperature and rainfall on background tree mortality,

we removed plots affected by storms, fires, avalanches, floods,

and broken or felled dead trees, to focus on standing dead

trees (electronic supplementary material, panel S1a). Salvage-

logged trees were not taken into account because no information

about the tree status (living or dead) before harvesting was avail-

able. We studied a broad range of species representative of

contrasting ecological contexts (dry or wet and siliceous or cal-

careous) representative of different biomes (lowland/

mountain/Mediterranean forests). Among the most common

species present in the NFI database, we removed five species

affected by severe health issues (electronic supplementary

material, panel S1b) to study 43 species (figure 1) that compose

around 80% of the total forest cover of Europe [23]. We finally

considered 372 974 trees with a diameter greater than 7.5 cm

including 7312 dead trees located in 34 097 plots scattered

across the afforested territory of France.

The plot altitudes ranged from 1 to 2533 m (mean ¼ 432 m),

longitude from 58W to 108E, and latitude from 418N to 518N. The

proportion of dead trees over the 2009–2015 period varied from

0.6 to 18% (figure 1) of the total number of surveyed trees

depending on the species (mean+ s.d. ¼ 4.1+3.0%) and was

not related to average 1961–1987 temperature (R2 ¼ 0.06, p ¼
0.62), rainfall (R2 ¼ 0.02, p ¼ 0.88), or to the frequency of species

(R2 ¼ 0.09, p ¼ 0.08; figure 1).
(b) Variables considered
Mortality models were built using 36 variables covering the main

drivers of tree mortality identified at the tree and stand scales in

various studies (table 1, [24,25]). To assess the effects of competi-

tive interactions at the tree level, we used the circumference at

1.3 m height (Circ, cm) and calculated the relative circumference

(RelCirc, %), which is the ratio of the circumference of each tree

over the average circumference of the other trees in the plot. To

assess the effects of stand structure and composition, we com-

puted seven indices from the field-measured variables (Circ
and tree canopy cover (CC)). The total BA of all the trees

within each plot was calculated from the tree circumference

and summed to give the plot BA (m2 ha21). The number of

trees per hectare (NB, Nb ha21) was calculated from the sum of

inventoried trees on the plot. The plot CC (%) is the proportion

of the plot covered by the vertical projection of all measured

tree crowns. We computed the total number of tree species

(Nb_sp) and the proportion of basal area occupied by each

species within each plot (PropBA, %) as indicators of forest

composition. To evaluate stand structure heterogeneity, we cal-

culated the Gini index of inequality of tree circumferences on

the plot [26] (Gini) that ranges between 0 and 1, with increasing

diameter unevenness.

Gini ¼ 1Pn
i¼1 Ci(n� 1)

Xn

i¼1

(2i� n� 1)Ci,

Ci ¼ circumference of tree i in the plot; n ¼ total number of trees

in the plot.

We assessed the effects of site environmental conditions with

bio-indicated estimates of the soil pH, the carbon-to-nitrogen
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Figure 1. (a,b) Number of trees and proportion of dead individuals per species along mean annual temperature and rainfall gradients over the 1961 – 1987 period.
The circle size corresponds to the total number of trees per species (alive or dead) in the sample surveyed between the years 2009 and 2015. The circle colour
corresponds to the proportion of dead trees per species. Species are located at their mean temperature and rainfall over the 1961 – 1987 period. Correspondence is
provided between the species names and the abbreviations used in this figure, in figure 5, in electronic supplementary material, table S2 and figure S2.
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ratio, permanent and temporary waterlogging indices, and six

climate variables describing average seasonal temperatures

(TmwinRef, TmsprRef, TmsumRef, TmautRef ) and spring and

summer rainfall (RFsprRef, RFsumRef ) over the 1961–1987 period

(electronic supplementary material, panel S1c for additional

details about the calculation of environmental condition

variables).

Finally, we assessed the effects of climate change intensity by

calculating the evolution of the same six climate variables

between the 1961–1987 historic period and contemporary

periods at each plot location using historic homogenized climate

series spanning the 1961–2015 period [27]. Because delayed mor-

tality can occur several years after a climatic disturbance [28],

and because the forest inventory programme records trees that

are supposed to have died in the 5 years preceding their

survey, we considered the 15 years preceding each plot survey

as contemporary periods (e.g. the 1994–2009 period for a

survey carried out in 2009). We obtained six variables describing

the evolution of temperature and rainfall per season, calibrated

on the 15 years preceding the date of the survey (TmwinEvo, Tmspr-

Evo, TmsumEvo, TmautEvo, RFsprEvo, and RFsumEvo, table 1, and see

electronic supplementary material, panel S1d for details about

the calculation of climate change intensity variables).

We hypothesized that for a given temperature increase or

rainfall decrease, impacts on trees were greater in areas with a

high temperature or low rainfall over the reference period. To

assess the potential influence of initial climate conditions on

the effects of climate change on tree mortality, we considered

the product between TmRef and TmEvo and the RfEvo-over-

RfRef ratio as additional candidate variables (table 1).
(c) Observed climate change patterns
In our study area, the mean annual temperature significantly

increased by 1.18C between 1961–1987 and 1988–2015, (t-test:

p , 0.0001), from 9.98C (+0.48C) to 11.08C (+0.58C; electronic
supplementary material, figure S1a), while the mean annual rain-

fall did not change significantly (t-test: p ¼ 0.53), from 974 mm

(+110 mm) to 990 mm (+115 mm; electronic supplementary

material, figure S1c). Important seasonal and spatial variations

exist, and climate change intensity was not uniform across the

distribution of the plots (electronic supplementary material,

figure S1b,d). The mapping of seasonal climate change variables

between 1961–1987 and 1988–2015 revealed that average temp-

erature increases were more intense in spring and summer

(between þ0.758C and þ28C) than in autumn and winter

(between þ0.25 and þ18C; figure 2a), with important spatial

variations. Concerning changes in rainfall regimes over this

period, average spring rainfall decreased over most of the

study area (figure 2b), while summer rainfall sharply decreased

only in parts of southeastern France, with sharp increases

observed elsewhere.
(d) Statistical model
We modelled the status of each tree (0: alive, 1: dead) for each of

the 43 species with logistic regression models. Logistic regression

was used to model binary dependent variables [29] and has been

widely used in previous mortality models at the tree scale

[30,31]. The output of each logistic regression model is a prob-

ability of mortality ranging between 0 and 1. The most

common way to assess the goodness-of-fit of a logistic regression

model is to use the Area Under the Curve (AUC) [32]. The AUC

value varies between 0.5, indicating a prediction equivalent to a

random classification model, and 1, indicating that the model

perfectly differentiates between live and dead trees. As the

AUC value is dependent on the geographical extent and the

number of predictors [33], we additionally provided the True

Skill Statistics (TSS), which is a goodness-of-fit indicator indepen-

dent of the prevalence level [34]. Its value varies between 21,

indicating that the model does not perform better than

random, and 1, indicating perfect agreement.



Table 1. Description of the 36 explanatory variables used in the models. Code ¼ abbreviation. The Source column indicates the origin of the data: collected on
field (Field), calculated using field data (Calc.), or extracted from models available from Geographical Information Systems (Mod.).

variable name code description units source

tree status

circumference Circ circumference of the tree measured at 1.30 m height cm Field

relative circumference RelCirc ratio of the tree circumference over the mean

circumference of all the trees in the plot

cm Calc.

stand characteristics and structure

plot basal area BA sum of the tree basal areas in the plot m2 Calc.

number of trees per

hectare

NB number of trees, all species considered, with a

diameter � 7.5 cm measured in the plot and related to

a value per hectare

nb ha21 Calc.

canopy cover CC proportion of the forest floor covered by the vertical

projection of the tree crowns

% Calc.

quadratic mean diameter QMD quadratic mean diameter of the trees on the plot cm Calc.

Gini coefficient Gini Gini coefficient of the tree circumferences in each plot / Calc.

proportion of BA occupied

by the species growing

in the plot

PropBA per cent of basal area occupied by the species in each plot % Calc.

number of tree species Nb_sp total number of tree species in each plot / Calc.

stand management intensity

skidding distance Dist indicator of the distance from the centre of the plot to the

nearest existing skid trail

/ Field

skid trails Trails indicator of the presence of already existing skid trails and

of the possibility to create new ones

/ Field

recent cut Cut type and intensity of a recent cut in the plot (less than

5 years)

/ Field

soil properties

available water content AWC maximum volume of water that can be stored in the soil

calculated from the Al-Majou pedotransfer functions

mm Mod.

permanent waterlogging PW pH, C/N, permanent and temporary waterlogging index:

bio-indicator values calculated from the floristic survey

of each plot

/ Mod.

temporary waterlogging TW / Mod.

pH pH / Mod.

carbon-to-nitrogen ratio CN / Mod.

surface runoff Topo surface run-off estimated from the site topography Field

climate conditions

winter mean T8

1961 – 1987

TmwinRef mean seasonal temperatures in winter, spring, summer,

and autumn, and mean total seasonal rainfall in

spring and summer calculated over the 1961 – 1987

reference period

8C Mod

spring mean T8

1961 – 1987

TmsprRef 8C Mod.

summer mean T8

1961 – 1987

TmsumRef 8C Mod.

autumn mean T8

1961 – 1987

TmautRef 8C Mod.

spring rainfall 1961 – 1987 RFsprRef mm Mod.

summer rainfall

1961 – 1987

RFsumRef mm Mod.

(Continued)
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Table 1. (Continued)

variable name code description units source

intensity of climate change

winter mean T8 evolution TmwinEvo climate change anomalies between the 1961 – 1987

reference period and shifting 15-year sub-periods based

on the date of the survey of each plot for the same

variables and seasons as for the reference period

8C Mod.

spring mean T8 evolution TmsprEvo 8C Mod.

summer mean

T8 evolution

TmsumEvo 8C Mod.

autumn mean

T8 evolution

TmautEvo 8C Mod.

spring rainfall evolution RFsprEvo mm Mod.

summer rainfall evolution RFsumEvo mm Mod.

interaction between

temperature and its

evolution

TmwinRef � Tmwinevo interaction between temperature evolution and the

reference period temperature calculated as a product of

these two values for each season. relative rainfall

evolution calculated as the ratio of rainfall evolution

over the reference period rainfall, for spring and

summer

8C2 Mod.

TmsprRef � Tmsprevo 8C2 Mod.

TmsumRef � Tmsumevo 8C2 Mod.

TmautRef � Tmautevo 8C2 Mod.

relative rainfall evolution RFsprevo/RFsprRef

RFsumevo/RFsumRef

% Mod.
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Variable selection for each species was made with a forward

procedure [35] based on residual deviance decrease using a set of

36 potential predictors (table 1). At each step, we selected the

variable that induced the highest significant decrease in residual

deviance (Likelihood Ratio Test [LRT], p , 0.01). We only kept

variables with correlation coefficients (R2) with variables pre-

viously selected in the model lower than 0.75. We continued

the variable selection process until no variable added a signifi-

cant deviance reduction. We calibrated the models on 298 379

trees. We then validated them on 74 595 independent trees ran-

domly selected from the full sampling. The trees used for

validation were not used for calibration. To evaluate the relative

importance (RI) of the predictors, we calculated the drop contri-

bution of each variable used in the models (electronic

supplementary material, panel S1e). To fully characterize com-

monly observed U-shaped or bell-shaped responses of tree

mortality to tree size, competition intensity [36], and soil chemi-

cal and physical properties [37], we tested quadratic forms

for variables describing tree status, stand structure, and soil

properties [38].

We modelled tree mortality for each of the 43 species with

logistic regression and assessed the goodness-of-fit of the

models with both AUC and TSS. First, we compared the average

values of these indicators between the calibration and the

validation datasets. Second, we presented which categories

of variables were the most preponderant determinants of back-

ground tree mortality. Finally, we detailed how climate change

influenced background tree mortality in terms of the amount

of species affected, of the RI of the variables in the models,

and of the climate change-related excess probability of induced

mortality.
3. Results
For a vast majority of species, background tree mortality was

highly predictable, with high values of both AUC and TSS.

We were able to quantify the RI of each category of mortality
drivers. As expected, factors related to the tree status and the

stand characteristics were the main drivers of mortality.

Taking these factors into account, we also detected a signifi-

cant climate change effect on 45% of the species, leading for

some species to important excess probabilities of mortality

as compared to a climate change-free context.

The AUC for the 43 mortality models varied from 0.65 to

0.90 (mean+ s.d. of 0.81+ 0.06) and the TSS from 0.21 to 0.69

(0.51+0.11) in the calibration dataset and from 0.64 to 0.91

(0.78+0.06) and the TSS from 0.16 to 0.49 (0.56+ 0.12; elec-

tronic supplementary material, table S1) in the validation

dataset. AUC and TSS values did not significantly differ

between calibration and validation datasets (t-test, p ¼ 0.11

and p ¼ 0.10, respectively).

Tree status and stand attributes variables were the most

frequently selected during model building (LRT, p , 0.01),

with 81% (for tree status) and 86% (for stand attributes) of

the species with one or more variables from these categories

(figure 3a), and 98% of the species with at least one variable

from both categories. All species considered, these variables

had an RI of 79% in the mortality models (figure 3b).

RelCirc was the most frequently selected variable, with

74% of the species affected (figure 4, and detailed model coef-

ficients available in the electronic supplementary material,

table S2). All these species displayed decreasing mortality

with increasing relative tree circumference, with a slight mor-

tality increase at the highest values for 47% of the species.

Stand density and spatial structure influenced tree mortality

to a lesser extent, with important effects of tree species com-

position (PropBA, 63% of the species and Nb_sp, 23%),

size heterogeneity (Gini, 37%), total BA (30%), and CC
(21%). Stand management intensity variables (Dist, Trails,

and Cut) were significant for 33% of the species, with

observed mortality consistently decreasing with increasing

management intensity. Effects of soil characteristics on tree
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mortality were rare, with responses to pH and CN for 12% of

the species each. Reference period climate effects affected

23% of the species and had a low RI (figure 3b). Among

these effects, those of mean temperature were the most fre-

quent ones (figure 4), with 21% (n ¼ 9) of the species

affected and mainly a mortality increase at the highest

mean summer temperatures for 14% (n ¼ 6) of the species.

Climate change-related effects were frequent and highly

species dependent, with 45% (n ¼ 19) of the species with one

or several significant climate change variables selected (LRT,

p , 0.01). The mean RI of climate change variables reached

6% (figures 3a,b) and was lower than that of the tree or stand

characteristics (electronic supplementary material, figure S2).

With 30% (n ¼ 13) of the species affected, the effects of temp-

erature change were more frequent than those of rainfall

change that affected 19% (n ¼ 8) of the species. Among temp-

erature effects, increasing mortality with increasing

temperature was the most frequent one, with 26% (n ¼ 11) of

the species affected (figure 5a, electronic supplementary

material, figure S3a for the excess probability of mortality

curves with 95% confidence intervals) and average excess

probability of mortality ranging from þ0.7% to þ15.1%

(mean ¼ 3.9%) depending on the species as compared to a cli-

mate change-free context (see electronic supplementary
material, panel S2 for the calculation of average excess prob-

ability of mortality). Mean summer temperature was the

most often selected effect, with 19% (n ¼ 8) of the species

affected. Decreasing mortality with increasing winter temp-

erature affected 5% (n ¼ 2) of the species, leading to an

average decrease in the probability of mortality ranging from

221.9% to 26.5% (mean ¼ 214.2%). Rainfall effects were

less frequent than temperature effects and affected 19% (n ¼
8) of the species (figure 5b; electronic supplementary material,

figure S3b); the main one was increasing mortality with

decreasing rainfall, mainly in summer. Rainfall increase led

to average changes in the probability of mortality ranging

from 21.1% to þ0.3% (mean ¼ 20.4%), while rainfall

decrease led to changes in the probability of mortality ranging

from 20.3% to þ1% (mean ¼ þ0.5%).

To ensure that our results were not biased by differences

in management intensity or only affected species with high

base-mortality rates, we compared the RI of climate change

effects in our models among species with low and high

base-mortality rates (electronic supplementary material,

figure S4a) and among species with low and high harvest

intensities (electronic supplementary material, figure S4b).

In neither case were the differences significant (t-test: p ¼
0.699 and p ¼ 0.133, respectively).
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4. Discussion
By combining detailed information about tree competition,

stand characteristics, management intensity, and environ-

mental conditions, we quantified for the first time the RI

of climate change effects on background tree mortality

on a set of species representative of the European forest.

The climate change effects we highlighted were ecophysio-

logically consistent, with a deleterious effect of both

increasing temperature and decreasing rainfall on tree

mortality.
We found that the RI of factors related to the tree status

and the stand characteristics was on average more than

10 times higher than that of climate change variables.

The tree population on which we calibrated our models

was composed of trees of all sizes and ages. According to

the self-thinning rule [39], the smallest trees are expected to

die as a result of competition and selection with stand

ageing. For example, in pure and even-aged stands, self-thin-

ning relationships among 11 temperate forest species showed

that up to 90% of small trees naturally died with stand ageing

[40]. Therefore, the high importance of tree and stand
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characteristic variables highlighted in our models was

expected. Contrary to previous studies attributing tree

mortality solely to climate variability [5], recent climate

change [11,16], or competition intensity [17], we emphasize

that all these explanatory factors are potential confounding

factors that have to be studied jointly to properly predict

tree mortality. Without using temporal correlations that can

be biased by changes in stand structure and composition

[12,17], we found that when other causes of mortality are

taken into account, a climate change effect remains visible

on 45% of the studied species. By removing the trees and

plots affected by forest fires, storms, avalanches, floods,

wind events, and the species affected by the most important

health issues from our analysis, we removed major sources of

catastrophe-related mortality and ensured that the effects we

highlighted could be confidently attributed to long-term

trends of climate change on background tree mortality.

From a physiological viewpoint, hydraulic failure has

been identified as the main process responsible for drought-

related mortality, highly connected with trees’ carbon

balances [41]. This phenomenon results from xylem dysfunc-

tioning due to cavitation, when water loss from transpiration

is higher than water uptake by roots [42]. Embolism

thresholds leading to hydraulic failure were measured exper-

imentally on a variety of tree species and turned out to be

highly species dependent [43,44]. We found that the effects

of increased temperature on mortality were twice as frequent

as those of rainfall decrease. Heat stress alone can diminish

photosynthetic activity and damage tree leaves, but only at

extremely high temperatures uncommon in temperate forests,

and is unlikely to lead to tree death when not associated with

water shortage [45]. However, when high temperatures are

combined with low soil water availability, the effects of

drought can be exacerbated because of increased evapotran-

spiration, and rapid tree death can occur [46]. Additionally,

as the soil water-holding capacity greatly varied across the

study area, rainfall intensity could be only weakly correlated

to the actual soil water content [47]. Therefore, the effects of

temperature increase on mortality could be direct effects on

the physiological functioning of trees, but they could also

be proxies for water stress effects. Thus, we suggest that

future research further investigate the links between mor-

tality and the evolution of the soil water balance. Finally,

the higher importance of temperature effects over rainfall

effects could also result from important differences in spatial

patterns of climate change across the French territory. While

temperatures significantly and differently increased across

the whole study area, changes in rainfall regimes were

more heterogeneous, with decreases in summer rainfall

only in a limited part of the study area. Therefore, our

models could have been more efficient at detecting wide-

spread temperature increase effects rather than rarer rainfall

decrease effects. The detection of the sole effects of rainfall

decrease can be improved in future studies by studying

broader geographical ranges, for example, by combining

forest inventories from several European countries [48],

provided that the levels of accuracy, the survey protocols

of the stand characteristics, and environmental conditions

are similar.

Extreme events such as abnormal droughts or heatwaves

are important drivers of tree mortality [49], and they are

expected to increase in frequency and intensity with climate

change [1]. The extent to which they affect tree functioning
depends on their intensity, duration, frequency, and timing.

For example, the adverse effects of the 2003 drought on

Pinus sylvestris in Europe were amplified by repeated

droughts in the following years [50]. Under the same heat

sum, Quercus rubra seedlings were more vulnerable under

short and intense stress than under longer and lower inten-

sity stress [51]. We studied trees that died in the 5 years

preceding their survey, limiting the study of the relationships

between the timing of extreme events and tree death. Intense

droughts and heatwaves were indirectly taken into account as

averaged values over 15-year periods characterizing contem-

porary climate. Further studies using specific methods to

disentangle the effects of long-term changes from extreme

events, including drought frequencies and intensities,

coupled with the use of data from annually surveyed perma-

nent plots would allow better understanding of the respective

effects of extreme events and long-term tendencies on tree

mortality.

Our study probably underevaluated the effects of climate

change on tree mortality. Management effects were

accounted for in our models but probably poorly evaluated,

because many dying or dead trees were preferentially cut

during salvage loggings, clear or selective cuts and were

not recorded in the forest inventory database. To avoid con-

fusion with mortality events unrelated with long-term

changes in temperature and rainfall, we calibrated our

models on a tree population cleaned from trees that died

from abrupt disturbances and from species with the most

important health issues. However, as climate change also

likely increases fire and windstorm frequency as well as out-

breaks of insect or pathogenic disturbances [52], the death

of many trees removed from our analysis due to disturban-

ces could be linked to climate change. Therefore, our

models of background tree mortality tended to underestimate

rather than overestimate the total effects of climate change on

tree mortality.

Biotic factors interact with other causes of mortality to

shape mortality patterns. Pests and pathogens can trigger

tree decline or only hit weakened trees that would have

died even in their absence. Owing to these interactions

between biotic and abiotic factors, we were not able to expli-

citly take into account the probability that a tree died as a

result of biotic factors alone. Accurate modelling of the spatial

distribution of pests and pathogens and of its evolution over

time appears critical to better disentangle biotic from abiotic

causes of tree mortality.
5. Conclusion
A better understanding of forest vulnerability to climate

change is critical to maintain the ecosystem services

they provide, including timber and non-timber products,

erosion control, air and water quality, carbon sequestration,

or cultural services. With projections of increasing tempera-

tures up to þ4.88C by 2100 under the RCP8.5 scenario [53]

and of increasing drought frequencies and intensities [1],

our results suggest that mortality rates will keep on increas-

ing, while species that have not responded to climate change

yet could respond in the future, suggesting important

changes in future tree species composition. However, as

tree and stand characteristics remain the main drivers of

tree mortality, changes in silvicultural practices must be
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further explored to adapt forests to future climatic

conditions.
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