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In this paper, we introduce a primal-dual algorithm for solving (martingale) optimal transportation problems, with cost functions satisfying the twist condition, close to the one that has been used recently for training generative adversarial networks. As some additional applications, we consider anomaly detection and automatic generation of financial data.

Introduction

We introduce a primal-dual algorithm for solving (martingale) optimal transportation problem (in short MOT), potentially large-scale, using neural networks. The martingale optimal transport, first introduced in [START_REF] Beiglböck | Model-independent Bounds for Option Prices: A Mass-Transport Approach[END_REF] and in a continuous-time setting in [START_REF] Galichon | A stochastic control approach to no-arbitrage bounds given marginals, with an application to Lookback options[END_REF], can be defined in a discrete-time setting as the following infinite-dimensional linear program:

MK c (µ 1 , µ 2 ) := sup P∈M(µ 1 ,µ 2 ) E P [c(S 1 , S 2 )] (1) 
where M(µ 1 , µ 2 ) := {P ∈ P(R d , R d ) : S 1 P ∼ µ 1 , S 2 P ∼ µ 2 , E P [S 2 |S 1 ] = S 1 } is a weak compact convex set and P(R d × R d ) is the set of probability measures on R d × R d (or R d + × R d + if the random variables S 1 and S 2 are interpreted as financial asset prices). A similar definition applies by replacing the supremum over M(µ 1 , µ 2 ) by an infimum. MK c (µ 1 , µ 2 ) is a number which depends on a cost function c : R d × R d → R and two marginal distributions µ 1 and µ 2 defined on R d . In comparison with the classical OT, we have an additional martingale constraint E P [S 2 |S 1 ] = S 1 and the linear problem is well-posed if and only if µ 1 ≤ µ 2 in the convex order. In mathematical finance, MK c (µ 1 , µ 2 ) can then be interpreted as the model-independent arbitrage-free optimal upper bound for a payoff c(S 1 , S 2 ) depending on an asset S • ∈ R d evaluated at two maturities t 1 < t 2 , i.e., S 1 := S t1 , S 2 := S t2 , which is consistent with the prices (at t = 0) of t 1 and t 2 (d-dimensional) European basket options (see [START_REF] Henry-Labordère | P : Model-free Hedging: A Martingale optimal transportation viewpoint[END_REF] for an extensive introduction to MOT and its relevance in arbitrage-free pricing). Our algorithm, described in Section 3, can also be applied to more general linear programs of the form:

P c := sup P∈M E P [c(S 1 , S 2 , • • • , S n )]
where M is a weak-compact convex subset of P((R d ) n ), see for example the multi-marginals (M)OT. However, our algorithm will be applicable only to cost functions satisfying a (martingale) twist condition. Although the extension of our algorithm to this more general setting is straightforward, we prefer for the sake of simplicity to focus on (martingale) OT as defined by [START_REF] Arjovsky | Wasserstein GAN[END_REF]. Most of the numerical schemes of (M)OT, that we will describe, rely strongly on the dual Monge-Kantorovich formulation in which MK c (µ 1 , µ 2 ) can be written as (see [START_REF] Beiglböck | Model-independent Bounds for Option Prices: A Mass-Transport Approach[END_REF] for a proof in the context of MOT):

MK c (µ 1 , µ 2 ) := inf u1∈L 1 (µ 1 ),u2∈L 1 (µ 2 ),h∈C b (R d ,R d ) E µ 1 [u 1 ] + E µ 2 [u 2 ] (2) such that for all (s 1 , s 2 ) ∈ R d × R d u 1 (s 1 ) + u 2 (s 2 ) + h(s 1 ).(s 2 -s 1 ) ≥ c(s 1 , s 2 ) (3) By definition, h(s 1 ).(s 2 -s 1 ) := d i=1 h i (s 1 )(s i 2 -s i 1 ).

Numerical algorithms: A short overview

In this section, we review three numerical algorithms for solving (martingale) optimal transport and highlight their main drawbacks 1 . These algorithms will be compared to our primal-dual method in Section 4.

2.1. Simplex and cutting-plane. The problem (2) (resp. 1) defines a linear program that can be solved using a simplex algorithm. In the context of MOT, this has been explored in [START_REF] Henry-Labordère | Automated Option Pricing: Numerical Method[END_REF]. By discretizing the measures µ 1 and µ 2 on a large grid G ∞ in R d × R d , we obtain a finite-dimensional linear program. Due to the large number N := card(G ∞ ) of linear constraints (3), one can use a cutting-plane algorithm, see [START_REF] Henry-Labordère | Automated Option Pricing: Numerical Method[END_REF] for extensive details. This consists in solving the LP program using first a small dimensional grid

G 0 ⊂ G ∞ (card(G 0 ) card(G ∞ )). The optimal bound MK (0) c (µ 1 , µ 2
) is attained by the dual variables (u

(0) 1 , u (0) 2 , h (0) 
). Then we check on the full grid G ∞ if our optimal dual solution violates the linear constraints [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF]. The points of G ∞ where the linear constraints are not satisfied, are then added to the grid G 0 , defining a new refined grid G 1 . By construction, we obtain MK c (µ 1 , µ 2 ) ≥ MK (1) c (µ

1 , µ 2 ) ≥ MK (0) c (µ 1 , µ 2 ) as G 0 ⊂ G 1 ⊂ G ∞ .
The procedure is then iterated until the optimal dual solution (u

(n) 1 , u (n)
2 , h (n) ) at step (n) satisfies all the constraints on G ∞ for which we can conclude that we have converged towards the true solution. Despite its simplicity, this algorithm could not be extended in large dimension as the number of constraints explodes with the dimension. For example, the complexity of the Hungarian/auction algorithms is O(N 3 ).

Entropic relaxation.

Another approach is to introduce an entropy penalization (or more generally a f -divergence):

MK c (µ 1 , µ 2 ) := sup P∈M(µ 1 ,µ 2 ) E P [c(S 1 , S 2 )] -H(P|P 0 )
where H(P|P 0 ) := E P [ ln dP dP 0 -1 ] is the relative entropy with respect to a prior probability measure P 0 ∈ P(R d × R d ) and is a positive parameter taken to be small. In particular, lim →0 MK c (µ 1 , µ 2 ) = MK c (µ 1 , µ 2 ). The problem MK c (µ 1 , µ 2 ) can be dualized using the Fenchel-Rockafellar's theorem into a strictly convex optimization problem [START_REF] Henry-Labordère | Automated Option Pricing: Numerical Method[END_REF]:

MK c (µ 1 , µ 2 ) := inf u1∈L 1 (µ 1 ),u2∈L 1 (µ 2 ),h∈C b (R d ,R d ) E µ 1 [u 1 ] + E µ 2 [u 2 ] + E P 0 [e 1 (c(s1,s2)-u1(s1)-u2(s2)-h(s1).(s2-s1)) ] (4)
1 We acknowledge G. Peyré for useful discussions.

2.2.1.

Sinkhorn's algorithm. By computing the gradients with respect to u 1 , u 2 and h, we obtain the first-order optimality conditions: e -u 1 (s 1 ) p 0 (s 1 , s 2 )ds 2 e

1 (c(s1,s2)-u2(s2)-h(s1).(s2-s1))

= µ 1 (s 1 ) (5) e -u 2 (s 2 ) p 0 (s 1 , s 2 )ds 1 e

1 (c(s1,s2)-u1(s1)-h(s1).(s2-s1))

= µ 2 (s 2 ) (6)

p 0 (s 1 , s 2 )ds 2 (s 2 -s 1 )e 1 (c(s1,s2)-u2(s2)-h(s1).(s2-s1))
= 0 [START_REF] De March | Entropic resolution for multi-dimensional optimal transport[END_REF] For the sake of simplicity, we have assumed here that P 0 , µ 1 and µ 2 are absolutely-continuous with respect to the Lebesgue measure. The Sinkhorn algorithm can be then described by the following steps:

(1) Set n := 1 and set u (0) 1 := 0, u (0) 2 := 0, h (0) := 0 for convenience. We approximate the measures µ 1 and µ 2 by Dirac masses supported on N points (s i 1 ) 1≤i≤N and (

s i 2 ) 1≤i≤N . (2) Compute u (n) 1 (s 1 ) for all (s i 1 ) 1≤i≤N using e -u (n) 1 (s 1 ) p 0 (s 1 , s 2 )ds 2 e 1 c(s1,s2)-u (n-1) 2 (s2)-h (n-1) (s1).(s2-s1) = µ 1 (s 1 ) (3) Compute h (n) (s 1 ) for all (s i 1 ) 1≤i≤N by finding the (unique) zero θ ∈ R d of h(s 1 ) := θ s.t. p 0 (s 1 , s 2 )ds 2 (s 2 -s 1 )e 1 c(s1,s2)-u (n-1) 2 (s2)-θ.(s2-s1) = 0 (4) Compute u (n) 2 (s 2 ) for all (s i 2 ) 1≤i≤N using e -u (n) 2 (s 2 ) p 0 (s 1 , s 2 )ds 1 e 1 c(s1,s2)-u (n) 1 (s1)-h (n) (s1).(s2-s1) = µ 2 (s 2 )
(5) Set n := n + 1 and iterate steps (2-3-4) up to convergence.

The use of the Sinkhorn algorithm for solving OT problem was introduced in [START_REF] Cuturi | Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances[END_REF] and in [START_REF] Guo | Computational Methods for Martingale Optimal Transport problems[END_REF], [START_REF] De March | Entropic resolution for multi-dimensional optimal transport[END_REF] in the context of MOT (see also [START_REF] De March | Building arbitrage-free implied volatility: Sinkhorn's algorithm and variants[END_REF] for an application to the construction of arbitrage-free implied volatility surfaces). Again this algorithm does not scale well with the dimension as at each Sinkhorn's iteration, u

(n) 1 (s 1 ), h (n) (s 1 ), u (n) 
2 (s 1 ) must be computed on a grid whose the cardinality explodes with the dimension d. The overall complexity is O(N 2 ln N ).

2.3. and neural networks... In [START_REF] Seguy | Large-Scale Optimal Transport and Mapping Estimation[END_REF], the optimization (4) is solved by approximating the potentials u 1 , u 2 (and h) by some neural networks and then the training is achieved using a stochastic gradient descent algorithm. Similarly, by using Equation ( 5), the problem (4) can be converted into an equivalent form which involves only the potentials u 2 and h:

MK c (µ 1 , µ 2 ) := inf h∈C b (R),u2∈L 1 (µ 2 ) E µ 2 [u 2 ] µ 1 (ds 1 ) ln p 0 (s 1 , s 2 )ds 2 e 1 (c(s1,s2)-u2(s2)-h(s1).(s2-s1)) - µ 1 (ds 1 ) (ln µ 1 (s 1 ) -1)
and solve similarly. In [START_REF] Genevay | Stochastic optimization for large scale optimal transport[END_REF], instead of using neural networks, the authors make use of an expansion of the dual variables in a reproducing kernel Hilbert space. Despite this algorithm scales properly with the dimension in practise, we will illustrate in our numerical experiments that our computations are unstable when becomes small. This has been also reported in [START_REF] Genevay | Stochastic optimization for large scale optimal transport[END_REF].

2.4. Penalization. In [START_REF] Eckstein | Computation of optimal transport and related hedging problems via penalization and neural networks[END_REF], the optimization MK c (µ 1 , µ 2 ) is approximated by

MK γ c (µ 1 , µ 2 ) : = inf u1∈L 1 (µ 1 ),u2∈L 1 (µ 2 ),h∈C b (R) E µ 1 [u 1 ] + E µ 2 [u 2 ] + γE P 0 [(c(s 1 , s 2 ) -u 1 (s 1 ) -u 2 (s 2 ) -h(s 1 )(s 2 -s 1 )) 2 + ]
where γ is a large parameter. This ensures that by taking γ large, the optimal dual solution (u * 1 , u * 2 , h * ) will satisfy the linear constraints (3) and therefore lim γ→∞ MK γ c (µ 1 , µ 2 ) = MK c (µ 1 , µ 2 ). As above, the potentials u 1 , u 2 and h are approximated by some neural networks. This is a classical technique for solving linear programs by penalization and in practise the parameter γ t is chosen to increase to a large value as the learning parameter η t , used in the stochastic gradient descent, decreases. In our numerical experiments, we will illustrate that this algorithm is unstable, when the parameter γ is chosen large in order to converge to the true solution. Finally, let us remark that the penalization method can be obtained by replacing the entropy penalization

H(P|P 0 ) by the L 2 -divergence f (P|P 0 ) := E P 0 [ dP dP 0 2 ].
3. A primal-dual algorithm 3.1. A saddle-point formulation. For the sake of clarity, we explain our algorithm in the case of the classical OT problem which consists in solving

MK c (µ 1 , µ 2 ) := sup P∈M(µ 1 ,µ 2 ) E P [c(S 1 , S 2 )]
where

M(µ 1 , µ 2 ) := {P ∈ P(R d , R d ) : S 1 P ∼ µ 1 , S 2 P ∼ µ 2 }.
By introducing the Lagrange multipliers u 1 and u 2 associated to the two marginal constraints, this problem can be written as a minimax (relaxed) optimization problem:

MK c (µ 1 , µ 2 ) : = inf u1∈L 1 (µ 1 ),u2∈L 1 (µ 2 )
sup

P∈M+ E µ 1 [u 1 ] + E µ 2 [u 2 ] + E P [c(S 1 , S 2 ) -u 1 (S 1 ) -u 2 (S 2 )] (8) 
where M + denotes the space of positive measures on

R d × R d . 3.2. Using Brenier's theorem. Definition 3.1 (Twist condition). A function c ∈ C(R d × R d ) differentiable with respect to s 1 is said to be twisted if ∀s 0 ∈ R d , the map s 2 ∈ R d → ∇ s1 c(s 0 , s 2 ) is one-to-one.
We recall the Brenier theorem (see e.g. [START_REF] Villani | Topics in Optimal Transportation[END_REF]): Theorem 3.2 (Brenier's theorem). By assuming that µ 1 is absolutely continuous with respect to the Lebesgue measure and the cost function c satisfies the twist condition, the optimal probability measure P * , solution of the above saddle-point problem [START_REF] De March | Building arbitrage-free implied volatility: Sinkhorn's algorithm and variants[END_REF], is supported on a unique map T : R d → R d :

P * (ds 1 , ds 2 ) = µ 1 (ds 1 )δ(s 2 -T (s 1 ))ds 2
Note that the constraints S 1 P * ∼ µ 1 and S 2 P * ∼ µ 2 imply the requirement T # µ 1 = µ 2 where T # µ 1 denotes the push-forward of the measure µ 1 by the map T . T can be characterized as the unique solution of a Monge-Ampère-like equation. More precisely, in the case of the quadratic cost function, T is the gradient of a convex function solution of the Monge-Ampère PDE (see e.g. [START_REF] Villani | Topics in Optimal Transportation[END_REF]). Remark 3.3 (Fréchet-Hoeffding d = 1). Under the (twist) condition ∂ s1s2 c ≥ 0 in d = 1, the optimal transport can be solved analytically and it is given by the Fréchet-Hoeffding solution:

MK c (µ 1 , µ 2 ) = 1 0 (F -1 1 (u) -F -1 2 (u)) 2 du (9)
The map is then

T (s) = F -1 2 • F 1 (s) with F i the cumulative distribution of µ i .
Under the twist condition, the above minimax optimization (8) can therefore be simplified as

MK c (µ 1 , µ 2 ) := inf u∈L 1 (µ 2 )
sup

T :R d →R d E µ 1 [c(S 1 , T (S 1 )) -u(T (S 1 ))] + E µ 2 [u(S 2 )] (10) 
Note that as S 1

P *
∼ µ 1 , the potential u 1 has disappeared and the minimax optimization involves now only the potential u := u 2 and the Brenier map T .

3.3. and neural networks... We then approximate the two unknowns u : R d → R and T : R d → R d with two neural networks depending respectively on some weights θ ∈ R u and ω ∈ R t . MK c (µ 1 , µ 2 ) can then be approximated by

MK t,u c (µ 1 , µ 2 ) := min θ∈R u max ω∈R t E µ 1 [c(S 1 , T ω (S 1 )) -u θ (T ω (S 1 ))] + E µ 2 [u θ (S 2 )] (11) 
In particular, from the universal approximation property of neural networks, we have lim t,u→∞ MK t,u c = MK c .

Link with Wasserstein generative adversarial networks. The p-Wasserstein distance

W p (µ 1 , µ 2 ) corresponds to an OT problem with a L p -cost in R d , c(s 1 , s 2 ) := |s 2 -s 1 | p : W p (µ 1 , µ 2 ) p := inf P∈M(µ 1 ,µ 2 ) E P [|S 2 -S 1 | p ]
W p defines then a distance which metrizes the space P(R d ) (see e.g. [START_REF] Villani | Topics in Optimal Transportation[END_REF]). If we consider a probability measure µ real in R d corresponding to some real data, one would like to reconstruct this density using a mapping T : R l → R d with l d and such that the push-forward of T by a prior density µ 0 supported on R l (e.g. an uniform or Gaussian density for the sake of simplicity) is as close as possible to µ real with respect to the Wasserstein distance. The mapping T is then chosen to be the solution of P := inf

T :R l →R d W p (µ 1 , µ 2 ) = inf T :R l →R d inf P∈M(µ real , T# µ 0 ) E P [|S 2 -S 1 | p ]
Note that H( T# µ 0 |µ real ) = +∞ and this is why it is not possible to use the relative entropy as in the case of maximum likelihood estimation. Using the saddle-point formulation of the Wassertein distance (the L p -cost satisfies the twist condition) explained in the previous section, this is equivalent to the following minimax optimization:

P = sup u∈L 1 (µ real ) inf T :R l →R d ,T :R d →R d E µ real [c(S 1 , T (S 1 )) -u(T (S 1 ))] + E µ 0 [u( T (S 0 ))]
This problem is similar to (10) and therefore as described in Section 3.6, our algorithm is close in spirit to the one used for training Wasserstein generative adversarial networks [START_REF] Arjovsky | Wasserstein GAN[END_REF] (see also [START_REF] Goodfellow | Generative Adversarial Networks[END_REF]).

Specializing to p = 1, we get

P = sup u∈L 1 (µ real ) inf T :R l →R d ,T :R d →R d E µ real [|S 1 -T (S 1 )| -u(T (S 1 ))] + E µ 0 [u( T (S 0 ))]
This should be compared with the dual formulation of the 1-Wassertein distance used in [START_REF] Arjovsky | Wasserstein GAN[END_REF] P = sup

u∈Lip 1 inf T :R l →R d -E µ real [u(S 1 )] + E µ 0 [u( T (S 0 ))]
where the supremum is over all the 1-Lipschitz functions. The Lipschitz constraint is enforced in brute force by weight clipping.

Starting from the primal formula of OT and using the Brenier theorem, P can also be written as

P = inf T :R l →R d ,T :R d →R d s.t.T # µ real = T #µ 0 E µ real [c(S 1 , T (S 1 ))]
This was done in [START_REF] Bousquet | From Optimal Transport to Generative Modeling: the VEGAN cookbook[END_REF] although the Brenier result is not mentioned. The constraint T # µ real = T# µ 0 is then implemented by adding a penalty term γD(•|•) with γ large:

P γ := inf T :R l →R d ,T :R d →R d E µ real [c(S 1 , T (S 1 ))] + γD(T # µ real | T# µ 0 )
One obtains the Wasserstein-VAE formulation.

3.5. Anomaly detector and data generator. Let us consider some real data generated by a density µ real and let us choose a prior density µ 0 supported on a low-dimensional manifold. As outlined above, we find the density T# µ 0 such that the p-Wasserstein distance W p (µ real , T# µ 0 ) is minimized. Then, a data x anomaly will be considered as an anomaly if T# µ 0 (x anomaly ) is below a certain threshold λ:

T# µ 0 (x anomaly ) ≤ λ
Similarly, a new data x new can be generated by drawing a random variable Z distributed according to µ 0 and set x new = T (Z).

3.6. Arrow-Hurwicz algorithm: recipe. We simulate µ 1 and µ 2 by Monte-Carlo with N MC paths (S i 1 , S i 2 ) 1≤i≤NMC and for large N MC , our optimization [START_REF] Galichon | A stochastic control approach to no-arbitrage bounds given marginals, with an application to Lookback options[END_REF] consists in solving:

min θ∈R u max ω∈R t 1 N MC NMC i=1 J i (θ, ω)
where

J i (θ, ω) := c(S i 1 , T ω (S i 1 )) -u θ (T ω (S i 1 )) + u θ (S i 2 )
The average functional can be optimized by using a stochastic Arrow-Hurwicz algorithm which consists in doing sequentially the two iterations at each step n: Draw a uniform r.v.

I ∈ [[1, N MC ]]
and compute

θ n+1 = θ n -η∇ θ J I (θ n , ω n ) (12) ω n+1 = ω n + η∇ ω J I (θ n+1 , ω n ) ( 13 
)
where η is a learning parameter. In practise, the gradients are computed by back-propagation where

∇ θ J I (θ, ω) = -∇ θ u θ (T ω (S I 1 )) + ∇ θ u θ (S I 2 ) ∇ ω J I (θ, ω) = ∇ s2 c(S I 1 , T ω (S I 1 )) -∇ s2 u θ (T ω (S I 1 )) .∇ ω T ω (S I 1 )
We could used also a predictor-corrector scheme (that gives similar results in our numerical experiments):

θ n+1/2 = θ n -η∇ θ J I (θ n , ω n ) θ n+1 = θ n -η∇ θ J I (θ n+1/2 , ω n ) ω n+1/2 = ω n + η∇ ω J I (θ n+1 , ω n ) ω n+1 = ω n + η∇ ω J I (θ n+1 , ω n+1/2 )
3.7. Convergence. By using one layer for the approximation of the two unknowns T ω and u θ with a linear activation function (a drift can also be included without loss of generality):

T (x) := ω.x, u(x) := θ † .x, ω ∈ M p,p , θ ∈ R p
the problem ( 11) can be written as

min θ∈R p max ω∈Mp,p E µ 1 [c(X, ωX)] -θ † ωE µ 1 [X] + θ † E µ 2 [X] ( 14 
)
and it is of the form min

x max y y † Kx + G(x) + F (y)
where K is a linear operator. As shown by [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], the stochastic Arrow-Hurwicz algorithm converges if F is concave, G is convex and ||K||η2 < 1. Our program ( 14) is clearly convex in θ as being linear and is concave in ω if and only if D 2 s2 c ≤ 0. This implies that our algorithm converges (in the case of one layer), if we impose that D 2 s2 c ≤ 0. Additionally, we should have that c satisfies the twist condition as we have used the Brenier theorem.

Let us remark that if we consider the new cost function c(s 1 , s 2 ) = c(s 1 , s 2 ) -U (s 2 ), then we have for all U ∈ L 1 (µ 2 ):

MK c(µ 1 , µ 2 ) + E µ 2 [U (S 2 )] = MK c (µ 1 , µ 2 )
Using this property, we can apply our algorithm to the cost function c where U is chosen such that 2

D 2 s2 c = D 2 s2 c -D 2 s2 U (s 2 ) ≤ 0, ∀ (s 1 , s 2 ) ∈ R d × R d Example 3.4. For c(x, y) = -(x -y) 2
, we can take U (y) = 0. For c(x, y) = (x + y) 2 , we can take

U (y) = 2y 2 .
Using the result in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], we conclude: Proposition 3.5 (Convergence). Let us assume that c satisfies the twist condition and D 2 s2 c -D 2 s2 U (s 2 ) ≤ 0 for some twice differentiable function U in L 1 (µ 2 ), then the Arrow-Hurwicz algorithm (with one layer) (12-13) converges for η small enough.

Note that a similar conclusion appears if we expand T ω and u θ in terms of a reproducing kernel Hilbert space.

3.8. The case of MOT. For d = 1, under the (martingale) twist condition ∂ s1 ∂ 2 s2 c ≥ 0, the optimal probability measure P * is shown to be supported not on a single map T but on two maps T d (x) ≤ x ≤ T u (x) [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF][START_REF] Henry-Labordère | An Explicit Martingale Version of Brenier's Theorem[END_REF]:

P * (s 1 , s 2 ) = q(s 1 )δ(s 2 -T u (s 1 )) + (1 -q(s 1 ))δ(s 2 -T d (s 1 ))
This leads to the following minimax optimization:

MK c (µ 1 , µ 2 ) := inf u∈L 1 (µ 2 ),h∈C 0 (R d ,[0,1])
sup Tu:R →R,T d :R →R,q:R →[0,1]

E µ 1 [q(S 1 )(c(S 1 , T u (S 1 )) -u(T u (S 1 )) -h(S 1 )(T u (S 1 ) -S 1 )) +(1 -q(S 1 ))(c(S 1 , T d (S 1 )) -u(T d (S 1 )) -h(S 1 )(T d (S 1 ) -S 1 ))] + E µ 2 [u(S 2 )]
Note that the martingale condition leads explicitly to q(x) := x-T d (x) Tu(x)-T d (x) but we do not use this equation in order to preserve the concavity-convexity property with respect to the neural network weights (in the case of one layer). The algorithm is then similar to the one presented for OT except that now we have five (instead of two) neural networks for the potentials h, u, q and the two maps T u and T d .

For d ≥ 2, one can characterize the cost functions for which the optimal probability measure P * is supported on n maps T i [START_REF] De March | Local structure of multi-dimensional martingale optimal transport[END_REF]. The above optimization becomes therefore:

MK c (µ 1 , µ 2 ) := inf u∈L 1 (µ 2 ),h∈C 0 (R d ,[0,1]) sup (Ti) 1≤i≤n :R d →R d ,qi:R d →[0,1] E µ 1 [q i (S 1 )(c(S 1 , T i (S 1 )) -u(T i (S 1 )) -h(S 1 )(T i (S 1 ) -S 1 ))] + E µ 2 [u(S 2 )]
where q n := 1 -n-1 i=1 q i . In practise, the number of maps n can be seen as an hyperparameter that can be optimized.

Numerical examples

4.1. OT in d = 1. We first check our algorithm described in Section 3.6 for OT problem in d = 1. We consider the two cost functions c(s 1 , s 2 ) = (s 1 + s 2 ) 2 and c(s 1 , s 2 ) = -(s 1 -s 2 ) 2 satisfying the conditions in Proposition 3.5 (see Figures 1 and2). µ 1 and µ 2 are chosen to be two lognormal distributions in R + centered at S 0 = 1 and with variances 0.2 2 and 0.2 2 × 1.5. They are simulated using 2 13 Monte-Carlo paths. For each neural network, we have used 2 hidden layers of dimension 4. We have also used a Adam stochastic gradient descent [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] with 64 minibatches for the computation of the online gradients and our algorithm has been written from crash in C++. The exact solution has been computed using formula (9) and performing a 1d numerical integration. We have compared our algorithm with the entropy relaxation and the penalization methods outlined in Sections 2.2-2.4. We can observe that our primal-dual algorithm converges faster (to the exact solution). On one hand, the choice of the gamma factor in the penalization method is tricky. Taking a small value of γ results into convergence towards a false solution and a large γ gives noisy results. On the other hand, the entropy relaxation needs more iterations to converge. We have used in all our numerical experiments at most 10 6 iterations. For each 10 4 × n iterations where n ranges from 1 up to 10 2 , we have computed the functional J(θ n , ω n ) by averaging over our recorded 2 13 Monte-Carlo paths. We have also plotted the map found by our algorithm (denoted "NN") and compared with the Fréchet-Hoeffding solution T (s) = F -1 2 • F 1 (s). We found a perfect match (the blue and red curves coincide). 

2 ) = - d i=1 (s i 1 -s i 2 )
2 with a minus sign. We have first considered d = 2 (see Figure 3-left). We have compared the entropy relaxation method against our primal-dual algorithm. As concluded in d = 1, our algorithm converges faster and the entropy relaxation method is unstable according to our choice of . For large epsilon, the Wasserstein distance is underestimated and for small epsilon, our SGD is noisy and therefore the result can not be trusted. As a consequence, the entropy relaxation method could not be used as presented for computing the Wasserstein distance. The convergence is very fast for our primaldual method. Here µ 1 and µ 2 are chosen to be two uncorrelated normal distributions in R d with variances 1 and 2 for which the exact 2 s2 c > 0 is satisfied. Our optimization converges towards the exact solution obtained using a simplex algorithm (see Figure 4). 

-Wassertein distance in R d is W 2 (µ 1 , µ 2 ) 2 = d( √ 2 - √ 1 

4.4.

Anomaly detection in d = 2. As a final simple numerical example, we consider our anomaly detection algorithm outlined in Section 3.5. We have used 2 hidden layers of dimension 10 with linear activation output. We take for µ real a two-dimensional uncorrelated log-normal distribution with mean -0.02, variance 0.04 and for µ 0 a two-dimensional uncorrelated normal distribution. They are simulated using 2 13 Monte-Carlo paths. Note that the stochastic Arrow-Hurwicz iterations over u θ and T ω are performed and each 1000 iterations, a stochastic gradient descent minimization over Tω is done. We have plotted in Figure 5 the 2-Wasserstein distance W 2 (µ real , Tω #µ 0 ) each 10 4 iterations and this converges, as expected, to zero. Once the mapping T : R 2 → R 2 is constructed by optimization, we generate some "anomalies" Tω (G + 3 × sign(G)) by drawing some normal variables G ∈ N(0, I 2 ) in R 2 and adding an anomaly factor 3 × sign(G). The "normal" variables Tω (G) are generated without introducing this anomaly factor. The two-dimensional "normal" and "abnormal" variables generated are then displayed in Figure 6. As expected, the "abnormal" data live on the edge of the two-dimensional uncorrelated log-normal distribution µ real , which is close to T# µ 0 with respect to the 2-Wasserstein distance (see Figure 5). 
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 124422 Figure 1. OT: c(s 1 , s 2 ) = (s 1 + s 2 ) 2 . µ 1 and µ 2 are two log-normal distributions with variances 0.2 2 and 0.2 2 × 1.5. Exact = 4.20. For the penalization method, we have chosen γ = 100 (similar results for γ = 50, 200). The number of iterations has been divided by 10 4 .

  )2 . Then, we consider only our primal-dual algorithm and take d = 10 and d = 20 (see Figure3-right). For each neural network, we have used 1 hidden layer of dimension 50.

Figure 3 .

 3 Figure 3. OT: c(s 1 , s 2 ) = -d i=1 (s i 1 -s i 2 ) 2 . µ 1 and µ 2 are two uncorrelated normal distributions in R d with variances 1 and 2. Left: d = 2. The number of iterations has been divided by 10 4 . Right: d = 10 and d = 20. The number of iterations has been divided by 10 3 here as our algorithm converges quickly.

Figure 4 .

 4 Figure 4. MOT: c(s 1 , s 2 ) = (s 1 +s 2 ) 3 . µ 1 and µ 2 are two log-normal distributions with variances 0.2 2 and 0.2 2 × 1.5 (in the convex order). Exact using a simplex: 9.19.

Figure 5 .Figure 6 .

 56 Figure 5. Convergence of the 2-Wasserstein distance W 2 (µ real , Tω #µ 0 ). The number of iterations has been divided by 10 4 .
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