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Abstract A fundamental challenge in climate science is decomposing the con-7

current drivers of weather extremes in observations. Achieving this would pro-8

vide insights into the drivers of individual extreme events as well as into pos-9

sible future changes in extreme event frequencies under greenhouse forcing.10

In the present work, we exploit recent results from dynamical systems the-11

ory to study the co-variation and recurrence statistics of different atmospheric12

fields. Specifically, we present a methodology to quantify the recurrences of13

bivariate fields, the repeated co-occurrences of distinct univariate fields, and14

the dependence between two fields. The dependence is defined by a coupling15

parameter, which varies according to the chosen fields, season, and domain16

and can be understood in terms of the underlying physics of the atmosphere.17

For suitably chosen fields, this approach enables to decompose the different18

drivers of weather extremes. Here, we compute the above metrics for near-19

surface temperature and sea level pressure, and use them to study hot or cold20

days over North America. We first identify states where temperature extremes21

are strongly and weakly coupled to the large-scale atmospheric circulation,22

and then elucidate the interplay between coupling and the occurrence of tem-23

perature extremes.24
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1 Introduction27

Weather extremes are complex events, driven by a variety of physical pro-28

cesses. Disentangling these processes is a fundamental challenge in climate29

science and is essential in order to reconstruct the process-chain leading to30

individual or co-occurring extremes (Davies, 2015; Harnik et al, 2016). Early31

statistical studies of weather extremes have adopted a univariate framework,32

projecting extreme events onto peak-over-threshold (Pickands III, 1975) or33

block-maxima (Gnedenko, 1943) of single observables (e.g. storm surges, wind34

speeds or temperatures (Galambos et al, 1994)). Multivariate approaches have35

been introduced to take into account combinations of variables that achieve36

simultaneously large or small values (e.g. wind-speed and storm surge). Re-37

cently, the awareness has grown that individual variables may not be extreme38

themselves, but their joint occurrence may yield an extremal behavior (see e.g.39

Bevacqua et al (2017)).40

In order to understand the root drivers of large-scale weather extremes,41

one must therefore follow all the relevant variables in space and time over42

extended regions. For example, heatwaves or cold spells reflect the interac-43

tion between persistent circulation regimes and temperature patterns, that44

exacerbate each other. In some cases additional confounding factors, such as45

soil-moisture levels, further complicate the picture (Zscheischler and Senevi-46

ratne, 2017). Studying these interplays a priori necessitates a large number of47

numerical experiments with multi-parameter models.48

In this paper, we aim to combine a multivariate view of extremes with49

analytical and computational efficiency, by constraining the analyses with the50

generic behavior of chaotic systems. We propose a new methodology, based on51

the adaptation and extension of recent mathematical results from dynamical52

systems theory, and apply it to the study of temperature extremes (hot or cold53

days) over North America. For the latter part, we build upon the numerous54

studies that have tried to connect the dynamical properties of the atmosphere55

to the occurrence of temperature extremes in the region (Grotjahn (2016) and56

references therein), as well as the broader literature looking at mid-latitude57

extremes (e.g. Von Storch and Zwiers (2001); Coumou et al (2014); Palmer58

(2013); Gálfi et al (2017)). These point to the degree of coupling between59

atmospheric circulation variables and temperature as a key step to both un-60

derstand the physical drivers of the extremes and constrain the variability61

of climate models in order to better simulate such events in future climates.62

Specifically, we diagnose the dynamical features and coupling of the sea-level63

pressure (SLP) and 2-m temperature (T2M) fields in reference to the above-64

mentioned North American temperature extremes. The purpose is to provide65

a proof-of-concept for the applicability of our novel analysis approach - which66



Title Suppressed Due to Excessive Length 3

is entirely general and may in theory be extended to any number of variables67

- to the study of multi-variate atmospheric configurations.68

We begin by providing a theoretical definition of three dynamical systems69

metrics: d, θ−1 and α. The local dimension d can be intuitively interpreted70

as a proxy for the number of active degrees of freedom of the system around71

a given state. The persistence θ−1 measures the residence time around such72

state. Finally, the coupling parameter (also referred to as co-recurrence ratio) α73

informs on the dependence structure between instantaneous configurations of74

different variables. We next test these metrics on simple stochastic processes75

and discrete dynamical systems. Following this, we apply our framework to76

study the drivers underlying the occurrence of temperature extremes in North77

America.78

2 Dynamical systems indicators79

The attractor of a dynamical system is a geometrical object defined in the80

space hosting all the possible states of the system (phase-space). For atmo-81

spheric flows, it is unfeasible to obtain all variables of the system, as this would82

require the knowledge of the properties of each fluid parcel. What is instead83

available is a set, or sequences, of observables — namely transformations of the84

variables of the system. By making some assumptions on the dimensionality85

of the system, it is possible to retrieve its entire dynamics from the observ-86

ables (Huke, 2006). This allows the computation of the fractal dimension of87

the system (Grassberger, 1983; Grassberger and Procaccia, 1984). The major88

caveat of such approaches lies in the underlying mathematical assumptions,89

that render the application to geophysical datasets problematic (Eckmann90

and Ruelle, 1992). Recently, an alternative approach to determine a system’s91

dynamical properties has been proposed, which does not require a priori as-92

sumptions on the dimensionality of the system. This approach is based on an93

analysis of the recurrences of trajectories of the dynamical system, and has94

been successfully tested on various complex datasets (Faranda et al, 2017a,b).95

One of the outcomes is a characterization of each point ζ of this subset of vari-96

ables by two dynamical indicators: the local dimension (d) and the persistence97

(θ−1) (Faranda et al, 2017b). There have been theoretical (Barros et al, 2019)98

and experimental (Faranda et al, 2017a,c) arguments that show that recur-99

rences of observables yield the same behavior as the underlying variables.100

We consider a dynamical system with an observed trajectory x(t) and a101

point in phase space ζ. We are interested in the behavior of the system near102

ζ. Therefore a logarithmic return is defined as:103

g(x(t), ζ) = − log[dist(x(t), ζ)]. (1)

This transformation gives weight to parts of the trajectory x(t) that are104

close to ζ, i.e. when the distance is close to 0. Given s(q, ζ) a high q-th105

quantile of the time series of g(x(t), ζ), we introduce the exceedances u(ζ) =106
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g(x(t), ζ)−s(q, ζ) with the condition g(x(t), ζ) > s(q, ζ). The cumulative prob-107

ability distribution of F (u, ζ) then converges to the exponential member of the108

Generalized Pareto Distribution (Freitas et al, 2010; Lucarini et al, 2012):109

F (u, ζ) ' exp

[
−θ(ζ)

u(ζ)

σ(ζ)

]
. (2)

The parameters θ and σ depend on the point ζ chosen on the attractor. As110

discussed below, θ and σ are fundamental quantities to describe the dynamical111

properties of the system.112

2.1 Local dimension113

The local dimension d(ζ) is obtained via the simple relation d(ζ) = 1/σ(ζ).114

This result holds when x(t) contains the system’s full set of phase-space vari-115

ables. In this case, d is independent of the chosen dist for all ζ. If x(t) is116

an observable of the system, i.e. some smooth function of a variable in the117

full phase space, such as a 2-dimensional atmospheric field, d(ζ) can still be118

computed in this way (Rousseau and Saussol, 2010; Rousseau, 2014), but the119

quantitative results will depend on the distance definition.120

In principle, the results are insensitive to the choice of the distance in121

the asymptotic limit. For practical reasons, we use the L2 norm or Euclidean122

distance, which is also used to compute circulation analogues (e.g. Yiou et al123

(2013)). We also emphasize that the value of d is bounded by the number of124

coordinates of the observable and the dynamics of the system.125

Given two observables (or two sets of observables) x(t) and y(t) of a126

”larger” system, we can define dx(ζ) and dy(ζ) (from now on we will drop127

the dependence on ζ). They are the dimensions of the Poincaré sections de-128

fined by x and y around ζ, with respect to the chosen dist. We can further129

consider the Poincaré section jointly spanned by x and y. A state on this sec-130

tion is then defined by the pair ζ = {ζx, ζy}. The joint logarithmic returns can131

then be defined as:132

g(x(t), y(t)) = − log

[
dist

(
x(t)

||x||
,
ζx
||x||

)2

+ dist

(
y(t)

||y||
,
ζy
||y||

)2
] 1

2

(3)

Here, ||.|| is the average root mean square norm of the coordinates of a133

vector. For example, ‖x‖ = Et

([∑K
i xi(t)

2
] 1

2

)
, where K is the number of134

components of x and Et is an average over time t. Based on Eq. (3), we call135

dx,y the co-dimension between x and y.136

The co-dimension can be used as a first quantity to characterise the mutual137

dependence of two observables. For two observables x and y of the system, the138

following properties hold:139
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min(dx, dy) ≤ dx,y ≤ dx + dy (4)

If x and y are uncoupled, then dx,y = dx + dy. If x and y are determinis-140

tically coupled (e.g. one is a function of the other), then dx,y = min(dx, dy).141

We exemplify these behaviours for a discrete dynamical system in Sec. 3.2.142

2.2 Local persistence143

The persistence of the state ζ is measured by θ(ζ). θ is known as the extremal144

index. In our setup, it corresponds to the inverse of the average residence time145

of trajectories around ζ. Since θ is the inverse of the average residence time, it146

is measured in units of 1/∆t. If ζ is a fixed point of the attractor then θ(ζ) = 0147

(trajectories stay at ζ). For a point that immediately leaves the neighborhood148

of ζ, then θ = 1. Intermediate values of θ are obtained for regions of the149

attractor that are close to fixed points, and that trajectories leave ”slowly”.150

To estimate θ, we adopt the Süveges estimator (Süveges, 2007).151

As for d above, the procedure can be extended to more than one variable,152

such that one may define the inverse co-persistence θx,y. The values of the153

inverse co-persistence depend on the local topology of the different Poincaré154

sections being considered. θx,y is a weighted average of θx and θy where the155

weights depend on the size of the hyper-ball around ζ in the Poincaré sections156

x and y. For a more detailed discussion we refer the reader to Abadi et al157

(2018).158

2.3 Local co-recurrence ratio159

Given two observables x and y, we define the co-recurrence ratio 0 ≤ α(ζ) ≤ 1160

of a state ζ = {ζx, ζy} as:161

α(ζ) =
Pr [g(x(t)) > sx(q)|g(y(t)) > sy(q))]

Pr [g(x(t)) > sx(q)]
(5)

that is, the probability of entering a hyper-ball in phase space around162

ζ = {ζx, ζy} divided by the probability of entering the ball centered in ζx163

only. Whenever x and y do not have the same units, a normalization x/||x||164

and y/||y|| must be performed before computing α. When α(ζ) = 0, there are165

no co-recurrences of ζ = {ζx, ζy} when we observe a recurrence of ζx. When166

α(ζ) = 1, all the co-recurrences of ζ = {ζx, ζy} also correspond to recurrences167

of ζx.168

Here, we have defined α in the case of two variables x and y, but the169

approach can easily be extended to more complex multivariate cases. From170

Bayes’ theorem on conditional probabilities, we note that α does not depend171

on the order of x and y, which can hence be exchanged. This implies that α172

cannot be interpreted in terms of causation. We further note that α is not173

necessarily correlated with the co-dimension dx,y, as discussed further in Sect174
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3.2. Finally, we underscore that α cannot be directly compared to statistical175

dependence measures because of its local nature in phase space.176

3 Application to stochastic processes and dynamical systems177

3.1 Gaussian Bivariate copula178

To illustrate the interpretation of α, we draw data from random Gaussian179

bivariate copula distributions, namely:180

φ(z, µ,Σ) =
1√

4π2|Σ|
exp

[
−1

2
(z − µ)′Σ−1(z − µ)

]
(6)

where z = (x, y) is an i.i.d. variable vector in [0, 1] × [0, 1], µ is the mean181

vector, Σ is a 2×2 symmetric matrix and |Σ| is its norm. The diagonal ele-182

ments of Σ contain the variances for each variable (x, y), while the off-diagonal183

elements of Σ contain the covariances between variables (x, y). In the example184

we set µ = {0, 0} and the diagonal elements of Σ equal to one. We term the185

non–diagonal elements ρ.186

By varying ρ, we can obtain a range of different types of behaviour. There187

are two extreme cases: for ρ = 0, {x, y} cover uniformly the unit square; for188

ρ = 1, x = y and data are aligned along the first diagonal. We illustrate189

graphically four different cases: ρ = 0.5, ρ = 0.75, ρ = 0.9992, and ρ = 1. We190

generate 105 values of z for each case. For clarity we report 2 × 103 points191

in Figure 1. These are colored by the values of α, the co-recurrence ratio,192

computed by fixing the quantile q = 0.98.193

The behavior of α is somewhat intuitive: when the variables are locally194

independent (Figure 1a-b), α = 0 almost everywhere. When ρ is close to 1195

(Figure 1c), near the edges (0,0) and (1,1) the dependence is very strong and196

α=1. Near the centre (x = y = 0.5) the dependence is lower and α < 1. This197

behavior is determined by the very nature of the distribution considered here,198

which is constrained to be close to the diagonal near the edge points. In the199

perfect coupling case ρ = 1 (Figure 1d), x = y and α = 1 along the full length200

of the diagonal.201

3.2 The baker’s map202

To further illustrate the properties of the dynamical indicators, we analyse a203

modified version of the baker’s map, defined on the unit square [0, 1] × [0, 1]204

iteratively for n ≥ 1, by:205

xn+1 =

{
axn, for yn < c

1
2 + bxn, for yn > c

(7)

and206

yn+1 =

{
yn/a, for yn < c

(yn − c)/(1− c), for yn > c
(8)
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with c = 1/3, a = 1/5 and b = 1/4. For these parameters values, the map is207

expanding on x and contracting on y. Figure 2-a shows the first 105 iterations208

of the map. Along the x direction, the map consists of a fractal set where209

dx < 1 while along y there is an uncountable collection of lines with dy = 1.210

We can add coupling between x and y as:211

xn+1 = (1− ε)xn + εyn.

with 0 ≤ ε ≤ 1. When ε is zero, x and y are uncoupled. As ε increases, the212

dynamics of x, y becomes more and more synchronized. Finally, when ε = 1,213

the dynamics is synchronized and concentrated on the diagonals (Figure 2-b).214

To illustrate the properties of the co-dimension and the co-recurrence co-215

efficients in this set-up, we change the values of ε in the range 10−10 < ε < 1216

and perform 106 iterations of the maps starting from random initial conditions217

on the unit square. The first 104 iterations are discarded. We then compute218

the dynamical indicators at 500 points ζ. Figure 3 shows the results of this219

computation for dx, dy, dx,y and α. In the limit ε → 0, dx + dy = dx,y and220

α ' 0. When increasing the coupling dx,y < dx + dy = 2. In the limit for221

ε = 1, x ∝ y, dx,y = 1 and α approaches 1. This simple example highlights the222

different information provided by the co-dimension and co-recurrence ratio. In-223

deed, the co-dimension generally decreases for increasing coupling, while the224

co-recurrence ratio increases. We further note that the co-recurrence ratio pro-225

vides a normalised dependence measure, while the value of the co-dimension226

depends on the relative dimension on the x and y manifold. The behavior for227

θ is not shown as, for this system, we have trivially that θx = θy = θx,y for all228

ε.229

4 Application to North American temperature extremes230

4.1 Data and Methods231

We base our study on NCEP/NCAR reanalysis data (Kalnay et al, 1996) over232

the period 1948-2015, with a horizontal resolution of 2.5◦. We consider a do-233

main spanning North America (170◦W≤Long.≤40◦W, 22.5◦N≤Lat.≤70◦N).234

We adopt daily SLP as the meteorological variable to describe the large scale235

atmospheric circulation. Indeed, a wealth of atmospheric features, ranging236

from teleconnection patterns to storm track activity to atmospheric blocking237

can be diagnosed from the SLP field (e.g. Murray and Simmonds (1991); Yiou238

et al (2013); Comas-Bru and McDermott (2014)).239

Warm and cold days and temperature quantiles are diagnosed using area-240

weighted, daily T2M anomalies over land points in 100◦W≤Long.≤70◦W, and241

30◦N≤Lat.≤45◦N, corresponding to a densely populated part of western North242

America (see Figure 4). The anomalies are computed analogously to Messori243

et al (2016), and specifically by imposing a separation of one week between suc-244

cessive warm or cold extremes. We consider winter (DJF) and summer (JJA)245

seasons separately. The warm and cold day quantiles are computed relative246
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to all days with positive and negative temperature anomalies, respectively,247

after the minimum separation criterion has been applied. We refer to these248

throughout the text as warm days and cold days respectively.249

All the geographical plots display single-gridpoint anomalies relative to a250

daily seasonal cycle, defined by averaging all days available in the dataset. For251

example, the climatological value at a given gridbox for the 3rd December is252

the average value at that gridbox for all 68 3rd Decembers in the data.253

4.2 Dynamical properties and seasonality254

We analyse the relations between local dimension d, persistence θ−1 and co-255

recurrence ratio α for SLP and T2M. We consider the cases where d and256

θ are computed on each variable individually and on both variables at the257

same time. α is naturally always computed on both variables. The results258

are reported in Figure 5 in the form of dimension-persistence diagrams, as259

introduced in Faranda et al (2017b). Each point in the diagram represents260

a pair (d, θ) corresponding to the patterns observed on a given day for the261

variable(s) of interest. The colorscale shows the values of α.262

α is negatively correlated with dSLP (Figure 5a), meaning that configu-263

rations with lower d typically favour a higher coupling. The fact that d and264

θ are themselves correlated implies that the latter configurations are, on av-265

erage, also highly persistent. The picture for T2M is less clear (Figure 5b):266

strongly coupled states often correspond to high d and low-persistence con-267

figurations. Finally, the joint analysis highlights a similar pattern as for SLP,268

with α showing a clear dependence on the co-dimension dSLP,T2M .269

Faranda et al (2017a) found that the correlations evident in dimension-270

persistence diagrams, as those shown in Figure 5, reflected the strong seasonal271

dependence of the metrics. We therefore investigate the seasonal cycle in the272

above quantities (Figure 6). All three indicators are subject to a marked sea-273

sonality, with α presenting a clear peak in summertime, when mean values are274

more than twice those of the rest of the year. The local dimension d instead275

displays maxima in the shoulder seasons for SLP, and minima for T2M. The276

variability is not, however, as marked as that seen in α. The co-dimension277

dSLP,T2M does not follow the seasonal cycle of either dSLP or dT2M . It peaks278

in late spring/early summer and early autumn, while displaying mid-summer279

and winter minima. θSLP is mostly in phase with dSLP , as is θT2M with dT2M ,280

although the relative magnitude of the summer and winter peaks is inverted.281

The inverse co-persistence θSLP,T2M again does not follow either of the single-282

variable cycles, but rather displays an oscillatory behavior throughout the283

year, somewhat reminiscent of the variability in dSLP,T2M . The largest values284

tend to occur during the autumn and winter months, while the lowest values285

are mostly found in spring.286

The seasons during which most of the highest and lowest values of the287

three indicators occur are coherent with these seasonal cycles (Figure 7). Even288

though the mean of α has a very clear summertime peak, the fact that the289
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variability peaks instead in winter (Figure 6a) implies that a small number of290

α maxima are seen during this season. This matches the timing of minima in291

both dSLP and θSLP , consistent with what shown in Figure 5a. The α minima292

occur instead predominantly in spring, when dSLP and θSLP display relatively293

large values. Similar conclusions can be drawn concerning the co-dimension294

and co-persistence (Figure 7).295

This highlights a clear separation between seasons. The most striking fea-296

ture is the above-mentioned seasonality in α, with distinct wintertime and297

summertime behaviours. In order to investigate further the physical interpre-298

tation of coupling minima and maxima, we therefore analyse these two seasons299

separately.300

4.3 Temperature extremes301

The above results show that d, θ and α display both a large variability and302

a strong seasonal dependence. This is explained by the very different fea-303

tures of atmospheric dynamics found in the different seasons (see Faranda304

et al (2017a)), and shifts between predominantly baroclinic and predominantly305

barotropic flows. Even though the mean values of the metrics and an analysis306

of their seasonal variability can provide interesting physical insights, such as307

assessing which seasons present more or less coupling in SLP and temperature,308

the real added value in having instantaneous metrics is the possibility of using309

them to study the dynamics of meteorological extremes. Here, we use the three310

dynamical systems metrics to investigate warm and cold extremes over North311

America, during both the summer(JJA) and winter (DJF) seasons.312

Summer extremes. We begin by considering summertime warm and cold days313

(see Section 4.1). The co-dimension and co-persistence, as a function of the314

temperature quantile over the selection domain, show no clear change for ex-315

treme warm and extreme cold events relative to their respective seasonal cycles316

(Figure 8a,b). Similarly, α (Figure 8c) remains close to its seasonal cycle, re-317

gardless of the temperature quantile. This points to the fact that the joint d318

and θ metrics do not reflect the evolution of the temperature field and that,319

consistently with this, the co-recurrence ratio is also largely insensitive to tem-320

perature extremes. The d and θ metrics computed for the SLP and T2M fields321

individually (Figure 8a,b) display a similar behaviour, except for some larger322

deviations of d from the seasonal cycle for the most extreme quantiles.323

To highlight the link between the dynamical systems metrics and the un-324

derlying physical properties of the atmospheric circulation associated with325

different events, we define an average daily baroclinc vector:326

B = ∇(SLP )×∇(T2M) (9)

where the overbar symbolises a spatial mean over the domain highlighted327

in black in Figure 4. Values close to zero indicate a predominantly barotropic328
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atmosphere i.e. the isolines of pressure are aligned with those of tempera-329

ture. Positive and negative values correspond instead to warm and cold air330

advection, respectively. The caveat is that we do not account for cancellation331

between opposing advections in the domain. Average values for B are shown332

in Figure 8d). In this season, all the values of B are generally close to zero (the333

weakly positive values for the cold anomalies reflect the decoupling between334

SLP and T2M discussed above). This decoupling is also reflected in the T2M335

and SLP composites for α extremes: the anomalies are weak throughout the336

domain, and the sign agreement between the different extreme α occurrences337

is low (Figure 9).338

Winter extremes. The situation in winter is radically different: dSLP,T2M ,339

θSLP,T2M and α all show significant deviations from the climatology for the340

higher quantiles of the hot and cold day samples. These are roughly opposite,341

with cold extremes showing negative d and θ deviations and warm extremes342

showing positive anomalies (Figure 10a-b). The d and θ computed for the two343

variables individually show a similar behaviour, although for the case of T2M344

and warm events the deviations from the seasonal cycle are smaller than for the345

joint metrics and generally not significant (Figure 10a-b). The co-recurrence346

ratio also shows deviations of the opposite sign: negative for warm extremes347

and positive for cold extremes (Figure 10c). The analysis of the baroclinic348

vector B (Figure 10d) provides here clear insights on such asymmetry: cold349

extremes correspond to a strong cold advection (B < 0), while the warm ex-350

tremes display a weaker warm advection and positive B. This reflects very351

closely the behaviour of the coupling coefficient α.352

By conditioning purely on low and high values of α, one recovers strong353

temperature anomalies over the domain of interest, associated with anoma-354

lous SLP patterns favoring strong meridional advection (Figure 11). The SLP355

and T2M fields therefore appear to display recurring joint large-scale config-356

urations which favour both classes of temperature extremes. This may seem357

in contradiction with the information provided by α as one may expect no358

coherent large scale SLP patterns to be associated with α minima (and hence359

warm extremes). We expand on this aspect in the discussion section.360

5 Discussion and conclusions361

We have proposed two metrics to diagnose the properties of instantaneous362

configurations of atmospheric variables, namely local dimension d and inverse363

persistence θ. The first is a proxy for the number of active degrees of freedom of364

a given configuration, while the second measures the average time over which a365

configuration is maintained. These indicators have been previously applied to366

individual atmospheric variables (Faranda et al, 2016, 2017b,a; Messori et al,367

2017; Rodrigues et al, 2018); here, we present their use in a multi-variate con-368

text. Specifically, we compute d and θ jointly for sea-level pressure (SLP) and369

2-metre temperature (T2M) over North America. We further introduce a novel370
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metric which measures the co-occurrence of analogue states of multiple vari-371

ables: the co-recurrence ratio α. A small α indicates rare co-recurrences, while372

a large α indicates that recurrences of a given state in one of the two variables373

systematically match recurrences of a corresponding state in the other. This374

metric provides an important piece of information, as it elucidates the mutual375

dependence between the dynamical evolutions of the two variables. Indeed,376

unlike statistical dependence measures, α is grounded in the topology of the377

variables’ phase-space, and therefore in the local geometry of the underlying378

attractor. Locality in phase space, which translates to simultaneity in time,379

makes the above framework well-suited to the study of atmospheric variability380

and extremes.381

As an illustration, we have investigated the occurrence of cold or hot days382

in North America, linking temperature anomalies over the eastern part of the383

continent to the larger-scale T2M and SLP fields. We identify strongly and384

weakly coupled states in these two variables and then elucidate the interplay385

between these and the occurrence of the temperature extremes.386

Summertime temperature extremes appear to be unrelated to the joint387

dynamical properties of the two selected large-scale fields. This is also reflected388

in the d and θ metrics computed on the individual variables and in the weak389

co-recurrence between SLP and T2M. The recurrences of SLP anomaly fields390

associated with temperature extremes are not matched by recurrences of the391

same T2M anomaly fields, or at least not more so than what is typical for any392

day in the summer season. Indeed, both the sign agreement and magnitude of393

the large-scale SLP anomalies associated with the hot and cold temperature394

extremes are relatively weak and display very limited sign agreement (see395

Fig. 12 for the upper/lower 10 percentiles). Similarly, a proxy for temperature396

advection shows near-zero values (B in Fig. 8d. This points to local factors,397

not captured by the large-scale SLP field analysed here as contributors to these398

events (e.g. local soil moisture anomalies, small-scale precipitation events, local399

sensible heat fluxes etc.).400

In winter, the picture is different (see Fig. 13 for the SLP anomalies cor-401

responding to the upper/lower 10 percentiles of T2M). Both the joint and402

individual d and θ discriminate hot and cold extremes, and these also display403

anomalous α values. Cold extremes are characterised by an anomalously high404

persistence, low local dimension and strong coupling. This points to the need405

for persistent circulation patterns and large-scale cold advection (Fig 11d)406

for a cold spell to occur, as well as to the fact that whenever cold spells oc-407

cur, similar large-scale T2M and SLP patterns are found (Cellitti et al, 2006;408

Grotjahn, 2016; Walsh et al, 2001; Messori et al, 2016). Here we identify these409

as: a large anticyclone over North America, advecting cold, dry air from the410

Arctic region (as reflected by the baroclinic vector B (Figure 10d), and two411

low-pressure cores on either flank. Such pattern leads to widespread low tem-412

peratures as far south as Texas and Northern Florida. Warm extremes are413

instead characterised by an anomalously low persistence, high local dimension414

and low coupling. The deviations from the seasonal cycle are also smaller in415

magnitude than for the case of the cold extremes. The large-scale pattern is416



12 Davide Faranda et al.

roughly inverse to that seen for the cold spells, with a cyclonic anomaly over417

the continent favouring advection of warm, moist air from the low latitudes418

(Figure 10d and Figure 11d) and leading to high temperatures on the eastern419

seabord of the US and Canada. The transient nature of this cyclonic advection420

is reflected in the anomalously low persistence and high local dimension which,421

as seen in Fig.5c, correspond to low α values.422

There is an evident ambiguity in an apparently coherent large scale anoma-423

lous SLP pattern and the claim of a weak coupling to the T2M field. A possible424

explanation is that the dynamical systems analysis is performed on the abso-425

lute fields rather than on the anomalies as shown in the figures. Since the426

co-recurrence ratio is sensitive to the seasonal cycle (Figure 6a), this may in-427

troduce a discrepancy between absolute and anomalous recurrence patterns.428

This points to the need to perform a systematic analysis on the anomalous429

fields although this is far from trivial in a dynamical systems context. Indeed430

there is no currently accepted framework for removing the average attractor431

components and then characterising the residual fluctuations. Formally, this432

would correspond to analysing recurrences within hyper-ellipsoids where the433

eccentricity depends on the position in phase space rather than hyper-spheres.434

The above analysis has shown some of the insights that can be provided by435

our local (in phase-space, instantaneous in time) and multi-variate dynamical436

systems analysis as well as some ongoing challenges. As such, it should be437

viewed as a proof of concept for the validity of this approach. More generally,438

there is no requirement for the different variables to be geographically co-439

located or temporally coincident, as was the case here. For example, one could440

select SLP over a region upstream of the target temperature region, or could441

use SLP fields lagged by a few days relative to the T2M data. Similarly, our442

approach can be generalised to higher dimensional variables or to a larger443

number of variables. The tecnhique is entirely flexible, and is immediately444

applicable to observables of any complex system.445
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Fig. 1 Four different realizations of the Gaussian bivariate copula (Eq. 6) with ρ = 0.5 (a),
ρ = 0.75 (b), ρ = 0.9992 (c), ρ = 1 (d). The co-recurrence ratio α is displayed in color.

Fig. 2 Two different realizations of 105 iterations of the baker’s map (Eq. 8) with ε = 0
(a), and ε = 1 (b).
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Fig. 3 Dynamical indicators for the baker’s map (Eq. 8). a) Dimensions dx and dy and
co-dimensions dx,y compared to dx + dy for different values of ε. b) Co-recurrence ratio α
for different values of ε. Error bars show 1 standard deviation of the d, α distributions.
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Fig. 4 The region studied in this article. The black rectangle highlights the domain over
which the dynamical indicators are computed; the blue rectangle highlights the domain over
which the temperature extremes are computed.
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Fig. 5 Local dimension d and inverse persistence θ scatter plots colored with the values of
the co-recurrence ratio α. a) dSLP and θSLP . b) dT2M and θT2M . c) joint dSLP,T2M and
θSLP,T2M metrics.
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Fig. 6 Seasonal cycles of co-recurrence ratio α (a), local dimension d (b) and inverse per-
sistence θ (c). The continuous red, black and blue lines in panels (b, c) correspond to d, θ
computed on SLP, T2M and both variables jointly, respectively. The dashed lines mark one
standard deviation of the quantities represented by the blue lines.
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Fig. 7 Number of minima (a) and maxima (b) of co-recurrence ratio α, local co-dimension
dSLP,T2M and local inverse co-persistence θSLP,T2M per month. These are defined as values
in the lowest and highest 10 percentiles of the relevant distributions, respectively.
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Fig. 8 Local dimensions dSLP (dashed), dT2M (dashed-dotted) and co-dimension
dSLP,T2M (continuous) (a); local inverse persistences θSLP (dashed), θT2M (dahsed-dotted)
and inverse co-persistence θSLP,T2M (continuous) (b) and co-recurrence ratio α (c), for sum-
mer temperature extremes over Eastern North America. The values are expressed as devi-
ations from the respective seasonal cycles. The quantiles refer to the distributions of JJA
warm and cold days. The error bars indicate one standard deviation of the mean and are
only shown for the continuous lines.

Fig. 9 Composites of sea-level pressure (SLP) anomalies in hPa (a,c) and temperature
anomalies (T2M) in K (b,d) corresponding to the 10% highest (a,b) and lowest (c,d) values
of deviations from the seasonal cycle of the co-recurrence ratio α during JJA. There are no
regions where at least 2/3 of the composited anomalies have the same sign.
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Fig. 10 Local dimensions dSLP (dashed), dT2M (dashed-dotted) and co-dimension
dSLP,T2M (continuous) (a); local inverse persistences θSLP (dashed), θT2M (dahsed-dotted)
and inverse co-persistence θSLP,T2M (continuous) (b) and co-recurrence ratio α (c), for win-
ter temperature extremes over Eastern North America. The values are expressed as devia-
tions from the respective seasonal cycles. The error bars indicate one standard deviation of
the mean and are only shown for the continuous lines.

Fig. 11 Composites of sea-level pressure (SLP) anomalies in hPa (a,c) and temperature
anomalies (T2M) in K (b,d) corresponding to the 10% highest (a,b) and lowest (c,d) values
of deviations from the seasonal cycle of the co-recurrence ratio α, during DJF. The black
lines indicate regions where at least 2/3 of the composited anomalies have the same sign.
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Fig. 12 Composites of sea-level pressure (SLP) anomalies in hPa (a,c) and temperature
anomalies (T2M) in K (b,d) corresponding to the 10% coldest (a,b) and warmest (c,d) days
during JJA. The values are expressed as deviations from the respective seasonal cycles. The
black lines indicates regions where at least 2/3 of the composited anomalies have the same
sign.

Fig. 13 Composites of sea-level pressure (SLP) anomalies in hPa (a,c) and temperature
anomalies (T2M) in K (b,d) corresponding to the 10% coldest (a,b) and warmest (c,d) days
during DJF. The values are expressed as deviations from the respective seasonal cycles. The
black lines indicate regions where at least 2/3 of composited anomalies have the same sign.


