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8 The results of an experimental study of pattern formation on sandy bottom under the action of regular
9 harmonic surface waves are reported. It is found that two modes of pattern formation occur: sand ripples form
10 uniformly on the whole bottom or from localized nucleation sites. In the second regime, the ripples appear in
11 isolated regions (patches) increasing in size, and front propagation speed is measured. A simple dynamical
12 model based on the Ginzburg-Landau equation is proposed to explain the characteristics of patches.
13 DOI: XXXX PACS number(s): 45.70.Qj
15 L. INTRODUCTION direction as surface waves or in the opposite direction are 54

16  Pattern formation on a bottom under the action of surface
17 waves has been investigated theoretically and experimentally
18 for many years. The morphological characteristics of sand
19 ripple patterns observed in the near shore region are impor-
20 tant for the prediction of the dissipation of waves energy, and
21 for the sediment transport. Ripples also influence the biologi-
22 cal processes occurring on the bottom and the dispersion of
23 pollutants. Ayrton [1] and Bagnold [2] carried out the pio-
24 neering works on these structures. Detailed investigations of
25 the onset of instability caused by oscillating water over sand
26 were performed in [3,4]. The formation of vortices at the lee
27 side of the ripple crest and their ejection upward at flow
28 reversal were considered in [5,6]. These vortices control the
29 mass transfer between neighboring ripples during their for-
30 mation [6,7], and the wavelength of fully developed ripples
31 is proportional to the amplitude of the oscillatory flow [6,8].
32 The stability of bottom patterns in relation to changes of
33 amplitude and frequency of water oscillations was studied in
34 [9].

35 In this paper, we focus on the investigation of the ampli-
36 fication of initial perturbations of small amplitude leading to
37 the formation of sand ripples. The front propagation plays a
38 key role in the involved processes, and we present in this
39 brief report a detailed investigation of the characteristics of
40 this front. The study of front propagation has been consid-
41 ered in different unstable systems [10], and in particular in
42 numerous hydrodynamic systems [11-13]. The phenomenon
43 of front propagation for sand ripples under waves was men-
44 tioned in [2]. However, this propagation has not been accu-
45 rately investigated to our knowledge. The aim of the present
46 paper is to study the features of front propagation in sand
47 ripple patterns. The main difference between sand ripples
48 and the systems considered in [11-13] is the following. The
49 action of regular surface waves (propagating usually in one
50 direction) results in anisotropy of the sand ripples instability,
51 and consequently of the front propagation velocity, whereas
52 the systems studied in [11-13] may be considered as isotro-
53 pic. The characteristics of fronts propagating in the same
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investigated in detail in the present study. 55

II. EXPERIMENTAL SETUP AND RESULTS 56

The experiments were performed in a 10 m long, 0.5 m 57
high, and 0.49 m wide wave flume at Le Havre University. 58
Regular surface waves were produced by an oscillating 59
paddle at one end of the flume. At the other end a porous 60
beach was installed to minimize wave reflection. The tempo- 61
ral evolution of the free surface was measured with two fixed 62
resistive probes and analyzed with Goda’s method [14]. The 63
reflection coefficient was less than 5% for all of the tests. 64
The mean water depth at rest was d,.=27 cm. Experiments 65
were carried out in a large range of wave and sediment 66
parameters: 0.95 s=7=22 s, 0.045 m=H=0.099 m, 67
111 pm=dsy=375 um, where T and H are the wave pe- 68
riod and height, respectively, and ds, the median grain size. 69
For each test, the bed was initially flat and covered by a 25 70
mm sand layer. In spite of the care taken to flatten the bot- 71
tom, some defects of flatness are observed. The maximum 72
amplitude of perturbations is approximately 2 mm. The bed 73
deformation was measured from the first excitation cycles 74
with an optical method, detailed in [15]. The spatial reso- 75
lution in the horizontal and vertical directions was 0.5 mm/ 76
pixel. The dimensions of the processed field were 5.46 m 77
long and 0.325 m width. The ripples wavelengths at the equi- 78
librium state were in the range 28.4 mm=A=77 mm for 79
present tests. Characteristics of ripples were obtained using 80
the one-dimensional (1D) -Hilbert transform. A great advan- 81
tage of this technique is that in each patch the amplitude and 82
phase of ripples may be determined. 83

Two distinct modes of ripple patterns formation are ob- 84
served. In the first mode, any perturbation on the bottom is 85
enough to trigger ripple formation and ripples form uni- 86
formly on the whole bed. In the second mode, patterns form 87
from isolated rippled zones (described as patches by Faraci 88
and Foti [16]). For present tests, patches appeared in zones 89
where the characteristic amplitude of disturbances was 90
greater or equal to the critical value of 2 mm. Two nondi- 91
mensional parameters were used to characterize the regime 92
of pattern formation: the Reynolds number Re and the 93
Froude number Fr. These parameters are defined as follows: 94
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FIG. 1. Delineation of the two observed modes of ripple forma-
tion in the (Re,Fr) plane, indicating the boundary (dashed line) be-
tween the modes with and without patch (the test for which Re
=5512 and Fr=2.2 is identified with the label 1).

95 Re=U..b/v, Fr=U./\(s—1)gds, where b and U, are the
96 fluid particle semiexcursion and the fluid velocity amplitude
97 at the edge of the bed boundary layer, respectively, s is the
98 relative density of sediment, g the acceleration due to grav-
99 ity, and v the water kinematic viscosity. The delineation of
100 the two observed modes of ripple formation in the (Re,Fr)
101 plane is presented in Fig. 1. The data of Jarno-Druaux et al.
102 [17] obtained in the same wave flume with lightweight grains
103 of relative density 1.35 and median grain diameter 170 um
104 are also shown in this figure. Present tests show that for fixed
105 values of Re, there is a critical value Fr.,. of the Froude
106 number below which ripples form from localized sites; for
107 Fr>Fr,,, no “patch” is observed. The critical Froude number
108 becomes independent of the Reynolds number for Re
109 >5000. This suggests that for Fr..=Fr,, ,,.=3.9, the sedi-
110 ments move all over the bottom with a very low resistance to
111 motion for every hydrodynamic conditions and ripples can
112 form everywhere on the bottom. When Fr<Fr,, ,.,,, the in-
113 ertial effects become more important for increasing values of
114 Re (keeping constant the value of Fr), and the bed local
115 perturbations lead to patches formation. The critical value
116 Fr,, grows with Re when Fr<Fr,, ... This may result from
117 a decrease of the gravity effects in comparison with the in-
118 ertial effects acting on the grains for increasing values of Fr
119 for a given value of Re (<5000), leading to a higher mobil-
120 ity of the grains and preventing patch formation.
121 In order to study the front propagation, we focus on a test
122 for which a slow dynamics of pattern formation from ampli-
123 tude defects is observed. We have Re=5512 and Fr=2.2 for
124 this test, and the mean ripple wavelength is A=42 mm at the
125 equilibrium state. An example of bed image in gray levels is
126 given in Fig. 2 for n=800 excitation cycles where three main
127 patches are clearly identified (P1 to P3). The temporal evo-
128 lution of the bottom elevation is plotted as a function of the

R R ] |||m||w
Sl

FIG. 2. Example of bed image in gray levels for n
=800 cycles (Re=5512, Fr=2.2). P1 to P3 refer to the three pro-
cessed patches.
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FIG. 3. Bottom elevation as a function of the x-longitudinal
position and number of excitation cycles (Re=5512, Fr=2.2). The
arrows show the ripple front positions detected for the three patches
P1, P2, and P3.
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x-longitudinal position in Fig. 3, for y=0.20 m where the y
axis refers to the cross-section direction. The origin of the x
axis is situated at 2.3 m from the wave paddle, increasing
values of x corresponding to shorter distances from the ab- 132
sorbing beach. The time step is equal to 50 cycles for the first 133
1000 cycles, and afterward to 100 cycles. Isolated systems of 134
propagating ripples can be observed during more than 1000 135
cycles before the invasion of the whole bottom. The estima- 136
tion of front velocities can then be performed on a long time 137
for the three observed patches. The bottom elevation signal 138
77(x, 1) of each patch is cut into two parts in order to process 139
the two fronts separately. The Fourier spectra of signals are 140
then calculated and harmonics are filtered. After this filtering 141
process, we get 7(x,1)=mn,(x,1)cos[kx+¢p(x,t)], where 142
T(x,1) is for the slow varying amplitude, ¢(x,?) is the slow 143
varying phase of the bottom profile, and k is the bottom wave 144
number. 145

Using the Hilbert transform, 146

7(x,1) = ::PV[ f“‘ Z(%’;)d)(} = 7,,(x,0)sinfkx + o(x,1)] (1)

147

where PV denotes principal value, it is possible to determine 148
the phase and amplitude of sand ripples on the flume bottom 149
and compare with the theoretical predictions. We can con- 150
sider the bottom profile as the real part of a complex function 151
7(x,1)=Re{A(x,r)exp[i(kx) ]} with A(x,7)=|A(x,7)]e**) and 152

where 153
|A(x,0)| = a =72 (x,0) + 7(x,1), 77) kx.
(2)

We extract the module of the complex amplitude a and the
phase @(x,7) from the signals. An example of the spatial
dependence for a(x) and ¢(x) is shown in Fig. 4. It is impor-
tant to emphasize that large changes of phase occur at wave
front. The wave front is localized in the region where a tran-
sition from a low amplitude to a high (nearly constant) value
is detected. We have chosen the following criterion to deter-
mine the front position: the front is situated in the region
where the value of the amplitude is equal to 15% of the
maximum value for the patch. The ripple fronts are presented
in Fig. 3. They propagate linearly with time, and a good
coefficient of regression (in the range 0.70-0.98) is obtained.
The up-flow (v,,_; propagation in the direction opposite to the

o(x,1) = arctan(
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FIG. 4. Example of spatial distribution for the amplitude (bold
line) and phase (thin line) of sand ripples for a front propagating
upward (Patch P1, t=550 wave excitation cycles). The segment
crossing the bold line delineates the border between the flat bottom
and the ripple patch according to the criterion of threshold

amplitude.

168 surface waves propagation) and down-flow (v,,,; propagation
169 in the same direction as the surface waves) front velocities of
170 the patches are given in Table I. The results show that the
171 fronts propagating in the direction of surface wave propaga-
172 tion have greater velocities than the fronts propagating in the
173 opposite direction (Jv,,|>|v,_|).

174 III. DISCUSSION OF RESULTS

175  According to the present experimental results, the front
176 propagation may be considered as an envelope wave, and we
177 have found the amplitude and phase of this envelope. Let us
178 compare the experimental results with the solution of an
179 equation describing the envelope amplitude, the complex
180 Ginzburg-Landau equation (GLE) which is widely used to
181 investigate pattern dynamics [18]. Present experiments show
182 us that there is a threshold value of the initial bed perturba-
183 tions in the front propagation regime: perturbations with an
184 amplitude less than a critical value decay with time, whereas
185 perturbations with an amplitude greater than the critical
186 value grow. To take this effect into account, it is necessary to
187 keep the nonlinear terms proportional to the third and fifth
188 degrees of amplitude in the GLE (quintic version of GLE)
189 [10]. The cubic version of the GLE is able to describe the
190 linear instability of infinitely small perturbations and the
191 nonlinear amplitude saturation. The simplest model to de-
192 scribe the front propagation in our system is the following:

0A

_=(1 +icl)

A . |
193 gt +8A + (1 +ic3)|APA - (1 —ics)|A[*A, (3)

x>

194 where A is the complex amplitude of sand ripples, € the
195 super criticality (<0 in our case), and ¢;,c3,c5 are real

TABLE I. Up-flow and down-flow patch velocities for the three
patches P1, P2, and P3 (Re=5512, Fr=2.2).

Up-flow patch
velocity v,,_

Down-flow patch
velocity v,

Patch (mm s~ (mm s™")
1 -0.23 0.62
2 -0.19 0.64(400 <n < 650); 0.43(1000<n < 1400)
3 -0.16 0.37(500<n<800); 0.52(900< n < 1400)
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FIG. 5. Dependence of the wave phase ¢ on the logarithm of
wave amplitude In a for 462 mm<x<520 mm (bold curve) with
its best linear fit approximation (¢=1.82 In a—1.52; square of the
correlation coefficient R2=0.96; dashed line); t=700 wave excita-
tion cycles.
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coefficients for dispersion (c;), cubic nonlinearity (c3), and
quintic nonlinearity (cs). The analytical solution of Eq. (3)
has the following form [19]: A=e¥a(§)e'?®, é=xF Vi
where V is the front velocity and () the frequency of sand
ripples. The amplitude and phase obey the following differ-
ential equations (anzatz): da/dé=K;+a(l —a2(§)/a12\,),
Il 9é=q,+(qy—q1)a*(€)/ay. For propagating fronts, the
solution has the following form:

_—
a= aNeKLié/ \'1 + EZKL;EI 204

(4)

The amplitude grows exponentially from an infinitely
small value to a constant value ay. The six constants K; -, q;,
gy, Q, V, ay are determined by inserting the ansatz into
Eq. (3) [10]. The sign “+” corresponds to a front which
propagates in the positive direction (direction of surface
waves propagation), K;, <0, a(x=-o, t=0)=ay, alx
=+, =0)=0, and the sign “-" corresponds to a front
propagating in the opposite direction: K;_>0, a(x=-o, ¢
=0)=0, a(x=+°, t=0)=ay. It should be noted that for re-
gions where a=ay, we have ¢p=gy(xF Vi), and for a<<ay,
¢=q;(x+ V). The profile of the sandy bottom may be
written as  7(x,)=Re[A(x,nexp(ikx)]=a(x + Vi)cos(Qt
—qn.(x ¥ Vt)—kx). This means that g; and gy may be con-
sidered as infinitesimal and finite amplitude additional terms
for the wave number of sand ripples, respectively. Using the
af\, expression from the first equation of ansatz, we find a
correlation between the phase and amplitude derivatives:
Pl dé=qy—[(qn—qr) dal €]/ aK, +, and after integration we

get
d=qné-[(gy=q)/Ki]Ina. (5)

Excluding a linear growth of the phase with space for a given
instant, we are able to present a local correlation between the
wave amplitude a(x) and the wave phase ¢(x): ¢(x)=(q,
—gn)In a/K; . Such correlation really occurs for the wave
front in sand ripples. Figure 5 shows an example of the
variation of the phase ¢ with the amplitude a. Using the best
linear fit approximation (dashed line in Fig. 5), we deter-
mined the coefficient k. =(g;—¢qy)/K; . The results are dif-
ferent for the fronts propagating in the direction of surface
waves and in the opposite direction. The values of the coef-
ficient k. are estimated for both fronts of Patch 1, for dif-
ferent numbers of excitation cycles; these values are given in

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

223
224

225
226
227
228
229
230
231
232
233
234
235
236



PROOF COPY [ERJ1041] 168009PRE

BRIEF REPORTS

237 Table II. It can be noted that the linear dependence between
238 the phase ¢ and In a is obtained with lower values of the
239 regression coefficient for fronts propagating in the direction
240 of surface waves (except when 1=950 excitation cycles). In
241 this case, for some instants, no estimation of «, could be
242 proposed. The fronts propagating in the direction of surface
243 waves are then not as regular as the fronts propagating in the
244 opposite direction. We were able to estimate the coefficient
245 K, . the solution (4) shows us that this exponent may ap-
246 proximate the amplitude growth on the wave front. Using an
247 exponential approximation of experimental data, we have
248 found different coefficients for the fronts: the averaged value
249 for K;, was K;,=-0.047 mm™', and for the front propagat-
250 ing in the opposite direction, K, =0.03 mm~'. The front
251 propagating in the direction of surface waves is “steeper”
252 than the front propagating in the opposite direction. We have
253 estimated the changes in wave number due to the finite am-
254 plitude of sand ripples: g, —gy=~0.039 mm~' for waves co-
255 directed with the surface waves, and ¢; —gy=~0.025 mm™'
256 for waves propagating in the opposite direction. In both
257 cases, the finite amplitude leads to a decrease in wave num-
258 ber k+qy in comparison with the linear wave number k+¢;,
259 but this effect is larger for the front propagating in the direc-
260 tion of surface waves.

261  The differences between the characteristics of the fronts
262 propagating in the same direction as the surface waves and in
263 the opposite direction may be due to the drift induced by
264 surface waves. It is well known [20] that in the bed boundary
265 layer above a flat bed, induced flows lead to mass transport
266 in the direction of waves propagation. Above sand ripples,
267 the momentum transfer and suspended sediment dynamics
268 are dominated by the formation and shedding at flow reversal
269 of lee wake vortices [21]. Present data involve weakly asym-
270 metrical waves (B<0.1 where B=3bk,, /4 sinh?(k,,d,) and
271 k,,, is the surface wave number). Using a one-dimensional
272 vertical (1DV) two-layer model where vortex shedding is
273 represented in the lower layer by a time-varying eddy vis-
274 cosity, Davies and Thorne [21] have shown that the near-bed
275 sand transport is in the direction of surface waves propaga-
276 tion for weakly asymmetrical waves. Such transport of sand
277 increases the front velocity v,, and decreases the velocity

278 v
303
304

p—+
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TABLE II. Values of the inclination coefficient for the upstream
and downstream fronts and different numbers of excitation cycles
(Patch P1). The linear regression coefficients are given in
parentheses.

Number of excitation cycles K_=%V K +=%’
550 +1.30(R%>=0.99)
600 +0.33(R*=0.99)
650 +0.45(R?=0.99) —-1.20(R*=0.95)
700 +1.80(R*=0.97)
750 +0.66(R*=0.99) -0.12(R?=0.75)
800 +1.80(R*=0.99) -0.49(R?=0.81)
850 +0.60(R?=0.99) —0.51(R?=0.85)
900 +0.31(R?=0.94) -2.30(R?=0.93)
950 +0.28(R?=0.87) —0.33(R?=0.98)
IV. CONCLUSIONS 279
We have shown that depending on the values of the con- 280
trol parameters (Froude and Reynolds numbers), sand ripples 281
on the bottom may arise as a result of two types of bifurca- 282
tion: spatially homogeneous growth of small perturbations, 283
and appearance of patches. In the last case, wave front propa- 284
gation occurs. Using the Hilbert transform, we measured the 285
amplitude and phase of ripple waves, and we have found 286

coincidences between the experimental characteristics of 287
propagating fronts and the analytical solution of van Saar- 288
loos and Hohenberg [19]. Such coincidences allowed us to 289
find a correlation between the sand ripples amplitude and 290
wave number, and conclude that there exists an effect of 291
wave number decrease due to the finite amplitude of sand 292
ripples. Our measurements agree with the measurements of 293
other researchers (see, for example, [16]): the spatial period 294
of sand ripples increases with increasing ripples amplitude. 295
We have found that the propagating front characteristics de- 296
pend on the direction of surface waves which generate 297
ripples. If the front propagates in the direction of surface 298
waves, it has a larger celerity, is steeper and more irregular 299
than the front which propagates in the opposite direction. In 300
our opinion such differences are caused by the mean flow 301
induced by surface waves near the bottom. 302
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