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Effective Potentials and Elastic Properties in the 
Lattice-Element Method: Isotropy and Transverse Isotropy

Hadrien Laubie1; Siavash Monfared2; Farhang Radjaï, Ph.D.3;
Roland Pellenq, Ph.D.4; and Franz-Josef Ulm, Ph.D.5

Abstract: Lattice approaches have emerged as a powerful tool to capture the effective mechanical behavior of heterogeneous materials using 
harmonic interactions inspired from beam-type stretch and rotational interactions between a discrete number of mass points. In this paper, the 
lattice element method (LEM) is reformulated within the conceptual framework of empirical force fields employed at the lattice scale. Within 
this framework, because classical harmonic formulations are but a Taylor expansion of nonharmonic potential expressions, they can be used 
to model both the linear and the nonlinear response of discretized material systems. Specifically, closed-form calibration procedures for such 
interaction potentials are derived for both the isotropic and the transverse isotropic elastic cases on cubic lattices, in the form of linear relations 
between effective elasticity properties and energy parameters that define the interactions. The relevance of the approach is shown by an 
application to the classical Griffith crack problem. In particular, it is shown that continuum-scale quantities of linear-elastic fracture 
mechanics, such as stress intensity factors (SIFs), are well captured by the method, which by its very discrete nature removes geometric 
discontinuities that provoke stress singularities in the continuum case. With its strengths and limitations thus defined, the proposed LEM is 
well suited for the study of multiphase materials whose microtextural information is obtained by, e.g., X-ray micro-computed tomography. 

with the current understanding of the link between texture (here
lattice) and the deformation behavior of materials (Greaves et al.
2011). In order to overcome this limitation, several authors sug-
gested the addition of beam-type interactions between mass points
in 2D (e.g., Schlangen and Garboczi 1996, 1997; Bolander and
Saito 1998) and 3D with or without rotational degrees of freedom
(Zhao et al. 2011), with up to 178 interactions for each node in the
(random lattice) system (Lilliu et al. 1999; Lilliu and van Mier
2003). While the preceding approaches allowed removing some
of the earlier limitations of the central-force model, a search of
the relevant literature was not conclusive in finding a rational
framework that clearly defines the different elements of the method,
from the local interactions that link the lattice’s mass points to the
macroscopic properties of the assembly of links, which is, in short,
the focus of this paper. Such a framework is needed though not only
for elastic (i.e., reversible) phenomena, but also for extending the
method to poroelasticity (Monfared et al. 2016) or dissipative phe-
nomena, related to plastic deformation, fracture, and so on, for
which the method is frequently applied (e.g., Affes et al. 2012;
Bolander and Saito 1998; Hansen et al. 1989; Kosteski et al.
2012; Lilliu and van Mier 2003; Schlangen and Garboczi 1996,
1997; Topin et al. 2007; Zhao et al. 2011). To this end, a reformu-
lation of LEM is proposed, much akin to potential of mean force
approaches used in soft matter physics (e.g., Masoero et al. 2012;
Ioannidou et al. 2016) where mass points, here belonging to a lat-
tice structure, interact with their nearest neighbors through effective
interaction potentials.

Lattice Element Method

Network

At the very foundation of lattice approaches is a discretization of
matter by mass points connected by a finite number of links form-
ing a lattice network. For purposes of simplification of the presen-
tation, the focus here shall be on cubic lattices that are most suitable

Introduction

Ever since its inception in the 1940s, lattice-type discretization and 
its algorithmic implementation, which can be generically called 
lattice element method (LEM), have been employed as a discrete 
representation of a solid (Hrennikoff 1941). This approach can al-
ternatively be described as a discrete number of mass points inter-
acting with a fixed number of neighboring mass points forming a 
regular or irregular lattice structure. Classically, interaction forces 
were derived by a mechanics analogy with truss (or spring) systems 
as central-force lattices in both two dimensions (2D) (Hansen et al. 
1989; Topin et al. 2007) and three dimensions (3D) (Nayfeh and 
Hefzy 1978; Kosteski et al. 2012; Affes et al. 2012); but it was 
quickly recognized that such central-force lattices restrict the do-
main of application of the method to isotropic materials exhibiting
a Poisson’s ratio of ν ¼ 1=3 in 2D, and ν ¼ 1=4 in 3D, consistent
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for the investigation of materials represented by voxels as obtained
by 3D scans in, e.g., mico-computed tomography (Desrues et al.
2006). A typical example of such 3D cubic lattice systems are
D3Qn lattices, where D3 stands for the dimension and n for the
number of links, as employed in lattice-Boltzmann simulations
by the fluid transport community (e.g., D’Humières et al. 2002).
For example, applied to solid systems, in D3Q18 (D3Q26) lattices,
each mass point interacts with 18 (26) neighboring points, thus
propagating forces and moments in 9 (13) directions. Given a unit
cell (voxel) of size a0 centered on Node 0, a D3Q18 lattice has six
links of length l0 ¼ a0, and 12 links of length l0 ¼ ffiffiffi

2
p

a0, while a
D3Q26 lattice has additional eight links of length l0 ¼ ffiffiffi

3
p

a0
(Fig. 1). In such a cubic lattice, a solid domain is composed of
nx;y;z mass points in the x; y; z direction defining unit cells. For such

a geometry, the number Nij of links of length a0,
ffiffiffi
2

p
a0, and

ffiffiffi
3

p
a0

is given in Table 1.

Interaction Potentials

The effective interaction potential between two mass points i and j
needs to be defined with respect to all possible translational and
rotational degrees of freedom, δi and ϑi. Rotations are considered
to be small ðjjϑijj ≪ 1Þ, so that classical vector rotation rules apply.
The overriding constraints for setting up these potential expressions
is that on the one hand, mass is conserved (that is automatically
enforced by attributing the same mass to all points), and that on
the other hand the forces and moments that derive from the

translational and rotational degrees of freedom between two mass
points i and j satisfy equilibrium

Fj
i ¼ −∂Uij

∂δi ; Fj
i þ Fi

j ¼ 0

Mj
i ¼ −∂Uij

∂ϑi
; Mj

i þMi
j þ rij × Fi

j ¼ 0 ð1Þ

where rij ¼ l0ijen = vector connecting node i to node j of rest-
length l0ij and oriented by the unit vector en in a local orthonormal
basis ðen; eb; etÞ [see Appendix I for the transformation from the
global system of coordinates ðex; ey; ezÞ to the local one]. The most
general deformation arguments of any effective potential Uij that
defines the interactions between two mass points i and j while sat-
isfying the Newton constraints [Eq. (1)] are

Uij ¼ Uijðxj − xi ¼ δj − δi þ rij × ϑi; ϑj − ϑiÞ ð2Þ

where xi = position vectors of mass point i in the deformed
configuration.

Given this general form, one can separate the interaction energy
terms between two mass points into two distinct contributions,
Uij ¼ Us

ij þ Ub
ij: one related to two-body interactions, Us

ij ¼
Us

ij½ðxj − xiÞ · en ¼ δnj − δni �; the other associated to rotations
(which relate to three-body interactions at the particle scale) Ub

ij ¼
Ub

ij½ðxj − xiÞ · eb; ðxj − xiÞ · et;ϑj − ϑi�, where ðxj − xiÞ · eb ¼
δbj − δbi − l0ijϑ

t
i and ðxj − xiÞ · et ¼ δtj − δti þ l0ijϑ

b
i . The coupling

between translational and rotational degrees of freedom are

(a) (b) (c)

Fig. 1. (a) Degrees of freedom of the bond element joining nodes i and j; (b) D3Q26 unit cell; (c) simulation box

Table 1. Length, Number, and Energy Parameters of the Different Links for the D3Q26 Lattice (13 Lines) and the D3Q18 Lattice (First 9 Lines)

Links i − j Length l0ij Number Nij Energy parameters isotropy Transverse isotropy

0–1/0–14 a0 ðnx − 1Þnynz ϵn;t1 ϵn;t1

0–2/0–15 a0 nxðny − 1Þnz ϵn;t1 ϵn;t1

0–3/0–16 a0 nxnyðnz − 1Þ ϵn;t1 ϵn3 ; ϵ
t
1

0–4/0–17
ffiffiffi
2

p
a0 ðnx − 1Þðny − 1Þnz ϵn;t4 ϵn;t4

0–5/0–18
ffiffiffi
2

p
a0 ðnx − 1Þðny − 1Þnz ϵn;t4 ϵn;t4

0–6/0–19
ffiffiffi
2

p
a0 nxðny − 1Þðnz − 1Þ ϵn;t4 ϵn6 ; ϵ

t
4

0–7/0–20
ffiffiffi
2

p
a0 nxðny − 1Þðnz − 1Þ ϵn;t4 ϵn6 ; ϵ

t
4

0–8/0–21
ffiffiffi
2

p
a0 ðnx − 1Þnyðnz − 1Þ ϵn;t4 ϵn6 ; ϵ

t
4

0–9/0–22
ffiffiffi
2

p
a0 ðnx − 1Þnyðnz − 1Þ ϵn;t4 ϵn6 ; ϵ

t
4

0–10/0–23
ffiffiffi
3

p
a0 ðnx − 1Þðny − 1Þðnz − 1Þ ϵn;t10 ϵn;t10

0–11/0–24
ffiffiffi
3

p
a0 ðnx − 1Þðny − 1Þðnz − 1Þ ϵn;t10 ϵn;t10

0–12/0–25
ffiffiffi
3

p
a0 ðnx − 1Þðny − 1Þðnz − 1Þ ϵn;t10 ϵn;t10

0–13/0–26
ffiffiffi
3

p
a0 ðnx − 1Þðny − 1Þðnz − 1Þ ϵn;t10 ϵn;t10



noteworthy in the arguments of the three-body interaction energy,
which is of some importance when adopting nonharmonic potential
expressions for the two-body interactions, and harmonic approxi-
mations for the three-body interactions, as frequently employed in,
e.g., molecular simulations (e.g., Falk et al. 2015). That is, the gen-
eral form of the interaction potential here derived allows accommo-
dating a large range of possible effective potential expressions.

By way of example, consider first harmonic expressions moti-
vated by truss-beam theory, currently in use in lattice element sim-
ulations and introduced by Schlangen and Garboczi (1996) for the
two-dimensional case. An effective potential consistent with the
truss-beam model has the following expression for the two-body
interaction:

Us
ij ¼

1

2
ϵnij

�
δnj − δni

l0ij

�
2

ð3Þ

and for the three-body-bending interaction, neglecting torsional
terms, while considering a quadratic development of its arguments

Ub
ij ¼

1

2
ϵtij

��
δbj − δbi

l0ij
− ϑt

i

�2

þ
�
δtj − δti
l0ij

þ ϑb
i

�
2

þ
�
δbj − δbi

l0ij
− ϑt

i

�
ðϑt

i − ϑt
jÞ þ

�
δtj − δti
l0ij

þ ϑb
i

�
ðϑb

j − ϑb
i Þ

þ 1

3
½ðϑb

j − ϑb
i Þ2 þ ðϑt

i − ϑt
jÞ2�

�
ð4Þ

with ϵn;tij ≥ 0 being the normal and transverse energy parameters
governing the elastic two-body and three-body interaction, respec-
tively. These energy parameters must be positive in order to guar-
antee the convexity of the energy function. Negative values could
make the reference configuration unstable. In classical Navier-
Bernoulli beam theory, ϵnij ¼ EAl0ij and ϵtij ¼ 12EI=l0ij, with E
being the Young’s modulus, A being the beam section, and I being
the second-order area moment. However, when adopting a har-
monic potential expression for an effective potential to describe
a solid’s behavior, the energies ϵn;tij remain to be determined with
respect to the three-dimensional elastic behavior of the solid. This
will be shown subsequently. In its turn, application of Eqs. (3) and
(4) in the force and moment expressions in Eq. (1) provides for the
harmonic case

Fj
i ¼ −∂Uij

∂δi ¼ ϵnij
l0ij

�
δnj − δni

l0ij

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Fj;n
i

en þ
ϵtij
l0ij

�
δbj − δbi

l0ij
− 1

2
ðϑt

j þ ϑt
iÞ
	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fj;b
i

eb

þ ϵtij
l0ij

�
δtj − δti
l0ij

þ 1

2
ðϑb

j þ ϑb
i Þ
	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fj;t
i

et ð5Þ

and

Mj
i ¼ −∂Uij

∂ϑi
¼ ϵtij

2

�
δtj − δti
l0ij

þ 1

3
ðϑb

j þ 2ϑb
i Þ
	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mj;b

i

eb

þ ϵtij
2

�
δbj − δbi

l0ij
− 1

3
ðϑt

j þ 2ϑt
iÞ
	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mj;t

i

et ð6Þ

As a second example a Mie (generalized Lennard-Jones) (MLJ)
effective potential (Avendaño et al. 2011) is considered, as was sug-
gested in van Mier (2007). This classical nonharmonic potential for
two-body interactions takes the form

UMLJ;s
ij ¼ ϵMLJ;n

ij

γ − 1
γ½γ=ðγ−1Þ�

��
σ
rij

�
γα −

�
σ
rij

�
α
	

¼ ϵMLJ;n
ij

γ − 1

��
1þ δnj − δni

l0ij

�−γα
− γ

�
1þ δnj − δni

l0ij

�−α	
ð7Þ

where ϵMLJ;n
ij = depth of the potential well; rij ¼ l0ij þ δnj − δni =

normal distance between the two mass points; σ ¼
l0ijγ

f1=½αð1−γÞ�g = distance between the two mass points at which
the potential is zero; while the r−γαij term defines the short-range
repulsion (in compression), and the r−αij term defines the long-range
attraction (in tension). A Taylor expansion of the MLJ potential
around the equilibrium state ½Δ ¼ ðδnj − δni Þ=l0ij → 0� reads

UMLJ;s
ij ¼ ϵMLJ;n

ij

�
−1þ γα2

2
Δ2 þOðΔ3Þ

	
ð8Þ

and shows that the harmonic energy parameter ϵnij and the MLJ
energy parameter ϵMLJ;n

ij are related by

ϵMLJ;n
ij ¼ 1

γα2
ϵnij ð9Þ

Otherwise said, the harmonic approximation around the equilib-
rium state can be used as a means of calibration of the nonharmonic
potential; here the Mie-Lennard-Jones potential. Considering the
order of the rotations is small (and neglecting nonlinear phenomena
such as buckling), it is generally sufficient to employ nonharmonic
potentials only for the two-body interactions, while considering
harmonic expressions for the three-body and rotational interactions.
Thus, compared to the harmonic case [Eq. (5)], only the central-
force Fj;n

i is modified, reading in the MLJ case

Fj;n
i ¼ Fj

i · en ¼
ϵMLJ;n
ij

l0ij

γα
1 − γ

��
1þ δnj − δni

l0ij

�−ðγαþ1Þ

−
�
1þ δnj − δni

l0ij

�−ðαþ1Þ	
ð10Þ

While the choice of both displacement and rotational degrees of
freedom gives rise to forces and moments, only the forces enter the
virial expression (Christoffersen et al. 1981) to calculate the stress
tensor at mass point i; that is, neglecting the momentum terms and
making use of the action reaction law in Eq. (1)

σi ¼
1

Vi

XNb
i

j¼1

rij ⊗ Fj
i ð11Þ

with Vi ¼ a30 is the volume of the unit cell; and Nb
i = number of

node i‘s neighboring mass points. In return, due to Eq. (1), the
(bending) moments associated with the rotational degrees of free-
dom ensure moment equilibrium. It is this moment equilibrium that
ensures the symmetry of the stress tensor. To show this, recall
that the sum of all external moments acting on node i must vanish;
that is, in terms of Eq. (1)



0 ¼
XNb

i

j¼1

rij × Fj
i ¼

XNb
i

j¼1

X3
k¼1

½ðrij × Fj
iÞ · ek�ek ð12Þ

Then, use the relation between the cross and tensorial products
of two vectors, ða × bÞ · ek ¼ e 0

k · ða ⊗ b − b ⊗ aÞ · e 0 0
k with

ðek; e 0
k; e

0 0
k Þ a right-handed orthonormal basis. The moment equi-

librium can thus be developed in the form

0 ¼
XNb

i

j¼1

X3
k¼1

½e 0
k:ðrij ⊗ Fj

i − Fj
i ⊗ rijÞ · e 0 0

k �ek ð13aÞ

¼
X3
k¼1

Vi½e 0
k:ðσi − TσiÞ · e 0 0

k �ek ð13bÞ

where the definition, Eq. (11), of the virial stress at node i, σi, is
used. This shows that satisfying the moment equilibrium ensures
the symmetry of the stress tensor e 0

k · ðσi − TσiÞ · e 0 0
k ¼ 0 for all

k ∈ f1,2; 3g; that is, σi ¼ σi. With a view on the energy expression
in Eq. (4), this underscores the importance of considering rotational
degrees of freedom, ϑj, when ϵtij ≠ 0, to ensure the symmetry of
the stress tensor.

Effective Elastic Properties

The use of the energy formulation permits a straightforward deter-
mination of the effective elastic properties of a macroscopic
assembly of links in function of the unit cell’s properties. To sim-
plify the presentation, the focus here is on 3D-cubic lattices
(nx ¼ ny ¼ nz ¼ n) and quasi-2D lattices (nx ¼ nz ¼ n; ny ¼ 2).
Starting point is the total energy of the lattice as a sum of the energy
of all links defined by Eq. (2)

Utot ¼
X
linksij

Uijðδj − δi þ rij × ϑi;ϑj − ϑiÞ ð14Þ

For the calculation of the elastic constants, Cijkl, around the
(thermodynamic) equilibrium situation, it suffices to consider a uni-
form deformation field, for which the total energy is conveniently
rewritten as

Utot ¼
X9ð13Þ
i¼1

N0iU0iðδi − δ0 þ r0i × ϑiÞ ð15Þ

where the summation is carried out over the 9 (13) links directions
of the D3Q18 (D3Q26) lattice. Expressions for N0i are given in
Table 1. It then suffices to express the arguments of the energy
U0i in terms of strains and rotations

δn;b;ti − δn;b;t0 ¼ l00iΔ
n;b;t
ji εj

ϑb;t
i ¼ Pb;t

ji θj ð16Þ

where Einstein’s summation rule is employed. Herein, εj =
strain components fεg ¼ ðεxx; εyy; εzz; εyz; εxz; εxyÞ, and fθg ¼
ðϑx;ϑy; ϑzÞ, the rotational degrees of freedom in the global system
of coordinates, while Δn;b;t and Pb;t are transformation matrices
whose expression are given in Appendix I. The use of Eq. (16)
in Eq. (15) provides an expression of the total energy in function
of fεg and fθg, i.e., Utotðfεg; fθgÞ, which can be readily employed
to derive the elastic stiffness of the lattice from

Cijkl ¼
1

V
∂2Ūtot

∂εij∂εkl ð17Þ

where V ¼ ðnx − 1Þðny − 1Þðnz − 1Þa30 = total volume. Further-
more, the energy ŪtotðfεgÞ ¼ minfθgUtotðfεg; fθgÞ evokes the
theorem of minimum potential energy, which is generally valid
for any harmonic potential expression. It also holds for nonhar-
monic potentials around the equilibrium state. As will be shown
subsequently, the framework here defined permits an effective
means to calibrate the energy parameters that define the interaction
potentials.

From Cubic Symmetry to Isotropy

Consider first the case of isotropic materials that are fully charac-
terized by two elastic constants; for instance, the stiffness constants
C11 ¼ C1111 and C13 ¼ C1133 (in Voigt notation). The other nonzero
stiffness constants satisfy C11 ¼ C22 ¼ C33, C12 ¼ C13 ¼ C23,
and C44 ¼ C55 ¼ C66 ¼ ðC11 − C12Þ=2. Because the same proper-
ties must be observed in all directions, an effective isotropic behav-
ior requires 4 (6) energy parameters εn;t

1,4ð;10Þ for the D3Q18
(D3Q26) lattice (Table 1). It is thus convenient to rewrite the elastic
stiffness tensor in Eq. (17) in a linear form of the energy parameters

Ci ¼ AIso
ij ϵj ð18Þ

where fCg ¼ ðC11;C13;C55Þ, and fϵg ¼ ðϵn1 ; ϵn4; ϵn10; ϵt1; ϵt4; ϵt10Þ.
The linear operator AIso depends on the type of lattice, and—for
finite size domains—on the size n of the simulation box. For
instance, for the 3D-cubic lattice (nx ¼ ny ¼ nz ¼ n), it reads

AIso;3D ¼

1

a30

2
666666664

n2

ðn − 1Þ2
n

n − 1

4

9
0

n
n − 1

8

9

0
n

2ðn − 1Þ
4

9
0 − n

2ðn − 1Þ − 4

9

0
n

2ðn − 1Þ
4

9

n2

2ðn − 1Þ2
n

2ðn − 1Þ
2

9

3
777777775

ð19Þ
and for the quasi-2D lattices (nx ¼ nz ¼ n; ny ¼ 2)

AIso;2D ¼ 1

a30

2
66666664

2n
n − 1

3n − 2

2ðn − 1Þ
4

9
0

3n − 2

2ðn − 1Þ
8

9

0 1
4

9
0 −1 − 4

9

0 1
4

9

n
n − 1

n
2ðn − 1Þ

2

9

3
77777775
ð20Þ

From these linear expressions, one readily recognizes the
classical features of the central-force lattice model, which is ob-
tained by letting ϵti ¼ 0. In fact, in this case, the Cauchy condition
is recovered, C13 ¼ C55, as well known from crystal chemistry:
“for a primitive cubic solid in equilibrium at zero applied stress
under the action of central, pairwise forces only, the elastic con-
stants satisfy the Cauchy condition” (Thomas 1971). Moreover,
the lattice symmetries naturally induce cubic symmetries (three in-
dependent stiffness constants instead of two).

The application of such cubic lattices to isotropic material sys-
tems thus requires one additional constraint on the energy constants
ϵn;ti to ensure the isotropic relation



G ¼ C55 ¼
C11 − C13

2
¼ E

2ð1þ νÞ ð21Þ

whereG = shear modulus; E = Young’s modulus; and ν = Poisson’s
ratio. In the case of the central-force lattice model ðϵti ¼ 0Þ, Eq. (21)
together with the Cauchy condition, C13 ¼ C55 ¼ G, implies
C11 ¼ 3G, which defines the well-known restriction of the model
to a single value of the Poisson’s ratio; namely, ν3D ¼ C13=ðC11 þ
C13Þ ¼ 1=4 for the 3D-cubic lattice, and ν2D ¼ C13=C11 ¼ 1=3 for
the quasi-2D lattice. That is, rotational degrees of freedom associ-
ated with nonzero values for ϵti are required to capture a larger range
of isotropic elastic materials. Keeping in mind that the energy
parameters must be positive (ϵn;ti ≥ 0), the isotropic constraint in
Eq. (21) defines a limited range for possible values of the Poisson’s
ratio that can be captured with specific lattice systems. For instance,
for the considered D3Q18 and D3Q26 lattices, Eqs. (19) and (20)
give

−1 < ν3D ≤ 1=4 − 2=3 ≤ ν2D ≤ 1=3 ð22Þ

While values outside of this range could be theoretically ob-
tained by considering negative values of the energy parameters,
such negative values may entail instabilities of the energy minimi-
zation that defines the equilibrium state.

It is thus possible to employ the approach in an inverse approach
for the calibration of the harmonic interaction potential parameters
for a given set of (effective) elastic properties by solving the linear

system of Eq. (18), while respecting the isotropic constraint relation
in Eq. (21). Specifically, within the limits thus defined by Eq. (22),
a minimum of three nonzero energy parameters ϵn;ti ≥ 0 and a mini-
mum of 18 directions are required to properly model an isotropic
behavior for harmonic potentials. As noted previously, this calibra-
tion still holds for nonharmonic potentials when considering the
harmonic case as a Taylor expansion of the nonharmonic case
around the equilibrium state, i.e., Eq. (9). Diagonal links are of
critical importance to reproduce the Poisson contraction. Table 2
provides a sample choice for these parameters ϵn;ti in function of
the two elastic parameters E and ν.

Transverse Isotropy

Using the same formalism, anisotropic materials can be modeled
with LEM. By way of example, consider transversely isotropic ma-
terials, i.e., materials that exhibit rotational symmetry around an
axis (say e3 ¼ ez) normal to a plane of isotropy: C11 ¼ C22,
C13 ¼ C23, and C44 ¼ C55. Particular symmetries were chosen
(Table 1) so that the effective stiffness constants are linear functions
of the energy parameters

Ci ¼ ATI
ij ϵj ð23Þ

where fCg ¼ ½C11ð;C12Þ;C13;C33;C55ð;C66Þ� in 2D (3D),
fϵg ¼ ðϵn1 ; ϵn3; ϵn4; ϵn6; ϵn10; ϵt1; ϵt4; ϵt10Þ. The linear operator ATI

ij for
the 3D lattice is defined by

ATI;3D ¼ 1
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and for the 2D lattice it is defined by

ATI;2D ¼ 1

a30
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Analogous to the restriction on the Poisson’s ratio in the isotropic case, the energy parameters ϵn;ti ≥ 0 in the transverse isotropic case need
to satisfy C66 ¼ ðC11 − C12Þ=2, which entails, for the lattices studied here



C12 ≤ C66

C13 ≤ C44 ð26Þ

Validation

To validate the derived calibration procedure, the analytical expres-
sions thus derived are compared with numerical simulations. De-
tails about the numerical implementation are given in Appendix II.
Simulations are carried out on simulation boxes of varying size n
using a D3Q18 3D lattice. These simulation boxes are subject to
deformations in six directions in order to obtain the different stiff-
ness constants Cij.

Specifically, Fig. 2(a) shows the dimensionless Young’s modu-
lus values Ea30=ϵ

n
1 obtained analytically and numerically as a func-

tion of size n of the D3Q18 3D lattice. In this simulation, the
Poisson’s ratio was chosen equal to 1=4, corresponding to the
central-force lattice model (ϵti ¼ 0). The figure shows that the elas-
tic modulus tends asymptotically toward a constant value in the
continuum limit, and is in perfect agreement with the analytical

functional form derived previously for the isotropic case. In con-
trast with the numerical simulations, the analytical expression per-
mits a direct evaluation of the elastic modulus in the continuum
limit from the value at a given discretization level (size n).

Moreover, Figs. 2(b and c) compare the stiffness constants mea-
sured with LEM (using the energy parameters given in Table 2) to
the analytical values. The figures display a perfect agreement for a
wide range of Poisson’s ratio, and validate the proposed potential
calibration procedure for the energy parameters ϵn;ti within the limit
defined by Eq. (22).

Application: Stress Field around a Crack

For purposes of application, the proposed LEM approach is applied
to a classical problem of continuum elasticity, the stress field
around a crack, viewed as a geometric discontinuity. The rationale
of this sample application is that LEM removes by its very discrete
nature the geometric discontinuity and the associated stress singu-
larity that defines at the crack tip the well-known near-tip singular
stress solution. The investigation thus departs from the following

(a)

(b) (c)

Fig. 2. (a) Finite size effect; (b and c) 3D and 2D dimensionless stiffness constants (Cij=E) as a function of the Poisson’s ratio ðn ¼ 21Þ; theoretical
values (solid lines), numerical values (symbols)

Table 2. Energy Parameters Calibration

Energy
parameters

Three-dimensional Two-dimensional

−1 ≤ ν ≤ 0 0 ≤ ν ≤ 1=4 −2=3 ≤ ν ≤ 0 0 ≤ ν ≤ 1=3

ϵn1
ðn − 1Þ2Ea30
n2ð1 − 2νÞ

ðn − 1Þ2ð1 − 3νÞEa30
n2ð1þ νÞð1 − 2νÞ

½nð2þ 3νÞ − 2ð1þ νÞ�Ea30
4nð1 − ν2Þ

½nð2 − 3νÞ − 2ð1 − νÞ�Ea30
4nð1 − ν2Þ

ϵn4 0
2ðn − 1ÞνEa30

nð1þ νÞð1 − 2νÞ 0
νEa30
1 − ν2

ϵn10 0 0 0 0

ϵt1
ðn − 1Þ2Ea30

n2ð1þ νÞð1 − 2νÞ
ðn − 1Þ2ð1 − 4νÞEa30
n2ð1þ νÞð1 − 2νÞ

ðn − 1þ νÞEa30
2nð1 − ν2Þ

ðn − 1Þð1 − 3νÞEa30
2nð1 − ν2Þ

ϵt4 − 2ðn − 1ÞνEa30
nð1þ νÞð1 − 2νÞ 0

−νEa30
1 − ν2

0

ϵt10 0 0 0 0



point of inquiry: is LEM able to capture this asymptotic stress and
crack opening behavior without considering the geometric discon-
tinuity? A positive answer to this question would open the way to
using LEM, e.g., for the determination of stress intensity factors
(SIFs), which are used in linear-elastic fracture mechanics (LEFM)
for evaluating the risk of fracture.

For purposes of analysis, the problem of a quasi-2D (plane
stress) slit crack (or Griffith crack) of length 2a=L ≪ 1 is con-
sidered where L is the dimension of the solid (Fig. 3) of Young’s
modulus E and Poisson’s ratio ν. The crack is subjected on its
upper (+) and lower (−) lip to a pressure p and/or a shear stress
q; i.e., σ · n ¼ �pey � qex with n being the unit normal to
the crack surface. For the continuum case, the near-tip linear-
elastic isotropic stress fields for a crack in the plane z ¼ 0 and
oriented in the x-direction are well known (e.g., Sun and Jin
2012)
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as well as the displacements

ξx ¼
KI
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where κ = dimensionless coefficient equal to 3 − 4ν in plane
strain and to ð3 − νÞ=ð1þ νÞ in plane stress. The origin of the
coordinate system ðr;ϑÞ is at the crack tip; and KI and KII
are the Mode I and Mode II SIFs. They are defined asymptoti-
cally either from the stresses

KI;II ¼ lim
r→0

ffiffiffiffiffiffiffiffi
2πr

p
σzz;xzðr;ϑ ¼ 0Þ ð29Þ

or from the displacement jumps along the crack lips, ½½ξx;z��ðrÞ ¼
ξx;zðr; ϑ ¼ πÞ − ξx;zðr;ϑ ¼ −πÞ

KI;II ¼ lim
r→0

G
1þ κ

ffiffiffiffiffiffi
2π
r

r
½½ξz;x��ðrÞ ð30Þ

Given the 2D geometry of the problem, simulations were per-
formed with a quasi-2D lattice of size Lx ¼ Lz ¼ L ¼ 400a0
(n ¼ 401 nodes per side) containing a crack of half-length
a ¼ naa0, na ∈ N, with na ≪ 400. All mass points on the crack
surfaces ðx ∈ ½−a; a�; z ¼ 0Þ have zero energy parameters
(ϵn;ti ¼ 0). A pressure is imposed on the nodes directly above
and below the crack plane. As can be seen in Fig. 3, the actual crack
half-length is ill defined due to the discrete nature of LEM remov-
ing a clear geometric discontinuity. The effective crack half-length
aeff is somewhere in between naa0 and ðna þ 1Þa0. With the geo-
metric discontinuity removed, it is readily understood that the near-
tip solution in Eq. (27) will fail to represent the stress field obtained
by the discrete lattice model. Instead, the stress fields thus obtained
from the simulations need to be compared with Muskhelishvili’s
exact solution of the Griffith crack problem derived using Plemelj
formula and Cauchy integrals (Muskhelishvili 1953), or with
England and Green’s solution obtained by using simple integral
equations and real variable integration (England and Green 1963).
The comparison of the LEM results with Muskhelishvili’s exact
solution is shown in Fig. 4 for a pure Mode I loading. In the sim-
ulations, na ¼ 5 was considered, whereas the comparison is shown
by evaluating the analytical solution for an effective crack half-
length aeff ¼ a0ðna þ 0.7Þ, which provided a perfect match be-
tween numerical and analytical hoop stress σϑϑ ¼ σzz in the crack

(a) (b)

Fig. 4. (a) Stresses in the crack plane (θ ¼ 0) in Mode I; (b) normal to the crack plane (θ ¼ π=2) in Mode I; exact solution (lines) and numerical
results from LEM (symbols)

Fig. 3.Griffith crack (length 2a) subjected to a pressure p and a shear q
and Griffith crack in LEM (na ¼ 5); white links are links with zero
stiffness (ϵn;t ¼ 0)



plane. This agreement not only holds for stresses in the crack plane
(ϑ ¼ 0), but also for stresses perpendicular to the crack plane
(ϑ ¼ π=2). This means that the LEM approach is able to accurately
capture the exact solution. A similar agreement was found for a
pure Mode II loading (p ¼ 0, q ≠ 0).

Because the exact solution degenerates asymptotically to the
singular near-tip solution, it is tempting to check whether the
LEM approach provides a means to determine the stress intensity
factors, KI and KII, from either stress definition in Eq. (29)

Kσ
I ≃ σzzðx ¼ aeff þ rσ0 ; z ¼ 0Þ ffiffiffiffiffiffiffiffiffiffi

2πrσ0
p

Kσ
II ≃ σxzðx ¼ aeff þ rσ0 ; z ¼ 0Þ ffiffiffiffiffiffiffiffiffiffi

2πrσ0
p ð31Þ

or from their displacement definition in Eq. (30), considering the
displacement jump along the crack surface

Kξ
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with rσ;ξ0 =a ≪ 1. In LEM, the first node where a meaningful stress
measure can be obtained is located at rσ0 ¼ ðna þ 2Þa0 − aeff , and
the first node where a meaningful crack opening measure can be
obtained is at rξ0 ¼ aeff − naa0. For a good assessment of the SIFs,
the condition rσ;ξ0 =a ≪ 1 would thus require a very fine discretiza-
tion (a0=a ≪ 1 keeping 2a=L ≪ 1). This is particularly true for a
SIF determination using the stress measure (Kσ

I ): the error made on
the exact stress σzzðr;ϑ ¼ 0Þ using the asymptotic development in
Eq. (27) is indeed ∼5% at a distance to the crack tip on the order of
r ¼ a=1,000 and as large as ∼95% at a distance r ¼ a=5. In con-
trast, the use of the crack opening for the determination of the SIFs
(Kξ

I ) is more accurate. The error made on the exact crack opening
½½ξz��ðrÞ using the displacement asymptotic development in
Eq. (28) is indeed only ∼5% at a distance to the crack tip of
r ¼ a=5. The results of the determination of the SIFs (Kσ;ξ

I ) of Grif-
fith cracks using the results from LEM in Eqs. (31) and (32) are
compared with the analytical value (KI ¼ p

ffiffiffiffiffiffi
πa

p
) in Table 3 for

cracks of different lengths (na ¼ 5; 6; 7; 8 ; 9; 10), different pres-
sures (p=E ¼ 1 × 10−4; 2 × 10−4; 4 × 10−4) and different Pois-
son’s ratios (ν ¼ 1=3,1=4). As expected, it is found that Kξ

I
gives a much better estimate of the SIF than Kσ

I . That is, despite
the removal of the stress singularities (due to the discrete nature

of the method) associated with the geometric discontinuity,
the LEM approach provides good estimates of SIFs using the dis-
placement jump definition [Eq. (32)], provided a discretization
with a0=a < 0.1.

Conclusion

Thus far, the LEM emerges as a powerful means to track the
mechanical interactions between material points in a discrete way.
While classical approaches defined those interactions from beam-
type analogies, the method has clearly more to offer when set in the
context of effective potentials, of which the harmonic case is but a
Taylor expansion around the (undeformed) equilibrium state. This
framework provides a means to set the method onto a path toward
modeling the actual physics interactions between phases, within
the limits defined by the geometric discretization of regular or
irregular lattices that entail certain limits on accessible effective me-
chanics properties, such as the restrictions on Poisson’s ratios for
isotropic materials (−2=3 ≤ ν ≤ 1=3 in 2D and −1 < ν ≤ 1=4 in
3D), or on the elasticity of transverse isotropic materials (achieved
with both D3Q26 and D3Q18 lattices). The following was thus
shown:
• Potential calibration: The proposed improvements contribute to

the development of a rational framework linking potential para-
meters that define the local interactions (the two- and three-body
energy parameters, ϵn and ϵt) to effective material properties of
an assembly of links.

• Elasticity: LEM converges to the homogeneous continuum elas-
ticity model as the level of discretization of matter into mass
points tends toward infinity. This means that LEM can be used,
at a given discretization level of matter, to correct for finite size
effects without compromising the accuracy of the elasticity
solution.

• Linear-elastic fracture mechanics: The accuracy of LEM is such
that it is able to capture continuum-scale quantities, such as
SIFs, even if its very discrete nature removes geometric discon-
tinuities that provoke stress singularities. In fact, the displace-
ment solution derived from LEM is perfectly apt to
quantitatively assess SIFs from a coarse discretization that does
not respect the classical assumptions of scale separability of
continuum mechanics.

• Nonharmonic interaction: While LEM has been classically em-
ployed with harmonic potentials to capture stretch and bending
modes, the reformulation of LEM in the framework of effective
potentials clearly shows that the classical LEM is but a Taylor
expansion of said interactions around the undeformed config-
urations. Otherwise said, the framework suggests that LEM can
be used—in a bottom-up fashion—to integrate smaller-scale
interactions by means of coarse graining (e.g., Masoero et al.
2012; Ioannidou et al. 2016) into mesoscale simulations on
the lattice.
While the theoretical developments presented here were only

concerned with homogeneous materials, these advances are ex-
pected to be invaluable in the application of the method to hetero-
geneous materials, in which the method thus enhanced provides a
means to assess the impact of different phases and disorders on
effective properties, far beyond the classical continuum assump-
tions. Specifically, with its strengths and limitations thus defined,
the proposed LEM is well suited for the study of multiphase ma-
terials whose microtextural information is obtained by, e.g., X-ray
micro-computed tomography, at a scale where the assumption of
scale separation required by continuum-based models is violated.
This is the focus of forthcoming developments.

Table 3. Error on the Stress Intensity Factors

ν na p=E rσ0=aeff
ðKI − Kσ

I Þ=
KI (%) rξ0=aeff

ðKI − Kξ
I Þ=

KI (%)

1/3 5 2 × 10−4 0.30 41.4 0.12 4.8
1/4 5 2 × 10−4 0.30 39.0 0.12 7.2
1/3 6 2 × 10−4 0.25 38.0 0.10 4.1
1/4 6 2 × 10−4 0.25 35.6 0.10 6.2
1/3 7 2 × 10−4 0.22 35.0 0.09 3.5
1/4 7 2 × 10−4 0.22 32.7 0.09 5.4
1/3 8 2 × 10−4 0.20 32.5 0.08 3.0
1/4 8 2 × 10−4 0.20 30.2 0.08 4.8
1/3 9 2 × 10−4 0.18 30.4 0.07 2.6
1/4 9 2 × 10−4 0.18 28.0 0.07 4.3
1/3 10 2 × 10−4 0.16 28.4 0.07 2.3
1/4 10 2 × 10−4 0.16 26.1 0.07 3.8
1/3 10 1 × 10−4 0.16 28.4 0.07 2.3
1/3 10 4 × 10−4 0.16 28.4 0.07 2.3



Appendix I. Transformation from Global to Local System of Coordinates

The transformation between the local system of coordinates of link 0i, ðein; eib; eitÞ and the global system of coordinates ðex; ey; ezÞ is done by
the following equations:

ein ¼ Pn
1iex þ Pn

2iey þ Pn
3iez eib ¼ Pb

1iex þ Pb
2iey þ Pb

3iez eit ¼ Pt
1iex þ Pt

2iey þ Pt
3iez ð33Þ

where the matrices Pn;b;t are given by
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The nodal displacements of a lattice under uniform deformations are obtained through the following matrices:

Δn ¼

2
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Δb ¼

2
66666666666666666666664

0 0 0 −
ffiffiffi
2

p

2

ffiffiffi
2

p

2
0 0

ffiffiffi
2

p

2
−

ffiffiffi
2

p

2

ffiffiffi
2

p

2

ffiffiffi
2

p

2
−

ffiffiffi
2

p

2
−

ffiffiffi
2

p

2

0 0 0

ffiffiffi
2

p

2
−

ffiffiffi
2

p

2
−

ffiffiffi
2

p

2

ffiffiffi
2

p

2
0 0 −

ffiffiffi
2

p

2
−

ffiffiffi
2

p

2

ffiffiffi
2

p

2

ffiffiffi
2

p

2

0 0 0 0 0

ffiffiffi
2

p

2
−

ffiffiffi
2

p

2
−

ffiffiffi
2

p

2

ffiffiffi
2

p

2
0 0 0 0

0 −1 0 −
ffiffiffi
2

p

2
−

ffiffiffi
2

p

2
0 0 0 0

ffiffiffi
2

p

2

ffiffiffi
2

p

2

ffiffiffi
2

p

2

ffiffiffi
2

p

2

0 0 1 0 0 0 0

ffiffiffi
2

p

2

ffiffiffi
2

p

2

ffiffiffi
2

p

2
−

ffiffiffi
2

p

2
−

ffiffiffi
2

p

2

ffiffiffi
2

p

2

0 0 0 0 0 −
ffiffiffi
2

p

2
−

ffiffiffi
2

p

2
0 0 −

ffiffiffi
2

p

2

ffiffiffi
2

p

2
−

ffiffiffi
2

p

2

ffiffiffi
2

p

2

3
77777777777777777777775

ð38Þ

Δt ¼

2
66666666666666666666664

0 0 0 0 0 0 0 0 0

ffiffiffi
6

p

6
−

ffiffiffi
6

p

6
−

ffiffiffi
6

p

6

ffiffiffi
6

p

6

0 0 0 0 0 0 0 0 0

ffiffiffi
6

p

6
−

ffiffiffi
6

p

6
−

ffiffiffi
6

p

6

ffiffiffi
6

p

6

0 0 0 0 0 0 0 0 0 −
ffiffiffi
6

p

3

ffiffiffi
6

p

3

ffiffiffi
6

p

3
−

ffiffiffi
6

p

3

0 0 0 0 0 1 1 0 0

ffiffiffi
6

p

6
−

ffiffiffi
6

p

6

ffiffiffi
6

p

6
−

ffiffiffi
6

p

6

0 0 0 0 0 1 −1 0 0

ffiffiffi
6

p

6

ffiffiffi
6

p

6
−

ffiffiffi
6

p

6
−

ffiffiffi
6

p

6

0 0 1 0 0 0 0 1 −1
ffiffiffi
6

p

6

ffiffiffi
6

p

6

ffiffiffi
6

p

6

ffiffiffi
6

p

6

3
77777777777777777777775

ð39Þ

Appendix II. Numerical Implementation

Details about the numerical implementation of the LEMmethod for
harmonic potentials are provided herein.

To study the elastic response of a solid under an external load
(prescribed traction on the boundary ∂ΩTd and/or prescribed
displacements on the boundary ∂Ωξd ), the theorem of minimum
potential energy is employed

Esol
potðϵ; ξÞ ¼ min

ξ 0∈K:A:Epotðϵ 0; ξÞ ð40Þ

where K.A. = set of kinematically admissible displacement fields
that satisfy displacement boundary conditions

K:A: ¼ fξ continuous such that ξ ¼ ξd on ∂Ωξdg ð41Þ

whereas ε = strain; and εpot = potential energy

Epotðε 0; ξ 0Þ ¼ Uðε 0Þ −Wðξ 0Þ ð42Þ

with Uðε 0Þ = free energy; and Wðξ 0Þ = external work by body
forces b and prescribed traction Td; that is, Wðξ 0Þ ¼ ∫ Ωξ 0 ·
bdΩþ ∫ ∂ΩTd

ξ 0 · Tdda. In the case when only displacements are
prescribed on the boundaries, only the free energy term U contrib-
utes to the potential energy.

In the numerical implementation, for a structure of size
LxLyLz, the volume is discretized for a given grid size
a0 ¼ Lx=ðnx − 1Þ. The N ¼ nxnynz nodes i of coordinates
f~rig ¼ ð ~x; ~y; ~zÞ are defined in the reference configuration, with

ð ~x; ~y; ~zÞ ∈ f0; 1; : : : ; nx;y;z − 1g. The notation ~: stands for the quan-
tities in code units for energies U ¼ ~Ua30, forces f ¼ ~fa20, lengths
l ¼ ~la0, and stresses σ ¼ ~σ. A one-to-one relation between node
index i and its coordinates: i ¼ ~xþ nx ~yþ nxny ~z is defined. Each

node has six degrees of freedom: three displacements ~δαi and three
rotations θαi , α ∈ fx; y; zg, that are stored in a 6N vector f ~dg such
that ~d6i ¼ ~δxi , ~d6iþ1 ¼ ~δyi , ~d6iþ2 ¼ ~δzi , ~d6iþ3 ¼ θxi , ~d6iþ4 ¼ θyi , and
~d6iþ5 ¼ θzi . Node i has N

b
i neighbors j, with which it interacts via

link ij of energy parameters ~ϵn;tij ¼ ~ϵn;tji (that depend on the phase
attributed to nodes i and j) and of orientation f~rijg ¼ f~rjg − f~rig.
The forces and moments at node i are obtained by summing the
contribution of all links

~Fi ¼
XNb

i

j¼1

~Fj
i

~Mi ¼
XNb

i

j¼1

~Mj
i ð43Þ

where ~Fj
i and ~Mj

i are given by Eqs. (5) and (6). These are also
stored in a 6N vector, f ~fg, such that ~f6i ¼ ~Fx

i , ~f6iþ1 ¼ ~Fy
i ,

~f6iþ2 ¼ ~Fz
i , ~f6iþ3 ¼ ~Mx

i , ~f6iþ4 ¼ ~My
i , and ~f6iþ5 ¼ ~Mz

i .
In addition, the nodes where boundary conditions (forces or dis-

placements) are imposed are defined by considering the setsN ~fd ¼
fðj; ~fdÞj ~fj ¼ ~fdg (nodes where a force is imposed) and N ~δd ¼
fðj; ~δdÞj ~dj ¼ ~δdg (nodes where a displacement is imposed),
with j ∈ f0; : : : ; 6N − 1g.



The potential energy is written in LEM as

Epot ¼
1

2

XN
i¼1

XNb
j

j¼1

~Uijð ~dÞ −
X

ði; ~fdÞ∈N ~fd

~di ~f
d ð44Þ

where the factor 1=2 prevents counting the contribution of each link
twice. The first term in Eq. (44) is the free energy, while the second
one is the work done by external forces.

The numerical implementation of the theorem of potential en-
ergy consists of finding the vector f ~dg that minimizes ~εpot under the
constraint ~dj ¼ ~δd for ðj; ~δdÞ ∈ N ~δd. This energy minimization is
performed numerically, using a nonlinear conjugate gradient
method, the Fletcher-Reeves-Polak-Ribiere method. It can also
be achieved using molecular simulation codes. Once the solution
f ~dg to the problem is found, the stress tensor at each node ~σi and
the total stress ~σ are obtained using the virial definition

~σi ¼
XNb

i

j¼1

~rij ⊗ ~Fj
i ; ~σ ¼ 1

2ðnx − 1Þðny − 1Þðnz − 1Þ
XN
i¼1

~σi

ð45Þ
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