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ABSTRACT

Palmprint recognition is an important and widely used modality in biometric systems. It has a high
reliability, stability and user acceptability. This paper proposes a new and effective ensemble classifier
for palmprint recognition based on Random Subspace Method (RSM). The method relies on 2DPCA
to build nearly incoherent random subspaces. As 2DPCA is an unsurpevised technique, features are
extracted in each subspace using 2DLDA. A simple 1-Nearest Neighbor classifier is associated to each
subspace, the final decision rule being obtained by a majority voting rule. Extensive experiments on
three public palmprint datasets have been conducted to compare the proposed approach to existing
methods. The experimental results demonstrate that our method improves on the state-of-the-art. It
turns out that for this kind of data, the use of weak classifiers learned over nearly incoherent features
is very efficient. Besides these findings, we provide an empirical analysis of the parameters involved
in the random subspace technique to guide the user in the choice of the appropriate hyper-parameters.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction1

Over the past two decades, biometric security is increasingly2

becoming an important tool to enhance security and brings3

greater convenience. Nowadays, biometric systems are widely4

used by government agencies and private industries. A large5

variety of biometric modalities including face, iris, gait, fin-6

gerprint and palmprint, have been studied providing different7

rates of robustness, accuracy and user acceptability (Rida et al.,8

2016). Among these modalities, palmprint-based recognition9

has gained a growing interest because of its reliability, stability10

and high user tolerance.11

Palmprint refers to the inner surface of hand. This contains12

an abundant variety of salient features, such as principal lines,13

wrinkle, ridges, minutiae and textural features (Fei et al., 2017).14

Most palmprint identification systems leverage on the extrac-15

tion of these discriminative features to attain valuable recog-16

nition/matching performances. For instance the principal lines17

are detected using classical edge detectors or dedicated Radon18

transforms which project the palmprint image intensity along19

lines oriented at specific angles (Huang et al., 2008). Other sys-20

tems consider the orientations of the lines as the most distinctive21

∗∗Corresponding author: Tel.: +33 (0)2 32 95 99 04;
e-mail: imad.rida@insa-rouen.fr (Imad Rida)

feature and design a bank of Gabor filters with predefined ori-22

entations. From the convolution of the filters with the palmprint23

image, the dominant orientations at each pixel are identified as24

bitwise code (Zhang et al., 2003; Kong and Zhang, 2004; Fei25

et al., 2016a; Xu et al., 2016).26

Contrary to these highly elaborated methods for feature ex-27

traction, subspace-based approaches (Sang et al., 2009; Yang28

et al., 2007; Raghavendra and Busch, 2014) learn the useful29

representations of the palmprint images by applying statistical30

methods such as Principal Component Analysis (PCA), Dis-31

criminant Analysis or sparse coding either to the raw palm-32

print images or to the coefficients issued from Fourier/wavelet33

transforms of the images. These methods, called subspace-34

based approaches, have the merit to learn automatically and in35

task driven way the discriminative features without making use36

of any prior knowledge of the palmprint structure. However37

their simplicity comes with some limitations: their recogni-38

tion performances appear rather lower compared to orientation39

coding-based techniques which produce state-of-the-art results40

(Jia et al., 2017).41

Though a growing effort has been devoted in order to develop42

robust and high accuracy palmprint recognition systems that43

can operate in various conditions, many problems still remain44

to be solved, including the design of techniques able to han-45

dle various illumination sources and low quality images result-46
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Fig. 1. The flowchart of our proposed method. Each small arrow represents a subspace over which a classifier is learned.

ing from uncontrolled acquisition conditions (Lu et al., 2017;47

Yang et al., 2017; Ni et al., 2015; Zhang et al., 2010b; Pan and48

Ruan, 2008). In these adversarial situations, the performances49

of subspace-based approaches may be severely impacted. To50

overcome these limitations, we investigate an effective ensem-51

ble learning technique for robust palmprint recognition.52

In this paper, we introduce a novel subspace learning method53

directly applied to image pixels for palmprint recognition. Con-54

ventional subspace methods mainly seek to determine a relevant55

low-dimensional subspace in a high-dimensional input space56

in order to learn a suitable representation. Hence their perfor-57

mances are sensitive to the selected dimensionality. A small-58

dimensional subspace might loose discriminative information59

while a large dimensionality could lead to overfitting (Nguyen60

et al., 2007). To tackle this problem we explore an ensemble61

learning approach based on Random Subspace Method (RSM)62

(Ho, 1998; Guan et al., 2015; Li et al., 2015; Guan and Li,63

2013). The RSM builts multiple subspaces by using a random64

procedure. A simple classifier is associated to each subspace.65

The final decision rule is achieved by aggregating the outcomes66

of the learned classifiers. Indeed, the RSM builds many weak67

classifiers which may not provide individually good recognition68

performances but their combination may achieve high recogni-69

tion accuracy. The main contributions brought by the paper are70

as follows:71

• We propose a new and effective palmprint recognition72

method based on RSM. This ensemble learning tech-73

nique proves more efficiency than individual classifiers74

(Kuncheva, 2004; Rokach, 2010) and was recently applied75

with success to gait recognition (Guan et al., 2015) .76

• To achieve a simple method, we rely on 2DPCA to build77

random subspaces. 2DPCA is a linear dimensionality re-78

duction technique for dealing with 2D images as it works79

on matrices rather than vectors. Contrary to conventional80

one-dimensional PCA, it has the advantage to preserve the81

spatial structure of the palmprint images and requires less82

computational cost (Yang et al., 2004). The subspaces83

are randomly selected such as they are nearly incoherent84

(Zhang and Li, 2010). The incoherence indicates the de-85

gree of dissimilarity between subspaces and is desirable in86

order to promote different subspaces, hence diverse classi-87

fiers.88

• As 2DPCA is unsupervised, discriminative features are ex-89

tracted in each subspace using 2D Linear Discriminant90

Analysis (2DLDA). A Nearest Neighbor (NN) with Eu-91

lidean distance is implemented for each subspace. Finally,92

the non-linear decision function is obtained and consists in93

a majority voting of the individual classifiers.94

The flowchart of the proposed method is depicted in Figure 1.95

Its effectiveness and efficiency are assessed by extensive exper-96

iments on three public palmprint datasets in order to: (i) com-97

pare RSM to conventional palmprint recognition methods and,98

(ii) analyze the influence of hyper-parameters involved in RSM99

(as the number of subspaces or their dimensionality) on recog-100

nition accuracy.101

The paper is organized as follows. Section 2 summarizes re-102

lated work. Section 3 describes the proposed random subspace103

method. Section 4 reports the experimental results and discus-104

sions. Finally, Section 5 concludes the paper.105

2. Related work106

We provide a brief overview of palmprint recognition meth-107

ods. Existing methods in the literature essentially differ by the108

type of discrimination features they use and can be broadly or-109

ganized in two main categories (Li and Kim, 2017), holistic and110

structural methods, presented hereafter.111

2.1. Holistic techniques112

The holistic or global methods attempt to process palmprint113

image as a whole. They can be divided into two main sub-114

categories: i) subspace-based and ii) representation-based.115

Subspace-based approaches116

These techniques aim to find a transformation mapping the117

original data residing in a high-dimensional space onto a118

lower one using statistical learning techniques. Among119

them, the most representative unsupervised ones are Prin-120

ciple Component Analysis (PCA) (Lu et al., 2003) and its121

2D variant (Sang et al., 2009) used in order to preserve122

spatial structure information of palmprint images. In addi-123

tion to PCA, Independent Component Analysis (ICA) has124

been also used (Connie et al., 2005). While PCA seeks to125

find uncorrelated features, the ICA attempts to find statis-126

tically independent ones. Supervised projection methods127

including Linear Discriminant Analysis (LDA) (Wu et al.,128

2003) and 2DLDA (Wang and Ruan, 2006) have been also129

explored. Another interesting approach Locality Preserv-130

ing Projection (LPP) which seeks to preserve the neigh-131

borhood structure of the data (He and Niyogi, 2004) and132

its 2D (Hu et al., 2007) and non-linear kernel (Feng et al.,133

2006) variants.134
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Table 1. Example of pre-processing transforms for palmprint recognition.

Transforms Works

Fourier (Hennings-Yeomans et al., 2007)
Haar Wavelet (Tamrakar and Khanna, 2016)
2D Discrete Cosine (Leng et al., 2017)

The holistic approaches mainly act at the pixel level and135

are subject to poor performances in the presence of degra-136

dations caused by noise and blur (Laadjel et al., 2015). To137

address this problem, several transformation shown in Ta-138

ble 1 have been applied as pre-processing step. The result-139

ing features are then combined with the aforementioned140

subspace learning techniques.141

Representation-based approaches142

In this group of techniques, the query image is considered143

as a linear combination of all training samples. It is com-144

mon that the palmprint of a specific subject lies in a lin-145

ear subspace (Zhang et al., 2015; Xu et al., 2015). With146

this assumption, the query image is expected to be well147

represented by the training samples of the same subject,148

which may lead to a sparse representation over all training149

data. Sparse Representation-Based Classification (SRC)150

method (Wright et al., 2009; Raghavendra and Busch,151

2014) and Linear Recognition Classification (LRC) (Cui152

et al., 2015) are two representative techniques.153

2.2. Structural methods154

The structural or local approaches rely on the extraction of155

the lines and texture features from the palmprint image. The156

structural methods can be organized in two sub-categories: i)157

line-based, ii) coding-based and iii) texture-based described be-158

low.159

Coding-based approaches160

They represent the most influential and state-of-the-art161

palmprint recognition techniques. They encode the re-162

sponses of a bank of filters into bitwise codes. PalmCode163

introduced by (Zhang et al., 2003) represents the basis of164

other coding-based methods. It essentially encodes the re-165

sponse of one Gabor filter with an orientation equals to π/166

4. Motivated by the success of PalmCode, a large variety167

of coding methods have been proposed and are summa-168

rized in Table 2.169

Table 2. Non exhaustive coding-based methods for palmprint recognition.
Codes Remarks Works

PalmCode 1 Gabor orientation (Zhang et al., 2003)
Competitive 6 Gabor orientations (Kong and Zhang, 2004)
Ordinal 3 2-D Gaussian (Sun et al., 2005)
Fusion 4 Elliptical Gabor orientations (Kong et al., 2006)
Robust Line Orientation 6 MFRAT directions (Jia et al., 2008)
Binary Orientation 6 Gabor orientations (Guo et al., 2009)
E-Binary Orientation Masking out the fragile bits Zhang et al. (2012)
Half Orientation 6 banks of half-Gabor directions (Fei et al., 2016b)
Double Orientation 2 maximum of 6 Gabor responses (Fei et al., 2016a)

Texture feature extraction170

In this approach, the palm features are generated using171

texture feature extractors including Local Binary Pattern172

(LBP), Histogram of Oriented Gradient (HOG) and their173

variants. Table 3 shows some of the state-of-the-art fea-174

ture extractors for palmprint recognition.175

Table 3. Example of texture extractors for palmprint recognition.

Texture extractors Works

Local Binary Pattern (LBP) (Michael et al., 2008)
Block-based Histogram of Oriented Gradient (Hong et al., 2015)
Weighted Histogram of Oriented Gradient (Hong et al., 2016)
Hierarchical multi-scale LBP histogram (Guo et al., 2017)

Table 4 summarizes the different techniques as well as their176

strengths and limitations.177

3. Random Subspace Method for Palmprint Recognition178

3.1. Problem formulation179

LetD = {(Pi, yi)}ni=1 be a set of n samples where Pi ∈ RN1×N2180

is a palmprint image and yi ∈ Y the associated label. Y is a181

discrete set of cardinality |Y| = C representing the identities182

to whom palmprints to be recognized belong to. The pursued183

objective is to find a decision function f (P) able to assign to184

a given image P its correct label y. An interesting strategy for185

providing an efficient model f is ensemble learning which com-186

bines the strengths of diverse weak classifiers and proves ef-187

fective in different application fields (Fernández-Delgado et al.,188

2014; Guan et al., 2015).189

One popular ensemble method is the Random Subspace190

Method (RSM) (Ho, 1998; Guan et al., 2015; Li et al., 2015;191

Guan and Li, 2013). The idea behind RSM is to use differ-192

ent subsets of features, randomly selected from an initial set,193

to learn the individual classifiers. Effectiveness of such an ap-194

proach relies on one side in building a set of relevant and diverse195

simple classifiers and on the other side in aggregating the results196

of these classifiers. In the present work, we focus in the first197

issue. Specifically we intend to extract, from the raw images198

Pi, discriminative features well suited to palmprint classifica-199

tion. The images Pi are customary high-dimensional and only200

a few training samples are available for a given subject, lead-201

ing to numerical issues (Ye et al., 2005) when linear subspace202

learning techniques (see section 2.1) are applied. Inspiring from203

(Guan et al., 2015), we adopt 2DPCA (Yang et al., 2004) to204

build an initial feature space (a space spanned by the eigenvec-205

tors associated to leading eigenvalues of the covariance matrix206

of the data) from which the subspaces are randomly sampled.207

Under this 2DPCA model, each palmprint image is projected208

onto a new matrix in each subspace. However, as 2DPCA acts209

in an unsupervised manner, resulting images in each subspace210

are further projected onto new features using a 2DLDA method211

(Ye et al., 2005) to ensure class separability. Finally a Near-212

est Neighbor classification (NN) rule, which has shown good213

ability to deal with such discrimination problems, is applied to214

each subspace. The final classification decision is obtained by215

Majority Voting (Kittler et al., 1998) among the individual NN216

classifiers. In the following, after a brief description of 2DPCA217

and 2DLDA, we develop our random subspace methodology.218
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Table 4. Summary of the most representative techniques for palmprint recognition.

Approach Summarize Advantages & Limitations

(+) Good description ability
Subspace Find subspace with intrinsic features (+) Low computational cost

(−) Sensitivity to the size of subspace
(+) Ability to learn data-driven representations

Representation Learn discriminative features (+) Good discrimination ability
(−) Classes should be well represented by training data
(+) High discrimination ability

Coding Extract direction features (+) Stable characteristics
(−) High computational cost
(+) Captured from low resolution images

Texture Extract texture features (+) Stable characteristic
(−) Sensitive to noise

3.2. 2D Principal Component Analysis219

Given the set of palmprint images
{
Pi ∈ RN1×N2

}n

i=1
2DPCA,220

used as a first step of our RSM, seeks to reduce the dimensional-221

ity of the data. Contrary to conventional one-dimensional PCA,222

2DPCA preserves the matrix structure of P instead of work-223

ing on its vectorized representation (which can be potentially224

of high dimension when N1 and N2 take high values leading to225

tedious eigenvalue decomposition problem). Formally, 2DPCA226

aims at finding a transformation matrix R ∈ RN2×d to project227

each image Pi onto a matrix Zi = (Pi − P̄) R ∈ RN1×d of re-228

duced dimension i.e. d ≤ N2. P̄ = 1
n
∑n

i=1 Pi is the mean of229

the training images. The original image can be reconstructed230

back as P̂i = Zi R>. Mathematically, 2DPCA minimizes the231

reconstruction error by addressing the following optimization232

problem233

min
R∈RN2×d

1
n

n∑
i=1

‖Pi − P̂i‖
2
F s.t. R>R = I

where ‖ · ‖F represents the Frobenius norm and I the identity
matrix. The equality constraint R>R = I ensures columns’ or-
thogonality of R. Using the property Trace(AA>) = ‖A‖2F and
after some algebra the previous problem becomes

max
R∈RN2×d

Trace
(
R>SR

)
s.t. R>R = I (1)

where S =
1
n

n∑
i=1

(
Pi − P̄

)> (
Pi − P̄

)
is the covariance matrix.234

Solution R∗ of problem 1 can be shown to correspond to the235

d-dominant eigenvectors of S (Yang et al., 2004). Any training236

image can therefore be projected onto the space spanned by the237

columns of R∗ giving238

Zi =
(
Pi − P̄

)
R∗ ∈ RN1×d ∀ i = 1, · · · , n (2)

3.3. 2D Linear Discriminant Analysis239

To extract discriminative representation of the data, 2DLDA
is applied to the features Zi. It intends to determine a projec-
tion matrix W ∈ RN1×m, for fixed m ≤ N1, in order to maximize

class separability. 2DLDA seeks to maximize the between-class
variance relatively to within-class variance leading to the opti-
mization problem (Ye et al., 2005)

max
W∈RN1×m

Trace
(
W>SwW

)−1 (
W>SbW

)
(3)

under column orthogonality of W. The matrix Sb =∑C
k=1 nk

(
Z̄k − Z̄

) (
Z̄k − Z̄

)>
is the between-class covariance ma-

trix whereas Sw =
∑C

k=1
∑n

i=1 I1yi=k

(
Zi − Z̄k

) (
Zi − Z̄k

)>
repre-

sents the within-class covariance matrix. In these expressions
nk is the cardinality of the kth class while Z̄k stands for the mean
matrix of class k and is calculated based on the projected sam-
ples Zi issued from 2DPCA. Z̄ is the global mean of the training
samples. Solution W∗ of problem 3 corresponds to the m lead-
ing eigenvectors of S−1

w Sb. To sum up, starting from the raw
palmprint images Pi, the application of 2DPCA followed by
2DLDA brings to the representation

Xi = W∗>Zi = W∗>
(
Pi − P̄

)
R∗ ∈ Rm×d ∀ i = 1, · · · , n (4)

The classification stage of our proposed approach relies on240

these learned features.241

3.4. Random Subspace construction242

RSM is a very simple and popular ensemble learning method.243

We may randomly sample the features related to each subspace244

directly form the raw palmprint images. However this is not245

practical as the sampling procedure may loose local spatial rela-246

tionships among the pixels within the image (Zhu et al., 2009).247

In order to preserve these spatial information and build nearly248

incoherent subspaces, we adopt 2DPCA to generate the random249

subspaces. Indeed, following (Guan et al., 2015) we consider250

L subspaces, each spanned by N � d randomly selected eigen-251

vectors from R∗. Hence, starting from the solution of 2DPCA252

problem, we generate L projection matrices
{
R` ∈ RN2×N

}L

`=1
253

where R` = R∗(:,I`) with I` a set of N indexes sampled in the254

range [1, d]. During the procedure we promote the sampling255

of subspaces `1 and `2 such that the term ϕ`1,`2 = ‖RT
`1

R`2‖
2
F is256
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enough small, leading to nearly incoherent subspaces (Ramirez257

et al., 2010). Indeed, because of the orthogonality of the eigen-258

vectors, the term ϕ`1,`2 provides a measure of the mutual coher-259

ence of subspaces `1 and `2.260

After sampling each matrix R`, we proceed as follows:261

the whole training images are projected onto the subspace262

spanned by the corresponding eigenvectors giving D` =263 {
Z`

i =
(
Pi − P̄

)
R`

}n

i=1
. These new data Z`

i are further used264

to learn 2DLDA matrix W` by solving problem 3 in or-265

der to extract discriminative features. Finally, we attain the266

representation of the data in the `th random subspace as267 {(
X`

i = W∗>
` Z`

i , yi

)}n

i=1
. It shall be noticed that our random sub-268

space generation procedure transforms each initial palmprint269

image Pi ∈ RN1×N2 into representations X`
i ∈ Rm×N (with270

m ≤ N1 and N ≤ d ≤ N2) for all ` = 1, · · · , L corresponding to271

a given subspace. The representations X`
i differ by the selected272

eigenvectors (of number N) in R∗ and the related LDA projec-273

tion matrix W`. It should be noticed that in addition to getting274

more discrimination ability, 2DLDA also performs dimension-275

ality reduction of the data along rows while 2DPCA has already276

reduced dimensionality along columns. The processing flow is277

summarized in algorithm 1.278

Algorithm 1 Random Subspace Method (RSM)
Input:
• Training set:

{
(Pi, yi) ∈ RN1×N2 × Y

}n

i=1

• Hyper-parameters: N, size of random subspaces; L
number of subspaces and m, number of 2DLDA pro-
jection directions.

Output:
• {R`}

L
`=1 random subspace matrices and related LDA pro-

jection matrices {W`}
L
`=1

Solve problem 1 for 2DPCA projection matrix R∗ ∈ RN2×d ;
for ` = 1 to L do

Generate a subspace spanned by R` ∈ RN2×N by randomly
selecting N (N � d) eigenvectors from R∗;

Determine unsupervised representation of the data and
formD` =

{
Z`

i =
(
Pi − P̄

)
R`

}n

i=1
using equation 2;

Calculate accordingly the 2DLDA projection matrix W` ∈

RN1×m.
end for

Once the parameters of the subspaces are learned, we asso-279

ciate for simplicity sake a simple 1-Nearest Neighbor classi-280

fication function to each subspace. The decision rule is the281

majority vote over the outcomes of these weak classifiers.282

4. Experiments283

In this section, we perform several experiments to evaluate284

the effectiveness of the proposed approach on three popular285

palmprint datasets: left and right palmprint database (Zhang286

et al., 2003), multi spectral palmprint database (Zhang et al.,287

2010a) and 2D palmprint database (Li et al., 2010). The ob-288

served performances (recognition rate) are compared to those of289

the state-of-the-art holistic and structural approaches. In addi-290

tion, the influence of hyper-parameters involved in RSM on the291

performances and the computation cost of our proposed RSM292

are investigated.293

4.1. Palmprint datasets294

The left and right database was provided by the Hong Kong295

Polytechnic University (PolyU)1. 187 subjects have been asked296

to provide 10 palmprint images per each hand. In the following297

this dataset is referred to as PolyU.298

The multispectral dataset contains four independent spectral299

palmprint databases, including Red, Green , Blue and Near In-300

frared (NIR) spectrums databases2. 12 palmprint images have301

been recorded per each hand and illumination from 250 volun-302

teers. This dataset will be termed in the sequel as the multispec-303

tral dataset.304

In the 2D database, 20 palmprint images have been collected305

per each hand from 200 subjects3.The characteristics of the em-306

ployed datasets are summarized in Table 5.Note that the two307

palms of the same subject are considered as two distinct classes.308

Table 5. Content of palmprint recognition datasets.

PolyU
Multispectral

(per each spectrum) 2D
# Classes # Images # Classes # Images # Classes # Images

374 3740 500 6000 400 8000

In our experiments we have used the provided palmprint re-309

gion of interest of 32 × 32 (see Figure 2).310

(a) Blue (b) Red (c) Green

(d) NIR (e) PolyU (f) 2D

Fig. 2. Example of palmprint region of Interest in different databases.

1http://www4.comp.polyu.edu.hk/~biometrics/index.htm
2http://www4.comp.polyu.edu.hk/~biometrics/

MultispectralPalmprint/MSP.htm
3http://www4.comp.polyu.edu.hk/~biometrics/index.htm
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4.2. Choosing the hyper-parameters of our RSM311

The proposed method involves three tuning parameters: the312

dimension of the random subspace N, the number of projection313

directions of the 2DLDA m and the number of subspaces L.314

The parameters N and m can be easily optimized using a cross-315

validation scheme due to their limited range (either N2 or N1,316

the dimensions of the images). Hence they are selected among317

the set {2, 4, · · · , 30}. The choice of L appears more demanding318

as we do not know beforehand hand its convenient range. How-319

ever following (Guan et al., 2015) we set L = 500, a sufficiently320

high value in order to draw diverse and nearly incoherent ran-321

dom subspaces in order to ensure a good generalization ability.322

This empirical choice was further confirmed by the study ex-323

posed in section 4.5.324

4.3. Experimental protocol325

We have compared our proposed method to subspace learn-326

ing techniques including PCA, 2DPCA, LDA, 2DLDA and327

2DLPP as well as representation-based techniques includ-328

ing Sparse Representation-based Classification (SRC) (Wright329

et al., 2009) and Linear Regression Classification (LRC) (Cui330

et al., 2015). In addition to the previous approaches, our method331

is also compared to coding-based techniques which have shown332

good efficiency and ability to tackle palmprint recognition prob-333

lem including Palm code (Zhang et al., 2003), Competitive334

Code (Kong and Zhang, 2004), Ordinal Code (Sun et al., 2005),335

Fusion Code (Kong et al., 2006), Robust Orientation Line Code336

(RLOC) (Jia et al., 2008), Binary Orientation Co-occurrence337

Vector (BOCV) (Guo et al., 2009), E-BOCV Zhang et al.338

(2012), Half Orientation Code (HOC) (Fei et al., 2016b) and339

Double Orientation Code (DOC) (Fei et al., 2016a).340

For comparison sake, we have performed the same experi-341

ments using the same data splits and protocols in (Fei et al.,342

2016a). Several experiments have been conducted using vari-343

ous number of training samples. The first ”train” images from344

each class were employed as training samples while the remain-345

ing ones serve as test set. We respectively use 2, 4, 6 training346

images per class.347

Because of the small number of samples per class in the train-348

ing set, we adopt 2-fold cross-validation strategy on the training349

set to select the optimal hyper-parameters of RSM. Due to the350

random nature of proposed RSM method, the results of differ-351

ent runs may vary to some extent. For this reason we repeat all352

the experiments 10 times and we report the mean accuracy with353

the standard deviation.354

4.4. Performance evaluation and discussion355

The accuracy is measured by the Correct Classification Rate356

(CCR) corresponding to the ratio of well classified images to357

overall samples. Tables 6 to 8 compare proposed RSM to other358

palmprint recognition techniques in terms of accuracy, using 2,359

4 and 6 training samples respectively. The best two results are360

highlighted by bold and underline. It can be seen that RSM out-361

performs single subspace learning techniques in all palmprint362

datasets. Indeed, we can notice that our ensemble learning strat-363

egy significantly improves over these conventional techniques364

based on a single subspace and classifier such as PCA/2DPCA365

and LDA/2DLDA in all experimental settings. The same re-366

marks hold for the representation based techniques (SRC and367

LRC). When compared to coding-based methods, the proposed368

method shows very promising results. Specifically, RSM im-369

proves over these state-of-the-art approaches in the most chal-370

lenging setup where only a few training images are available as371

shown in Table 6. On the other setups RSM performs slightly372

better or match-up with the coding-based techniques on many373

datasets.374

A worth mentioning fact is the consistency of our proposed375

technique which outperforms the state-of-the-art methods over376

different datasets acquired under various illumination condi-377

tions. This is illustrated by the mean accuracy of all compared378

methods as shown in tables 6 to 8, demonstrating the ability of379

RSM to be robust to varying environmental conditions. The in-380

tuition behind this robustness is the fact that RSM aggregates381

several weak and diverse classifiers, hence reducing the sensi-382

tivity to noise that may result from adversarial acquisition con-383

ditions. A similar effect has been pointed out by (Carbonneau384

et al., 2016) in the context of multi-instance learning ensembles.385

Moreover, it is known that random subspace approaches gen-386

erally provide accurate and robust classification results when387

training data are scarce (Kuncheva, 2004). Nonetheless, one388

may question the potential vulnerability of RSM to spoofing389

attacks. Although we do not directly address this issue, it is390

well known that spoofing palmprint, especially at different wave391

lengths, is more difficult than spoofing other biometrics as fin-392

gerprints, faces and iris (Marcel et al., 2014).393

Finally we shall state that coding methods remain very at-394

tractive but they heavily rely on priori knowledge to choose395

Gabor filter parameters and the number of orientations. More-396

over their computation cost is high at testing stage (Zhang et al.,397

2015). This is confirmed by Table 9 which compares the exe-398

cution time of our method to coding-based techniques. On the399

other side, our method proposes a fully integrated pipeline and400

does not require any expertise on the structure or morphology of401

human palm hand to extract discriminative features. It should402

be noticed that RSM also involves hyper-parameters which can403

be selected using a cross-validation strategy. We provide here-404

after an analysis to guide the user in the choice of these hyper-405

parameters.406

4.5. Analyzing the influence of RSM hyper-parameters on ac-407

curacy408

Here we are interested in the impact of the number of sub-409

spaces L, the size of subspaces N and the number of 2DLDA410

projection directions m on the accuracy. It has been shown411

that aggregating a large number of accurate and diverse individ-412

ual classifiers leads to performing ensembles (Kuncheva, 2004).413

The feature subspaces on which these individual classifiers are414

learned represent the key indicator in order to build classifiers415

with some desired characteristics. (Kuncheva et al., 2010) intro-416

duced three notions diversity, coverage and usability that may417

be helpful in order to interpret the results:418

• Diversity: in an ensemble classifier, two classifiers are419

considered non-identical or different if they are learned on420

two incoherent or different subspaces.421
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Table 6. Palmprint recognition accuracy (%) using 2 training samples. Best two results are highlighted by bold and underline. The first column represents
the datasets and the remaining ones report the accuracy of proposed RSM and the competitors. The last row depicts the mean accuracy over the first five
datasets. The details of compared methods are provided in the text.

Subspace-based Representation-based Coding-based

PCA 2D-PCA LDA 2D-LDA 2D-LPP LRC SRC Comp Ordi Fusn Palm BOCV EBOCV RLOC HOC DOC RSM

Red 85.72 85.72 91.54 96.52 86.94 95.54 95.78 98.18 97.80 97.62 96.12 97.76 97.72 96.26 98.40 98.70 98.94 ± 0.06
Green 56.88 56.92 88.24 91.70 41.58 93.02 94.26 97.86 97.02 96.64 91.58 97.12 97.52 95.60 98.16 98.16 98.21 ± 0.04
Blue 92.44 92.68 93.72 96.38 91.96 95.50 95.94 97.76 97.08 96.82 93.50 97.42 97.98 96.53 98.06 98.18 98.30 ± 0.02
NIR 88.48 88.70 97.60 96.38 92.02 95.46 93.98 98.54 97.96 97.28 95.88 96.56 96.30 96.50 98.54 98.94 98.71 ± 0.10

PolyU 96.46 96.52 94.79 98.00 95.12 96.79 95.52 97.00 96.79 94.89 86.48 94.64 95.76 94.66 98.01 98.43 99.18 ± 0.02
2D 53.81 53.92 77.72 75.42 70.90 91.21 90.22 - - - - - - - - - 92.25 ± 0.21

Mean 84.00 84.11 93.18 95.80 81.52 95.26 95.10 97.87 97.33 96.65 92.71 96.70 97.06 95.91 98.23 98.48 98.67

Table 7. Palmprint recognition accuracy (%) using 4 training samples. Best two results are highlighted by bold and underline.

Subspace-based Representation-based Coding-based

PCA 2DPCA LDA 2DLDA 2DLPP LRC SRC Comp Ordi Fusn Palm BOCV EBOCV RLOC HOC DOC RSM

Red 91.05 91.05 95.63 97.48 93.97 97.38 95.68 98.95 98.82 98.27 97.85 98.52 98.55 98.11 99.08 99.17 99.22 ± 0.04
Green 64.23 64.25 92.45 95.55 52.90 95.60 94.40 98.78 98.17 97.80 93.85 98.05 98.35 97.24 98.68 98.85 98.90 ± 0.11

Blue 94.33 94.53 97.45 97.63 95.17 96.93 96.18 98.70 98.20 97.85 95.92 98.07 98.70 97.87 98.75 98.82 99.10 ± 0.04
NIR 90.55 91.38 98.73 97.53 94.65 97.80 93.95 99.15 99.00 98.47 97.67 98.05 98.00 97.99 99.10 99.35 99.37 ± 0.06

PolyU 98.66 98.71 99.05 99.07 98.71 99.02 97.01 98.27 97.86 96.47 88.60 96.10 96.76 96.28 99.08 99.23 99.96 ± 0.01
2D 60.14 60.17 86.23 75.81 76.28 94.25 91.08 - - - - - - - - - 94.50 ± 0.14

Mean 87.76 87.98 96.66 97.45 87.08 97.35 95.44 98.77 98.41 97.77 94.78 97.76 98.07 97.50 98.94 99.08 99.31

Table 8. Palmprint recognition accuracy (%) using 6 training samples. Best two results are highlighted by bold and underline.

Subspace-based Representation-based Coding-based

PCA 2DPCA LDA 2DLDA 2DLPP LRC SRC Comp Ordi Fusn Palm BOCV EBOCV RLOC HOC DOC RSM

Red 91.60 91.67 96.83 97.60 95.27 98.00 95.13 99.20 98.93 98.53 97.93 98.37 98.50 98.35 99.07 99.23 99.23 ± 0.03

Green 62.10 62.40 94.80 94.60 49.07 96.27 93.60 98.93 98.37 97.87 94.03 98.20 98.43 97.78 98.97 99.10 98.95 ± 0.07

Blue 94.10 94.37 95.00 97.50 95.07 97.10 95.30 98.93 98.43 97.97 96.57 98.17 98.77 98.68 98.97 99.10 99.02 ± 0.02

NIR 90.60 90.60 95.60 97.93 94.37 98.10 93.33 99.13 98.90 98.47 97.57 98.20 98.10 98.13 99.14 99.40 99.54 ± 0.04
PolyU 99.33 99.33 99.60 99.67 99.33 99.47 97.86 99.92 99.87 99.92 99.80 99.92 99.87 99.80 98.99 99.23 99.94 ± 0.01

2D 59.77 59.75 87.00 74.45 74.58 94.30 90.41 - - - - - - - - - 94.64 ± 0.16

Mean 87.55 87.67 96.37 97.46 86.62 97.79 95.04 99.22 98.90 98.55 97.18 98.57 98.73 98.55 99.03 99.21 99.34

• Coverage: represents the ability to learn a large number of422

non-identical classifiers.423

• Usability: when a classifier is learned on only spurious424

features its performance may be totally random. A classi-425

fier is considered usable when it is learned on subspaces426

containing discriminative features.427

In order to build a performing ensemble classifier, these428

criteria should be fulfilled as far as possible, i.e. learning a429

large number of classifiers on incoherent and discriminative430

subspaces. Figures 3 to 5 respectively depict the evolution of431

the accuracy according to the size of subspaces N, the number432

of subspaces (classifiers) L and the number of 2DLDA projec-433

tion directions m. Note that in the conducted analysis, we fix434

two parameters and we check the accuracy’s sensitivity to the435

third one on the test set by changing its value within a range436

(L ∈ [20, 500], N ∈ [2, 30] and m ∈ [2, 30]). For clarity sake437

we solely show the obtained graphs over Multispectral dataset.438

We shall mention that the observed variations and drawn con-439

clusions extend to PolyU and 2D datasets.440

In Figure 3 we fix the number of subspaces and 2DLDA pro-441

jections to L = 500 and m = 10 respectively and we range the442

size of subspaces N. We remark that a medium size of sub-443

spaces gives the best accuracy. This finding is due to the ability444

to sample a larger number of nearly incoherent subspaces (i.e.445

classifiers) which satisfy the diversity assumption.446

To generate the graphs of Figure 4, we fix the size of sub-447

spaces and 2DLDA projections to N = 8 and m = 10 and we448

range the number of subspaces L. It can be seen that taking a449

large number of subspaces in consideration increases the accu-450

racy and makes it more stable. Indeed, taking a large value for451

the number of subspaces supports meeting the coverage crite-452

ria. However it can be seen that beyond L = 300 the accuracy453

reaches a plateau since the maximum discriminative informa-454

tion is captured.455
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Fig. 3. Impact of the size of subspaces N.
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Fig. 5. Evolution of the recognition accuracy with varying values of m.
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Fig. 6. The execution time variation with increasing (a) dimensionality of the subspace N (m = 10, L = 1) (b) 2DLDA projection directions m (N = 8, L = 1)
(c) number of subspaces L (N = 8, m = 10).

Finally, in Figure 5, we fix N = 8 and L = 500 and we vary456

m. It can be seen that with m = 10 we are able to extract suffi-457

ciently discriminative features which help to build usable clas-458

sifiers. Larger values of m do not have a significant influence459

on the accuracy, which even slightly decreases. This is particu-460

larly noticeable with a training set of solely 2 images. In fact, a461

larger feature set more likely contains noisy or less informative462

features. Indeed, the number of projections m should be large463

enough to extract important features without taking noise into464

consideration.465
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4.6. Computational Cost Analysis466

Experiments were performed in Matlab R2012a on MacBook467

Pro, Intel Core i5 (3.2 GHz) and 8 GB RAM. The execution468

time to classify a new test palmprint image increases linearly469

with the increasing dimensionality for either N, m and L as470

shown in Figure 6.471

For N = 8, L = 500 and m = 10 our algorithm takes ap-472

proximately 0.06 seconds to classify one test palmprint image,473

which shows that the speed of proposed method is quite good474

for real time applications. The speed can further be increased475

by parallel processing. Table 9 compares the execution time of476

our method to other state-of-the-art coding-based techniques.477

It can be seen that the speed of our algorithm compares very478

favorably.479

Table 9. Computational cost (at test time) in seconds of the most perform-
ing methods tested in our experiments.

Methods Execution Time (s)

Competitive Code 0.08
Palm Code 0.20
Fusion Code 0.20
Ordinal Code 0.90
RLOC 3.70
BOCV 0.90
E-BOCV 2.10
HOC 0.15
DOC 3.50
RSM 0.06

5. Conclusion480

In this paper we have proposed a new and effective palm-481

print recognition method based on Random Subspace Method482

(RSM). L nearly incoherent subspaces are randomly generated483

from the eigenvectors of a 2DPCA. The resulting L projections484

are refined through 2DLDA. Then, on each subspace, subject is485

identified with a 1-Nearest Neighbor (1-NN) classifier. Eventu-486

ally, the L decisions are aggregated with Majority Voting (MV).487

Extensive experiments on three public palmprint datasets,488

with different illumination conditions, have been conducted to489

compare proposed approach to conventional palmprint recogni-490

tion methods. The experimental results establish that our ran-491

dom subspace strategy improves on the state-of-the art tech-492

niques, such as coding-based methods over all the environ-493

mental conditions under investigation. We provide an analy-494

sis to give insights on the tuning of hyper-parameters involved495

in RSM. It appears that, on the studied palmprint datasets, the496

combination of several weak classifiers (a simple 1-NN clas-497

sification method) learned over nearly incoherent or different498

subspaces leads to consistent performances over various acqui-499

sition conditions. Hence we believe that RSM can partially500

contribute to the development of robust biometric recognition501

systems. Finally the paper demonstrates that the computation502

burden of RSM at testing stage is very competitive as its com-503

putation time is lower than the one of current influential meth-504

ods for palmprint recognition.505
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