
HAL Id: hal-02094963
https://hal.science/hal-02094963

Submitted on 16 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep neural networks regularization for structured
output prediction

Soufiane Belharbi, Romain Hérault, Clément Chatelain, Sébastien Adam

To cite this version:
Soufiane Belharbi, Romain Hérault, Clément Chatelain, Sébastien Adam. Deep neural net-
works regularization for structured output prediction. Neurocomputing, 2018, 281, pp.169-177.
�10.1016/j.neucom.2017.12.002�. �hal-02094963�

https://hal.science/hal-02094963
https://hal.archives-ouvertes.fr

Deep Neural Networks Regularization for Structured
Output Prediction

Soufiane Belharbi∗
Normandie Univ, UNIROUEN, UNIHAVRE,

INSA Rouen, LITIS
76000 Rouen, France

soufiane.belharbi@insa-rouen.fr

Romain Hérault
Normandie Univ, UNIROUEN, UNIHAVRE,

INSA Rouen, LITIS
76000 Rouen, France

romain.herault@insa-rouen.fr

Clément Chatelain
Normandie Univ, UNIROUEN, UNIHAVRE,

INSA Rouen, LITIS
76000 Rouen, France

clement.chatelain@insa-rouen.fr

Sébastien Adam
Normandie Univ, UNIROUEN, UNIHAVRE,

INSA Rouen, LITIS
76000 Rouen, France

sebastien.adam@univ-rouen.fr

Abstract

A deep neural network model is a powerful framework for learning representations.
Usually, it is used to learn the relation x → y by exploiting the regularities in
the input x. In structured output prediction problems, y is multi-dimensional and
structural relations often exist between the dimensions. The motivation of this
work is to learn the output dependencies that may lie in the output data in order to
improve the prediction accuracy. Unfortunately, feedforward networks are unable
to exploit the relations between the outputs. In order to overcome this issue, we
propose in this paper a regularization scheme for training neural networks for these
particular tasks using a multi-task framework. Our scheme aims at incorporating
the learning of the output representation y in the training process in an unsupervised
fashion while learning the supervised mapping function x→ y.
We evaluate our framework on a facial landmark detection problem which is a
typical structured output task. We show over two public challenging datasets
(LFPW and HELEN) that our regularization scheme improves the generalization of
deep neural networks and accelerates their training. The use of unlabeled data and
label-only data is also explored, showing an additional improvement of the results.
We provide an opensource implementation2 of our framework.

1 Introduction

In machine learning field, the main task usually consists in learning general regularities over the input
space in order to provide a specific output. Most of machine learning applications aim at predicting
a single value: a label for classification or a scalar value for regression. Many recent applications
address challenging problems where the output lies in a multi-dimensional space describing discrete
or continuous variables that are most of the time interdependent. A typical example is speech recog-
nition, where the output label is a sequence of characters which are interdependent, following the
statistics of the considered language. These dependencies generally constitute a regular structure
such as a sequence, a string, a tree or a graph. As it provides constraints that may help the prediction,
∗https://sbelharbi.github.io
2https://github.com/sbelharbi/structured-output-ae

This work has been submitted to the Neurocomputing journal for possible publication. This document is based
on NIPS 2016 style.

ar
X

iv
:1

50
4.

07
55

0v
6

 [
cs

.L
G

]
 3

0
O

ct
 2

01
7

https://github.com/sbelharbi/structured-output-ae

this structure should be either discovered if unknown, or integrated in the learning algorithm using
prior assumptions. The range of applications that deal with structured output data is large. One
can cite, among others, image labeling [12, 26, 31, 35, 49, 16, 24, 39], statistical natural language
processing (NLP) [17, 33, 38, 37], bioinformatics [18, 43], speech processing [34, 47] and handwrit-
ing recognition [15, 40]. Another example which is considered in the evaluation of our proposal in
this paper is the facial landmark detection problem. The task consists in predicting the coordinates
of a set of keypoints given the face image as input (Fig.1). The set of points are interdependent
throughout geometric relations induced by the face structure. Therefore, facial landmark detection
can be considered as a structured output prediction task.

Figure 1: Examples of facial landmarks from LFPW [4] training set.

One main difficulty in structured output prediction is the exponential number of possible config-
urations of the output space. From a statistical point of view, learning to predict accurately high
dimensional vectors requires a large amount of data where in practice we usually have limited data. In
this article we propose to consider structured output prediction as a representation learning problem,
where the model must i) capture the discriminative relation between x (input) and y (output), and
ii) capture the interdependencies laying between the variables of each space by efficiently modeling
the input and output distributions. We address this modelization through a regularization scheme for
training neural networks. Feedforward neural networks lack exploiting the structural information
between the y components. Therefore, we incorporate in our framework an unsupervised task which
aims at discovering this hidden structure. The advantage of doing so is there is no need to fix
beforehand any prior structural information. The unsupervised task learns it on itself.

Our contributions is a multi-task framework dedicated to train feedforward neural networks models
for structured output prediction. We propose to combine unsupervised tasks over the input and
output data in parallel with the supervised task. This parallelism can be seen as a regularization
of the supervised task which helps it to generalize better. Moreover, as a second contribution, we
demonstrate experimentally the benefit of using the output labels y without their corresponding
inputs x. In this work, the multi task framework is instantiated using auto-encoders [46, 5] for
both representations learning and exploiting unlabeled data (input) and label-only data (output). We
demonstrate the efficiency of our proposal over a real-world facial landmark detection problem.

The rest of the paper is organized as follows. Related works about structured output prediction is
proposed in section 2. Section 3 presents the proposed formulation and its optimization details.
Section 4 describes the instantiation of the formulation using a deep neural network. Finally, section
5 details the conducted experiments including the datasets, the evaluation metrics and the general
training setup. Two types of experiments are explored: with and without the use of unlabeled data.
Results are presented and discussed for both cases.

2 Related work

We distinguish two main categories of methods for structured output prediction. For a long time,
graphical models have showed a large success in different applications involving 1D and 2D signals.
Recently, a new trend has emerged based on deep neural networks.

2

2.1 Graphical Models Approaches

Historically, graphical models are well known to be suitable for learning structures. One of their
main strength is an easy integration of explicit structural constraints and prior knowledge directly
into the model’s structure. They have shown a large success in modeling structured data thanks
to their capacity to capture dependencies among relevant random variables. For instance, Hidden
Markov Models (HMM) framework has a large success in modeling sequence data. HMMs make an
assumption that the output random variables are supposed to be independent which is not the case in
many real-world applications where strong relations are present. Conditional Random Fields (CRF)
have been proposed to overcome this issue, thanks to its capability to learn large dependencies of
the observed output data. These two frameworks are widely used to model structured output data
represented as a 1-D sequence [11, 34, 6, 21]. Many approaches have also been proposed to deal
with 2-D structured output data as an extension of HMM and CRF. [29] propose a Markov Random
Field (MRF) for document image segmentation. [44] provide an adaptation of CRF to 2-D signals
with hand drawn diagrams interpretation. Another extension of CRF to 3-D signal is presented in
[45] for 3-D medical image segmentation. Despite the large success of graphical models in many
domains, they still encounter some difficulties. For instance, due to their inference computational
cost, graphical models are limited to low dimensional structured output problems. Furthermore,
HMM and CRF models are generally used with discrete output data where few works address the
regression problem [32, 13].

2.2 Deep Neural Networks Approaches

More recently, deep learning based approaches have been widely used to solve structured output
prediction, especially proposed for image labeling problems. Deep learning domain provides many
different architectures. Therefore, different solutions were proposed depending on the application in
hand and what is expected as a result.

In image labeling task (also known as semantic segmentation), one needs models able to adapt to
the large variations in the input image. Given their large success in image processing related tasks
[20], convolutional neural networks is a natural choice. Therefore, they have been used as the core
model in image labeling problems in order to learn the relevant features. They have been used either
combined with simple post-processing in order to calibrate the output [8] or with more sophisticated
models in structure modeling such as CRF [12] or energy based models [30]. Recently, a new trend
has emerged, based on the application of convolution [26, 35] or deconvolutional [31] layers in the
output of the network which goes by the name of fully convolutional networks and showed successful
results in image labeling. Despite this success, these models does not take in consideration the output
representation.

In many applications, it is not enough to provide the output prediction, but also its probability. In
this case, Conditional Restricted Boltzmann Machines, a particular case of neural networks and
probabilistic graphical models have been used with different training algorithms according to the
size of the plausible output configurations [28]. Training and inferring using such models remains a
difficult task. In this same direction, [2] tackle structured output problems as an energy minimization
through two feed-forward networks. The first is used for feature extraction over the input. The
second is used for estimating an energy by taking as input the extracted features and the current
state of the output labels. This allows learning the interdependencies within the output labels. The
prediction is performed using an iterative backpropagation-based method with respect to the labels
through the second network which remains computationally expensive. Similarly, Recurrent Neural
Networks (RNN) are a particular architecture of neural networks. They have shown a great success
in modeling sequence data and outputing sequence probability for applications such as Natural
Language Processing (NLP) tasks [25, 42, 1] and speech recognition [14]. It has also been used for
image captioning [19]. However, RNN models doe not consider explicitly the output dependencies.

In [23], our team proposed the use of auto-encoders in order to learn the output distribution in a
pre-training fashion with application to image labeling with promising success. The approach consists
in two sequential steps. First, an input and output pre-training is performed in an unsupervised way
using autoencoders. Then, a finetune is applied on the whole network using supervised data. While
this approach allows incorporating prior knowledge about the output distribution, it has two main
issues. First, the alteration of a network output layer is critical and must be performed carefully.
Moreover, one needs to perform multiple trial-error loops in order to set the autoencoder’s training

3

hyper-parameters. The second issue is overfitting. When pre-training the output auto-encoder, there
is actually no information that indicates if the pre-training is helping the supervised task, nor when to
stop the pre-training.

The present work proposes a general and easy to use multi-task training framework for structured
output prediction models. The input and the output unsupervised tasks are embedded into a regu-
larization scheme and learned in parallel with the supervised task. The rationale behind is that the
unsupervised tasks should provide a generalization aspect to the main supervised task and should limit
overfitting. This parallel transfer learning which includes an output reconstruction task constitutes the
main contribution of this work. In structured output context, the role of the output task is to learn the
hidden structure within the original output data, in an unsupervised way. This can be very helpful in
models that do not consider the relations between the components of the output representation such
as feedforward neural networks. We also show that the proposed framework enables to use labels
without input in an unsupervised fashion and its effect on the generalization of the model. This can
be very useful in applications where the output data is abundant such as in a speech recognition task
where the output is ascii text which can be easily gathered from Internet. In this article, we validate
our proposal on a facial landmark prediction problem over two challenging public datasets (LFPW
and HELEN). The performed experiments show an improvement of the generalization of deep neural
networks and an acceleration of their training.

3 Multi-task Training Framework for Structured Output Prediction

Let us consider a training set D containing examples with both features and targets (x, y), features
without target (x, _), and targets without features (_, y). Let us consider a set F which is the subset of
D containing examples with at least features x, a set L which is the subset of D containing examples
with at least targets y, and a set S which is the subset of D containing examples with both features x
and targets y. One can note that all examples in S are also in F and in L .

Input task
The input task Rin is an unsupervised reconstruction task which aims at learning global
and more robust input representation based on the original input data x. This task projects
the input data x into an intermediate representation space x̃ through a coding function Pin,
known as encoder. Then, it attempts to recover the original input by reconstructing x̂ from
x̃ through a decoding function P ′in, known as decoder:

x̂ = Rin (x;win) = P ′in (x̃ = Pin (x;wcin) ;wdin) , (1)

where win = {wcin,wdin}. The decoder parameters wdin are proper to this task however
the encoder parameters wcin are shared with the main task (see Fig.2). This multi-task
aspect will attract, hopefully, the shared parameters in the parameters space toward regions
that build more general and robust input representations and avoid getting stuck in local
minima. Therefore, it promotes generalization. This can be useful to start the training
process of the main task.
The training criterion for this task is given by :

Jin(F ;win) =
1

cardF
∑
x∈F
Cin(Rin(x;win),x) , (2)

where Cin is an unsupervised learning cost which can be computed on all the samples with
features (i.e. on F). Practically, it can be the mean squared error.

Output task
The output taskRout is an unsupervised reconstruction task which has the same goal as the
input task. Similarly, this task projects the output data y into an intermediate representation
space ỹ through a coding function Pout, i.e. a coder. Then, it attempts to recover the original
output data by reoncstructing ŷ based on ỹ through a decoding function P ′out, i.e. a decoder.
In structured output data, ỹ can be seen as a code that contains many aspect of the original
output data y, most importantly, its hidden structure that describes the global relation
between the components of y. This hidden structure is discovered in an unsupervised way
without priors fixed beforehand which makes it simple to use. Moreover, it allows using

4

labels only (without input x) which can be helpful in tasks with abundant output data such
as in speech recognition task (Sec.2):

ŷ = Rout (y;wout) = P ′out (ỹ = Pout (y;wcout) ;wdout) . (3)

where wout = {wcout,wdout}. In the opposite of the input task, the encoder parameters
wcout are proper to this task while the decoder parameters wdout are shared with the main
task (see Fig.2).
The training criterion for this task is given by :

Jout(L;wout) =
1

cardL
∑
y∈L
Cout(Rout(y;wout),y) , (4)

where Cout is an unsupervised learning cost which can be computed on all the samples with
labels (i.e. on L), typically, the mean squared error.

Main task
The main task is a supervised task that attempts to learn the mapping functionM between
features x and labels y. In order to do so, the first part of the mapping function is shared
with the encoding part Pin of the input task and the last part is shared with the decoding
part P ′out of the output task. The middle part m of the mapping functionM is specific to
this task:

ŷ =M (x;wsup) = P ′out (m (Pin (x;wcin) ;ws) ;wdout) . (5)

where wsup = {wcin,ws,wdout}. Accordingly, wcin and wdout parameters are respec-
tively shared with the input and output tasks.
Learning this task consists in minimizing its learning criterion Js,

Js(S;wsup) =
1

cardS
∑

(x,y)∈S

Cs(M(x;wsup), y) , (6)

where Cs(·, ·) can be the mean squared error.

x

x̃

x̂

y

ỹ

ŷ

Pin
(.,
wci

n
)

P ′
in (., w

din)

Rin(.;win)

P
out (., w

cout)Rout(.;wout)

P
′
ou

t
(.,
wdo

ut
)

m(., ws)

M(.;wsup)

Figure 2: Proposed MTL framework. Black plain arrows stand for intermediate functions, blue
dotted arrow for input auxiliary taskRin, green dashed arrow for output auxiliary taskRout, and red
dash-dotted arrow for the main supervised taskM.

As a synthesis, our proposal is formulated as a multi-task learning framework (MTL) [7], which
gathers a main task and two secondary tasks. This framework is illustrated in Fig. 2.

Learning the three tasks is performed in parallel. This can be translated in terms of training cost as
the sum of the corresponding costs. Given that the tasks have different importance, we weight each

5

cost using a corresponding importance weight λsup, λin and λout respectively for the supervised, the
input and output tasks. Therefore, the full objective of our framework can be written as:

J (D;w) = λsup · Js(S;wsup) + λin · Jin(F ;win) + λout · Jout(L;wout) , (7)

where w = {wcin,wdin,ws,wcout,wdout} is the complete set of parameters of the framework.

Instead of using fixed importance weights that can be difficult to optimaly set, we evolve them through
the learning epochs. In this context, Eq. 7 is modified as follows :

J (D;w) = λsup(t) · Js(S;wsup) + λin(t) · Jin(F ;win) + λout(t) · Jout(L;wout) , (8)

where t ≥ 0 indicates the learning epochs. Our motivation to evolve the importance weights is
that we want to use the secondary tasks to start the training and avoid the main task to get stuck in
local minima early in the beginning of the training by moving the parameters towards regions that
generalize better. Then, toward the end of the training, we drop the secondary tasks by annealing their
importance toward zero because they are no longer necessary for the main task. The early stopping
of the secondary tasks is important in this context of mult-tasking as shown in [50] otherwise, they
will overfit, therefore, they will harm the main task. The main advantage of Eq.8 is that it allows an
interaction between the main supervised task and the secondary tasks. Our hope is that this interaction
will promote the generalization aspect of the main task and prevent it from overfitting.

4 Implementation

In this work, we implement our framework throughout a deep neural network. The main supervised
task is performed using a deep neural network (DNN) with K layers. Secondary reconstruction tasks
are carried out by auto-encoders (AE): the input task is achieved using an AE that has Kin layers in
its encoding part, with an encoded representation of the same dimension as x̃. Similarly, the output
task is achieved using an AE that has Kout layers in its decoding part, with an encoded representation
of the same dimension as ỹ. At least one layer must be dedicated in the DNN to link x̃ and ỹ in the
intermediate spaces. Therefore, Kin +Kout < K.

Parameters win are the parameters of the whole input AE, wout are the parameters of the whole
output AE and wsup are the parameters of the main neural network (NN). The encoding layers of the
input AE are tied to the first layers of the main NN, and the decoding layers of the output AE are in
turn tied to the last layers of the main NN. If wi are the parameters of layer i of a neural network,
then w1 to wKin parameters of the input AE are shared with w1 to wKin parameters of the main NN.
Moreover, if w−i are the parameters of last minus i− 1 layer of a neural network, then parameters
w−Kout

to w−1 of the output AE are shared with the parameters w−Kout
to w−1 of the main NN.

During training, the loss function of the input AE is used as Jin, the loss function of the output AE is
used as Jout, and the loss function of the main NN is used as Js.

Optimizing Eq.8 can be performed using Stochastic Gradient Descent. In the case of task combination,
one way to perform the optimization is to alternate between the tasks when needed [9, 50]. In the
case where the training set does not contain unlabeled data, the optimization of Eq.8 can be done
in parallel over all the tasks. When using unlabeled data, the gradient for the whole cost can not be
computed at once. Therefore, we need to split the gradient for each sub-cost according to the nature
of the samples at each mini-batch. For the sake of clarity, we illustrate our optimization scheme in
Algorithm 1 using on-line training (i.e. training one sample at a time). Mini-batch training can be
performed in the same way.

5 Experiments

We evaluate our framework on a facial landmark detection problem which is typically a structured
output problem since the facial landmarks are spatially inter-dependent. Facial landmarks are a set of
key points on human face images as shown in Fig. 1. Each key point is defined by the coordinates
(x, y) in the image (x, y ∈ R). The number of landmarks is dataset or application dependent.

It must be emphasized here that the purpose of our experiments in this paper was not to outperform
the state of the art in facial landmark detection but to show that learning the output dependencies
helps improving the performance of DNN on that task. Thus, we will compare a model with/without

6

Algorithm 1 Our training strategy for one epoch
1: D is the shuffled training set. B a sample.
2: for B in D do
3: if B contains x then
4: Update win: Make a gradient step toward λin × Jin using B (Eq.2).
5: end if
6: if B contains y then
7: Update wout: Make a gradient step toward λout × Jout using B (Eq.4).
8: end if
9: # parallel parameters update

10: if B contains x and y then
11: Update w: Make a gradient step toward J using B (Eq.8).
12: end if
13: Update λsup, λin and λout.
14: end for

input and output training. [48] use a cascade of neural networks. In their work, they provide the
performance of their first global network. Therefore, we will use it as a reference to compare our
performance (both networks has close architectures) except they use larger training dataset.

We first describe the datasets followed by a description of the evaluation metrics used in facial
landmark problems. Then, we present the general setup of our experiments followed by two types
of experiments: without and with unlabeled data. An opensource implementation of our MTL deep
instantiation is available online3.

5.1 Datasets

We have carried out our evaluation over two challenging public datasets for facial landmark detection
problem: LFPW [4] and HELEN [22].

LFPW dataset consists of 1132 training images and 300 test images taken under unconstrained
conditions (in the wild) with large variations in the pose, expression, illumination and with partial
occlusions (Fig.1). This makes the facial point detection a challenging task on this dataset. From the
initial dataset described in LFPW [4], we use only the 811 training images and the 224 test images
provided by the ibug website4. Ground truth annotations of 68 facial points are provided by [36]. We
divide the available training samples into two sets: validation set (135 samples) and training set (676
samples).

HELEN dataset is similar to LFPW dataset, where the images have been taken under unconstrained
conditions with high resolution and collected from Flikr using text queries. It contains 2000 images
for training, and 330 images for test. Images and face bounding boxes are provided by the same site
as for LFPW. The ground truth annotations are provided by [36]. Examples of dataset are shown in
Fig.3.

Figure 3: Samples from HELEN [22] dataset.

All faces are cropped into the same size (50 × 50) and pixels are normalized in [0,1]. The facial
landmarks are normalized into [-1,1].

3https://github.com/sbelharbi/structured-output-ae
4300 faces in-the-wild challenge http://ibug.doc.ic.ac.uk/resources/300-W/

7

https://github.com/sbelharbi/structured-output-ae
http://ibug.doc.ic.ac.uk/resources/300-W/

5.2 Metrics

In order to evaluate the prediction of the model, we use the standard metrics used in facial landmark
detection problems.

The Normalized Root Mean Squared Error (NRMSE)[10] (Eq.9) is the Euclidean distance between
the predicted shape and the ground truth normalized by the product of the number of points in the
shape and the inter-ocular distance D (distance between the eyes pupils of the ground truth),

NRMSE(sp, sg) =
1

N ∗D

N∑
i=1

||spi − sgi||2 , (9)

where sp and sg are the predicted and the ground truth shapes, respectively. Both shapes have the
same number of points N . D is the inter-ocular distance of the shape sg .

Using the NMRSE, we can calculate the Cumulative Distribution Function for a specific NRMSE
(CDFNRMSE) value (Eq.10) overall the database,

CDFx =
CARD(NRMSE ≤ x)

n
, (10)

where CARD(.) is the cardinal of a set. n is the total number of images.

The CDFNRMSE represents the percentage of images with error less or equal than the specified
NRMSE value. For example a CDF0.1 = 0.4 over a test set means that 40% of the test set images
have an error less or equal than 0.1. A CDF curve can be plotted according to these CDFNRMSE

values by varying the value of NRMSE.

These are the usual evaluation criteria used in facial landmark detection problem. To have more
numerical precision in the comparison in our experiments, we calculate the Area Under the CDF
Curve (AUC), using only the NRMSE range [0,0.5] with a step of 10−3.

5.3 General training setup

To implement our framework, we use: - a DNN with four layers K = 4 for the main task; - an input
AE with one encoding layer Kin = 1 and one decoding layer; - an output AE with one encoding
layer and one decoding layer Kout = 1. Referring to Fig.2, the size of the input representation x
and estimation x̂ is 2500 = 50 × 50; the size of the output representation y and estimation ŷ is
136 = 68× 2, given the 68 landmarks in a 2D plane; the dimension of intermediate spaces x̃ and ỹ
have been set to 1025 and 64 respectively; finally, the hidden layer in the m link between x̃ and ỹ
is composed of 512 units. The size of each layer has been set using a validation procedure on the
LFPW validation set.

Sigmoid activation functions are used everywhere in the main NN and in the two AEs, except for
the last layer of the main NN and the tied last layer of output AE which use a hyperbolic tangent
activation function to suite the range [−1, 1] for the output y.

We use the same architecture through all the experiments for the different training configurations. To
distinguish between the multiple configurations we set the following notations:

1. MLP, a DNN for the main task with no concomitant training;

2. MLP + in, a DNN with input AE parallel training;

3. MLP + out, a DNN with output AE parallel training;

4. MLP + in + out, a DNN with both input and output reconstruction secondary tasks.

We recall that the auto-encoders are used only during the training phase. In the test phase, they
are dropped. Therefore, the final test networks have the same architecture in all the different
configurations.

Beside these configurations, we consider the mean shape (the average of the y in the training data) as
a simple predictive model. For each test image, we predict the same estimated mean shape over the
train set.

8

To clarify the benefit of our approach, all the configurations must start from the same initial weights
to make sure that the obtained improvement is due to the training algorithm, not to the random
initialization.

For the input reconstruction tasks, we use a denoising auto-encoder with a corruption level of 20%
for the first hidden layer. For the output reconstruction task, we use a simple auto-encoder. To avoid
overfitting, the auto-encoders are trained using L2 regularization with a weight decay of 10−2.

In all the configurations, the update of the parameters of each task (supervised and unsupervised)
is performed using Stochastic Gradient Descent with momentum [41] with a constant momentum
coefficient of 0.9. We use mini-batch size of 10. The training is performed for 1000 epochs with a
learning rate of 10−3.

In these experiments, we propose to use a simple linear evolution scheme for the importance weights
λsup (supervised task), λin (input task) and λout (output task). We retain the evolution proposed in
[3], and presented in Fig.4.

0 200 400 600 800 1000
training epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

im
po

rt
an

ce
 w

ei
gh

t v
al
ue

Importance weights evolution throughout training epochs

λsup

λin,1

λout,4

Figure 4: Linear evolution of the importance weights during training.

The hyper-parameters (learning rate, batch size, momentum coefficient, weight decay, the importance
weights) have been optimized on the LFPW validation set. We apply the same optimized hyper-
parameters for HELEN dataset.

Using these configurations, we perform two types of experiments: with and without unlabeled data.
We present in the next sections the obtained results.

5.3.1 Experiments with fully labeled data

In this setup, we use the provided labeled data from each set in a classical way. For LFPW set, we
use the 676 available samples for training and 135 samples for validation. For HELEN set, we use
1800 samples for training and 200 samples for validation.

In order to evaluate the different configurations, we first calculate the Mean Squared Error (MSE) of
the best models found using the validation during the training. Column 1 (no unlabeled data) of Tab.1,
2 shows the MSE over the train and valid sets of LFPW and HELEN datasets, respectively. Compared
to an MLP alone, adding the input training of the first hidden layer slightly reduces the train and
validation error in both datasets. Training the output layer also reduces the train and validation
error, with a more important factor. Combining the input train of the first hidden layer and output
train of the last layer gives the best performance. We plot the tracked MSE over the train and valid
sets of HELEN dataset in Fig.7(a), 7(b). One can see that the input training reduces slightly the
validation MSE. The output training has a major impact over the training speed and the generalization
of the model which suggests that output training is useful in the case of structured output problems.

9

Combining the input and the output training improves even more the generalization. Similar behavior
was found on LFPW dataset.

At a second time, we evaluate each configuration over the test set of each datasets using the CDF0.1

metric. The results are depicted in Tab.3, 4 in the first column for LFPW and HELEN datasets,
respectively. Similarly to the results previously found over the train and validation set, one can see
that the joint training (supervised, input, output) outperforms all the other configurations in terms
of CDF0.1 and AUC. The CDF curves in Fig.8 also confirms this result. Compared to the global
DNN in [48] over LFPW test set, our joint trained MLP performs better ([48]: CDF0.1 = 65%, ours:
CDF0.1 = 69.64%), despite the fact that their model was trained using larger supervised dataset
(combination of multiple supervised datasets beside LFPW).

An illustrative result of our method is presented in Fig.5, 6 for LFPW and HELEN using an MLP and
MLP with input and output training.

Figure 5: Examples of prediction on LFPW test set. For visualizing errors, red segments have been
drawn between ground truth and predicted landmark. Top row: MLP. Bottom row: MLP+in+out. (no
unlabeled data)

Figure 6: Examples of prediction on HELEN test set. Top row: MLP. Bottom row: MLP+in+out. (no
unlabeled data)

5.3.2 Data augmentation using unlabeled data or label-only data

In this section, we experiment our approach when adding unlabeled data (input and output). Unlabeled
data (i.e. image faces without the landmarks annotation) are abundant and can be found easily for

10

Table 1: MSE over LFPW: train and valid sets, at the end of training with and without unlabeled data.

No unlabeled data With unlabeled data
MSE train MSE valid MSE train MSE valid

Mean shape 7.74× 10−3 8.07× 10−3 7.78× 10−3 8.14× 10−3

MLP 3.96× 10−3 4.28× 10−3 - -
MLP + in 3.64× 10−3 3.80× 10−3 1.44× 10−3 2.62× 10−3

MLP + out 2.31× 10−3 2.99× 10−3 1.51× 10−3 2.79× 10−3

MLP + in + out 2.12 × 10−3 2.56 × 10−3 1.10 × 10−3 2.23 × 10−3

Table 2: MSE over HELEN: train and valid sets, at the end of training with and without data
augmentation.

Fully labeled data only Adding unlabeled or label-only data
MSE train MSE valid MSE train MSE valid

Mean shape 7.59× 10−3 6.95× 10−3 7.60× 10−3 0.95× 10−3

MLP 3.39× 10−3 3.67× 10−3 - -
MLP + in 3.28× 10−3 3.42× 10−3 2.31× 10−3 2.81× 10−3

MLP + out 2.48× 10−3 2.90× 10−3 2.00× 10−3 2.74× 10−3

MLP + in + out 2.34 × 10−3 2.53 × 10−3 1.92 × 10−3 2.40 × 10−3

Table 3: AUC and CDF0.1 performance over LFPW test dataset with and without unlabeled data.

Fully labeled data only Adding unlabeled or label-only data
AUC CDF0.1 AUC CDF0.1

Mean shape 68.78% 30.80% 77.81% 22.33%
MLP 76.34% 46.87% - -
MLP + in 77.13% 54.46% 80.78% 67.85%
MLP + out 80.93% 66.51% 81.77% 67.85%
MLP + in + out 81.51% 69.64% 82.48% 71.87%

Table 4: AUC and CDF0.1 performance over HELEN test dataset with and without unlabeled data.

Fully labeled data only Adding unlabeled or label-only data
AUC CDF0.1 AUC CDF0.1

Mean shape 64.60% 23.63% 64.76% 23.23%
MLP 76.26% 52.72% - -
MLP + in 77.08% 54.84% 79.25% 63.33%
MLP + out 79.63% 66.60% 80.48% 65.15%
MLP + in + out 80.40% 66.66% 81.27% 71.51%

example from other datasets or from the Internet which makes it practical and realistic. In our case,
we use image faces from another dataset.

In the other hand, label-only data (i.e. the landmarks annotation without image faces) are more
difficult to obtain because we usually have the annotation based on the image faces. One way to
obtain accurate and realistic facial landmarks without image faces is to use a 3D face model as a
generator. We use an easier way to obtain facial landmarks annotation by taking them from another
dataset.

In this experiment, in order to add unlabeled data for LFPW dataset, we take all the image faces of
HELEN dataset (train, valid and test) and vice versa for HELEN dataset by taking all LFPW image
faces as unlabeled data. The same experiment is performed for the label-only data using the facial
landmarks annotation. We summarize the size of each train set in Tab.5..

Table 5: Size of augmented LFPW and HELEN train sets.

Train set / size of Supervised data Unsupervised input x Unsupervised output y
LFPW 676 2330 2330

HELEN 1800 1035 1035

11

0 200 400 600 800 1000
epochs

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
S

E

Error over t rain set (MSE) (HELEN)
Error over t rain set (MSE) (HELEN): MLP

Error over t rain set (MSE) (HELEN): MLP + out

(a)

0 200 400 600 800 1000
epochs

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
S

E

Error over valid set (MSE) (HELEN)
Error over valid set (MSE) (HELEN): MLP

Error over valid set (MSE) (HELEN): MLP + out

(b)

Figure 7: MSE during training epochs over HELEN train (a) and valid (b) sets using different training
setups for the MLP.

We use the same validation sets as in Sec.5.3.1 in order to have a fair comparison. The MSE are
presented in the second column of Tab.1, 2 over LFPW and HELEN datasets. One can see that

12

0
.0

1
0

.0
2

0
.0

5
0

.0
7

0
.0

9
0

.1
0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

NRMSE

0.10

0.20

0.30

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
a

ta
p

ro
p

o
rt

io
n

CDF NRMSE: m ean shape, CDF(0.1)= 30.804%, AUC= 68.787%

CDF NRMSE: MLP, CDF(0.1)= 46.875%, AUC= 76.346%

CDF NRMSE: MLP + out , CDF(0.1)= 66.518%, AUC= 80.939%

Cum ulat ive dist ribut ion funct ion (CDF) of NRMSE over LFPW test set .

(a)

0
.0

1
0

.0
2

0
.0

5
0

.0
7

0
.0

9
0

.1
0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

NRMSE

0.10

0.20

0.30

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
a

ta
p

ro
p

o
rt

io
n

CDF NRMSE: m ean shape, CDF(0.1)= 23.636%, AUC= 64.609%

CDF NRMSE: MLP, CDF(0.1)= 52.727%, AUC= 76.261%

CDF NRMSE: MLP + out , CDF(0.1)= 66.061%, AUC= 79.633%

(b)

Figure 8: CDF curves of different configurations on: (a) LFPW, (b) HELEN.

13

adding unlabeled data decreases the MSE over the train and validation sets. Similarly, we found that
the input training along with the output training gives the best results. Identically, these results are
translated in terms of CDF0.1 and AUC over the test sets (Tab.3, 4). All these results suggest that
adding unlabeled input and output data can improve the generalization of our framework and the
training speed.

6 Conclusion and Future Work

In this paper, we tackled structured output prediction problems as a representation learning problem.
We have proposed a generic multi-task training framework as a regularization scheme for structured
output prediction models. It has been instantiated through a deep neural network model which learns
the input and output distributions using auto-encoders while learning the supervised task x → y.
Moreover, we explored the possibility of using the output labels y without their corresponding input
data x which showed more improvement in the generalization. Using a parallel scheme allows an
interaction between the main supervised task and the unsupervised tasks which helped preventing the
overfitting of the main task.

We evaluated our training method on a facial landmark detection task over two public datasets. The
obtained results showed that our proposed regularization scheme improves the generalization of
neural networks model and speeds up their training. We believe that our approach provides an
alternative for training deep architectures for structured output prediction where it allows the use of
unlabeled input and label of the output data.

As a future work, we plan to evolve automatically the importance weights of the tasks. For that
and in order to better guide their evolution, we can consider the use of different indicators based
on the training and the validation errors instead of the learning epochs only. Furthermore, one may
consider other kind of models instead of simple auto-encoders in order to learn the output distribution.
More specifically, generative models such as variational and adversarial auto-encoders [27] could be
explored.

Acknowledgments

This work has been partly supported by the grant ANR-11-JS02-010 LeMon, the grant ANR-16-
CE23-0006 “Deep in France” and has benefited from computational means from CRIANN, the
contributions of which are greatly appreciated.

References

[1] Michael Auli, Michel Galley, Chris Quirk, and Geoffrey Zweig. Joint language and translation
modeling with recurrent neural networks. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt
Seattle, Seattle, Washington, USA, A meeting of SIGDAT, a Special Interest Group of the ACL,
pages 1044–1054, 2013.

[2] David Belanger and Andrew McCallum. Structured prediction energy networks. In Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016, pages 983–992, 2016.

[3] S. Belharbi, R.Hérault, C. Chatelain, and S. Adam. Deep multi-task learning with evolving
weights. In European Symposium on Artificial Neural Networks (ESANN), 2016.

[4] Peter N. Belhumeur, David W. Jacobs, David J. Kriegman, and Neeraj Kumar. Localizing parts
of faces using a consensus of exemplars. In CVPR, pages 545–552. IEEE, 2011.

[5] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy Layer-Wise
Training of Deep Networks. In B. Schölkopf, J.C. Platt, and T. Hoffman, editors, NIPS, pages
153–160. 2007.

[6] Daniel M Bikel, Richard Schwartz, and Ralph M Weischedel. An algorithm that learns what’s
in a name. Machine learning, 34(1-3):211–231, 1999.

[7] R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

14

[8] Dan C. Ciresan, Alessandro Giusti, Luca Maria Gambardella, and Jürgen Schmidhuber. Deep
neural networks segment neuronal membranes in electron microscopy images. In Advances in
Neural Information Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States., pages 2852–2860, 2012.

[9] R. Collobert and J. Weston. A unified architecture for natural language processing: deep neural
networks with multitask learning. In ICML, pages 160–167, 2008.

[10] D. Cristinacce and T. Cootes. Feature Detection and Tracking with Constrained Local Models.
In BMVC, pages 95.1–95.10, 2006.

[11] M. El-Yacoubi, M. Gilloux, and J-M Bertille. A statistical approach for phrase location
and recognition within a text line: An application to street name recognition. IEEE PAMI,
24(2):172–188, 2002.

[12] Clément Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning Hierarchical
Features for Scene Labeling. IEEE PAMI, 35(8):1915–1929, 2013.

[13] Moshe Fridman. Hidden markov model regression. PhD thesis, Graduate School of Arts and
Sciences, University of Pennsylvania, 1993.

[14] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with recurrent neural
networks. In Proceedings of the 31th International Conference on Machine Learning, ICML
2014, Beijing, China, 21-26 June 2014, pages 1764–1772, 2014.

[15] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst Bunke, and Jürgen
Schmidhuber. A novel connectionist system for unconstrained handwriting recognition. IEEE
transactions on pattern analysis and machine intelligence, 31(5):855–868, 2009.

[16] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell. Fcns in the wild: Pixel-level
adversarial and constraint-based adaptation. CoRR, abs/1612.02649, 2016.

[17] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep structured
output learning for unconstrained text recognition. CoRR, abs/1412.5903, 2014.

[18] David T. Jones. Protein secondary structure prediction based on position-specific scoring
matrices. Journal of Molecular Biology, 292(2):195–202, 1999.

[19] Andrej Karpathy and Fei-Fei Li. Deep visual-semantic alignments for generating image
descriptions. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015, pages 3128–3137, 2015.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. In F. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[21] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data. In ICML, pages 282–289,
2001.

[22] Vuong Le, Jonathan Brandt, Zhe Lin, Lubomir D. Bourdev, and Thomas S. Huang. Interactive
Facial Feature Localization. In ECCV, 2012, Proceedings, Part III, pages 679–692, 2012.

[23] J. Lerouge, R. Herault, C. Chatelain, F. Jardin, and R. Modzelewski. IODA: An Input Output
Deep Architecture for image labeling. Pattern Recognition, 2015.

[24] Xirong Li, Tiberio Uricchio, Lamberto Ballan, Marco Bertini, Cees G. M. Snoek, and Al-
berto Del Bimbo. Socializing the semantic gap: A comparative survey on image tag assignment,
refinement, and retrieval. ACM Comput. Surv., 49(1):14:1–14:39, 2016.

[25] Shujie Liu, Nan Yang, Mu Li, and Ming Zhou. A recursive recurrent neural network for
statistical machine translation. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1491–1500, Baltimore, Maryland,
June 2014. Association for Computational Linguistics.

[26] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015, pages 3431–3440, 2015.

15

[27] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian J. Goodfellow. Adversarial
autoencoders. CoRR, abs/1511.05644, 2015.

[28] Volodymyr Mnih, Hugo Larochelle, and Geoffrey E. Hinton. Conditional restricted boltzmann
machines for structured output prediction. In UAI 2011, Proceedings of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain, July 14-17, 2011, pages
514–522, 2011.

[29] Stéphane Nicolas, Thierry Paquet, and Laurent Heutte. A Markovian Approach for Handwritten
Document Segmentation. In ICPR (3), pages 292–295, 2006.

[30] F. Ning, D. Delhomme, Yann LeCun, F. Piano, Léon Bottou, and Paolo Emilio Barbano. Toward
automatic phenotyping of developing embryos from videos. IEEE Trans. Image Processing,
14(9):1360–1371, 2005.

[31] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for
semantic segmentation. In 2015 IEEE International Conference on Computer Vision, ICCV
2015, Santiago, Chile, December 7-13, 2015, pages 1520–1528, 2015.

[32] Keith Noto and Mark Craven. Learning Hidden Markov Models for Regression using Path
Aggregation. CoRR, abs/1206.3275, 2012.

[33] Franz Josef Och. Minimum error rate training in statistical machine translation. In Proceedings
of the ACL, volume 1, 2003.

[34] Lawrence Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[35] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-Assisted Inter-
vention - MICCAI 2015 - 18th International Conference Munich, Germany, October 5 - 9, 2015,
Proceedings, Part III, pages 234–241, 2015.

[36] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. A semi-automatic methodology for
facial landmark annotation. In CVPR Workshops, pages 896–903, 2013.

[37] H. Schmid. Part-of-speech tagging with neural networks. conference on Computational
linguistics, 12:44–49, 1994.

[38] Daniel Dominic Sleator and David Temperley. Parsing English with a Link Grammar. CoRR,
1995.

[39] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. In NIPS 2015, pages 3483–3491, 2015.

[40] Bruno Stuner, Clément Chatelain, and Thierry Paquet. Cohort of LSTM and lexicon verification
for handwriting recognition with gigantic lexicon. CoRR, abs/1612.07528, 2016.

[41] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning. In ICML, volume 28, pages 1139–1147, 2013.

[42] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 3104–3112, 2014.

[43] U. Syed and G. Yona. Enzyme function prediction with interpretable models. Computational
Systems Biology. Humana press, pages 373–420, 2009.

[44] M. Szummer and Y. Qi. Contextual Recognition of Hand-drawn Diagrams with Conditional
Random Fields. In IWFHR, pages 32–37, 2004.

[45] G. Tsechpenakis, Jianhua Wang, B. Mayer, and D. Metaxas. Coupling CRFs and Deformable
Models for 3D Medical Image Segmentation. In ICCV, pages 1–8, 2007.

[46] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol. Stacked Denoising Autoen-
coders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion.
JMLR, 11:3371–3408, 2010.

[47] H. Zen, K. Tokuda, and A. Black. Statistical parametric speech synthesis. Speech Communica-
tion, 51(11):1039–1064, 2009.

16

[48] J. Zhang, S. Shan, M. Kan, and X. Chen. Coarse-to-Fine Auto-Encoder Networks (CFAN) for
Real-Time Face Alignment. In ECCV, Part II, pages 1–16, 2014.

[49] Yang Zhang, Philip David, and Boqing Gong. Curriculum domain adaptation for semantic
segmentation of urban scenes. CoRR, abs/1707.09465, 2017.

[50] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark detection by deep multi-task learning.
In ECCV, pages 94–108, 2014.

17

	1 Introduction
	2 Related work
	2.1 Graphical Models Approaches
	2.2 Deep Neural Networks Approaches

	3 Multi-task Training Framework for Structured Output Prediction
	4 Implementation
	5 Experiments
	5.1 Datasets
	5.2 Metrics
	5.3 General training setup
	5.3.1 Experiments with fully labeled data
	5.3.2 Data augmentation using unlabeled data or label-only data

	6 Conclusion and Future Work

