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Abstract

Efficient and high-fidelity prior sampling and inversion for complex geological
media is still a largely unsolved challenge. Here, we use a deep neural network
of the variational autoencoder type to construct a parametric low-dimensional base
model parameterization of complex binary geological media. For inversion purposes,
it has the attractive feature that random draws from an uncorrelated standard nor-
mal distribution yield model realizations with spatial characteristics that are in
agreement with the training set. In comparison with the most commonly used
parametric representations in probabilistic inversion, we find that our dimension-
ality reduction (DR) approach outperforms principle component analysis (PCA),
optimization-PCA (OPCA) and discrete cosine transform (DCT) DR techniques
for unconditional geostatistical simulation of a channelized prior model. For the
considered examples, important compression ratios (200 - 500) are achieved. Given
that the construction of our parameterization requires a training set of several tens
of thousands of prior model realizations, our DR approach is more suited for prob-
abilistic (or deterministic) inversion than for unconditional (or point-conditioned)
geostatistical simulation. Probabilistic inversions of 2D steady-state and 3D tran-
sient hydraulic tomography data are used to demonstrate the DR-based inversion.
For the 2D case study, the performance is superior compared to current state-of-the-
art multiple-point statistics inversion by sequential geostatistical resampling (SGR).
Inversion results for the 3D application are also encouraging.

1 Introduction

Inverse modeling plays a fundamental role in subsurface hydrology and many other Earth
science disciplines. Basically, one iteratively proposes new model perturbations that are
consistent with a given prior model until the resulting forward response agrees with a set
of measured data up to a pre-specified level. The inversion outcome commonly consists
of one or more 2D or 3D subsurface property field(s) describing, for instance, hydraulic
conductivity or porosity. Due to conceptual and numerical errors in the forward problem
formulation, (input and output data) measurement errors and insufficient information
content in the measured data, the inverse problem may not admit a unique solution.
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Hence, the inversion process should ideally provide an ensemble of geologic model real-
izations that accurately span the range of possible geologic models that honor both the
available data used in the inversion and prior information.

The prior model is often conveniently specified by a two-point geostatistical model or
variogram, by assuming the subsurface structure to be multi-Gaussian. Whenever this
simplifying assumption does not hold (e.g., Gómez-Hernández and Wen, 1998; Journel
and Zhang, 2006), the prior model can instead be informed by a so-called training image
(TI). The TI is a large gridded 2D or 3D unconditional representation of the expected
target spatial field that can be either continuous or categorical (e.g., geologic facies
image). To generate model realizations that reproduce higher-order statistics found in the
TI (together with possible direct point conditioning data), one can use a multiple-point
statistics (MPS) simulation method (e.g., Guardiano and Srivastava, 1993; Strebelle,
2002; Hu and Chugunova, 2008; Mariethoz et al., 2010b; Tahmasebi et al., 2012).

Since MPS does generally not rely on a explicit mathematical description of the prior
model in terms of model parameters, it is impossible to use it for classical parameter-
based inversion. This prohibits the use of gradient-based methods such as randomized
maximum likelihood (RML, Kitanidis, 1995; Oliver et al., 1996) or regular Markov chain
Monte Carlo (MCMC) sampling (Robert and Casella, 2004; Brooks et al., 2011). Note
that this limitation also holds for the Markov mesh model (MMM, Stien and Kol-
bjørnsen, 2011) method despite the fact that it builds a statistical model describing
transition probabilities of the facies distribution. Instead, one needs to resort to sam-
pling from the prior model using MPS simulation. This process that is often referred to
as sequential geostatistical resampling (SGR) inversion (Hansen et al., 2008; Mariethoz
et al., 2010a; Hansen et al., 2012) basically consists of iteratively generating new random
perturbations from the prior model and to accept or reject them based on the resulting
data misfit. The SGR inversion method is powerful in finding models that fit the data,
but it suffers from two important drawbacks. As shown by Laloy et al. (2016), (1) it
tends to only explore the immediate vicinity of a single global minimum even when the
objective function/posterior landscape is highly multi-modal and (2) may produce de-
graded geologic model realizations when fitting large datasets with high signal-to-noise
ratios (SNR).

Although some recent work has demonstrated substantial improvements to SGR-
based inversion (Zahner et al., 2016), in this study we take another direction and propose
a new parametric dimensionality reduction approach for complex binary prior models.
The driving idea is that if one can build a lower-dimensional model parameterization
from which one can sample (after appropriate non-linear transformations) model realiza-
tions that are consistent with the TI, then global parameter-based inverse methods for
moderately large continuous parameter spaces can be used. For instance, this opens up
the possibility to explore the posterior model distribution using state-of-the-art adaptive
MCMC sampling with DREAM(ZS) (Vrugt et al., 2009; Laloy and Vrugt , 2012).

Previous work on using compressed parametric bases for hydrogeological inversion
has relied on principal component analysis (PCA, e.g., Reynolds et al., 1996; Sarma et
al., 2006), kernel-PCA (e.g., Sarma et al., 2008), level-set (e.g., Dorn and Villegas, 2008),
discrete wavelet transforms (e.g., Awotunde and Horne, 2013), discrete cosine transform
(DCT, e.g., Jafarpour et al., 2010; Linde and Vrugt, 2013), singular value decomposition
(SVD, e.g., Tavakoli and Reynolds, 2011), and K-SVD (e.g., Khaninezhad et al., 2012;
Khaninezhad and Jafarpour, 2014) to name most of the strategies used. However, none
of these bases define a manifold that is restricted to complex (non-Gaussian) geological
models that are in strong agreement with a specific TI. In other words, randomly sam-
pling the parameter space produces model realizations that are generally inconsistent
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with the TI. To the best of our knowledge, there is so far only the optimization-PCA ap-
proach (O-PCA) by Vo and Durlofsky (2014, 2015) that aims to build a lower-dimensional
model representation that is fully consistent with the TI. The O-PCA essentially con-
sists of a post-processing of a PCA model. To work it is necessary that the underlying
PCA representation encodes sufficient information regarding important patterns in the
TI model. As illustrated later on in this paper, this may not be the case when the TI
contains highly connected features with a relatively large degree of variability.

In this work, we use for the first time a deep neural network (DNN, see, e.g., Goodfel-
low et al., 2016, for an overview) to build a parametric low-dimensional representation of
complex geologic models. More specifically, we train the generator of a deep variational
autoencoder (VAE, Kingma and Welling, 2014) such that it generates TI-consistent geo-
logic model realizations when fed with a low-dimensional standard Gaussian noise vector.
A key characteristic of our VAE is that it is largely made up of convolutional layers (see,
e.g., LeCun et al., 1998; Krizhevsky et al., 2012). This type of neural layer is based on
an adaptive convolutional filter and is well suited to image processing (Krizhevsky et
al., 2012; Goodfellow et al., 2016). Our model generator is then used within a Bayesian
inversion framework to sample the posterior distribution of binary 2D and 3D subsurface
property fields.

This paper is organized as follows. Section 2 presents the different elements of our
dimensionality reduction (DR) approach and the selected inversion framework. This is
followed in section 3 with the analysis of its performance in generating geostatistical
realizations using 2D and 3D TIs with and without conditioning on direct point data
(also referred to as hard data), together with some comparisons against other existing
DR methods. Synthetic 2D and 3D experiments involving both steady-state and tran-
sient groundwater flow are then used to demonstrate our proposed DR-based inversion
approach. In section 5 we discuss the advantages and limitations of our method and
outline possible future developments. Finally, section 6 concludes with a summary of
the most important findings.

2 Methods

2.1 Deep neural network architecture

2.1.1 Generalities

We consider a deep neural network that belongs to the class of autoencoders (AEs, see,
e.g., Goodfellow et al., 2016). Neural networks basically define the (possibly complex)
relationships existing between input, x, and output, y, data vectors by using combina-
tions of computational units that are called neurons. A neuron is an operator of the
form:

h (x) = f (〈x,w〉+ b) , (1)

where h (·) is the scalar output of the neuron, f (·) is a nonlinear function that is called
the “activation function", 〈·, ·〉 signifies the scalar product, w = [w1, · · · , wN ] is a set of
weights of same dimension, N , as x and b represents the bias associated with the neuron.
For a given task, the values for w and b associated with each neuron must be optimized
or “learned" such that the resulting neural network performs as well as possible. When
f (·) is differentiable, w and b can be learned by gradient descent. Common forms of
f (·) include the rectified linear unit (ReLU), sigmoid function and hyperbolic tangent
function.
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When there is no directed loops or cycles across neurons or combinations thereof,
the network is said to be feedforward (FFN). In the FFN architecture, the neurons are
organized in layers. A standard layer is given by

h (x) = f (Wx + b) , (2)

where W and b are now a matrix of weights and a vector of biases, respectively. The
name multilayer perceptron (MLP) designates a FFN with more than one layer. A most
typical network is the 2-layer MLP, which consists of two layers with the outputs of the
first-layer neurons becoming inputs to the second-layer neurons

y = g [h (x)] ≡ f2 [W2 · f1 (W1x + b1) + b2] , (3)

where g (·) and h (·) are referred to as output layer and hidden layer, respectively.
In theory, the two-layer MLP described in equation (3) is a universal approximator

as it can approximate any underlying process between y and x (Cybenko, 1989; Hornik,
1991). However, this only works if the dimension of h (·) is (potentially many orders
of magnitudes) larger than that of the input x, thereby making learning practically
infeasible and the two-layer MLP approximator useless for large N (typically N ≥ 10-
25). For high-dimensional input data such as images, researchers have found that it
is much more efficient to use many hidden layers rather than increasing the size of a
single hidden layer (e.g., Goodfellow et al., 2016). When a FFN/MLP has more than
one hidden layer it is considered to be deep. Nevertheless, current deep networks are
not necessarily purely FFN but may mix different aspects of FFN, such as convolutional
neural networks (CNN, see section 2.1.3 below) and recurrent neural networks (RNN,
see, e.g., Goodfellow et al., 2016).

2.1.2 Variational autoencoders

An AE is a deep neural network that defines a reversible, nonlinear low-dimensional
parameterization of (higher dimensional) input data. Consequently, it has an hourglass-
like shape in terms of neural layer sizes (see simplified representation in Figure 1). The
most central layer is referred to as the “code" and defines the low-dimensional space,
while the output layer has the same dimensionality as the input layer. The part of the
network that connects the input to the code is called the “encoder", while the one that
connects the code to the output is referred to as the “decoder".

Autoencoders are generative, which means that, after appropriate training (see sec-
tion 2.2), they can be used to generate new pattern realizations that are consistent with
those found in a given set of (training) features. However, only the class of AEs formed
by the so-called variational autoencoders (VAE) can use white noise as input to generate
new patterns. In a geostatistical context, this implies that the VAE can be trained such
that it randomly generates new geologic model realizations that honor the higher-order
statistics found in a set of training images. How to achieve this is further described later
on in this section and in section 2.2.

A VAE network can be summarized as follows. The code consists of two lower-
dimensional vectors: a vector of means, µ, and a vector of standard deviations, σ (Figure
2). The first element of the decoder is a randomly sampled vector of “latent" standard
normal variables, zl, of the same size, d, as µ and σ. The zl vector is subsequently
rescaled into z = zl × σ + µ (where × means element-wise multiplication), and the so-
produced z vector continues its journey through the decoder to eventually produce the
output, x̂ (Figure 2). Here the symbol x̂ is used instead of y to make it clear that for
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this application the output is a reconstruction of the input, x. As detailed in section 2.2,
the w vectors and b values that are associated with every neuron of every layer of the
network (encoder part, µ, σ and decoder part) are jointly optimized by gradient descent
such that (1) the differences between x and x̂ are minimized and (2) the d-dimensional z
vector conforms as closely as possible to a N (0d, Id) with 0d a d-dimensional zero-vector
and Id the d×d identity matrix. After training, new model realizations can be generated
by sampling z ∝ N (0d, Id) and running the z samples through the decoder.

At this point, we would like to re-emphasize that it is the combination of (1) a low-
dimensional parameterization in terms of a multivariate standard normal distribution
and (2) the ability to map a given set of low-dimensional parameter values into complex
MPS geostatistical model realizations that makes our presented method unique and
suitable for MPS-based inversion.

Figure 1: Schematic example of an autoencoder with three hidden layers, h1, h2 and
h3. The x = [x1, · · · , x6] vector is a 6-dimensional input feature, the h(·,·) denote the
hidden layers with (red-contoured) h(2,·) the central layer, or “code", where the largest
dimensionality reduction is performed and the x̂ = [x̂1, · · · , x̂6] vector signifies the re-
constructed input.
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Figure 2: Illustration of a variational deep autoencoder (VAE). The boxes labeled with
the µ and σ letters represent the low-dimensional mean and standard deviation vectors,
respectively, that are encoded from the input data. During training, zl is drawn from the
fixed p (zl) distribution and then rescaled into z = zl ×σ+ µ (where × means element-
wise multiplication). Training aims at jointly minimizing (1) the data reconstruction
loss and the deviations between (2) µ and the zero-vector of the same size and (3) σ

and the unit vector of the same size. The ensemble of tasks (2) and (3) is called the
“reparameterization trick" (Kingma and Welling, 2014). For subsequent stochastic data
generation, the process starts with sampling z from the fixed p (z) distribution.

2.1.3 Convolutional layers

The last salient characteristic of our deep VAE is the use of convolutional layers at various
levels of both the encoder and the decoder. The convolutional layer is the main building
block of the CNN-type of architecture. It is particularly well suited for image processing
applications because it explicitly accounts for the spatial structure of the input data,
whether the input image, X, or the incoming hidden layer in the network. When the
input is a 2D image (with possibly 3 channels for a RGB image), a convolutional layer,
hk, is built from a series of k = 1, · · · , Nk small Ni × Nj filters, wk, that convolve an
input pixel, Xm,n to hkm,n as

hkm,n (Xm,n) = f

 Ni,Nj∑
i=1,j=1

wk
i,jXm+i,n+j + bk

 , (4)

where for computational efficiency f (·) is typically a ReLU: f (x) = max (0, x). The
so-produced ensemble of Nk hk “feature maps" forms a volume called the convolutional
representation. The larger the Nk, the potentially more comprehensive is the representa-
tion of the input data. Other important convolution parameters that we do not discuss
here are the “stride", that is, the degree of overlapping between successive moves in the
forward pass of a given filter, and the “zero-padding" which involves padding the borders
of the input image or volume for size preservation. For further information, we refer the
reader to Goodfellow et al. (2016) and online tutorials1.

1For instance: http://deeplearning.net/tutorial/ and http://cs231n.github.io/
convolutional-networks/.
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Note that each neuron of a given convolutional layer (volume) is connected to only
a local region of the input image or volume, called “receptive field" (see Figure 3).
This enforces spatially-local exploration at the level of one convolutional layer. The
encoded spatial information includes increasingly larger patterns when the number of
stacked convolutional layers increases. Also, recall that the elements (pixels/voxels) of
a given feature map share the same wk and bk. The number of CNN parameters to
be optimized is thus greatly reduced compared to that of a standard fully-connected
(FC) (or dense) FFN of similar depth. Besides the convolutional layer itself, the other
important component of a CNN is the “pooling" layer. Pooling is a form of nonlinear
down-sampling used to reduce the dimensions of a convolutional layer and thereby limit
overfitting. It proceeds by converting small sub-regions of equal size into single values,
such as the maximum or the mean. Using the maximum (“max-pooling") is the most
common practice. When used, pooling always follows a series of one or more convolution
operations.

Figure 3: Stylized representation of convolutional layer neurons connected to their recep-
tive field (picture inspired by http://cs231n.github.io/convolutional-networks/).

2.1.4 Practical implementation

We now have described all of the main ingredients of our devised deep VAECNN network,
which is depicted in Figure 4. For the sake of brevity, the various individual fully-
connected (FC), variational (Q), convolutional (C) and pooling (P) layers (see Figure 4)
are not detailed in this paper but the corresponding computer code is available from the
first author. Our VAECNN was implemented within the open-source LASAGNE Python
software (Lasagne, 2017) which works on top of the open-source THEANO Python library
(Theano, 2016). In addition, note that for each result presented in this study, the z
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vector is always 50-dimensional no matter the dimensions of the considered geologic
model domain (from 100× 100 to 30× 32× 27).

Unless stated otherwise, model generation is performed by recycling the initially
produced model (bottom blue architecture in Figure 4) through the full network (top
light red architecture in Figure 4) for 10 times. This sequential relooping generally
improves the quality of the generated model realizations. The very last step of our
generation process is an hard thresholding of the produced model. We used the 0.5
cutoff value although the classical Otsu’s method could be used as well (Otsu, 1979).
Fortunately, the impact of relooping on generation time remains quite acceptable. For
the models considered herein, generating a realization without relooping takes about
0.01 s - 0.03 s on a modern workstation. Including the 10 successive cycles then incurs
a total generation time in the range 0.2 s - 0.4 s.

2.2 Training the deep variational autoencoder

Considering the case where a 100×100 binary image is generated from a 50-dimensional
z, the network described in Figure 4 includes 34,039,237 optimized parameters (weights
and bias associated with neurons of dense layers and filters of convolutional layers). Such
a high number of optimized parameters is not unusual for applications of deep neural
networks. As the activation functions are differentiable, using an objective function
that is also differentiable makes it possible to optimize/train the network by stochastic
gradient descent (that is, gradient descent using a series of mini-batches rather than
all the data at once) together with back propagation. This means that the objective
function derivative is propagated backwards throughout the network using the chain
rule, in order to update the parameters. Various stochastic gradient descent algorithms
are available. In this work, we used the adaptive moment estimation (ADAM) algorithm
which has been proven efficient for different types of deep networks (Kingma and Ba,
2015).

The objective or loss function, L, must be set such that at training time: (1) the
differences between reconstructed images, X̂, and their original counterparts, X, are
minimized and (2) the d-dimensional random z vector conforms as closely as possible to
a N (0d, Id). This translates into the following formulation (Kingma and Welling, 2014;
Gregor et al., 2015)

L = Lx + Lz, (5)

with

Lx = − log [p (X|z)] , (6)

Lz = DKL [q (z|X) ||p (z)] , (7)

where p (z) is the probability density function (pdf) of the code z (here p (z) ≡
N (0d, Id)) and the conditional distribution p (X|z) is referred to as a probabilistic de-
coder, since given z it generates a probability distribution over the possible corresponding
values of X. Similarly, q (z|X) denotes a probabilistic encoder, as given a feature X it
creates a distribution over the possible values of z from which X could have been pro-
duced (Kingma and Welling, 2014). To ensure that q (z|X) is close to the targeted
p (z), the Kullback-Leibler divergence (DKL) from q (z|X) to p (z), DKL [q (z|X) ||p (z)]
is minimized (equation (7)).
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If X is a binary image, equation (6) can be rewritten as a binary cross-entropy
minimization

Lx =
N∑
i=1

{
−Xi log

[
X̂i

]
− (1−Xi) log

[(
1− X̂i

)]}
. (8)

In addition, for p (z) ≡ N (0d, Id) equation 5 becomes

Lz = 1

2

[
d∑

i=1

(
µ2i + σ2i − log σ2i

)]
− d

2
, (9)

where the µi and σi correspond to the ith elements of the µ and σ vectors displayed
in Figure 2, respectively. Working with µ and σ vectors rather than with the z vector
directly is called the “reparameterization trick" (for details, see Kingma and Welling,
2014).

Finally, in practice one may need to weight the components of L, leading to

L = Lx + αLz, (10)

where α is a weight factor that we set after limited trial and error either to 20 or to
40 depending on the application.

The minimization of equation (10) was performed on a GPU Tesla K40 and training
the VAECNN for 100 epochs (full cycles of the stochastic gradient descent) took between
5 and 13 hours, depending on the size of the model domain (from 100×100 to 32×30×27),
the number of training images (from 19,000 to 80,000), and the exact size of the network.
Computing times will be further detailed below for each test case individually.

2.3 Assessing geostatistical simulation quality

Although inversion is our primary objective, assessing the quality of the geostatistial
realizations produced by our DR approach is important as it will determine the ultimate
quality of our inversion results. Following Tan et al. (2014), we considered both how well
the patterns in the training images are reproduced by the DR-based realizations and the
between-realization variability, also termed “space of uncertainty".

Besides visual inspection, we estimated closeness with the training images by means of
the two-point cluster function (CF, Torquato et al., 1988) which is also called connectivity
function (Pardo-Igúzquiza and Dowd, 2003). The CF is the probability that there exists
a continuous path of the same facies between two points of the same facies separated by
a given lag distance (see, Torquato et al., 1988; Pardo-Igúzquiza and Dowd, 2003, for
mathematical details). Using the implementation by Lemmens et al. (2017), the CF was
calculated for each facies along the x, y, and main diagonal, dxy, directions for the 2D
case studies. For the 3D case studies, we also considered the z and main diagonal dxz
and dyz directions. This resulted into a total of six CF curves for each combination of
indicator and facies.

The so-called space of uncertainty is a measure of the between-realizations variability
associated with given geostatistical simulation algorithm. We characterized the space of
uncertainty for the 2D case using an average distance between multiple-point histograms
(MPH) over 100 realizations (see Tan et al., 2014, for details). This was done both for
the training set and DR-based realizations. The used distance is the so-called Jensen-
Shannon (JS) divergence (Cover and Thomas, 1991; Tan et al., 2014).
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dJS

(
mk,mk′ ,

)
=

1

2

Nb∑
i=1

MPHk
i log

[
MPHk

i

MPHk′
i

]
+

1

2

Nb∑
i=1

MPHk′
i log

[
MPHk′

i

MPHk
i

]
, (11)

where mk and mk′ are two different model realizations and MPHk
1 , · · · ,MPHk

Nb

are the components of the MPHk vector calculated for realization mk. Since the MPH
was computed for a 4× 4 template, Nb was 216 = 65, 536.

The space of uncertainty, defined here as the average distance, dJS , for the set of
either K training images or K DR-based realizations, is given by

dJS =
1

K (K − 1)

K∑
k=1

K∑
k′=1

dJS

(
mk,mk′ ,

)
. (12)

2.4 Bayesian inversion

A common representation of the forward problem is

d = F (θ) + e, (13)

where d = (d1, . . . , dN ) ∈ RN , N ≥ 1 is the measurement data, F (θ) is a deter-
ministic forward model with parameters θ and the noise term e lumps all sources of
errors.

In the Bayesian paradigm, parameters in θ are viewed as random variables with a
posterior pdf, p (θ|d), given by

p (θ|d) = p (θ) p (d|θ)
p (d)

∝ p (θ)L (θ|d) , (14)

where L (θ|d) ≡ p (d|θ) signifies the likelihood function of θ. The normalization
factor p (d) =

∫
p (θ) p (d|θ) dθ is not required for parameter inference when the param-

eter dimensionality is fixed. In the remainder of this paper, we will thus focus on the
unnormalized density p (θ|d) ∝ p (θ)L (θ|d).

To avoid numerical over- or underflow, it is convenient to work with the logarithm of
L (θ|d) (log-likelihood): ` (θ|d). If we assume e to be normally distributed, uncorrelated
and with known constant variance, σ2e , ` (θ|d) can be written as

` (θ|d) = −N
2
log (2π)−N log (σe)−

1

2
σ−2
e

N∑
i=1

[di − Fi (θ)]
2 , (15)

where the Fi (θ) are the simulated responses that are compared the i = 1, · · · , N
measurement data, di.

An exact analytical solution of p (θ|d) is not available for the type of non-linear in-
verse problems considered herein. We therefore resort to MCMC simulation (see, e.g.,
Robert and Casella, 2004). More specifically, the DREAM(ZS) algorithm is used to ap-
proximate the posterior distribution. A detailed description of this sampling scheme in-
cluding a proof of ergodicity and detailed balance can be found in Vrugt et al. (2009) and
Laloy and Vrugt (2012). Multiple contributions in hydrology and geophysics (amongst
others) have demonstrated the ability of DREAM(ZS) to sample target distributions with
50-250 dimensions (Laloy et al., 2012, 2013; Linde and Vrugt, 2013; Laloy et al., 2015;
Lochbühler et al., 2015).
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3 Geostatistical simulation results

Before considering our main goal, that is, solving inverse problems (section 4), we investi-
gate the performance of our DR approach for unconditional and conditional geostatistical
simulation. This step is important as we aim at producing inversion models that not
only honor the data used, but also the spatial statistics of our selected TI. One thus need
to make sure that model realizations produced by randomly sampling the constructed
low-dimensional base are consistent with the TI.

3.1 2D channelized aquifer

Our first example considers unconditional model generation of a 100 × 100 2D binary
and channelized aquifer. The underlying TI is closely related to the classical 250× 250
binary training image introduced by Strebelle (2002) that is routinely used to test new
MPS algorithms. Our used TI has some slight additional variability in that the channel
rotation angles are allowed to deviate (at most) from -15° to +15° compared to the
rotation angles found in the original TI. The training set used to train the VAECNN
contains 80,000 100× 100 geostatistical realizations generated with the direct sampling
(DS) approach as implemented in the DeeSse MPS algorithm (Mariethoz et al., 2010b).
Obtaining these 80,000 realizations took 14 hours using eight CPUs in parallel. The
choice of 80,000 realizations was dictated by available computational resources. Limited
testing further indicated that using 40,000 model realizations for training would very
likely not change the results presented below. Training the VAECNN for this example
incurred a computational time of approximately 13 hours. As z is 50-dimensional, the
achieved compression ratio is 200.

Figure 5 presents four (randomly chosen) MPS realizations from the training set,
together with eight (randomly chosen) model realizations obtained by our DR approach.
The DR-based realizations resemble the training model realizations well, although some
artifacts remain in terms of a moderately larger occurrence of broken channels and a
slight oversmoothing of the channels. Figure 6 displays the corresponding CF metrics.
It is observed that the DR-based realizations have similar CF curves as the training set.
In terms of space of uncertainty, the ratio of the dJS (equation (12)) of the DR-based

realizations to the dJS of the training images,
dJS(DR)

dJS(TR)

, is 1.03. Thus, the DR-based

realizations show slightly more between-realization variability than the training set.
Figure 7 illustrates corresponding results obtained by the PCA, OPCA and DCT

dimensionality reduction methods for the same training set. The PCA and OPCA re-
alizations were derived following Vo and Durlofsky (2014) using 70 random variables.
Varying this number in the range 50 - 10000 did not improve generation performance.
For DCT, 250 coefficients were used as using a smaller number of coefficients leads to
overly degraded models in direct compression mode (compression of existing models).
The DCT-based model realizations were then generated by randomly sampling uniform
distributions defined by the empirical upper and lower bounds of the 250 maximum (in
absolute value) coefficients associated with the training set. The DCT realizations were
thresholded such that the facies proportions are close to that of the TI (facies 0: 0.7,
facies 1: 0.3). Varying the number of DCT coefficients has no significant impact on
generation quality. Clearly, none of these three approaches (PCA, OPCA, DCT) sample
from a proper low-dimensional parameter space. In contrast, our proposed approach
does a much better job. Note that PCA, OPCA and DCT are far from providing state-
of-the-art MPS simulations. Instead, up to now they formed the state-of-the-art in terms
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of parametric low-dimensional model representations that have been used with advanced
inversion methods. The key of our method a low-dimensional parameterization that is
able to provide high-quality MPS realizations (compare Figures 5 and 7).
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Figure 5: Unconditional model realizations for the 2D binary channelized aquifer TI:
(a - d) four (randomly chosen) model realizations from the DS-based training set and
(e-l) eight (randomly chosen) model realizations generated with our DR approach that
is based on a deep neural network.
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Figure 6: Cluster or connectivity function (CF) for the 2D case study involving a chan-
nelized aquifer without direct conditioning data (Figure 5). The blue lines denote the
values associated with the training set. The solid blue line indicates the mean while
the 2 dashed lines represent the minimum and maximum values at each lag. The green
solid lines represent the 100 realizations generated by our DR approach. The red solid
line is the mean of these DR-based realizations. The CF is calculated for each facies
along directions. The x and y symbols signify the x and y-axes, and dxy represents the
diagonal direction formed by the 45°angle from the x-axis.
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Figure 7: Unconditional model realizations for the 2D binary channelized aquifer TI: (a-
d) four (randomly chosen) PCA-based model realizations and (e-h) corresponding OPCA
realizations together with (i-l) four (randomly chosen) DCT-based model realizations.

Our second example considers a case where direct conditioning data are available.
This example is similar to example 1 (Figure 5) except that facies at 9 locations are
known (red circles in Figure 8). To handle direct conditioning, our approach requires
that the MPS-generated realizations forming the training set honor the conditioning
points. Building a training set of 40,000 conditioned models with DS took 7-8 hours
using again eight CPUs in parallel. The training of our VAECNN then took 6.5 hours.

A set of (randomly chosen) training and DR-generated model realizations are shown
in Figure 8. A similar generation performance is visually observed as for example 1
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(Figure 5) and the DR-based realizations show again similar CF curves as the training
images (Figure 9). However, the achieved space of uncertainty is 12% smaller than that

of the conditioned training set:
dJS(DR)

dJS(TR)

= 0.88.

The conditioning accuracy is assessed by analyzing 1000 random model realizations.
We find that 68% of the model realizations honor all of the 9 prescribed facies and that
97% of the model realizations contain at most one mismatching conditioning datum.
Also, the more common facies 0 is more frequently honored (98%) than the less frequent
facies 1 (91%). This is less than for our DS-generated training set that always honor
the nine conditioning points. Nevertheless, the training realizations (Figures 8a-d) often
contain 1 or 2 isolated conditioning point(s) within an homogeneous zone of the other
facies. This type of artifact is less frequent in the DR-based model realizations (Figures
8e-l). The main reason for the conditioning errors is the sequential relooping used for
producing a realization (see section 2.1.4). Without relooping, the model realizations
present more frequently broken channels and/or small groups of isolated pixels (not
shown), but the percentage of realizations that fully honor the 9 conditioning data is
92% (instead of 68% with relooping) and 100% (instead of 97% with relooping) of the
realizations has at most a single erroneous datum.
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Figure 8: Conditional model realizations for the 2D binary channelized aquifer TI: (a
- d) four (randomly chosen) conditioned model realizations from the DS-based training
set and (e-l) eight (randomly chosen) conditioned model realizations generated with our
DR approach that is based on a deep neural network.
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Figure 9: Cluster or connectivity function (CF) for the 2D case study involving a chan-
nelized aquifer and 9 direct conditioning data points (Figure 8). The blue lines denote
the values associated with the training set. The solid blue line indicates the mean while
the 2 dashed lines represent the minimum and maximum values at each lag. The green
solid lines represent the 100 realizations generated by our DR approach. The red solid
line is the mean of these DR-based realizations. The CF is calculated for each facies
along directions. The x and y symbols signify the x and y-axes, and dxy represents the
diagonal direction formed by the 45°angle from the x-axis.

3.2 3D model

We now turn our attention to the generation of 3D model realizations. The selected TI
is the Maules Creek valley alluvial aquifer available from http://www.trainingimages.
org/training-images-library.html. For the unconditional case, a training set of
19,500 30 × 32 × 27 model realizations was built using the recent graph cuts (GC)
patch-based MPS algorithm by Li et al. (2016). Running 8 different GC instances simul-
taneously, this took approximately 6 hours. The GC method was selected because it is
much faster than DS. In addition, training our VAECNN took about 7 hours.

The convolutional layers in our VAECNN are designed for 2D images only, but with
possibly different color channels. To generate 3D images, one can use as many channels
as there are horizontal layers in the model (27). This does not explicitly account for
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patterns in the vertical direction since the convolutional operations are performed in the
horizontal plane only. Nevertheless, equation (8) penalizes reconstructed models that
deviate from the training set in all three spatial directions.

Figure 10 compares (randomly chosen) training and DR-based realizations. As the
model domain contains 30×32×27 = 25, 920 voxels, the compression ratio is 25920/50 ≈
518. The proposed DR approach creates realizations that are similar to those in the
training set, although isolated voxels of each facies are over-represented. The realizations
also reproduce well the CF metrics of the training set (Figure 11).

We also considered the same 3D example with 56 direct conditioning points. These
points correspond to the locations of the screens along the vertical multi-level piezome-
ters used in our synthetic 3D inverse problem described in section 4.2 (Blue line segments
in Figure 12). A GC-based training set containing 19,000 conditioned model realizations
was used for training our VAECNN. Running again 8 different GC instances simulta-
neously, building the training set took approximately 14 hours. Similarly as for the
unconditional case, training then lasted for 7 hours. Using default algorithmic settings,
these original GC simulations jointly honor all of the 56 conditioning data only 6% of
the times but contain at most 10 mismatching point 94% of the times. The DR-based
realizations are again visually close to the training set (not shown), with a much smaller
tendency to overproduce isolated voxels of each facies than for the unconditional case
(not shown) and CF statistics that closely match those of the training set (not shown).
Furthermore, our DR approach is found to condition at a slightly higher level than the
selected GC algorithm. Among 1000 random DR-based realizations, 7% of the realiza-
tions honor all of the 56 prescribed facies while 98% of the realizations contain a most
10 mismatching points. We attribute these slightly superior statistics compared to the
training set to a combination of randomness and complex bias in the dimensionality re-
duction. Overall, our VAECNN is found to condition equally well as the GC algorithm
used to produce the training set.
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Figure 10: Unconditional model realizations for the 3D Maules Creek binary aquifer TI:
(a - d) four (randomly chosen) model realizations from the MPS-based training set and
(e-l) five (randomly chosen) model realizations generated with our DR approach that is
based on a deep neural network.
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Figure 11: Cluster or connectivity function (CF) for the 3D case study involving the
Maules Creek binary aquifer without direct conditioning data (Figure 10). The blue
lines denote the values associated with the training set. The solid blue line indicates the
mean while the 2 dashed lines represent the minimum and maximum values at each lag.
The green solid lines represent the 100 realizations generated by our DR approach. The
red solid line is the mean of these DR-based realizations. The CF is calculated for each
facies along directions. The x, y and z symbols signify the x, y and z-axes. The dxy,
dyz and dxz symbols represent the diagonal direction formed by the 45°angle from the
x-axis in the xy plane, from the y-axis in the yz plane and from the x-axis in the xz
plane, respectively.
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Figure 12: Pumping and observation locations in the synthetic 3D hydraulic tomography
setup. The vertical gray lines represent the multilevel pumping and observation wells.
The red line segments in the central well are the pumping locations and the blue line
segments in the other wells are the head measurement locations.

4 Inverse problems

4.1 Case study 1: 2D steady-state flow

Our first inversion case study considers steady-state flow within a channelized aquifer.
The 100 × 100 aquifer domain lies in the x− y plane with a grid cell size of 1 m and a
thickness of 1 m. Channel material and matrix material (see Figures 14a and 15a) are
assigned hydraulic conductivity values of 1 × 10−2 m/s and 1 × 10−4 m/s, respectively.
Steady state groundwater flow is simulated using MODFLOW 2005 (Harbaugh, 2005)
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assuming no flow boundaries at the upper and lower sides and fixed head boundaries on
the left and right sides of the domain to ensure a lateral head gradient of 0.01 (-), with
water flowing in the x-direction. A pumping well extracting 0.001 m3/s is located at the
center of the domain. Simulated heads are collected at 49 locations that are regularly
spread over the domain (Figures 14a and 15a). These data were then corrupted with a
Gaussian white noise using a standard deviation of 0.02 m. For the selected white noise
realization, the measurement data have a root-mean-square-error (RMSE) of 0.0200 m.
The corresponding SNR, defined as the ratio of the average RMSE when drawing prior
realizations with our DR algorithm to the noise level is 25. No direct conditioning (facies)
data are used.

We first verify whether a model realization belonging to the 50-dimensional manifold
can be retrieved by the inversion process. To do so, the reference model (Figure 14a) was
randomly generated using our DR approach. The DREAM(ZS) was ran in parallel, using
8 interacting Markov chains distributed over 8 CPUs. Uniform priors in [−5, 5] were
selected for the 50 DR variables, θ. This might seem to contradict the theory behind
our VAECNN which is based on calibration to a standard normal distribution for p (z).
However, using a standard normal prior for θ was found to restrict the sampled model
space too much for the inversion process to produce model realizations that in average
fit the data to prescribed noise level. Our explanation for this phenomena is that with 50
DR variables the MCMC simulation needs sufficient freedom in the explored model space
to eventually produce consistent models. Also, and equally important, is the observation
that after training using equations (8-9), the quality of the generated realizations by our
VAECNN is similar when using a zero-mean uniform or a standard normal distribution
for p (z). From a pragmatic point of view, the zero-mean uniform prior can thus be used.

The chains start to jointly sample the posterior distribution, p (θ|d), after a (serial)
total of 120,000 iterations, that is, 15,000 parallel iterations per chain (Figure 13a).
The sampled realizations closely resemble the true model and the posterior variability is
overall small (Figure 14). To assess sampling accuracy, we calculate over the last 10,000
posterior realizations in each chain the average fraction of pixels with facies identical to
that of the true model, fPO, which is 0.86. The same quantity for the prior, fPR, can be
directly calculated as 0.7× 0.75 + 0.3× 0.25 = 0.60 with 0.7 and 0.3 the prior fractions
of each facies in the TI and 0.75 and 0.25 the fractions of each facies in the true model.
The

fPO
fPR

ratio will be used to compare the examples considered in this section. Here

fPO
fPR

=
0.86

0.60
= 1.43. After a total of 200,000 MCMC iterations, the Gelman and Rubin

(1992) convergence diagnostic, R̂, is satisfied (i.e., R̂ ≤ 1.2) for 37 out of the 50 sampled
parameters (see, e.g., Laloy et al., 2015, for details about the use of R̂ with DREAM(ZS)).
The MCMC sampling should therefore be continued for a longer time for (official) full
exploration of the posterior distribution.

Our second and more comprehensive test uses a true model that was generated by
the DS algorithm. If the DR-representation is inappropriate, this true model might
not be part of the 50-dimensional DR space. Identical inversion settings were used as
in the previous example. Here the 8 chains start to jointly sample p (θ|d) after some
12,500 iterations per chain (Figure 13b). The posterior model realizations look visually
close to the reference model, though posterior variability appears to be a bit larger than
for the previous case (Figure 15). The associated fPO and fPR values are 0.78 and

0.7× 0.71 + 0.3× 0.29 = 0.59, respectively, which gives a
fPO
fPR

ratio of 1.32. The results

displayed in Figure 15 inspire confidence that the proposed DR-based inversion approach
can retrieve consistent posterior models. With respect to posterior exploration, formal
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convergence is yet to be declared after a total of 200,000 serial iterations, with the R̂
criterion being satisfied for 29 out of the 50 dimensions of θ. Full posterior exploration
therefore requires longer chains.
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Figure 13: Trace plot of the sampled RMSE values by (a) the 8 Markov chains evolved
by DREAM(ZS) (colored lines) for the first test (DR-generated true model) of inverse
case study 1, (b) the 8 Markov chains evolved by DREAM(ZS) (colored lines) for the
second test (DS-generated true model) of inverse case study 1 and (c) the 16 Markov
chains evolved by DREAM(ZS) (colored lines) for the inverse case study 2. The dashed
black line denotes the true RMSE value.
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Figure 14: (a) True model and (b-i) states of the 8 Markov chain evolved by DREAM(ZS)

after 25,000 iterations per chain for the first test (DR-generated true model) of inverse
case study 1. The red circle and blue crosses in subfigure (a) mark the location of the
pumping well and the piezometers, respectively.
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Figure 15: (a) True model and (b-i) states of the 8 Markov chains evolved by DREAM(ZS)

after 25,000 iterations per chain for the second test (MPS-generated true model) of
inverse case study 1. The red circle and blue crosses in subfigure (a) mark the location
of the pumping well and the piezometers, respectively.
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To benchmark our approach against state-of-the-art MPS inversion, we performed
eight independent SGR runs in parallel for the same case study as above and a simi-
lar CPU budget of 25,000 MCMC iterations per run. Moreover, the SGR algorithmic
settings are optimal (for the considered type of application) as defined in Laloy et al.
(2016). It is observed that 5 SGR trials out of 8 fit the data to the appropriate noise
level after less than 10,000 iterations (not shown). Three trials even reach the targeted
0.02 m misfit after less than 3000 iterations (not shown). Yet three other SGR trials do
not sample the posterior distribution after the 25,000 iterations (trials #3, #4 and #8 in
Figure 16). Furthermore, all SGR trials end up in a relatively narrow local optimum (not
shown) while none of them find a model that is visually similar to the true model (Figure
16). Many of the realizations sampled by SGR are also degraded compared to the prior
model (see top row of Figure 5), with isolated patches and broken channels (Figure 16).

This translates into a quite lower
fPO
fPR

ratio than for our DR-based approach: 1.08 (the

average fPO over the 8 SGR trials is 0.64). We thus conclude that for the considered
example, our DR approach is a superior alternative to SGR.
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Figure 16: (a) True model and (b-i) states of the 8 independent SGR trials after 25,000
iterations per trial for the second test (MPS-generated true model) of inverse case study
1. The red circle and blue crosses in subfigure (a) mark the location of the pumping well
and the piezometers, respectively.
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4.2 Case study 2: 3D transient hydraulic tomography

Our last case study focuses on 3D transient hydraulic tomography (e.g., Cardiff et al.,
2013). Transient head variations caused by discrete multilevel pumping tests were sim-
ulated using MODFLOW2005 within a 3D confined aquifer of size 30 × 32 × 27 with
a voxel size of 1 m × 1 m × 1 m. This aquifer consists of a part of the Maules Creek
TI discussed in section 3.2. The true model is depicted in Figure 17a. The multilevel
discrete pumping setup consists of a 27-m deep, central multi-level well in which water
is sequentially extracted every 4 m along a 1-m long screen (at depths of 3, 7, 11, 15, 19,
23 and 27 m respectively) during 30 minutes at a rate of 20 liters/min. The locations
of this multilevel pumping well and those of the 8 surrounding multilevel observation
wells are displayed in Figure 12. For each pumping sequence, drawdown are recorded
every 4 m along a 1-m long screen in the 8 multi-level piezometers (Figure 12). For
each drawdown curve, data acquired at the same four measurement times were retained
leading to a total of 8× 7× 7× 4 = 1568 measurement data. These measurement times
were considered to be the four most informative ones after visual inspection of several
drawdown curves (not shown). These data were corrupted with a Gaussian white noise
using again a standard deviation of 0.02 m, which induced for the selected white noise
realization a RMSE of 0.0200 m. The associated SNR is 6. In addition, the facies of the
56 locations (voxels) where pressure head is measured (blue line segments in Figure 12)
are known and used as direct conditioning data in the inversion.

For this case study, the DREAM(ZS) sampler evolves 16 Markov chains in parallel
using 16 CPUs. Uniform priors in [−5, 5] were again selected for the 50 dimensions of θ.
Within the allowed computational budget of 60,000 iterations per chain, the 16 chains
converge towards a data misfit in the range of 0.0202 m - 0.0204 m (Figure 13c). This
interval is close to the target level of 0.0200 m. This indicates that the posterior mode
has not been sampled yet. The variability among the sampled models is rather small
(Figure 17). The latter is likely due to the combination of two factors: (1) the peakedness
of the likelihood function (equation (15)) caused by the large number of measurement
data, and (2) the difficulties encountered by the sampling algorithm for exploring this
complex target distribution. Notwithstanding, the sampled models (Figure 17b-i) are
visually close to the true model (Figure 17a).
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Figure 17: a) True model and (b-i) states of the first 8 (out of 16) Markov chains evolved
by DREAM(ZS) after 60,000 iterations per chain for the inverse case study 2.

5 Discussion

Our proposed DR approach that is based on a deep neural network works well for the
considered inversion of 2D steady-state flow data. It also provides useful solutions to our
inverse problem involving 3D transient flow. However, further improvements are needed.
As for most compression approaches, our dimensionality reduction scheme builds a low-
dimensional representation where the value in each dimension influences every pixel/voxel

29



of the generated realization in the original space. This “non-localization" poses problems
for inverse problems involving categorical fields. Indeed, Laloy et al. (2016) have shown
for SGR that iterative perturbation of a small well defined fraction of the current model
works much better than slightly perturbing the whole model at every step. The same
logic applies to compression-based inversion. Indeed, Figure 18 demonstrates for our first
inversion case study that (1) changing the value of a single low-dimensional parameter
influences the whole model realization domain and (2) even a small variation in the model
realization can cause a large upward shift in RMSE (e.g., compare Figures 18a and 18c).
This implies that our proposed inversion approach can have troubles to converge when
applied to rich datasets with low error (e.g., ≤ 0.01 m for measured piezometric heads).
We expect that a yet to be developed “localized" DR approach would perform better.

There are other aspects that would benefit from improvements. First, our DR ap-
proach is not totally accurate for direct conditioning. Second, several tens of thousands
of MPS-generated training models are used to build it. This might not be practical when
MPS-generation is computationally intensive. Third, 3D model generation capabilities
could be enhanced by considering 3D convolutional layers instead of tricking 2D con-
volutional layers as done herein. Fourth, using a different reconstruction loss function
than equation (8) the approach could be extended to categorical TIs with more than
two facies and to continuous TIs. Lastly, it may be considered as a disadvantage that
our approach produces continuous realizations and thus requires thresholding to create
categorical fields.

Because of computational constraints, the impact of using a different number of di-
mensions for z on geostatistical simulation quality was not studied extensively. Yet
limited testing revealed that for the considered 2D channelized TI and associated model
domain size using a 25-dimensional z does not produce sufficient variability in the real-
izations (not shown). In contrast, compared to a 50-dimensional z using 100 dimensions
induces fewer broken channels and thus provides slightly better results (not shown). For
the considered 3D Maules Creek aquifer TI, using a 25-dimensional z was found to per-
form equally well as a 50-dimensional z (not shown). These findings warrant further
investigations.

We would like to stress that if no hard thresholding is done at the end of our model
generation process, then the derivatives of the pixels/voxels of the generated model, X,
with respect to the elements of the associated low-dimensional code, z, have a (compli-
cated) analytical solution that can be calculated by THEANO using auto-differentiation.

In other words, the sensitivity (Jacobian) matrix
dX
dz

is immediately available. This may
prove useful for gradient-based inversion using a forward solver equipped with an adjoint
model.

In addition, it is worth noting that using a deep generative model to compress high
dimensional quantities into a low-dimensional standard normal (or uniform) base is not
only useful for inversion purposes but also holds promise for the so-called prediction-
focused approach (e.g., Satija et al., 2017). The latter seeks to build a statistical model
that links past data variables and prediction data variables, thereby enabling to make
predictions without inverting for material properties. Lastly, note that our approach is
not limited to the MPS framework but could potentially be applied to any prior with
discrete structure.
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Figure 18: Model realizations and associated RMSE obtained when modifying a single
low-dimensional dimension, DR1, of a posterior solution for case study 1: (a) reference
(posterior) realization, (b) realization and RMSE corresponding to the multiplication of
DR1 by 0.5, (c) realization and RMSE corresponding to the multiplication of DR1 by
0.1 and (d) realization and RMSE corresponding to the multiplication of DR1 by -1.

6 Conclusion

This paper presents a novel parametric low-dimensional representation of complex bi-
nary geologic media that can be used for fast sampling of complex geostatistical models,
which is necessary for efficient probabilistic inversion. A deep neural network of the vari-
ational autoencoder type is used to define a low-dimensional manifold that is restricted
to model realizations that agree well with the training set. By comparing other paramet-
ric dimensionality reduction (DR) techniques for unconditional geostatistical simulation
of a channelized prior model, we find that our representation is superior to the PCA,
optimization-PCA (OPCA) and discrete cosine transform (DCT). Since constructing the
parameterization requires a training set of several tens of thousands of model realiza-
tions obtained by multiple point statistics simulation, our DR approach is specifically
designed for probabilistic (or deterministic) inversion rather than for unconditional (or
point-conditioned) geostatistical simulation. Synthetic inversion case studies involving
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2D steady flow and 3D transient hydraulic tomography are used to illustrate the effec-
tiveness of the proposed DR-based probabilistic inversion approach. For the 2D case
study, our new approach provides better results than current state-of-the-art inversion
by sequential geostatistical resampling (SGR). Inversion results for the 3D application
are also encouraging. Future work will focus on improvements such as alleviating the
need of using a large training model set to build the parameterization, extension to multi-
categorical and continuous variables and defining a low-dimensional representation that
is local rather than global. We expect that a local representation in which a given low-
dimensional variable only influences a sub-region of the generated model realization will
provide a much improved inversion performance.
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