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Abstract

In this study, the tunable algorithm of cluster-cluster aggregation developed
by Filippov et al. 2000 for generating fractal aggregates formed by monodis-
perse spherical primary particlesR1.C5 is extended to polydisperse primary
particles. This new algorithm, termed FracVALR1.C5, is developed by using
an innovative aggregation strategy.R1.C0 The algorithm is able to preserve the
prescribed fractal dimension (Df )

R1.C4 and prefactor (kf )
R1.C4 for each aggre-

gate, regardless of its size, with negligible error for lognormally distributed
primary particles with the geometric standard deviation σp,geo being as large
as 3. In contrast, for polydisperse primary particles the direct use of Filip-
pov et al. 2000 method, as is done by Skorupski et al. 2014, does not ensure
the preservation of Df and kf for individual aggregates and it is necessary
to generate a large number of aggregates to achieve the prescribed Df and
kf on an ensemble basis. The performance of FracVAL is evaluated for ag-
gregates consisting of 500 and 1000R2.C4 monomers and for fractal dimension
variation over the entire range of Df between 1 and 3 and kf between 0.1 and
2.7R1.C5. Aggregates consisting of 500 monomersR2.C4 are generated on aver-
age in less than 2.4 minutes on a common laptop, illustrating the efficiency
of the proposed algorithm.
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Program Summary
Program Title: FracVAL

Catalogue identifier:

Program summary URL:

Program obtainable from:

Licensing provisions: GNU General Public License

No. of lines in distributed program, including test data, etc.: 2,120

No. of bytes in distributed program, including test data, etc.: 139,264

Distribution format: ZIP

Programming language: Fortran 90

Computer: PC

Operating system: Windows and Linux

RAM: 1.0 Gb

Classification:

Nature of problem:

Generation of fractal-like aggregates, consisting of point-touching, polydisperse

primary particles

Solution method:

Hierarchical cluster-cluster random aggregation

Additional comments including Restrictions and Unusual features:

Possible combinations of fractal dimension and prefactor depend on monomers

polydispersity

Running time: Depends on the number of monomers and fractal parameters for

each polydispersity level
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1. Introduction1

Fractal-like aggregates formed by nearly spherical primary particles are2

frequently encountered in many applications, such as in colloidal or aerosol3

systems, combustion systems, and flame synthesis of functional nanoparti-4

cles. Such particles have some remarkable and unique characteristics, e.g.5

large surface area and porous geometry, implying that they have high ab-6

sorption capacity, good catalyst performance, fast dissolution, light-weight,7

and require relatively little solid material to occupy large space [1]. These8

particles are generated by aggregation processes which can be theoretically9

classified into two categories, particle-cluster [2, 3, 4, 5, 6] (PC) and cluster-10

cluster (CC) aggregation. A complete review of different algorithms focused11

on these aggregation mechanisms is found in [7]. Additionally, optimizedR1.C5
12

version of these algorithms can be found in more recent studies [8, 9, 10].13

Under the idea of fixing the fractal dimension, Thouy and Jullien [11]14

introduced the first tunable CC aggregation algorithm. Subsequently, sev-15

eral studies are conducted to propose different tunable algorithms for fractal16

aggregate generation [12, 13, 14, 15, 16], though most of these studies pre-17

served only the fractal dimension. One remarkable exception is the algorithm18

developed by Filippov et al. [13], which is able to preserve both the fractal19

dimension and the prefactor, paving the way to investigate the individual20

effect of Df and kf on the morphology and physical properties of fractal21

aggregates [17, 18, 19]. Some distinct features of tunable algorithms can be22

highlighted: (1) they allow systematic studies of the individual effects of ei-23

ther Df or kf on the physical properties of fractal aggregates; (2) a large24

number of aggregates can be generated numerically with a considerably low25

computational time; and (3) they allow the generation of fractal aggregates26

with prescribed Df and kf over a wide range irrespective of the physical27

aggregation mechanism.28

Almost all the existing tunable algorithms developed in the literature rely29

on the assumption of monodisperse primary particles. One exception is the30

code developed by Skorupski et al. [20], which is based on the method of Fil-31

ippov et al.R1.C5 [13] and can be used to generate fractal aggregates formed by32

polydisperse spherical primary particles. However, the direct application of33

the Filippov et al.R1.C5 [13] algorithm to generate fractal aggregates formed34

by polydisperse primary particles, as conducted by Skorupski et al. [20],35

encounters the difficulty that the resultant individual aggrgates do not pre-36

serve the prescribed fractal dimension. It is important to overcome this issue37
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and to develop a tunable algorithm to efficiently generate fractal aggregates38

formed by polydisperse primary particles, which can then be used to fill some39

existing gaps with regard to the effect of primary particle polydispersity on40

morphological properties, such as the center of mass, inertia moment, radius41

of gyration of sub-clusters being aggregated and consequently on the result-42

ing structures [21, 22], as well as various physical and optical properties.43

Since practical colloid or aerosol aggregates consist of polydisperse pri-44

mary particles, various studies have been conducted in order to assess its45

influence on their morphological characterization [23, 24, 25, 21, 22], and46

the physical or chemical properties of such particles, such as kinetics of co-47

agulation and sintering or coalescence, light scattering, mobility and set-48

tling [26, 27, 28, 29, 30, 31, 32, 33, 22, 34, 35]. In 2012 Eggersdorfer and49

Pratsinis [21] found found a dependency between aggregates morphology and50

monomers polydispersity.R1.C0 Based on the above mentioned studiesR1.C0, it51

is important to develop efficient tunable algorithms to generate fractal ag-52

gregates formed by polydisperse PP with known Df and kf .53

In this study, an improved hierarchical tunable algorithm of CC aggrega-54

tion is developed based on the algorithm of Filippov et al. [13] to generate55

numerically fractal aggregates formed by polydisperse PPs.56

2. Theoretical background57

2.1. Primary particle size distribution58

The nearly spherical primary particles constituting fractal aggregates,59

such as soot, fumed silica and titania, encountered in practice are always60

polydisperse and the primary particle size distribution (PPSD) can be com-61

monly described by either the normal or lognormal probability density func-62

tions [36, 37]. Nevertheless, the normal distribution is not practical because63

for large standard deviations of the distribution it can lead to negative PP64

radii. Eq. (1) presents the lognormal probability density function of PP radii,65

f [rp] =
N

ln[σp,geo]
√

2πrp
exp

[
−1

2

(
ln[rp]− ln[rp,geo]

ln[σp,geo]

)2
]
, (1)

where f [rp]drp is the probability of finding a particle with a radius between rp66

and rp+drp, rp,geo and σp,geo correspond to the geometric mean and geometric67

standard deviation, respectively. Please note that for a population of N68

monomers these values are given by the following equations,R2.C1
69
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log(rp,geo) =

∑N
i=1 log(ri)

N
(2a)

70

log(σp,geo) =

√∑N
i=1(log(ri)− log(rp,geo))2

N
(2b)

It can be checked that for monodisperse primary particles the RHS of71

Eq. (2b) becomes zero and therefore σp,geo = 1.R2.C1 Although the level of72

PP polydispersity is often fairly low with σp,geo ≤ 1.3, highly polydisperse73

primary particles can be encountered. For example, for flame generated74

soot aggregates, the geometric standard derivation σp,geo can be as high as75

σp,geo = 2.1 [36, 37, 38, 39], depending on the residence time, fuel type, and76

flame conditions.77

2.2. Characterization of fractal aggregates78

The mass of a fractal aggregate (ma) follows the fractal scaling law. For79

an aggregate consisting of point-touch polydisperse spherical PPs [21],80

ma

mp

= kf

(
Rg

rp,geo

)Df

, (3)

where mp is the average PP mass, i.e., ma/mp = N , is the number of PP81

in the aggregate. The exponent Df and the proportionality constant kf82

in Eq. (3) are the fractal dimension and prefactor, respectively. For frac-83

tal aggregates consisting of monodisperse monomers (σp,geo = 1) generated84

through diffusion-limited cluster aggregation (DLCA), it has been well es-85

tablished that Df ≈ 1.78 and kf ≈ 1.40 [7, 40]. However, Eggersdorfer and86

Pratsinis [21] showed a dependency of both Df and kf on PP polydispersity.87

In fact, for aggregates formed in the same molecular regime they found that88

both Df and kf decrease with increasing PP polydispersity. They obtained89

Df = 1.68 and kf = 0.98 for σp,geo = 2.0, and Df = 1.48 and kf = 0.77 for90

σp,geo = 3.0. The ranges of these parameters are used for the generation and91

analysis of fractal aggregates of the present work. Finally, Rg is the radius of92

gyration of the aggregate calculated using the expression proposed by [22],93

R2
g =

1

ma

N∑
i=1

mp,i

[
(Ri −Rc)

2 + r2g,i
]
, (4)
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where rp,i and mp,i are respectively the PP radius and mass of the ith spher-94

ical primary particle, which is located at a distance Ri from the origin of a95

fixed coordinate system. The term rg,i is the radius of gyration of the ith96

PP, i.e., r2g,i = (3/5)r2p,i. Rc is the center of mass of the aggregate evaluated97

as,98

Rc =
1

ma

N∑
i=1

mp,iRi. (5)

It can be easily shown that Eqs. (4) and (5) degrade to those for monodisperse99

primary particles given in Filippov et al. [13] when all the primary particles100

have the same mass.101

3. Formulation of the improved tunable algorithm102

3.1. Main equations103

Consider two clusters (aggregates) with mass m1 and m2 and radius of104

gyration Rg1 and Rg2, which have the same prescribed Df and kf and are to105

be aggregated to form a larger aggregate with mass m = m1 +m2 and radius106

of gyration Rg and to preserve both Df and kf . To this end, it can be shown107

that the distance between the mass centers of the two clusters Γ satisfies the108

following equation,109

m2R2
g = m

(
m1R

2
g1 +m2R

2
g2

)
+ Γ2m1m2, (6)

The consequence and advantage of using Eq. (6), as it will be demonstrated110

later, are that it ensures the preservation of both Df and kf
R1.C5 during each111

step of the aggregation process for each individual aggregate generated. The112

derivation of this equation is provided in Appendix A. In the special case of113

two aggregates consisting of N1 and N2 monodisperse PPs (N = N1 + N2),114

Eq. (6) is reduced to,115

N2R2
g = N

(
N1R

2
g1 +N2R

2
g2

)
+ Γ2N1N2, (7)

which is identical to the relationship derived by Filippov et al. [13], i.e., the116

derived Eq. (6) is the generalized form of Eq. (7) for aggregates consisting of117

polydisperse PPs. Eq. (6) represents an original contribution of the present118

study and forms one of the main relations of the present tunable algorithm.119

6



3.2. FracVAL: A tunable cluster-cluster aggregation algorithm120

The FracVAL (fractal aggregate generation algorithm developed in Val-121

paráıso) algorithm is programmed in a hierarchical manner, i.e., only ag-122

gregation between sub-clusters with approximately the same number of pri-123

mary particles is allowed [11]. The algorithm consists of four main steps124

corresponding to the flow chart shown in Fig. 6 and it is described as follows.125

Step 1: The fractal dimension Df (between 1 and 3) and the fractal pref-126

actor kf (a positive value, typically on the order of unity) of aggregates to127

be generated are prescribed, which will be preserved during the entire fractal128

aggregate generation process. In addition, the primary particle radius distri-129

bution and the aggregate size N (the number of primary particles contained130

in the aggregate) are also required. The PPSD is assumed lognormal and131

characterized by the geometric mean and standard standard deviation, i.e.,132

rp,geo and σp,geo. To obtain a total of N radii from this lognormal distribu-133

tion given by Eq. (1), a pseudo-random number generator is used [41]. To134

avoid extremely large and extremely small values of PP radius, which are135

unrealistic, the selection of PP radii is constrained to the following range136

[rp,geo/σ
2
p,geo, rp,geoσ

2
p,geo], which contains 95.5% of the radii.137

Step 2: A particle-cluster aggregation algorithm is first used to obtain a138

total of It sub-clusters (smaller aggregates) consisting of approximately the139

same number of primary particles (Nsub), where
∑

It
Nsub = N . This criterion140

is introduced in order to mimic the hierarchical aggregation of particles that141

possess the self-similarity of fractal aggregates [42]. In the present work Nsub142

is selected depending on N. For N∈[50,500], each sub-clusterR1.C5 consists of143

Nsub = 0.1N and under the lower limit (N≤ 50 ) a constant Nsub = 5 is144

employed. On the other hand, above the upper limit (N≥ 500) a constant145

Nsub = 50 isR1.C5 used. This type of particle-cluster aggregation algorithms146

has been found to experience some difficulties for retaining exactly the fractal147

parameters and therefore small Nsub are recommended in the literature in148

order to avoid effects in the final aggregates [13, 20]. In this context, a149

sensitivity analysis is included in the Appendix C. The main conclusion of150

this analysis is that for Nsub < 0.15N there is not effect on the morphology151

of final aggregates. Additionally, an variation of ±20% of Df or kf for the152

initial sub-clusters is expected to have a relatively small effect on the density-153

density correlation function of the final aggregates.R1.C4
154

Step 3: In this step, the sub-clusters generated in Step 2 are organized155

into pairs that are able to aggregate to form a larger cluster. This “ability to156

aggregate” is defined according to the criterion Rmax,1 +Rmax,2 ≥ Γ12, where157
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Rmax,i corresponds to the furthest distance of a PP to the center of mass of158

the ith aggregate (i = 1,2) and Γ12 is the distance between the centers of159

mass of the two sub-clusters to be aggregated and calculated as,160

Γ12 =
1

√
m1m2

[
m2R2

g −m
(
m1R

2
g1 +m2R

2
g2

)]1/2
, (8)

where m1, m2, Rg1 and Rg2 are the masses and radii of gyration of the two161

sub-clusters being aggregated. Additionally, m = m1 + m2 and Rg are the162

corresponding parameters for the resulting larger aggregate. The radii of163

gyration Rg1, Rg2 and Rg are calculated from the scaling law,164

Rgi = rp,geo

(
ni
kf

)1/Df

(9)

where ni is the number of monomers of the ith aggregate (here for both165

the sub-clusters and the resultant larger aggregate) and Df and kf are the166

prescribed fractal parameters.167

Step 4: This is the main part of the algorithm. In this step, the two168

sub-clusters belonging to the same pair determined in Step 3 are aggregated169

to form a larger aggregate. It is based on the idea that there are two sub-170

clusters, from here onwards they will be called sub-cluster A1 (containing171

N1 monomers) and sub-cluster A2 (containing N2 monomers), that can be172

aggregated in many different ways, each of these ways associates a distance173

between the center of mass of aggregates A1 and A2, but there is only one174

distance (represented by Γ12 in Eq. (8)) that ensures the preservation of175

both Df and kf . Therefore, knowing this distance, our goal only consists176

in finding one of the possible paths to combine the clusters by keeping the177

distance between them fixed.R2.C3 To better describe this step, it is divided178

into 6 sub-steps as shown in Fig. 6.179

• Sub-step a: Select a pair of sub-clusters A1 and A2R2.C3 from the180

pairs determined in Step 3.181

• Sub-step b: Create a binary matrix aij. Let di1 and dj2 be respectively182

the distance from the center of monomer i (in A1, i = 1,2,...,N1) and j183

(in A2, j = 1, 2,..., N2) to the center of mass of A1 and A2, respectively.184

Assign aij = 1 when:185

8



A1 A2

Monomer i

Monomer j

CM1
CM2

rpi

rpj

Figure 1: Sub-clusters A1 and A2 selected to be aggregated.

The restriction defined by Eq. (10) is fulfilled, this restriction ensures186

that both monomers are close enough to be in point-touching,187

Di1,+ +Dj2,+ ≥ Γ12, (10)

where Di1,+ = di1 + rpi, Di1,− = di1 − rpi, Dj2,+ = dj2 + rpj and188

Dj2,− = dj2 − rpj. Additionally, there is a lower limit defined by 3189

possible cases described as follows,190

– Case 1: When the spheres of radius Di1,+ and Dj2,+ can be inter-191

sected (see Fig. 2), this means that |Di1,+ −Dj2,+| ≤ Γ12.192

The two following cases are associated with the intersection of the193

spheres with radius Di1,− and Dj2,−.194

– Case 2: When the sphere of radius Di1,+ is too big containing195

the sphere of radius Dj2,+, i.e. when (Di1,+ − Dj2,+) > Γ12 with196

anR1.C5 upper limit Di1,− ≤ Γ12 +Dj2,+.197

– Case 3: Analogously, when the sphere of radius Dj2,+ is too big198

containing the sphere of radius Di1,+, i.e. when (Dj2,+−Di1,+) >199

Γ12 with an upper limit Dj2,− ≤ Γ12 +Di1,+.200

Please note that Case 2 and Case 3 are theoretically and mathemat-201

ically possible, and they are considered in FracVAL. Please see the202

Appendix D for a further explanation of Cases 2 and 3.R1.C1 However,203
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Case 1 is considered the most common one, and therefore it is used to204

explain the subsequent steps of the algorithm.205

These restrictions ensure that ith monomer belonging to A1 is able to206

aggregate with the jth monomer belonging to A2; otherwise, assign207

aij = 0. For the pair A1 and A2, Γ12 is evaluated using Eq. (8).

CM1

PP i

Di1,+

CM2

PP j

Γ12

Di1,-

Dj2,+

Dj2,-

Figure 2: Example of intersection between the spheres of radius Di1,+ and Dj2,+ can be
intersected.

208

• Sub-step c: Loop over the elements of the binary matrix aij. If aij = 0,209

continue the loop. If aij = 1, assign the ith primary particle in A1 as210

s1 and the the jth primary particle in A2 as s2.211

212

The goal of Step 4 is to aggregate the sub-clusters A1 and A2. Specif-213

ically, the algorithm needs to find the locations of the mass centers of214

A1 and A2 and the proper orientations of A1 and A2 upon aggregation215

to satisfy the following restrictions:216

First, the distance between the centers of mass of A1 and A2 is Γ12 given217

byR1.C5 Eq. (8). Secondly, the selected primary particle candidates s1218

(belonging to A1) and s2 (belonging to A2) are in point-touch. Thirdly,219

there is no overlapping between any primary particles in A1 and A2.220

The above mentioned 3 restriction will be satisfied progressively by 3221

stages described as follows,R1.C2
222

– Stage 1: To satisfy restriction 1 we retain the center of mass of A1223

(referenced as CM1 = (Xcm,1, Ycm,1, Zcm,1)) fixed while the center224
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of mass of A2 (referenced as CM2 = (Xcm,2, Ycm,2, Zcm,2)) is placed225

at a distance Γ12 from CM1. This displacement is made along the226

unitary direction defined by CM1 and the center of s1. At this227

point we already fulfil restriction 1. This is shown in Fig. 3.R1.C2

CM1 s1

Γ12

A1

A2

CM2

Figure 3: Displacement of A2 to fulfill restriction (1).

228

– Stage 2: Next, we will rotate A1 and A2 in the following manner229

to fulfill restrictions 2 and 3. Firstly, A1 is rotated, to this end230

we calculate the distances ds1 and ds2 from monomers s1 and s2231

to CM1 and CM2, respectively, and place the monomer s1 at a232

tangential point defined by the interception of two of the following233

spheres as illustrated in Fig. 4.R1.C2
234

D2
s1,+ = (X −Xcm,1)

2 + (Y − Ycm,1)2 + (Z − Zcm,1)2, (11a)

235

D2
s2,+ = (X −Xcm,2)

2 + (Y − Ycm,2)2 + (Z − Zcm,2)2, (11b)

This random point can be determined analytically by considering236

the following procedure (Here the reader may go directly to Stage237

3 without loss of continuity). As shown in Fig. 5, the sphere-sphere238
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CM1

s1

Γ12

A1

A2

CM2

s2

Ds1,+

Ds2,+

Figure 4: Location of monomer s1 given by the intersection of spheres given by Eq. (11a)
and Eq. (11b).

intersection corresponds to a circle that can be parametrized by239

the equation (12),R1.C2
240

~r[ψ] = ~c+ ρ cos[ψ]̂i′ + ρ sin[ψ]ĵ′, ψ ∈ [0, 2π] (12)

(a) Sphere-sphere intersection (b) Parametrized circle

r(ψ)=c+ρcos(ψ)i’+ρsin(ψ)j’

i’
j’

zoom

ρ

c

Figure 5: Sphere-sphere intersection and circle parametrization.

where ~c and ρ are the coordinates of the geometric center and241

the radius of this circle, respectively. Additionally, î′ and ĵ′ are242

12



Step b:

Matrix of 

candidates

Step d:

Aggregation 

process

Overlapping?

Step e:

Rotation

YES
NO

Rotations

>MAX?YES

Step 1:

Parameters

Step 2:

Sub-clusters

(PC)

Step 3:

Generate pairs

Step 4:

Aggregate pairs

Step c:

Select a pair 

s1-s2

Step a:

Select a pair 

A1-A2

Step 4 details

Finish Step 4

NO

Figure 6: Flow chart of FracVAL cluster cluster aggregation algorithm.

unit vectors perpendicular between them and belonging to the243

plane where the circle is embedded. All of this parameters can244

be determined analytically as explained in Appendix B. Finally,245

the vector ~r[ψ] bringsR1.C5 the coordinates of a point belonging to246

this circle with orientation ψ. Therefore, the work of this step is247

reduced to just find a random angle ψ ∈ [0, 2π]. Subsequently, the248

orientation of each other PP belonging to A1 is updated based in249

the rotation of s1 by using the Euler-Rodriguez model [43].250

– Stage 3: The location of s2 is determined by finding a random251

point in the interception of the two spheres,R1.C2
252

(rs1 + rs2)
2 = (X −Xs1)

2 + (Y − Ys1)2 + (Z − Zs1)2, (13a)
253

d2s2 = (X −Xcm,2)
2 + (Y − Ycm,2)2 + (Z − Zcm,2)2, (13b)

where Eq. (13a) ensures that both candidates s1 and s2 will be254

in one point touch and Eq. (13b) ensures that candidate s2 will255

retain their relative distance to the center of mass of aggregate256
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A2 and therefore restrictions 1 and 2 mentioned above will be257

fulfilled. This is illustrated in Fig. 7.R1.C2 One point in the in-

s1

Γ12

A1

A2

CM2

s2

ds2

rs1+rs2

Figure 7: Intersection of spheres given by Eq. (13a) and Eq. (13b).

258

tersection of these two spheres is found using the same procedure259

described by equation (12). Subsequently the whole aggregate A2260

is rotated based in the rotation of s2 by using the Euler-Rodriguez261

model [43]. At this point, restrictions 1 and 2 are ensured. Re-262

striction 3 is not necessarily ensured, so the algorithms continue263

with sub-step d to check it.R1.C2
264

• Sub-step d: Eventually, in the current orientation of A1 and A2 over-265

lapping between PP exists. In this case the orientation of A2 is modified266

by random rotation by using the Euler-Rodriguez formula [43] and us-267

ing the solution of the intersection of spheres given by Eq. (13a) and268

Eq. (13b), i.e. monomer s2 is rotated around monomer s1.269

In case that overlapping still exists (following a maximum number of270

iteration defined by the user), the algorithm return to sub-step c and271

it picks another pair of monomers s1 and s2. Finally at this point,272

restrictions 1, 2 and 3 are ensured.273
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4. Validation274

4.1. Primary particle size distribution275

Figure 8 shows the histogram of primary particle radii for an aggregate276

consisting of N = 1024 primary particles sampled from a lognormal distri-277

bution with σp,geo = 2.0 and rp,geo = 15.0 nm. It is evident that the specified278

PPSD iss well preserved. When the Kolmogorov-Smirnov goodness-of-fit test279

(D) is applied, a value of D = 0.03 is obtained. A significance of α = 0.01280

corresponds to a critical value of Cα=0.01 = 0.05. Since D < Cα=0.01, the ra-281

dius of the primary particles of the aggregate effectively satisfies the specified282

lognormal size distribution.
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Figure 8: Histogram of radii of primary paticles in an aggregate of N = 1024 sampled
from a lognormal PPSD with σp,geo = 2.0 and rp,geo = 15.0 nm showing the preservation
of the specified distribution.

283

4.2. Density-density correlation function284

It is expected that the spatial distribution of the mass of an aggre-285

gate should follow a specific behavior to be considered as fractal [44]. The286

density-density correlation function is usually examined to test if the gen-287

erated aggregates possess the expected fractal behavior in addition to the288

scaling law [45, 13]. For the particular case of aggregates formed byR2.C5
289

polydisperse primary particles, Bushell and Amal [24] suggested to use the290

partial distance distribution function, which unfortunately is not practical291

when dealing with lognormally distributed primary particles, this because292
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there are too many different radii to obtain a partial distribution function293

as proposed in the mentioned reference. Therefore, we developed a new al-294

ternative to evaluate it. Let f(r) be the density-density correlation function295

evaluated at a distance r from the mass center of the aggregate. This value296

is calculated in an iterative manner for radius in the range r ∈ [Rmin, Rmax],297

where Rmin = rp,geo/10 and Rmax = δRg, i.e., δ times the radius of gyration298

of the aggregate. Normally, a value of δ = 3.5 is considered sufficiently large.299

At the kth iteration, radius r is discretized as follows,300

r(k) = Rmin(Rmax/Rmin)k/(nit−1). (14)

where k ∈ [1, (nit−1)], with nit being a total number of discretized radii con-301

sidered. For a given k, a “copy” of the aggregate is generated and displaced302

at a distance r(k) from the mass center of the original aggregate in a random303

direction (i.e., a random point in a sphere). Then the volume of intersection304

of both aggregates V
(k)
int is analytically determined based on the concept of305

spherical cap [46]. Hence, this process is repeated until a total of nor ori-306

entations is evaluated. Finally, the density-density correlation function is307

calculated by averaging the volumes of intersection over all orientations and308

dividing by the total volume of the aggregate Va,309

f(r(k)) =
1
nor

∑
nor

V
(k)
int

Va
, (15)

4.2.1. Aggregates formed by monodisperse PP310

In Fig. 9 samples of the generated aggregates consisting of monodisperse311

primary particles are shown. These aggregates are generated for three dif-312

ferent fractal dimensions of Df = 1.40, 1.79, and 2.40 and four aggregate313

sizes of N = 20, 50, 500, and 1024. It is evident that a larger fractal dimen-314

sion leads to a more compact structure. As a way to validate our algorithm,315

the density-density correlation function f(r) is calculated as described above316

considering a total of nor = 300 orientations for each case.317

The calculated density-density correlation functions f(r) for different ag-318

gregate sizes from N = 20 up to N = 1024 generated using FracVALR1.C5
319

and using the algorithm developed by Skorupski et al. [20] are compared in320

Fig. 10. It is noticed that these aggregates are generated from monodisperse321

primary particles.322

The density-density correlation function f(r) corresponds to the spatial323

mass distribution of the aggregate, and it is supposed to exhibit a slope of324
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Df

1.40

1.79

2.40

Figure 9: Selected aggregates generated by FracVAL with monodisperse PP (σp,geo = 1.0)
for Df = 2.40, kf = 0.80 (top row), Df = 1.79, kf = 1.40 (middle row), and Df = 1.40,
kf = 1.80 (bottom row).

Df − d, where d is the Euclidean dimension of space (d = 3), for sufficiently325

large aggregates. However, due to the natural cut-off of fractal aggregates326

of finite size this behavior can be expected only in a limited range of r [44].327

As can be seen in Fig. 10, the agreement in f(r) for aggregates generated328

from both algorithms is very good, especially for large N . In addition, the329

expected slope of the decay of f(r) with r for sufficiently large N , i.e., Df−d,330

is progressively displayed with increasing N , consistent with the findings of331

Filippov et al.R1.C5 [13]. As can be noted, the agreement of calculated f(r)332

with the theoretical behaviour is progressively better for larger aggregates,333

this is explained by the finite size effects on f(r), which imply that smaller334

aggregates, namely N = 20, the f(r) function is predominated by the cut-off335

function.R1.C5
336
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Slope: -(d-1.79)

Skorupski et al. 2014

FracVAL

Figure 10: The density-density correlation functions of aggregates formed by monodis-
perse primary particles with Df = 1.79, kf = 1.40. The solid lines correspond to the
aggregates generated by usingR1.C5 the algorithm of Skorupski et al. 2014 and symbols
are for aggregates generated byR1.C5 using FracVAL. d stands for the Euclidean dimension
of space d = 3.

4.2.2. Aggregates formed by polydisperse primary particles337

In Fig. 11 samples of aggregates formed by lognormally distributed poly-338

disperse primary particles with σp,geo = 2.0 using FracVALR1.C5 are shown.339

These aggregates are generated for Df = 2.60, kf = 0.25 (top row)R1.C5,340

Df = 1.68, kf = 0.98 (middle row), and Df = 1.30, kf = 1.50R1.C5 (bottom341

row) and for four aggregate sizes of N = 20, 50, 500 and 1024.342

Fig. 12(a) and Fig. 12(b) show the density-density correlation function343

of fractal aggregates of N = 100 and 1024, respectively, generated using344

FracVAL for polydispersity levels ranging from σp,geo = 1.0 (monodisperse)345

to σp,geo = 3.0 (extremely polydisperse) and for different fractal properties as346

shown in the figure legend. As can be seen, the expected power law behavior347

becomes more evident, i.e., the linear decay of f(r) with r in the log-log scale348

plot, especially for N = 1024. It is interesting to notice that the power law349

behavior seems to extend over a larger range of r for σp,geo = 2. Moreover,350

the slope of the calculated density-density correlation function is in good351

agreement with the theoretical slope of (Df−d) for all the three combinations352

of Df and σp,geo, i.e., Df = 1.79 and σp,geo = 1.0, Df = 1.68 and σp,geo = 2.0,353

and Df = 1.48 for σp,geo = 3.0. These values of Df correspond to those354

of DLCA aggregates when considering different levels of primary particle355
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Figure 11: Sample aggregates generated by FracVAL from polydisperse PPsR1.C5 with
σp,geo = 2.0 and specified fractal parameters of Df = 2.60, kf = 0.25 (top row), Df = 1.68,
kf = 0.98 (middle row), and Df = 1.30, kf = 1.50 (bottom row)R1.C5.

polydispersity [21]. As expected, the agreement is better for N = 1024356

rather than N = 100, consistent with the results shown for monodisperse357

primary particles in Fig. 10.358

4.3. Preservation of prescribed fractal parameters359

An important feature of tunable algorithms is to ensure each individual360

aggregate generated accurately satisfies the scaling law expressed in Eq. (9),361

regardless of its size. Specifically, each individual aggregate generated by362

a tunable algorithm possesses the same Df and kf as the prescribed values.363

This requirement is naturally built into the algorithm through the application364

of Eq. (9) during the generation.365

To probe the preservation of fractal parameters (Df and kf ) on a global366

sense, i.e., to examine an ensemble of aggregates of different sizes, plots of367

log(N) − log(Rg/rp,geo) for different prescribed fractal dimension and pref-368
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(a) N=100
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Figure 12: The calculated density-density correlation functions of aggregates consisting of
N = 100, N = 1024 primary particles of different levels of polydispersity. The imposed
fractal parameters are: Df = 1.79, kf = 1.40 for σp,geo = 1.0, Df = 1.68, kf = 0.98
for σp,geo = 2.0, and Df = 1.48, kf = 0.77 for σp,geo = 3.0. d stands for the Euclidean
dimension of space with d = 3.

actor are presented in Fig. 13(a) and 13(b) for monodisperse (σp,geo = 1)369

and polydisperse (σp,geo = 2) primary particles, respectively. The aggregate370

size is varied non-uniformly from N = 20 to 1024. It is important to note371

that each data point in Fig. 13 corresponds to 50 aggregates. As observed in372

the figure, each condition for individual aggregates (characterized by Df , kf ,373

N , and σp,geo) accurately preserves the prescribed fractal parameters. The374

solid lines represent the log-log fit of the data points and the corresponding375

parameters are reported in the figure legend. It is evident that all the curves376

display a linear variation of N with the normalized Rg in the log-log plot377

expected from the scaling law of Eq. (3).378

As can be seen in Fig. 13(a) for all thee three sets of aggregates formed by379

monodisperse primary particles, the fractal scaling law is very accurately pre-380

served and the fractal dimension based on the slope of the linear fit deviates381

from the prescribed value by less than only 1%. The same observations can382

be made for aggregates formed polydisperse primary particles as shown in383

Fig. 13(b). It is worth pointing out that these pairs of Df and kf are selected384

to represent the most extreme values under which FracVAL is able to gen-385

erate the fractal aggregates for the evaluated PP polydispersity (σp,geo = 2).386

The results shown in Fig. 13 confirm that the ensemble of aggregates gener-387
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ated by FracVAL strictly preserves the prescribed fractal parameters under388

different conditions in terms of fractal parameters (Df and kf ) and the level389

of primary particle polydispersity as long as the fractal aggregates can be390

generated by FracVAL.
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(a) Monodisperse monomers
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(b) Polydisperse monomers

Figure 13: Preservation of fractal parameters for aggregates consisting of (a) monodisperse
(σp,geo = 1) and (b) polydisperse (σp,geo = 2) primary particles for different combinations
of fractal parameters (Df and kf ). Continuous lines represent the log-log fit of the points,
corresponding parameters are reported in the legend of the figures.

391

Once these aggregates are generated, numerical projections, like numer-392

ical TEM images [46], could be generated in order to relate the projected393

density-density correlation function as calculated by Nelson et al. [47] for nu-394

merically generated aggregates in comparison with experimentally measured395

ones. This feature will be available in a future version of FracVAL.R1.C3
396

5. Discussion397

To demonstrate the advantage of FracVAL algorithm over the classical398

Filippov et al. [13] one, Fig. 14 compares the plots of log(N) as a function399

log(Rg/rp,geo) in log-log scale for aggregates generated using FracVAL and a400

direct application of the Filippov et al. [13]R1.C4 algorithm for polydisperse401

primary particles. The prescribed parameters are Df = 1.68, kf = 0.98,402

and σp,geo = 2.0 and for aggregate sizes from N = 20 to 1024. It is noticed403

that in the Filippov et al. [13] method considered Eq. (7) instead of the404

derived Eq. (6), which is used in FracVAL. Therefore, the effect of primary405

particle polydispersity on aggregate center of mass and radius of gyration406
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is not taken into account in the formulation of Filippov et al.. [13].R1.C4 It407

is also worth pointing out that the FLAGE algorithm recently developed408

by Skorupski et al. [20] also made a direct application of the Filippov et409

al. [13]R1.C4 method for aggregates formed polydisperse primary particles410

and the results of Filippov et al. [13]R1.C4 shown in Fig. 14R1.C4 should be411

identical to the results of FLAGE.412

A total of 200 aggregates is generated using the method of Filippov et413

al. [13] for each set of parameters (Df , kf , N , and σp,geo). As can be seen,414

when primary particles are polydisperse, the classical Filippov et al. [13] does415

not preserve exactly the fractal parameters (Df and kf ) for each individual416

aggregate, though the fractal parameters are preserved on an ensemble basis.417

Therefore, a large population of aggregates should be generated if one uses the418

Filippov et al. [13]R1.C4 method or the FLAGE code to generate aggregates419

formed by polydisperse primary particles. It is interesting to observe that the420

scatter of log(Rg/rp,geo) at a given N becomes increasingly smaller and the421

agreement between Filippov et al. [13] and FracVALR1.C5 is improved with422

increasing N . This agreement is employed in previous studies presented in423

the literature [46, 32].

Rg/rp,geo
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Figure 14: Comparison of results by using Filippov et al. [13] method and FracVAL.
Aggregates consisting of Df = 1.68 and kf = 0.98 and σp,geo = 2.0.

424

Finally, the computational performance of the FracVAL algorithm is eval-425

uated. The computations are carried out using a laptop equipped with a 2.40426

GHz CPU and 8 Gb of memory. The reported CPU times are averaged over427
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a population of 100 aggregates for different combinations of Df and kf within428

the range of Df = 1.0− 3.0 and kf between 0.1 and 2.4. The computational429

time is dependent on the number of monomers, the level of primary particle430

polydispersity, and the combination of Df and kf . Table 1 presents exam-431

ples of average time required to generate an aggregate consisting of N = 500432

for monomers polydispersity from σp,geo = 1.0 to 3.0. All examples of ag-433

gregates consisting of 500 PPsR2.C4 are generated in less than 2.4 minutes.434

Meanwhile aggregates consisting of 1000 PPs are generated in less than 14435

minutes. Generation of aggregates formed by polydisperse PPs is generally436

more time-consuming than those formed by monodisperse PPs.R2.C4 It is im-437

portant to remark that the majority of times is in the order of the minimum438

values reported in Table 1, while the maximum values are achieved only for439

combinations of extremely different Df and kf pairs and also these max-440

imum times exhibit a much larger standard deviation than the minimum441

values.R2.C4

Table 1: Assessment of the average computational time (in seconds) required by FracVAL.

σp,geo N = 500R2.C4 N = 1000R2.C4

1.00 1.1-70.1 5.3-84.6R2.C4

1.45 1.9-73.6 8.9-408R2.C4

2.00 3.9-145.8 28.2-791.1R2.C4

2.50 5.6-15.1 37.6-113.7-R2.C4

3.00 7.0-9.4 38-74.6R2.C4

442

6. Conclusions443

A novel tunable cluster-cluster aggregation algorithm, FracVAL, is devel-444

oped in this study to numerically generate fractal aggregates formed by poly-445

disperse primary particles. The algorithm represents an improvementR2.C4 of446

the tunable cluster-cluster aggregation algorithm of Filippov et al. [13] for447

generation of fractal aggregates formed by monodisperse primary particles.448

The algorithm is validated by comparing the density-density correlation func-449

tions of fractal aggregates generated by FracVAL and a literature method,450

FLAGE [20], and excellent agreement is observed. The prescribed fractal451

parameters Df and kf are found accurately preserved for each individual ag-452

gregate consisting of either monodisperse or polydisperse primary particles.453

The fractal properties of an ensemble of aggregates of different sizes are also454
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found to accurately preserve the prescribed Df and kf with less than 1%455

deviation for different combinations of Df and kf , regardless of the degree of456

primary particle polydispersity characterized by σp,geo up to 3.457

Since the positions of the two aggregating primary particles and the mass458

centers of the two aggregating clusters are found using analytical expressions459

by using the intersection of two spheres and random parameters, FracVAL460

is considerably computationally efficient for generating fractal aggregates for461

different combinations of Df , kf , and σp,geo for σp,geo up to 3, taking in average462

less than 2.4 minutes for N = 500 and 14 minutes for N = 1000 PPsR2.C4
463

on a regular laptop, as long as the pair of Df and kf falls in the valid range464

where it is possible to generate such fractal aggregates.465

Finally, it is demonstrated that the direct use of the tunable cluster-466

cluster aggregation algorithm Filippov et al. [13] to generate aggregates467

formed by polydisperse primary particles, such as implemented in the FLAGE468

code, does not preserve the prescribed fractal properties (Df and kf ) for in-469

dividual aggregates, though it does so globally, i.e., the fractal properties of470

an ensemble of aggregates recover the prescribed values. This observation471

suggests that caution should be taken when a certain property of individual472

aggregates formed by polydisperse primary particles generated by FLAGE is473

investigated, since the fractal dimension or prefactor may be different from474

the expected value. On the other hand, the algorithm developed in this study,475

FracVAL, overcomes the drawback of the Filippov et al. [13]R1.C4 method and476

the FLAGE code.477

Acknowledgments478

This work is supported by the Chilean CONICYT Research programs479

under Grant FONDECYT project 1161453 and partially by PIA-Anillo CyT480

project ACT172095.481

References482

[1] F. Babick, Suspensions of colloidal aggregates, in: Suspensions of Col-483

loidal Particles and Aggregatess, Springer, 2016, pp. 119–220.484

URL https://doi.org/10.1007/978-3-319-30663-6 4485

[2] T. A. Witten, L. M. Sander, Phys. Rev. Lett. 47 (1981) 1400–1403.486

[link].487

URL https://doi.org/10.1103/PhysRevLett.47.1400488

24



[3] P. Meakin, Phys. Rev. Lett. 51 (1983) 1119–1122. [link].489

URL https://doi.org/10.1103/PhysRevLett.51.1119490

[4] M. Kolb, R. Botet, R. Jullien, Phys. Rev. Lett. 51 (1983) 1123–1126.491

[link].492

URL https://doi.org/10.1103/PhysRevLett.51.1123493

[5] R. C. Ball, T. A. Witten, Phys. Rev. A 29 (1984) 2966–2967. [link].494

URL https://doi.org/10.1103/PhysRevA.29.2966495

[6] S. Tolman, P. Meakin, Phys. Rev. A 40 (1989) 428–437. [link].496

URL https://doi.org/10.1103/PhysRevA.40.428497

[7] P. Meakin, J. Sol-Gel Sci. Technol. 15 (2) (1999) 97–117. [link].498

URL https://doi.org/10.1023/A:1008731904082499

[8] F. Braga, M. S. Ribeiro, Comput. Phys. Commun. 182 (8) (2011) 1602500

– 1605. [link].501

URL https://doi.org/10.1016/j.cpc.2011.04.005502

[9] K. R. Kuijpers, L. de Mart́ın, J. R. van Ommen, Comput. Phys. Com-503

mun. 185 (3) (2014) 841–846. [link].504

URL https://doi.org/10.1016/j.cpc.2013.12.003505

[10] C. Li, H. Xiong, Comput. Phys. Commun. 185 (12) (2014) 3424–3429.506

[link].507

URL https://doi.org/10.1016/j.cpc.2014.08.017508

[11] R. Thouy, R. Jullien, J. Phys. A: Math. Gen. 27 (9) (1994) 2953–2963.509

[link].510

URL https://doi.org/10.1088/0305-4470/27/9/012511

[12] D. W. Mackowski, Appl. Opt. 34 (18) (1995) 3535–45. [link].512

URL https://doi.org/10.1364/AO.34.003535513

[13] A. Filippov, M. Zurita, D. Rosner, J. Colloid Interface Sci. 229 (1) (2000)514

261–273. [link].515

URL https://doi.org/10.1006/jcis.2000.7027516

[14] U. Kätzel, R. Bedrich, M. Stintz, R. Ketzmerick, T. Gottschalk-Gaudig,517

H. Barthel, Part. Part. Syst. Char. 25 (1) (2008) 9–18. [link].518

URL https://doi.org/10.1002/ppsc.200700004519

25



[15] R. K. Chakrabarty, M. A. Garro, S. Chancellor, C. Herald,520

H. Moosmüller, Comput. Phys. Commun. 180 (8) (2009) 1376–1381.521

doi:https://doi.org/10.1016/j.cpc.2009.01.026.522

[16] C. Ringl, H. M. Urbassek, Comput. Phys. Commun. 184 (7) (2013)523

1683–1685. [link].524

URL https://doi.org/10.1016/j.cpc.2013.02.012525

[17] L. Ehrl, M. Soos, M. Lattuada, J. Phys. Chem. B 113 (31) (2009) 10587–526

10599. [link].527

URL https://doi.org/10.1021/jp903557m528

[18] S. Prasanna, P. Rivière, A. Soufiani, J. Quant. Spectrosc. Radiat. Trans-529

fer 148 (2014) 141 – 155. [link].530

URL https://doi.org/10.1016/j.jqsrt.2014.07.004531

[19] A. D. Melas, L. Isella, A. G. Konstandopoulos, Y. Drossinos, J. Colloid532

Interface Sci. 417 (2014) 27 – 36. [link].533

URL https://doi.org/10.1016/j.jcis.2013.11.024534

[20] K. Skorupski, J. Mroczka, T. Wriedt, N. Riefler, Physica A 404 (2014)535

106–117. [link].536

URL https://doi.org/10.1016/j.physa.2014.02.072537

[21] M. L. Eggersdorfer, S. E. Pratsinis, Aerosol Sci. Technol. 46 (3) (2012)538

347–353. [link].539

URL https://doi.org/10.1080/02786826.2011.631956540

[22] R. Dastanpour, S. N. Rogak, J. Aerosol Sci. 94 (2016) 22–32. [link].541

URL https://doi.org/10.1016/j.jaerosci.2015.12.005542

[23] M. Tence, J. P. Chevalier, R. Jullien, J. Physique 47 (11) (1986) 1989–543

1998. [link].544

URL https://doi.org/10.1051/jphys:0198600470110198900545

[24] G. Bushell, R. Amal, J. Colloid Interface Sci. 205 (2) (1998) 459–469.546

[link].547

URL https://doi.org/10.1006/jcis.1998.5667548

[25] G. Bushell, R. Amal, J. Raper, Part. Part. Syst. Char. 15 (1998) 3–8.549

[link].550

URL https://doi.org/10.1002/(SICI)1521-4117(199802)15:1<3::AID-PPSC3>3.0.CO;2-K551

26
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Appendix A. Derivation of Eq.(6)611

The resulting center of mass (Rc) of an aggregate formed by the aggre-612

gation of two clusters of N1 and N2 PPs with mass m1 and m2, respectively613

is,614

mRc =
N∑
i=1

mp,iRi =

N1∑
j=1

mp,jRj +

N2∑
k=1

mp,kRk, (A.1)

where N1 +N2 = N and m1 +m2 = m. Therefore,615

mRc = m1Rc1 +m2Rc2. (A.2)

Let’s Γ be the vector that stands for the distance between the center of616

mass of the two sub-clusters,617

Γ = Rc2 −Rc1, (A.3)

getting m1 and m2 from the relation m = m1 + m2 and replacing their618

values in Eq. (A.2) we can obtain,619

Rc1 −Rc = −m2

m
Γ, (A.4a)

Rc2 −Rc =
m1

m
Γ, (A.4b)

On the other hand, from the radius of gyration of the original aggregate620

calculated from Eq. (4) we obtain,621

m2R2
g =

∑N1

j=1mp,j

[
(Rj −Rc1 +Rc1 −Rc)

2 + r2g,p,j
]

+∑N2

k=1mp,k

[
(Rk −Rc2 +Rc2 −Rc)

2 + r2g,p,k
]
,

(A.5)

m2R2
g =

∑N1

j=1mp,j

[
(Rj −Rc1)

2 + r2g,p,j+

2(Rj −Rc1)(Rc1 −Rc)] +∑N2

k=1mp,k

[
(Rk −Rc2)

2 + r2g,p,k+
2(Rk −Rc2)(Rc2 −Rc)] +
m1(Rc1 −Rc)

2 +m2(Rc2 −Rc)
2,

(A.6)

where the terms:
∑N1

j=1 2mp,j(Rj − Rc1)(Rc1 − Rc) and
∑N2

k=1 2mp,k(Rk −622

Rc2)(Rc2 −Rc) are both equal to zero.623
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m2R2
g =

∑N1

j=1mp,j

[
(Rj −Rc1)

2 + r2g,p,j
]

+m1(Rc1 −Rc)
2+∑N2

k=1mp,k

[
(Rk −Rc2)

2 + r2g,p,k
]

+m2(Rc2 −Rc)
2,

(A.7)

combining this result with Eq. (A.4a) and Eq. (A.4b) and introducing Rg1624

and Rg2 as the radius of gyration of both sub-clusters we get,625

m2R2
g = m

(
m1R

2
g1 +m2R

2
g2

)
+ Γ2m1m2, (A.8)

if we consider the particular case of aggregates consisting of monodisperse626

PPs with mass mp, consequently m = Nmp, m1 = N1mp and m2 = N2mp,627

then Eq. (6) turns to,628

N2R2
g = N

(
N1R

2
g1 +N2R

2
g2

)
+ Γ2N1N2, (A.9)

which is equivalent to the relationship derived by Filippov et al. [13].629

Appendix B. Sphere-sphere intersection630

Lets consider two spheres in <3 with equations,631

(x− x1)2 + (y − y1)2 + (z − z1)2 = r21, (B.1a)
632

(x− x2)2 + (y − y2)2 + (z − z2)2 = r22. (B.1b)

Lets d be the distance between the center of the two spheres. Based in633

the law of cosines,634

cos[α] =
−r22 + r21 + d2

2r1d
, (B.2)

The intersection of these two spheres is a circle contained in the plane of635

intersection. Lets ρ be the radius of this circle, then ρ = r1 sin[α], considering636

Eq. (B.2) and the identity sin2[α] + cos2[α] = 1 we obtain,637

ρ =
1

2d

√
4r21d

2 − (−r22 + r21 + d2)
2
. (B.3)

On the other hand, the plane of intersection is obtained by subtracting638

Eq. (B.1a) and Eq. (B.1b) by considering A = 2(x2 − x1), B = 2(y2 − y1),639

C = 2(z2 − z1) and D = (r21 − r22) + (x22 − x21) + (y22 − y21) + (z22 − z21),640

30



Ax+By + Cz = D. (B.4)

The equation of the line that connect the centers of the two spheres is,641

x = x1 + t(x2 − x1), y = y1 + t(y2 − y1), z = z1 + t(z2 − z1), (B.5)

The intersection of this line and the plane given by Eq. (B.4) bring us642

the value of the constant t as following,643

t =
Ax1 +By1 + Cz1 −D

A(x1 − x2) +B(y1 − y2) + C(z1 − z2)
, (B.6)

replacing in Eq. (B.5) we obtain the coordinates ~c of the center of the644

circle of intersection between the two spheres. Finally, with the coordinates645

of the center ~c and the radius ρ, the equation of the circle of intersection of646

the two spheres can be parametrized as follows,647

~r[ψ] = ~c+ ρ cos[ψ]̂i′ + ρ sin[ψ]ĵ′, ψ ∈ [0, 2π] (B.7)

where î′ and ĵ′ are two perpendicular unit vectors belonging to the plane648

given by Eq. (B.4).649

Appendix C. Sensitivity analysis to initial sub-clusters morphol-650

ogy and size651

We intend to answer the following question: how important are the ini-652

tial sub-clusters to the final aggregates generated with FracVAL? To this end653

a sensitivity analysis of the density pair-correlation function f(r) is carried654

out. For aggregates consisting of N = 100 monomers a sensitivity analysis655

is developed for monodisperse (Fig. C.15(a) and Fig. C.15(b)) and poly-656

disperse (Fig. C.15(c) and Fig. C.15(d)) primary particles. A total of 3657

parameters are varied. In Fig. C.15(a) and Fig. C.15(c) the sensitivity of658

the density pair-correlation function f(r) to the size of initial sub-clusters is659

tested considering Nsub = 5, 10 and 15% (expressed in a percentage of N).660

The other two parameters considered are the fractal dimension and prefactor661

used for the generation of sub-clusters. The sensitivity of the density pair-662

correlation function f(r) to Df and kf with a variation of ± 20% is reported663

in Fig. C.15(b) and Fig. C.15(d) for monodisperse and polydisperse PPs,664
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respectively. Please note that in the latter cases only the fractal parameters665

of the sub-clusters are variated meanwhile those corresponding to the final666

aggregate remain constant (fixed to the original imposed Df and kf ). As667

expected, for all cases consisting of monodisperse PPs there is no variation668

for r/rp,geo ≤ 2, because at this scale only intersection between equally sized669

spheres is found. For larger ranges r/rp,geo > 2 the overall behaviour of the670

pair correlation function is not significantly affected by the three concerned671

parameters except in the polydisperse PPs case when the fractal dimension of672

the sub-cluster is strongly modified (± 20%). Nevertheless, the effect seems673

limited to the domain of r/rp,geo ∈ [2, 8].674

Appendix D. Further explanation of cases 2 and 3 of section 3.2675

In the context of Section 3.2 in sub-step 4b we identified 3 possible cases of676

aggregation of two sub-clusters A1 and A2. The main part of the manuscript677

is devoted to explain Case 1 for being considered as the most common case.678

This appendix intends to provide a detailed explanation of Cases 2 and 3.679

• Case 2: When the sphere of radius Di1,+ is large to enclose the sphere680

of radius Dj2,+, i.e., when (Di1,+ − Dj2,+) > Γ12 with an upper limit681

Di1,− ≤ Γ12 +Dj2,+. Please see Fig. D.16.682

• Case 3: Analogously, when the sphere of radius Dj2,+ is large to enclose683

the sphere of radius Di1,+, i.e., when (Dj2,+ − Di1,+) > Γ12 with an684

upper limit Dj2,− ≤ Γ12 +Di1,+.685

In the context of sub-step 4c, there are three different scenarios for joining686

the sub-cluster A1 and A2 by selecting the candidate primary particles s1687

(belonging to A1) and s2 (belonging to A2). Therefore, we will be concerned688

about the following spheres,689

Sph.1 : D2
s1,+ = (X −Xcm,1)

2 + (Y − Ycm,1)2 + (Z − Zcm,1)2, (D.1a)

690

Sph.2 : D2
s1,− = (X −Xcm,1)

2 + (Y − Ycm,1)2 + (Z − Zcm,1)2, (D.1b)
691

Sph.3 : D2
s2,+ = (X −Xcm,2)

2 + (Y − Ycm,2)2 + (Z − Zcm,2)2, (D.1c)
692

Sph.4 : D2
s2,− = (X −Xcm,2)

2 + (Y − Ycm,2)2 + (Z − Zcm,2)2. (D.1d)

The reason that many spheres appear is that the possible solutions, i.e.,693

the intersections between s1 and s2, correspond to the intersection of two694
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Figure C.15: Sensitivity analysis of density-density correlation function for the initial sub-
clusters consisting of monodisperse (a and b) and polydisperse PPs (Figs. c and d). Figs.
(a) and (c) illustrate the sensitivity of the initial sub-clusters size (Nsub), and Figures (b)
and (d) show the sensitivity to fractal parameters (Df and kf ). All aggregates consist
of N = 100 monomers, fractal parameters Df = 1.79 and kf = 1.40 for monodisperse
(σp,geo = 1) and Df = 1.68 and kf = 0.98 for polydisperse PPs (σp,geo = 2).

spherical shells. The spherical shell belonging to A1 is determined by the695

concentric spheres Sph.1 and Sph.2 and the spherical shell belonging to A2696

is analogously determined by the spheres Sph.3 and Sph.4. The above men-697

tioned 3 possible scenarios are described as follows,698

• Please note that the intersection of spheres 2 and 4 is not possible and699

therefore it does not lead to any possible solution.700

• Scenario 1: When Γ12 ≥ |Ds1,+ − Ds2,+|. In this case (considered701
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Figure D.16: Limiting candidate for Case 2 (Di1,+ is large to enclose the sphere of radius
Dj2,+). This is analogous to Case 3.

the most common) we examine a random point in the spherical cap702

belonging to Sph.1 generated by the intersection of spheres Sph.1 and703

Sph.3 as illustrated in Fig. D.17(a). Once this point is selected, the704

position of monomer s1 is finally set by a displacement of the radius705

of monomer s1 (rs1) in the unitary direction defined by CM1 and the706

current position of s1 (vector pointing to s1). Additionally, the spheres707

Sph.1 and Sph.4 can also intersect. In this case, the solution is found708

in the spherical segment illustrated in Fig. D.17(b).709

Any point in the spherical cap (Fig. D.17(a)) or spherical segment710

(Fig. D.17(b)) can be a solution for finding a point contact between711

s1 and s2; however, this process of search may be very time consum-712

ing. That is the reason why FracVAL offers the option of enabling or713

disabling (by a binary value in the code) the search of random points714

on these surfaces. The other option is simply to select the intersection715

between the two larger spheres as described in section 3.2.716

• Scenario 2: When Γ12 < Ds1,+−Ds2,+ and Γ12 > Ds1,−−Ds2,+. In this717

case, we search a random point in the spherical cap belonging to Sph.2718

generated by the intersection of Sph.2 and Sph.3. Once this point is719

selected the position of s1 is finally set by a displacement of rs1 in the720

unitary direction defined by CM1 and the current position of s1 (vector721

pointing to s1). Please refer to the illustration of Fig. D.18(a), as can722
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Figure D.17: (a) Spherical cap corresponding to A1, given by the intersection of Sph.1
and Sph.3. (b) Truncated spherical cap or spherical segment corresponding to A1, given
by the intersection of Sph.1 and Sph.3 and limited by Sph.4.

be seen, the solution of Scenario 1 is not possible because sphere Sph.1723

(radius Ds1,+) is too big and therefore there is no intersection with724

sphere Sph.3 (radius Ds2,+). In this case, the position of monomer s1725

is found in the spherical cap of sphere Sph.2 (radius Ds1,−) generated726

by the intersection of spheres Sph.2 and Sph.3.727

CM1
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Γ12

A1
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Spherical cap

Ds1,-
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(a)

s1
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s2
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Spherical cap

Ds1,-

Ds2,-
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(b)

Figure D.18: (a) Example of scenario 2. (b) Example of scenario 3.

• Scenario 3: When Γ12 < Ds2,+ − Ds1,+ and Γ12 > Ds2,− − Ds1,+. In728

this case, we examine a random point in the spherical cap belonging729
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to Sph.2 generated by the intersection of Sph.2 and Sph.4. Once this730

point is selected the position of s1 is finally set by a displacement of731

rs1 in the opposite unitary direction defined by CM1 and the current732

position of s1 (vector pointing to s1). The solution of Scenario 1 is not733

possible because sphere Sph.3 (of radius Ds2,+) is large and therefore734

there is no intersection with sphere Sph.1 (of radius Ds1,+). In this735

case, the position of monomer s1 is found in the spherical cap of sphere736

Sph.2 (of radius Ds1,−) generated by the intersection of spheres Sph.2737

and Sph.4 (please refer to Fig. D.18(b) for more details).738
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