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Abstract – It is well believed that the volumetric entropy of Edwards captures part of the physics 
of granular media, but it is still unclear whether it can be applied to granular systems under 
mechanical stress. By working out a recent proposal by Aste, Di Matteo et al. to measure Edwards’ 
compactivity from the volume distribution of Voronoı̈  or Delaunay tessellations (Phys. Rev. E, 77 
(2008) 021309), and assuming that the total volume divides into elementary cells of fixed minimal 
volume, we derive an equation of state relating the compactivity to the packing fraction, and we 
show by extensive molecular-dynamics simulations that this equation and its underlying assumption 
describe well the volumetric aspects of both the limit state of isotropic compression and the limit 
state of shear (also called critical state in soil mechanics) for three-dimensional ensembles of mono-
disperse spheres, for a broad range of the sliding and rolling friction coefficients. In addition, by 
using the limit state of isotropic compression as testing ground, we find that the compactivity, the 
entropy per elementary cell and the number of elementary cells per grain computed by this method 
are the same within statistical precision, either by using Voronöı, Delaunay, or centroidal Voronoı̈  
tessellations, allowing thus for an objective definition. This means that not only Aste’s cell method 
is robust and suitable to measure Edwards’ compactivity of granular systems under mechanical 
stress but also the actual nature of the elementary cells might be unimportant.

Describing granular media within statistical mechanics
is a long cherished dream [1]. Indeed, a disordered mate-
rial composed of a large number of individual solid grains
where we are just interested in their collective behavior
seems to be a perfect candidate for a statistical descrip-
tion. This would be specially suitable for macroscopic
states prepared by a well-defined protocol (like pluviation)
or for limit states where the memory of the initial condi-
tions has been lost, such as the limit state of isotropic
compression or the limit state of simple shear. How-
ever, granular media are dissipative systems and the usual
methods of equilibrium statistical mechanics do not apply
directly.

One enlightening approach is Edwards’ volume ensem-
ble [2–5]. A granular material has the unique property

of jamming in various states with different volumes (or
packing fractions). If the volume is not restrained, it can
change during a shear deformation (dilatancy). Edwards
suggested that, in analogy to classical statistical systems,
a microcanonical granular ensemble may be characterized
by all jammed mechanically stable states of equal volume
VT (instead of energy). Hence, a statistical mechanical
approach may be initiated by assuming that all configu-
rations of the same volume are equiprobable. The com-
pactivity χ is the derivative of the volume with respect
to entropy and, in this sense, replaces thermodynamical
temperature.

Nevertheless, applying this theory is a challenging issue
in itself because accounting for mechanical stability and
measuring compactivity are not easy tasks. Furthermore,



there is some evidence suggesting that the volume ensem-
ble must be complemented by a description of forces to 
properly model granular media [6,7]. Nevertheless, in a 
recent work, Aste, Di Matteo and coworkers [4,5] intro-
duced a promising method to compute the compactivity 
with good statistics from the volume distribution of either 
Voronöı or Delaunay cells. The method, to which we will 
refer below as “cell method”, is based on the hypothesis 
that the total volume divides into elementary cells of vol-
umes vi, which characterize the volume distribution of the 
system, all elementary cells having a volume larger than 
or equal to a fixed minimal value vmin, due to the steric 
exclusions between particles and the volumes of the par-
ticles themselves. This method has been used to describe 
granular states created by pluviation [4] and to charact-
erize the transition to crystallization [8], but it is not clear 
if this approach can be applied on samples under mechan-
ical stress, like compression or shear, because it does not 
account for the forces. Here we show that the volumetric 
aspects of some reference states, like the limit states ob-
tained by isotropic compression or by long time shearing, 
can be properly described by this theory. Moreover, we 
analytically derive an equipartition expression relating the 
volume fraction to the compactivity, and we show that it 
holds for the limit state of isotropic compression without 
tuning any adjusting parameter. In addition, the volu-
metric aspects of the limit state of shear (also known as 
critical state in soil mechanics) seem also to be described 
by the theory, but with a different value for the minimal 
volume vmin of an elementary cell.

Consider a sample of N grains in a box of total volume 
VT , in mechanical equilibrium with some external stress. 
Let us assume that VT is divided into C elementary cells1

of similar shape and volume vi (i = 1, 2, · · · , C), with
vi ≥ vmin and

∑C
i=1 vi = VT , and that these volumes are

the only independent degrees of freedom. Next, consider
the configurational space where each free volume v′

i ≡ vi−
vmin is a coordinate. We further assume that all ways
to divide the total excess volume V ′

T ≡ VT − Cvmin into
the C elementary cells are equally probable. The locus
of all volume distributions with a total excess volume less
than or equal to V ′

T is a standard simplex of length V ′
T

and volume Σ(VT , C) = (V ′
T )C/(Λ3CC!), where we have

introduced a reference length Λ to make Σ dimensionless.
Therefore, the density of states Ω = ∂Σ/∂VT with total
volume between VT and VT + dVT is

Ω(VT , C) =
(VT − Cvmin)C−1

Λ3C(C − 1)!
. (1)

The probability to find a specific elementary cell with a
volume between v and v + dv equals the fraction of all

1In two dimensions, these elementary cells might be identified
with the quadrons proposed by Blumenfeld et al. [9,10], but this
hypothesis needs to be tested.

configurations with this condition,

p(v)dv =
Ω(VT − v, C − 1)

Ω(VT , C)
dv

Λ3C

=
(C − 1)/C

(〈v〉 − vmin)

(
1 − v − vmin

C(〈v〉 − vmin)

)C−2

dv, (2)

where 〈v〉 = VT /C. In the limit of C → ∞, with 〈v〉 finite,
this leads to

p(v)dv =
1
χ

e−(v−vmin)/χ dv, (3)

where χ = 〈v〉−vmin (the free volume per elementary cell)
coincides with Edwards’ compactivity [4,5].

Equation (3) can be used as in classical statistical me-
chanics to extract useful relations. For instance, given
p(v) = exp(−v/χ)/Z(χ, 1) one can identify the parti-
tion function for a single elementary cell, Z(χ, 1) =
χ
Λ3 exp(−vmin/χ, ), and the Gibbs entropy of a single ele-
mentary cell becomes

S(χ, 1) = −
∫ ∞

vmin

p(v) ln
[
Λ3p(v)

]
dv (4)

=
〈v〉
χ

+ ln Z(χ, 1) = 1 + ln
χ

Λ3 . (5)

If we assume, as a first approximation, that the C cells are
statistically independent, the volumetric entropy for the
whole system will be S(χ, C) = C

[
1 + ln

(
χ
Λ3

)]
, which

fulfills ∂S(χ, C)/∂VT = 1/χ, as expected, because χ =
VT /C − vmin. Actually, this last expression is an equipar-
tition relation for the system.

Because we do not know exactly what the elementary
cells are, it is not possible to measure χ directly. Instead,
Aste, Di Matteo and coworkers proposed to divide the to-
tal volume into Voronöı, Delaunay or similar cells and to
assume that each tessellation cell is composed of k elemen-
tary cells [4]. Since the volume of each elementary cell has
en exponential distribution (3), and they are assumed to
be statistically independent, the volume V of a tessella-
tion cell will be distributed as a gamma distribution of
parameter k [4,5]:

Pχ(V ) =
kk

Γ(k)
(V − Vmin)k−1

(〈V 〉 − Vmin)k
e

−k
V −Vmin

〈V 〉−Vmin , (6)

where Vmin = kvmin is the minimal volume for a tessella-
tion cell. Then, one can use the expected value 〈V 〉 and
the variance σ2

V of this distribution to estimate

k =
(〈V 〉 − Vmin)2

σ2
V

, χ =
σ2

V

〈V 〉 − Vmin
, (7)

and C = VT /(χ + Vmin/k). This shows that the whole
distribution is uniquely determined by its first and second
moments. The parameter Vmin is known for Voronöı cells
in monodisperse grains, but it should be fit for other cases,
including polydisperse systems.



From (6), one also obtains that the Gibbs entropy for a
tessellation cell [4,5],

Scell = k 1 + ln
( 〈V 〉 − Vmin

kΛ3

)]
, (8)

is just k times the entropy of a single elementary cell (since
the k elementary cells are assumed statistically indepen-
dent).

Other methods to compute χ, like the volume fluc-
tuations method [11,12] or the overlapping histogram
technique [13], can be analytically derived from the cell
method. The volume fluctuations method computes the
fluctuations of the total volume σ2

V as a function of
〈V 〉 and integrates them to estimate differences in com-
pactivity. Indeed, if k is approximately constant (a good
approximation as we will show later), then

−
∫ V2

V1

d〈V 〉
σ2

V [〈V 〉] = −
∫ V2

V1

kd〈V 〉
(〈V 〉 − Vmin)2

=
1
χ2

− 1
χ1

, (9)

which is exactly the expression proposed by the volume
fluctuations method [11,12]. Similarly, the overlapping
histogram technique is based on the assumption that, at
fixed compactivity, tessellation cell volumes distribute ex-
ponentially, a result that can also be derived from the
cell method. Because the k elementary cells in a tessella-
tion cell are assumed statistically independent, the parti-
tion function for such a tessellation cell is just Z(χ, k) =
Z(χ, 1)k =

(
χ
Λ3

)k exp(−Vmin/χ). Thus, eq. (6) can be
rewritten to show that the basic expression for the over-
lapping histogram method,

Pχ1(V )
Pχ2(V )

=
Z(χ2, k)
Z(χ1, k)

e
−V

(
1

χ1
− 1

χ2

)
, (10)

holds2. The ratio between volume distributions can be fit-
ted to estimate compactivity differences, when both dis-
tributions overlap on a broad volume interval.

It is worth mentioning that in the case of Voronöı
cells this “cell method” leads to simple and useful ex-
pressions. First, the minimal volume for a 3D Voronöı
cell can be computed exactly as (see [14]) V Voro

min =

55/4/
√

2(29 + 13
√

5)d3. Because vmin is also constant,
it means that kVoro = C/N = V Voro

min /vmin must be also
a constant. Thus, one can multiply χ = 〈v〉 − vmin by
C/(Nvgrain) on both sides (with vgrain = πd3/6 the vol-
ume of a single grain, d, the grain diameter) to obtain

C

Nvgrain
χ =

1
ν

− V Voro
min

vgrain
, (11)

where ν is the packing fraction (ratio of solid volume to
total volume) and V Voro

min /vgrain 	 1.3250 is a constant.

2In ref. [13] it was stated that the k-gamma distribution was not
able to predict the correct dependence between the compactivity and
the mean volume. But that conclusion was based on an incorrect
identification of the entropy as S(V ) = (k − 1) ln(V − Vmin).

Table 1: Setup for isotropic compression and simple shear
under confining stress σwall.

Name Value
Number of particles (N) 104

Dimensionless stiffness (κ) 2 × 104

Normal spring constant (Kn) κσwall
Normal restitution (en) 0.2
Tangential spring constant (Kt) 0.8Kn

Tangential restitution (et) 0.1
Sliding friction (μs) 0.3
Rolling friction (μr) 0.05

Even more, by comparing this expression with that for the
RCP (and taking νRCP = 0.64, see [15,16]), we arrive at

χ = A

(
1
ν

− V Voro
min

vgrain

)
, (12)

with A = χRCP/( 1
νRCP

− V Voro
min

vgrain
) 	 0.04481d3. This is a

state equation between the compactivity and the pack-
ing fraction. Interestingly, this equation involves no free
parameter to be adjusted. This shows a possible min-
imum parameter set necessary to describe the system
state [7,17,18].

In view of applying the above theory to granular systems
under mechanical stress, we performed extensive three-
dimensional simulations on a packing of mono-disperse
spheres in two limit states: the limit state of isotropic com-
pression and the limit state of shear, with several values
of the coefficients of rolling μr and sliding μs friction. The
rolling friction is implemented as in [19], where you should
multiply by the radius to get a maximum torque. All
numerical samples were prepared from a dilute and ran-
domly disordered cubic sample (packing fraction 	 0.20).
To ensure reproducibility (i.e. independence from the ini-
tial conditions) and homogeneity both in stress and fabric
for the final state [20,21], we applied a quasi-static com-
pression with very low inertial number I = ε̇d

√
ρm/P 	

5 × 10−4, where ε̇ is the deformation rate, d the mean di-
ameter, ρm the mass density, and P the external pressure.
Moreover, special care was taken to assure that crystal-
lization was absent in the sample [22,23]. This limit state
of isotropic compression was also the initial state for the
shear, which was also driven with I 	 5 × 10−4 until both
the volume fraction and shear stress level off. We used
the soft-particle discrete-element method [21] with a high
dimensionless stiffness κ = Kn/dσwall = 2 × 104, where
Kn is the grain elastic constant and σwall is the final value
of the pressure applied on the six faces of the cubic sam-
ple (for isotropic compression) or on the top-bottom walls
(for the shear) [20,21]. All other simulation parameters are
listed in table 1. Once the total volume reaches its final
value, the spatial tessellations are constructed for the inner
particles (three diameters away from the boundaries) and
the statistical variables are computed. Each simulation



Fig. 1: (Color online) Volume distributions of Voronöı, cen-
troidal Voronöı and Delaunay cells in the limit state of isotropic
compression, with μr = 0.05 as example, and several values
of μs. Results are similar for other values of μr. The inset
shows the original volume distributions without normalization.
The continuous lines represent eq. (6) with k = 12, k = 22, and
k = 2.0 for Voronöı, centroidal Voronöı, and Delaunay cells,
respectively. The average chi-square agreement between the
continuous lines and the measured distributions is 0.029(1).

was repeated eight times with different initial grain po-
sitions to compute error bars. This protocol resembles
typical laboratory procedures, where the material is com-
pressed from an initial looser state compared to methods
like the Lubachevsky-Stillinger or Jodrey-Tory protocols
where particles are grown in size at a given speed until
some specified density is achieved [24,25].

The first main result we obtained is that Voronöı,
Delaunay and centroidal Voronöı cells do distribute as
k-gamma (fig. 1), with a different value of k for each cell
type; that is, the elementary cell theory actually applies to
frictional granular systems under mechanical stress. Res-
ults are similar for other values of μr (see footnote 3).

Regarding the entropy, and since only differences in en-
tropy are physically meaningful, one can choose a reference
state, for instance the random close packing (RCP) [18,26],
and define ΔS = S − SRCP = lnχ − ln XRCP. Choosing
the RCP as reference state with null entropy, since it cor-
responds to a maximum density limit, see [27], leads to
Λ = 3

√
e χRCP in eq. (4), where e is the base of natu-

ral logarithms. Our measurements on a RCP, obtained
through the isotropic compression of 	 10000 frictionless
particles4 (also shown in fig. 1) yield χRCP/d3 = 0.0101(1)
by using Voronöı cells and χRCP/d3 = 0.0104(4) by using
Delaunay ones. This value corresponds to Λ/d 	 0.301,
giving support to the value used by [8].

3For the Voronöı cells all cells are included in the analysis; in
contrast, vDela

min is computed by fitting the k-gamma complementary
cumulative distribution, and only cells with V ≥ V Dela

min are included.
This last procedure was validated by reproducing the values of χ
gathered by Aste et al. [5] for an experimental sample of � 90000
grains prepared by pluviation.

4The RCP was identified by verifying that the order metrics Q4
and Q6 took the characteristics of the maximally random jammed
state reported by [23,28].

Fig. 2: (Color online) Compactivity differences computed from
both the cell method (circles, eq. (7)) and overlapping his-
tograms method (squares, eq. (9)), for several values of μs,
constant μr = 0.05, and a reference value at μs,ref = 0.1. The
inset shows, in semi-log scale, that the ratio between the dis-
tributions of total volumes at different mean volumes are ap-
proximately exponential within the overlapping range, as the
overlapping histograms method assumes. The μs values are
color-encoded as in fig. 1.

Computing compactivities and entropies is easier with
the cell method, because it only needs the volume distri-
bution, and coincides with the volume fluctuations and
overlapping histograms methods. Figure 2 shows a good
agreement among the compactivities obtained from the
cell method and those obtained from the overlapping-
histogram method. The results are computed for several
values of the sliding friction coefficient, with a constant
rolling friction coefficient μr = 0.05 and fixing χ for
μs = 0.1 as reference value for the overlapping-histogram
method. Similar results are obtained for different values
of μr and for other reference values. The inset shows the
histograms ratios in semi-log scale, which indicates an ex-
ponential trend in the overlapping region.

The next step is to establish that the predictions of the
model are independent of tessellation. If this is true, it
will provide a strong support of this method for the esti-
mation of compactivities, which are not only independent
of the tessellation but also coincide quantitatively with
other approaches, as shown before. To show this property,
we tessellated the total volume by three different meth-
ods: the Voronöı tessellation, the Delaunay tessellation,
and the centroidal Voronöı tessellation [14,29]. Figure 3
shows the compactivity χ, the entropy per elementary cell
S(χ, 1) = S(χ, k)/k, and C/N , as functions of the slid-
ing friction coefficient μs, obtained with μr = 0.05 from
the three tessellations. All of them give the same results
within error bars. In addition, C/N (which equals k for
Voronöı cells) shows small error bars and is almost con-
stant for μs ≥ 0.2, as the cell method requires. These
results show that these three statistical quantities are in-
dependent of the tessellation employed to measure them.
The inset shows the entropy per tessellation cell, which
actually differs because the number k of elementary cells
per tessellation cell is different for each one.



Fig. 3: (Color online) Compactivity χ, entropy per elementary
cell S(χ, 1) = S/k, and number of elementary cells per grain
C/N at the limit state of isotropic compression, as functions of
the sliding friction coefficient μs, with fixed μr = 0.05, as com-
puted from Voronöı (black circles), Delaunay (green squares),
and centroidal Voronöı (red diamonds) tessellations. The inset
shows the entropy S which is different for each tessellation.

This independence with respect to the tessellation was
confirmed on simulations with many more combinations of
μs and μr. Figure 4 displays χ as a function of μs and μr,
computed from the same three tessellations. The agree-
ment is again excellent (within error bars). As expected,
increasing the sliding or rolling friction coefficients leads
to a looser state of higher compactivity [30,31], but the
compactivity increases up to a saturation value, since the
grains must keep a minimum number of contacts in order
to sustain the external pressure5.

Finally, a major result of the present work is to establish
an equation of state (actually an equipartition relation)
between the compactivity χ and the packing fraction ν,
where no fit parameters are involved (eq. (12)). The
larger the packing fraction, the smaller the compactivity.
Figure 5 displays χ as a function of 1/ν. We see that a
rather large number of numerical data for the limit state
of isotropic compression collapse over the trend stated by
eq. (12), even for extreme values of the rolling friction up
to μr = 0.50 (within error bars). The fact that so many
systems of stiff grains with such different values of μr and
μs fit all of them in the same equation of state suggests
that the volumetric and force-network aspects of a granu-
lar systems in the limit of hard spheres might be studied
separately.

The actual mechanical nature of the system is reflected
on the prefactor A of the state equation, since the ref-
erence state does not need to be the RCP if the limit
state is not the one of isotropic compression. For exam-
ple, fig. 5 also shows some data from bi-periodic simple

5In contrast, varying κ from 200 to 40000 (at a fixed confining
pressure σwall = 104 Pa) does not affect χ, but it affects C/N , which
increases and saturates for increasingly stiff spheres

Fig. 4: (Color online) Compactivity χ/d3 as a function of
rolling, μr, and sliding, μs, friction coefficients, computed
from Voronöı (diamonds), Delaunay (squares), and centroidal
Voronöı (circles) tessellations. As guide to the eyes, the solid
lines are exponential functions.

Fig. 5: (Color online) Compactivity χ/d3 as a function of the
inverse of packing fraction 1/ν, for both the limit states of
isotropic compression and simple bi-periodic shear for mono-
disperse spheres. Each color represents simulations with a
fixed value of μr and several values of μs between 0.1 and 1.0.
The solid line is the prediction of eq. (12). The dashed line
represents a fit of the theoretical prediction for simple shear
tests. Some additional data obtained with the LMGC90 con-
tact dynamics code [32] are also included.

shear simulations. These results are outside eq. (12), but,
they follow a similar linear trend. This can be explained
considering that the actual RCP state does not represent
a sheared system in terms of internal system geometry
and volume partition. A frictionless simple-sheared sys-
tem [33,34], which actually has a non-zero macroscopic
friction, would do better. In this case, the actual value for
χref will be smaller, and, therefore, the equation of state
will have a smaller slope, as observed in fig. 5.

It is important to note that k = C/N 	 12 for Voronöı
cells, which is also the average number of first neighbors
for a monodisperse system in 3D; a clue for future works
to establish what actually elementary cells are.

In summary, by extensive three-dimensional MD simu-
lations of sphere packings on broad ranges of sliding and



rolling coefficients, we showed, first, that the cell method 
does also describe samples under mechanical stress and, 
second, that the main statistical quantities describing a 
packing in this theory (compactivity, entropy per elemen-
tary cell and mean number of elementary cells per grain) 
are independent of the tessellation method. This find-
ing provides a strong support for the objectivity of the 
cell method and Edwards’ entropy. These quantities ap-
pear thus as suitable parameters for describing these limit 
states. Next, using this framework, we derived an ana-
lytic expression for the total volumetric entropy, and an 
equation of state relating the compactivity and the pack-
ing fraction in close agreement with numerical data. This 
equation provides a means to measure the compactivity 
from volume fractions. More importantly, it can be used 
in conjunction with constitutive modeling of quasi-static 
rheology of granular materials, which is often based on 
phenomenological approaches. In particular, our equation 
of state may be extended to include memory effects or, at 
least, it can be used to quantify such effects under complex 
loading conditions.
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República, Colombia. WFO thanks the LMGC for sup-
port during his stay in France, where part of this work 
was completed.

REFERENCES

[1] Cowin S. C. and Satake M., J. Rheol., 23 (1979) 243.
[2] Edwards S. F. and Oakeshott R. B. S., Physica A:

Stat. Theor. Phys., 157 (1989) 1080.
[3] Hinrichsen H. and Wolf D. E. (Editors), The Physics

of Granular Media (Vch Verlagsgesellschaft Mbh) 2004.
[4] Aste T. and DiMatteo T., Phys. Rev. E, 77 (2008)

021309.
[5] Aste T., Di Matteo T., Saadatfar M., Senden T. J.,
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