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Abstract

A variety of dirhenium carbonyl complexes containing π-conjugated phosphole 

derivatives were obtained from reaction of [Re2(CO)8(CH3CN)2] with each of the following 

phospholes: 2,5-bis(2-thienyl)-1-phenylphosphole (btpp), 2,5-bis(2-pyridyl)-1-

phenylphosphole (bpypp) and 1,2,5-triphenylphosphole (tpp). The π-conjugated phospholes 

were found to behave as two-, four- or six-electron donor ligands via σ or σ-π interactions 

with the metal centers, presenting bridging or chelating coordination modes as determined 

by spectroscopic methods and single crystal X-ray diffraction analysis. Metal-metal bond 

cleavage was evidenced when btpp was used, leading to a mono-substituted mononuclear 

complex. Variable-temperature 1H NMR studies for σ,π-complexes showed a fluxional 

behavior due to the restricted rotation around the P–C and C–C bonds of the 1,2,5-

trisubstituted phosphole ring.
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1. Introduction

Phosphole ligands display an important role in organometallic and coordination 

chemistry, owing to their ability to stabilize a great variety of metal complexes [1–7]. 

Structural diversity of their transition metal complexes has been facilitated by the ability of 

act as both σ- and π-donor ligands, sometimes simultaneously [8]. Phosphole-complexes 

have been used in many catalytic transformations of synthetic relevance, such as 

hydroformylation, hydrosilylation, asymmetric allylic substitution and single and double A3-

coupling [9–15]. They also have been reported as multifunctional materials for OLEDs [16–

19], as well as potent Thioredoxin reductase (TrxR) inhibitors [20–24].

Carbonyl complexes that incorporate two or more metal centers are particularly 

attractive because of their ability to provide access to catalytic reaction pathways that might 

not be offered in mononuclear chemistry [25–30], such as reversible metal–metal bond 

cleavage, skeletal rearrangement without degradation and ligand activation via multisite 

coordination [31–37]. 

Due to the versatility of phospholes and metal carbonyl complexes, we have been 

exploring the interaction of both chemical entities. We have found σ- and σ,π-complexes, 

metal-metal bond cleavage and formation of derivatives where the phosphole ligand have 

undergone P–P and P–C bonds cleavage, C–H bond activation or partial hydrogenation of 

phosphorus ring [8,38–42]. Herein, we have studied the reactivity of 2,5-disubstituted 

phenylphosphole derivatives with [Re2(CO)8(CH3CN)2] to investigate coordination modes 

that could afford novel types of rhenium complexes. Thus, we report the synthesis and 



  

structural characterization of a new series of phosphole-rhenium complexes from the reaction 

of [Re2(CO)8(CH3CN)2] with the π-conjugated phosphole derivatives 2,5-bis(2-thienyl)-1-

phenylphosphole (btpp), 2,5-bis(2-pyridyl)-1-phenylphosphole (bpypp) and 1,2,5-

triphenylphosphole (tpp).

2. Experimental 

2.1. General Remarks. All reactions were carried out under nitrogen atmosphere using 

standard Schlenk techniques unless otherwise stated. The solvents were previously dried and 

distilled following standard methods [43]. [Re2(CO)8(CH3CN)2], 2,5-bis(2-thienyl)-1-

phenylphosphole (btpp); 2,5-bis(2-pyridyl)-1-phenylphosphole (bpypp) and 1,2,5-

triphenylphosphole (tpp) were synthesized according to published procedures [44,45]. NMR 

spectra were recorded on Bruker Avance AM300 and AM500 spectrometers. Assignments 

of 1H and 13C chemical shifts were based on COSY, HMQC and HMBC experiments. IR 

spectra were recorded on a Nicolet 5DXC. 

2.2. Crystal structure determination. Single crystals suitable for X-ray crystal analysis were 

obtained by slow evaporation in cyclohexane/dichloromethane mixtures. Single crystal data 

collection were performed at 100 K for derivative 2, 6 and 7, and at 150 K for derivative 1, 

4 and 5 with an APEX II Bruker-AXS (Centre de Diffractométrie, Université de Rennes 1, 

France) with Mo-K radiation ( = 0.71073 Å). Reflections were indexed, Lorentz-

polarization corrected and integrated by using DENZO from KappaCCD software package. 

The data merging process was performed with the program SCALEPACK [46]. Structure 

determinations were performed by direct methods with the solving program SIR97 [47], that 



  

revealed all the non-hydrogen atoms. SHELXL program [48] was used to refine the structures 

by full-matrix least-squares based on F2. Most non-hydrogen atoms were refined with 

anisotropic displacement parameters. Hydrogen atoms were included at idealized positions 

and refined with isotropic displacement parameters. 

In the crystal lattices of derivatives 6 and 7, one dichloromethane solvent molecule 

respectively, was found into the asymmetric unit of the corresponding crystals. In all cases, 

these solvent molecules have a strong tendency to leave the bulk crystal via evaporation once 

the crystals are removed from their mother solutions, a process that induce a rapid 

degradation of the single crystal integrity of the crystals investigated. To slow down this 

process, the single crystals were coated in paratone oil once removed from the mother 

solution, mounted at low temperature (150 K) as quickly as possible on the diffractometer 

goniometer, and then X-ray data collection performed at the same temperature. X-ray crystal 

structure resolution revealed that the solvent molecules were highly disordered. A correct 

modeling for disorders on solvent molecules in the crystal lattice of 7 was succeeded but it 

was more difficult in the case of 6, leading to a model for this disordered solvent molecule 

that is associated to large anisotropy displacement parameters. Nevertheless, a correct 

modeling of this disorder based on the consideration of different CH2Cl2 molecules having 

different locations and relative occupancies freely refined was not possible. As a result, 

ALERTs LEVEL A and B appear in the checkCIF report.

For 1, several carbon atoms could not be refined with anisotropic displacements parameters 

and where refined with isotropic displacements parameters, which generated ALERTs 

LEVEL A and B in the checkCIF report.

For 4, two symmetrically independent molecules were found in the unit cell. In both of them, 

the thienyl rings were found disordered over two positions. The relative occupancies of these 



  

positions (8 positions in total in the unit cell) were modeled with several atoms for which 

isotropic displacement parameters had to be applied, generating ALERTs LEVEL A and B 

in the checkCIF report.

For 7, the phenyl ring carried by the phosphorus atom of the phosphole ring was found to be 

disordered over two positions whose relative occupancies were pondareted. 

Atomic scattering factors for all atoms were taken from International Tables for X-ray 

Crystallography [49]. CCDC reference numbers 1896642, 1896645, 1896647, 1896644, 

1896646, 1896643 contain the supplementary crystallographic data for derivatives 1, 2, 4, 5, 

6 and 7, respectively. These data can be obtained free of charge at 

www.ccdc.cam.ac.uk/conts/retreving.html or from the Cambridge Crystallographic Data 

Center (12 Union Road, Cambridge CB2 1EZ, UK; fax: +44-1223-336-033, e-mail: 

deposit@ccdc.cam.ac.uk).

2.3. Reaction of [Re2(CO)8(CH3CN)2] with 2,5-bis(2-thienyl)-1-phenylphosphole (btpp). A 

solution of [Re2(CO)8(CH3CN)2] (100 mg, 0.147 mmol) and btpp (56 mg, 0.147 mmol) in 

dry cyclohexane (40 mL) was refluxed under nitrogen for 1.5 h. After evaporation of the 

solvent, preparative TLC (SiO2) of the yellow residue (heptane:CH2Cl2, 8:2 v/v) gave five 

bands: [ReH(CO)4(1-btpp)] (1, 20 mg; 10%); [Re2(CO)8(1-bptt)(CH3CN)] (2, 18 mg, 

12%); [Re2(CO)9(1-btpp)] (3, 34 mg, 23%); [Re2(CO)7(µ-1:2:2-btpp)] (4, 37 mg, 26%) 

and [Re2(CO)8(µ-1(P):1(S)-btpp)] (5, 41 mg, 28%). Spectral data for 1: IR (νCO, 

cyclohexane): 2194 w, 2082 m, 1991 s, 1979 s, 1965 s cm-1. 1H NMR (500 MHz, CD2Cl2): 

δ = 7.85 (ddd, 4J(H,H) = 1.3 Hz, 3J(H,H) = 7.0 Hz, 3J(P,H) = 7.1 Hz, 2H, o-HPh), 7.50 (m, 

2H, m-HPh), 7.50 (m, 1H, p-HPh), 7.32 (dd, 3J(H,H) = 3.3 Hz, 3J(H,H) = 3.3 Hz, 2H, H4 thienyl), 

6.95 (d, 3J(H,H) = 3.3 Hz, 2H, H3 thienyl), 6.95 (d, 3J(H,H) = 3.3 Hz, 2H, H5 thienyl), 2.95 (m, 

mailto:deposit@ccdc.cam.ac.uk


  

4H, CH2-C=C), 1.90 (m, 4H, CH2-CH2-C=C), -5.38 (d, 1J(P,H) = 24.2 Hz, M-HT). 13C{1H} 

NMR (500 MHz, CD2Cl2): δ = 144.8 (d, 1J(P,C) = 13.0 Hz, Cα-P), 136.1 (d, 2J(P,C) = 32.2 

Hz, Cβ-P), 135.7 (s, C2 thienyl), 133.6 (s, o-CPh), 133.5 (s, ipso-CPh), 131.7 (d, 4J(P,C) = 2.8 Hz,  

p-CPh), 129.2 (d, 3J(P,C) = 10.0, m-CPh), 127.8 (d, 3J(P,C) = 6.8 Hz, C3 thienyl), 126.8 (s, C4 

thienyl), 126.4 (s, C5 thienyl), 30.0 (d, 3J(P,C) = 8.8 Hz, CH2-C=C), 22.6 (s, CH2-CH2-C=C). 

31P{1H} NMR (200 MHz, CDCl3): δ = + 25.8 (s). Spectral data for 2: IR (νCO, cyclohexane): 

2085 m, 2006 m, 1976 s, 1953 m, 1922 w, 1915 w cm-1. 1H NMR (500 MHz, CD2Cl2): δ = 

7.78 (ddd, 4J(H,H) = 1.9 Hz, 3J(H,H) = 7.4 Hz, 3J(P,H) = 11.8 Hz, 2H, o-HPh), 7.53 (m, 2H, 

m-HPh), 7.53 (m, 2H, p-HPh), 7.33 (d, 3J(H,H) = 5.1 Hz, 2H, H5 thienyl), 6.99 (dd, 3J(H,H) = 3.8 

Hz, 3J(H,H) = 5.1 Hz, 2H, H4 thienyl), 6.90 (d, 3J(H,H) = 3.8 Hz, 2H, H3 thienyl), 3.03 (m, 4H, 

CH2-C=C), 1.99 (m, 4H, CH2-CH2-C=C), 1.91 (s, CH3CN). 13C{1H} NMR (500 MHz, 

CD2Cl2): δ = 205.7 (d, 1J(P,C) = 5.5 Hz, M-CO), 199.6 (d, 1J(P,C) = 6.0 Hz, M-CO), 198.0 

(s, M-CO), 143.5 (d, 2J(P,C) = 13.4 Hz, Cβ-P), 137.0 (d, 2J(P,C) = 17.7 Hz,  C2 thienyl), 136.5 

(d, 1J(P,C) = 48.2 Hz, Cα-P), 135.0 (d, 2J(P,C) = 12.4 Hz, o-CPh), 131.5 (d, 1J(P,C) = 44.6 Hz, 

ipso-CPh), 131.1 (d, 4J(P,C) = 3.2 Hz,  p-CPh), 129.1 (d, 3J(P,C) = 10.6, m-CPh), 127.1 (d, 

3J(P,C) = 5.5 Hz, C3 thienyl), 127.0 (s, C4 thienyl), 125.7 (s, C5 thienyl), 123.6 (s, CH3CN), 28.9 (d, 

3J(P,C) = 8.0 Hz, CH2-C=C), 22.9 (s, CH2-CH2-C=C), 22.8 (s, CH3CN).  31P{1H} NMR (200 

MHz, CDCl3): δ = + 36.0 (s). Spectral data for 3: IR (νCO, cyclohexane): 2105 m, 2037 w, 

1998 s, 1967 m, 1943 m cm-1. 1H NMR (500 MHz, CD2Cl2): δ = 7.70 (ddd, 4J(H,H) = 2.0 

Hz, 3J(H,H) = 6.2 Hz, 3J(P,H) = 8.0 Hz, 2H, o-HPh), 7.60 (m, 2H, m-HPh), 7.60 (m, 2H, p-

HPh), 7.35 (d, 3J(H,H) = 5.1 Hz, 2H, H5 thienyl), 7.02 (dd, 3J(H,H) = 3.8 Hz, 3J(H,H) = 5.1 Hz, 

2H, H4 thienyl), 6.85 (d, 3J(H,H) = 3.8 Hz, 2H, H3 thienyl), 3.11 (m, 4H, CH2-C=C), 1.98 (m, 4H, 

CH2-CH2-C=C). 13C{1H} NMR (500 MHz, CD2Cl2): δ = 197.1 (d, 1J(P,C) = 5.0 Hz, M-CO), 

143.6 (d, 2J(P,C) = 14.4 Hz, Cβ-P), 137.7 (d, 1J(P,C) = 53.2 Hz, Cα-P), 136.0 (d, 2J(P,C) = 18.1 



  

Hz, C2 thienyl), 132.8 (d, 2J(P,C) = 12.8 Hz, o-CPh), 131.6 (d, 1J(P,C) = 43.3 Hz, ipso-CPh), 

130.5 (s, p-CPh), 129.2 (d, 3J(P,C) = 10.7, m-CPh), 127.3 (d, 3J(P,C) = 6.0 Hz, C3 thienyl), 126.9 

(s, C4 thienyl), 126.4 (s, C5 thienyl), 123.6 (s, CH3CN), 28.6 (d, 3J(P,C) = 8.8 Hz, CH2-C=C), 22.6 

(s, CH2-CH2-C=C).  31P{1H} NMR (200 MHz, CDCl3): δ = + 29.2 (s). Spectral data for 4: IR 

(νCO, cyclohexane): 2078 s, 2009 s, 1990 s, 1950 s, 1937 s. cm-1. 1H NMR (500 MHz, CD2Cl2, 

30°C): δ = 7.20 (dd, 4J(H,H) = 1.2 Hz, 3J(H,H) = 5.0 Hz, 2H, H5 thienyl), 6.81 (dd, 3J(H,H) = 

3.7 Hz, 3J(H,H) = 5.0 Hz, 2H, H4 thienyl), 6.49 (d, 3J(H,H) = 1.2 Hz, 2H, H3 thienyl), 3.68 (m, 2H, 

CH2
a-C=C), 3.27 (m, 2H, CH2

b-C=C), 2.35 (m, 2H, CH2
a-CH2-C=C), 2.09 (m, 2H, CH2

b-

CH2-C=C). 1H NMR (500 MHz, CD2Cl2, -30°C): δ = 7.73 (dd, 3J(H,H) = 6.6 Hz, 3J(H,H) = 

7.0 Hz,  1H, ma-HPh), 7.68 (ddd, 4J(H,H) = 1.0 Hz, 3J(H,H) = 6.6 Hz, 2J(P,H) = 7.3 Hz, 1H, 

oa-HPh), 7.60 (ddd, 4J(H,H) = 1.0 Hz, 3J(H,H) = 7.0 Hz, 3J(H,H) = 7.1 Hz, 1H, p-HPh), 7.49 

(dd, 3J(H,H) = 7.1 Hz, 3J(H,H) = 7.4 Hz,  1H, mb-HPh), 7.33 (ddd, 4J(H,H) = 1.1 Hz, 3J(H,H) 

= 7.4 Hz, 2J(P,H) = 7.9 Hz, 1H, ob-HPh). 13C{1H} NMR (500 MHz, CD2Cl2): δ = 196.6 (s, M-

CO), 193.1 (s, M-CO), 192.7 (s, M-CO), 187.8 (d, 1J(P,C) = 10.3 Hz, M-CO), 136.2 (d, 

2J(P,C) = 3.2 Hz, C2 thienyl), 136.1 (s, p-CPh), 136.0 (s, m-CPh), 132.3 (d, 2J(P,C) = 2.0 Hz, o-

CPh), 132.5 (d, 1J(P,C) = 7.8 Hz, ipso-CPh), 130.0 (d, 3J(P,C) = 7.2 Hz, C3 thienyl), 126.8 (s, C4 

thienyl), 126.1 (s, C5 thienyl), 95.6 (d, 2J(P,C) = 7.9 Hz, Cβ-P), 57.6 (d, 1J(P,C) = 49.1 Hz, Cα-P), 

25.5 (s, CH2-C=C), 23.1 (s, CH2-CH2-C=C).  31P{1H} NMR (200 MHz, CDCl3): δ = 6.6 (s). 

Spectral data for 5: IR (νCO, cyclohexane): 2075 s, 2024 s, 1981 s, 1961 m, 1948 m, 1930 s 

cm-1. 1H NMR (500 MHz, CD2Cl2): δ = 7.60 (ddd, 4J(H,H) = 1.3 Hz, 3J(H,H) = 6.4 Hz, 

2J(P,H) = 8.2 Hz, 2H, o-HPh), 7.47 (m, 2H, m-HPh), 7.47 (m, p-HPh), 7.39 (dd, 4J(H,H) = 1.1 

Hz, 3J(H,H) = 5.1 Hz, 1H, H5
a
 thienyl), 7.30 (dd, 4J(H,H) = 0.6 Hz, 3J(H,H) = 5.6 Hz, 1H, H5

b
 

thienyl), 7.19 (ddd, 5J(P,H) = 2.2 Hz, 3J(H,H) = 3.7 Hz, 3J(H,H) = 5.6 Hz, 1H, H4
b
 thienyl), 7.06 



  

(d, 3J(H,H) = 3.7 Hz, 1H, H3
b
 thienyl), 7.02 (dd, 3J(H,H) = 3.8 Hz, 3J(H,H) = 5.1 Hz, 1H, H4

a
 

thienyl), 6.73 (ddd, 4J(H,H) = 1.2 Hz, 3J(H,H) = 3.8 Hz, 4J(P,H) = 1.8 Hz, 1H, H3
a
 thienyl), 3.08 

(m, 1H, CH2
a´-C=C), 2.93 (m, 1H, CH2

b-C=C), 2.87 (m, 1H, CH2
b´-C=C), 2.73 (m, 1H, CH2

a-

C=C), 2.04 (m, 2H, CH2
a-CH2-C=C), 1.60 (m, 2H, CH2

b-CH2-C=C). 13C{1H} NMR (500 

MHz, CD2Cl2): δ = 201.9 (s, M-CO), 200.2 (d, 1J(P,C) = 2.3 Hz, M-CO), 197.9 (d, 1J(P,C) = 

9.2 Hz, M-CO), 194.8 (s, M-CO), 188.9 (d, 1J(P,C) = 10.1 Hz,  M-CO), 186.2 (s, M-CO), 

150.7 (d, 1J(P,C) = 11.8 Hz, Cα
b
-P), 147.5 (d, 2J(P,C) = 13.6 Hz,  C2

b
 thienyl), 145.7 (d, 2J(P,C) 

= 13.2 Hz, Cβ
b
-P), 140.0 (d, 4J(P,C) = 6.11 Hz, C5

b
 thienyl), 139.5 (s, Cα

a
-P), 134.4 (d, 2J(P,C) = 

17.1 Hz, C2
a
 thienyl), 133.1 (d, 2J(P,C) = 11.8 Hz, o-CPh), 131.6 (s, p-CPh), 130.9 (s, C4

b
 thienyl), 

129.7 (s, Cβ
a
-P), 129.3 (s, ipso-CPh), 129.2 (d, 3J(P,C) = 10.4 Hz, m-CPh), 128.6 (d, 3J(P,C) = 

4.6 Hz, C3
a), 127.8 (d, 3J(P,C) = 7.1 Hz, C3

b), 127.4 (s, C5
a), 127.0 (s, C4

a), 29.5 (d, 3J(P,C) = 

7.0 Hz, CH2
b-C=C), 28.3 (s, CH2

a-C=C), 22.6 (s, CH2
b-CH2-C=C), 22.4 (s, CH2

a-CH2-C=C).  

31P{1H} NMR (200 MHz, CDCl3): δ = + 25.4 (s).

2.3.1. Thermal treatment of 3.  A solution of 3 (20 mg) in 10 mL of cyclohexane was heated 

to reflux under nitrogen for 6 h. After evaporation of the solvent and TLC work-up on SiO2 

(eluant heptane:dichloromethane, 8:2 v/v) gave compounds 4 and 5.

2.3.2 Photolysis of 3. A solution of 3 (10 mg) in 5 mL of dried dichloromethane was 

irradiated with white light, the solution color changed from light yellow to phosphorescent 

yellow over 4 h. The solvent was removed and TLC work-up on SiO2 (eluant 

heptane:dichloromethane, 7:3 v/v) gave compound 1.

2.4. Reaction of [Re2(CO)8(CH3CN)2] with 2,5-bis(2-pyridyl)-1-phenylphosphole (bpypp). 

A solution of [Re2(CO)8(CH3CN)2] (100 mg, 0.147 mmol) and bpypp (54 mg, 0.147 mmol) 

in dry cyclohexane (40 mL) was refluxed under nitrogen for 1 h. After evaporation of the 

solvent, preparative TLC (SiO2) of the brown residue (heptane:CH2Cl2, 8:2 v/v) gave two 



  

bands: [Re2(CO)8(1:1-bpypp)] (6, 59 mg, 42%) and [Re2(CO)8(µ-1:1-bpypp)] (7, 48 mg, 

34%). Spectral data for 6: IR (νCO, cyclohexane): 2077 m, 1991 s, 1964 s, 1903 w, 1886 w 

cm-1. 1H NMR (500 MHz, CD2Cl2): δ = 8.95 (dd, 5J(H,H) = 0.5 Hz, 3J(H,H) = 5.6 Hz, 1H, 

H6
b
 pyridyl), 8.70 (dd, 5J(H,H) = 0.7 Hz, 3J(H,H) = 5.4 Hz, 1H, H6

a
 pyridyl), 7.82 (m, 2H, o-HPh), 

7.82 (dd, 3J(H,H) = 7.4 Hz, 3J(H,H) = 7.8 Hz, 1H, H4
b
 pyridyl), 7.72 (dd, 3J(H,H) = 7.6 Hz, 

3J(H,H) = 8.0 Hz, 1H, H4
a
 pyridyl), 7.64 (ddd, 5J(H,H) = 0.7 Hz, 4J(H,H) = 1.4 Hz, 3J(H,H) = 

8.0 Hz, 1H, H3
a
 pyridyl), 7.57 (ddd, 5J(H,H) = 0.5 Hz, 4J(H,H) = 1.8 Hz, 3J(H,H) = 7.8 Hz, 1H, 

H3
b
 pyridyl), 7.31 (m, 2H, m-HPh), 7.31 (m, 1H, p-HPh), 7.17 (ddd, 4J(H,H) = 1.4 Hz, 3J(H,H) = 

5.4 Hz, 3J(H,H) = 7.6 Hz, 1H, H5
a
 pyridyl), 7.04 (ddd, 4J(H,H) = 1.8 Hz, 3J(H,H) = 5.6 Hz, 

3J(H,H) = 7.4 Hz, 1H, H5
b
 pyridyl), 3.31 (m, 1H, CH2

b-C=C), 2.94 (m, 1H, CH2
b´-C=C), 2.94 

(m, 2H, CH2
a-C=C), 2.13 (m, 2H, CH2

a-CH2-C=C), 1.80 (m, 1H, CH2
b-CH2-C=C), 1.76 (m, 

1H, CH2
b´-CH2-C=C). 13C{1H} NMR (500 MHz, CD2Cl2): δ = 207.2 (s, M-CO), 203.7 (s, M-

CO), 203.2 (s, M-CO), 201.1 (s, M-CO), 199.4 (s, M-CO), 197.3 (s, M-CO), 189.1 (s, M-

CO), 156.9 (s, C6
b
 pyridyl), 155.1 (d, 2J(P,C) = 8.4 Hz, C2

b
 pyridyl), 155.0 (d, 1J(P,C) = 7.5 Hz, 

Cα
a
-P), 152.5 (d, 2J(P,C) = 12.8 Hz, C2

a
 pyridyl), 149.1 (s, C6

a
 pyridyl), 147.5 (d, 2J(P,C) = 7.5 Hz, 

Cβ
a
-P), 144.6 (d, 2J(P,C) = 56.5 Hz, Cβ

b
-P), 140.9 (d, 1J(P,C) = 38.2 Hz, Cα

b
-P), 137.1 (s, C4

b
 

pyridyl), 136.3 (s, C4
a
 pyridyl), 135.6 (d, 1J(P,C) = 46.8 Hz, ipso-CPh), 131.7 (d, 2J(P,C) = 10.6 

Hz, o-CPh), 129.7 (s, p-CPh), 127.9 (d, 3J(P,C) = 9.9 Hz, m-CPh), 123.8 (d, 3J(P,C) = 6.9 Hz, 

C3
b
 pyridyl), 123.0 (s, C5

b
 pyridyl), 122.5 (d, 3J(P,C) = 6.8 Hz, C3

a
 pyridyl), 122.0 (s, C5

a
 pyridyl), 29.6 

(d, 3J(P,C) = 7.9 Hz, CH2
b-C=C), 29.0 (d, 3J(P,C) = 4.6 Hz, CH2

a-C=C), 23.4 (s, CH2
b-CH2-

C=C), 21.45 [s, CH2
a-CH2-C=C). 31P{1H} NMR (200 MHz, CDCl3): δ = + 32.0 (s). Spectral 

data for 7: IR (νCO, cyclohexane): 2065 m, 2012 m, 1968 m, 1937 w, 1903 m cm-1. 1H NMR 

(500 MHz, CD2Cl2): δ = 9.20 (d, 3J(H,H) = 5.2 Hz, 1H, H6
b
 pyridyl), 8.54 (d, 3J(H,H) = 6.0 Hz, 



  

1H, H6
a
 pyridyl), 7.71 (dd, 3J(H,H) = 7.3 Hz, 3J(H,H) = 7.3 Hz, 1H, H4

b
 pyridyl), 7.52 (d, 3J(H,H) 

= 7.8 Hz, 1H, H3
a
 pyridyl), 7.50 (m, 2H, o-HPh), 7.51 (dd, 3J(H,H) = 6.7 Hz, 3J(H,H) = 7.8 Hz, 

1H, H4
a
 pyridyl), 7.34 (m, 2H, m-HPh), 7.34 (m, 1H, p-HPh), 7.14 (dd, 3J(H,H) = 5.2 Hz, 3J(H,H) 

= 7.3 Hz, 1H, H5
b
 pyridyl), 7.09 (dd, 3J(H,H) = 6.0 Hz, 3J(H,H) = 6.7 Hz, 1H, H5

a
 pyridyl), 6.78 

(d, 3J(H,H) = 7.3 Hz, 1H, H3
b
 pyridyl), 3.28 (m, 1H, CH2

b-C=C), 3.19 (m, 1H, CH2
a-C=C), 2.84 

(m, 1H, CH2
b´-C=C), 2.58 (m, 1H, CH2

a´-C=C), 2.04 (m, 1H, CH2
a-CH2-C=C), 1.88 (m, 1H, 

CH2
b-CH2-C=C), 1.77 (m, 1H, CH2

b´-CH2-C=C), 1.77 (m, 1H, CH2
a´-CH2-C=C). 13C{1H} 

NMR (500 MHz, CD2Cl2): δ = 207.7 (s, M-CO), 206.3 (s, M-CO), 202.5 (s, M-CO), 198.7 

(d, 1J(P,C) = 11.1 Hz, M-CO), 196.3 (d, 1J(P,C) = 46.3 Hz, M-CO), 195.8 (s, M-CO), 191.2 

(d, 1J(P,C) = 12.6 Hz, M-CO), 189.4 (s, M-CO), 158.5 (s, C6
b
 pyridyl), 157.7 (d, 2J(P,C) = 10.2 

Hz, C2
b
 pyridyl), 152.4 (d, 2J(P,C) = 13.5 Hz, C2

a
 pyridyl), 149.6 (d, 2J(P,C) = 9.4 Hz, Cβ

b
-P), 149.0 

(s, C6
a
 pyridyl), 147.4 (d, 2J(P,C) = 9.6 Hz, Cβ

a
-P), 143.5 (d, 1J(P,C) = 49.3 Hz, Cα

b
-P), 142.9 (d, 

1J(P,C) = 50.4 Hz, Cα
a
-P), 137.9 (s, C4

a
 pyridyl), 136.0 (s, C4

b
 pyridyl), 131.6 (d, 2J(P,C) = 12.4 

Hz, o-CPh), 130.5 (s, p-CPh), 128.7 (d, 3J(P,C) = 10.6 Hz, m-CPh), 128.3 (d, 1J(P,C) = 42.1 Hz, 

ipso-CPh), 126.6 (d, 3J(P,C) = 3.4 Hz, C3
b
 pyridyl), 123.9 (s, C5

a
 pyridyl), 123.2 (d, 3J(P,C) = 5.9 

Hz,  C3
a
 pyridyl), 121.9 (s, C5

b
 pyridyl), 29.5 (d, 3J(P,C) = 8.0 Hz, CH2

b-C=C), 26.6 (d, 3J(P,C) = 

6.4 Hz, CH2
a-C=C), 22.7 (s, CH2

b-CH2-C=C), 21.4 (s, CH2
a-CH2-C=C). 31P{1H} NMR (200 

MHz, CDCl3): δ = + 31.4 (s).

2.5. Reaction of [Re2(CO)8(CH3CN)2] with 1,2,5-triphenylphosphole (tpp). A solution of 

[Re2(CO)8(CH3CN)2] (100 mg, 0.147 mmol) and tpp (54 mg, 0.147 mmol) in dry 

cyclohexane (40 mL) was refluxed under nitrogen for 4 h. After evaporation of the solvent, 

preparative TLC (SiO2) of the yellow residue (heptane/CH2Cl2, 8:2 v/v) gave three bands: 

Re2(CO)7(µ-1:2:2-tpp)] (8, 54 mg, 38%); [Re2(CO)8(1-tpp)2] (9, 89 mg, 45%) and 



  

[Re2(CO)8(1-tpp)(CH3CN)] (10, 25 mg, 16%). Spectral data for 8: IR (νCO, cyclohexane): 

2078 m, 2029 w, 2006 s, 1991 s, 1947 w, 1934 m cm-1. 1H NMR (500 MHz, CD2Cl2, -60°C): 

δ = 7.36 (ddd, 3J(P,H) = 7.4 Hz, 3J(H,H) = 7.3 Hz, 3J(H,H) = 7.4 Hz, 1H, mb-HPh), 7.68 (dd, 

3J(H,H) = 7.3 Hz, 2J(P,H) = 7.2 Hz, 1H, ob-HPh), 7.59 (dd, 3J(H,H) = 7.4 Hz, 3J(H,H) = 7.4 

Hz, 1H, p-HPh), 7.49 (ddd, 3J(P,H) = 7.6 Hz, 3J(H,H) = 7.3 Hz, 3J(H,H) = 7.4 Hz, 1H, ma-

HPh), 7.36 (dd, 3J(H,H) = 7.9 Hz, 2J(P,H) = 7.6 Hz, 1H, oa-HPh), 7.26 (dd, 3J(H,H) = 7.4 Hz, 

3J(P,H) = 7.5 Hz, 1H, H3
b), 7.18 (d, 3J(H,H) = 7.4 Hz, 1H, H4

a), 7.18 (d, 3J(H,H) = 7.4 Hz, 

1H, H4
b), 6.97 (dd, 3J(H,H) = 7.4 Hz, 3J(H,H) = 7.8 Hz, 1H, H3

a), 6.97 (d, 3J(H,H) = 7.5 Hz, 

1H, H2
b), 6.51 (d, 3J(H,H) = 7.8 Hz, 1H, H2

a), 3.63 (m, 2H, CH2
a-C=C), 3.15 (m, 2H, CH2

b-

C=C), 2.24 (m, 2H, CH2
a-CH2-C=C), 1.99 (m, 2H, CH2

b-CH2-C=C). 13C{1H} NMR (500 

MHz, CD2Cl2, -60 °C): δ =198.2 (s, M-CO), 189.7 (s, M-CO), 188.7 (d, 1J(P,C) = 10.7 Hz, 

M-CO), 136.9 (d, 1J(P,C) = 32.8 Hz, ipso-CPh), 133.6 (s, C1
a), 133.5 (s, C1

b), 132.7 (s, C3
a), 

132.5 (d, 3J(P,C) = 9.3 Hz, C2
b), 129.4 (s, oa-CPh), 129.4 (s, ob-CPh), 129.2 (d, 3J(P,C) = 7.9 

Hz, C2
a), 128.9 (s, ma-CPh), 128.8 (s, mb-CPh), 128.3 (s, C3

b), 128.1 (s, C4
a), 127.7 (s, C4

b), 

126.8 (s, p-CPh), 96.8 (d, 2J(P,C) = 8.1 Hz, Cβ), 63.2 (d, 1J(P,C) = 49.8 Hz, Cα), 25.4 (s, CH2-

C=C), 23.2 (s, CH2-CH2-C=C). 31P{1H} NMR (200 MHz, CDCl3): δ = 14.0 (s). Spectral 

data for 9: IR (νCO, cyclohexane): 2017 w, 1986 w, 1968 s, 1962 s, 1936 w cm-1. 1H NMR 

(500 MHz, CD2Cl2): δ = 7.73 (ddd, 4J(H,H) = 1.4 Hz, 3J(H,H) = 7.8 Hz, 2H, o-HPh), 7.58 (m, 

2H, m-HPh), 7.58 (m, 1H, p-HPh), 7.23 (d, 4J(H,H) = 2.4 Hz, 2H, H4), 7.23 (d, 3J(H,H) = 7.3 

Hz, 2H, H3), 7.02 (dd, 4J(H,H) = 2.4 Hz, 3J(H,H) = 7.2 Hz, 2H, H2), 3.03 (m, 2H, CH2
a-C=C), 

2.85 (m, 2H, CH2
b-C=C), 1.95 (m, 2H, CH2

a-CH2-C=C), 1.78 (m, 2H, CH2
b-CH2-C=C). 

13C{1H} NMR (500 MHz, CD2Cl2): δ = 198.8 (s, M-CO), 145.2 (d, 2J(P,C) = 14.1 Hz, Cβ), 

143.4 (d, 1J(P,C) = 50.5 Hz, Cα), 34.9 (d, 2J(P,C) = 14.1 Hz, C1), 132.3 (s, p-CPh), 132.3 (d, 



  

3J(P,C) = 6.0 Hz, m-CPh), 132.0 (s, ipso-CPh), 130.9 (s, o-CPh), 129.0 (s, C2), 128.1 (s, C3), 

127.1 (s, C4), 27.6 (s, CH2-C=C), 22.8 (s, CH2-CH2-C=C). 31P{1H} NMR (200 MHz, CDCl3): 

δ = + 33.0 (s). Spectral data for 10: IR (νCO, cyclohexane): 2085 m, 2045 m, 2004 m, 1975 s, 

1952 m, 1922 m, 1916 m cm-1. 1H NMR (500 MHz, CD2Cl2): δ = 7.70 (dd, 3J(H,H) = 8.7 Hz, 

3J(H,H) = 8.7 Hz, 2H, o-HPh), 7.48 (m, 2H, m-HPh), 7.48 (m, 1H, p-HPh), 7.21 (m, 2H, H4), 

7.21 (d, 3J(H,H) = 7.2 Hz, 2H, H3), 7.04 (d, 3J(H,H) = 7.2 Hz, 2H, H2), 2.98 (m, 2H, CH2
a-

C=C), 2.83 (m, CH2
b-C=C), 1.87 (m, CH2

a-CH2-C=C), 1.74 (s, CH3CN), 1.72 (m, CH2
b-CH2-

C=C).  13C{1H} NMR (500 MHz, CD2Cl2): δ = 144.7 (d, 2J(P,C) = 14.0 Hz, Cβ), 143.0 (d, 

1J(P,C) = 50.1 Hz, Cα), 34.5 (d, 2J(P,C) = 13.9 Hz, C1), 132.2 (s, p-CPh), 132.1 (d, 3J(P,C) = 

6.2 Hz, m-CPh), 132.0 (s, ipso-CPh), 130.2 (s, o-CPh), 129.5 (s, C2), 128.0 (s, C3), 126.5 (s, 

C4), 27.1 (s, CH2-C=C), 21.9 (s, CH2-CH2-C=C). 31P{1H} NMR (200 MHz, CDCl3): δ = + 

34.5 (s). 

3. Results and discussion

3.1. Synthesis and characterization.

Thermal treatment of [Re2(CO)8(CH3CN)2] with the corresponding phosphole 

derivative: 2,5-bis(2-thienyl)-1-phenylphosphole (btpp), 2,5-bis(2-pyridyl)-1-

phenylphosphole (bpypp) and 1,2,5-triphenylphosphole (tpp), led to a variety of σ- and σ,π-

complexes, including bridging and chelating coordination modes (Scheme 1-3). The variety 

of products obtained in these reactions were probably influenced by electronic and steric 

properties of the phosphole derivatives.

3.1.1. Thermal treatment of [Re2(CO)8(CH3CN)2] with 2,5-bis(2-thienyl)-1-

phenylphosphole (btpp).



  

Reaction of [Re2(CO)8(CH3CN)2] with btpp in refluxing cyclohexane yielded five 

compounds characterized as [ReH(CO)4(1-btpp)] (1), [Re2(CO)8(1-btpp)(CH3CN)] (2), 

[Re2(CO)9(1-btpp)] (3), [Re2(CO)7(µ-1:2:2-btpp)] (4) and [Re2(CO)8(µ-1(P):1(S)-

btpp)] (5) (Scheme 1). The thermolysis of 3 in refluxing cyclohexane afforded 4 and 5 by 

decarbonylation, while thermolysis of 2 led to decomposition. Photolysis of 3 in 

dichloromethane led to the mononuclear complex 1 due to the occurrence of metal-metal 

bond cleavage, presenting an IR spectrum similar to those found for [ReH(CO)4(P)] (P = 

PPh3, PTh3) [50,51]. The 31P{1H} NMR spectrum of 1 showed a singlet at δ +25.8 ppm, 

while 1H and 13C NMR signals were similar to the free ligand. Additionally, the 1H NMR 

spectrum displayed a doublet at  5.38 ppm (JH-P = 24.2 Hz) that was assigned to a terminal 

hydride. Thus, IR and NMR data for 1 are consistent with the proposed structure (Scheme 

1), wherein the btpp is σ-coordinated to metal center through phosphorus atom. 

Scheme 1. Reaction of [Re2(CO)8(CH3CN)2] with btpp.



  

The substitution of one acetonitrile ligand by one btpp molecule on the labile 

dinuclear [Re2(CO)8(CH3CN)2] yielded compound 2. Its IR spectrum in the carbonyl 

stretching region was characteristic of octacarbonyl dinuclear complexes [52,53]. The 

31P{1H} NMR spectrum revealed a singlet at δ = +36.0 ppm, which was shifted to low field 

with respect to the free ligand (δ = +12.7 ppm), suggesting P-bonding of the btpp ligand. The 

1H and 13C NMR signals did not show significant differences with those of the free ligand, 

and both spectra confirmed the presence of one acetonitrile molecule. Based on these data, 

the structure of 2 corresponds to a dirhenium octacarbonyl complex containing one 

acetonitrile and one btpp ligand coordinated to the same rhenium atom (Scheme 1). 

The IR ʋ(CO) frequencies for 3 were similar to those found for monosustituted 

nonacarbonyl dinuclear complexes [Re2(CO)9L] (L = t-BuNC, PBz3, RCN, PTh3) [50,54,55]. 

The 31P{1H} signal showed a chemical shift characteristic of P-bonding (δ = +12.7 ppm). 

The 1H and 13C NMR spectra did not show significate variations in comparison to the free 

ligand, suggesting a η1-coordination of the btpp ligand. The spectroscopic data of 3 and 

previously reported results [50,54,55] indicate that the structure shown in Scheme 1 is the 

most likely.

The dinuclear derivative [Re2(CO)7(µ-1:2:2-btpp)] (4) presented an IR spectrum 

in the carbonyl stretching region very similar to [M2(CO)7L] (M = Mn, Re) [5,6,38]. Its 

31P{1H} NMR spectrum exhibited a singlet at  6.63, upfield shifted in comparison to the 

free ligand. The room-temperature 1H NMR spectrum of 4 showed broad resonances for the 

phenyl protons, suggesting that a fluxional behavior might be occurring in solution. 

Additionally, inequivalence of CH2 protons was observed. To determine if a fluxional 

behavior was taking place, a variable-temperature 1H NMR was carried out from 30 to 90 



  

ºC in CD2Cl2 (Fig. 1). At 30 °C, phenyl protons were clearly observed while the thienyl 

protons converted to broad signals. At -50 °C, the coalescence of both thienyl group signals 

was evidenced, which then appeared to be chemically inequivalent at 90 °C. These results 

suggest that two different fluxional behaviors are in fact taking place in complex 4. The 

phenyl and thienyl groups are moving at two different rates around the CP and CC bonds, 

respectively, possibly due to sterically restricted rotations in the complex. This behavior has 

not been observed for related complexes with 3,4-dimethyl-1-phenyl-phosphole and 3-

methyl-1-phenyl-phosphole as ligands, previously reported by our research group [38]. 

Therefore, the restricted rotation might be associated to steric effects of the bulky btpp ligand. 

On the other hand, 13C NMR signals of the phosphole ring were shifted to higher field than 

the free ligand due to the coordination of the dienic system to one rhenium atom.

Fig. 1. Variable-temperature 1H NMR spectra of 4 in CD2Cl2.



  

The complex [Re2(CO)8(µ-1(P):1(S)-btpp)] (5) showed an IR spectrum similar to 

1,2-eq,eq-[Re2(CO)8(P(OMe)3)2] [56]. In the 31P{1H} NMR spectrum, a singlet characteristic 

of σ(P)-coordination was observed at  +25.4. The 1H and 13C NMR spectra showed two sets 

of signals for the thienyl rings, suggesting an unsymmetrical coordination of btpp. The first 

set of signals showed chemical shifts similar to the free ligand while the other set was shifted 

downfield, indicating a η1-coordination through one of the sulfur atoms.

3.1.2. Thermal treatment of [Re2(CO)8(CH3CN)2] with 2,5-bis(2-pyridyl)-1-

phenylphosphole (bpypp). 

Treatment of [Re2(CO)8(CH3CN)2] with bpypp in refluxing cyclohexane afforded two 

structural isomers: [Re2(CO)8(1:1-bpypp)] (6, 42% yield) and [Re2(CO)8(µ-1:1-bpypp)] 

(7, 34% yield) (Scheme 2). Only starting material was isolated when this reaction was 

performed in refluxing dichloromethane, while that refluxing n-octane would lead to 

decomposition. Thermolysis of 6 and 7 in refluxing cyclohexane led to decomposition 

products, and σ,π-complexes were not observed. 

IR spectrum for 6 was closely related to 1,1-eq,ax-[M2(CO)8L] [52,57], while the 

infrared ʋ(CO) frequencies for 7 were consistent with dinuclear complexes 1,2-eq,eq-

[M2(CO)8L] [58]. The NMR data for both isomers were very similar to each other. The 1H 

and 13C NMR spectra displayed an unsymmetrical coordination of bpypp, showing two sets 

of signals for the pyridyl rings, one of them showed chemical shifts similar to the free ligand 

while the other set was shifted downfield, being this last characteristic of a pyridyl ring 

coordinated through the nitrogen atom [57,59]. 



  

Scheme 2. Reaction of [Re2(CO)8(CH3CN)2] with bpypp.

3.1.3. Thermal treatment of [Re2(CO)8(CH3CN)2] with 1,2,5-triphenylphosphole (tpp).

Compounds [Re2(CO)7(µ-1:2:2-tpp)] (8), [Re2(CO)8(1-tpp)2] (9) and 

[Re2(CO)8(1-tpp)(CH3CN)] (10) were obtained by thermal treatment of 

[Re2(CO)8(CH3CN)2] with tpp in refluxing cyclohexane (Scheme 3). The formation of the σ-

complex [Re2(CO)9(1-tpp)] was not observed even when the reaction was run at lower 

temperature (e.g. refluxing dichloromethane). 

Scheme 3. Reaction of [Re2(CO)8(CH3CN)2] with tpp.

Compound 8 presented an IR spectrum very similar to those found for 4 and 

previously reported heptacarbonyl dinuclear complexes  [5,6,38]. Its 31P{1H} NMR spectrum 

showed a singlet at  13.95 ppm, suggesting a η1-coordination through the phosphorus atom 



  

as observed for compound 4. The 13C NMR spectrum displayed the phosphole ring carbons 

shifted upfield compared to the free tpp ligand, indicating a 2:2-coordination of the dienic 

system. As described for compound 4, the room-temperature 1H NMR spectrum of 8 showed 

broad signals that were linked to a dynamic process in solution where the phenyl groups 

experience restricted rotation around the PC and CC bonds induced by the steric effects of 

the bulky tpp ligand and its rigid coordination to the dinuclear complex. As seen in Fig. 2, 

this dynamic process is “frozen” out at 60 °C and signals of the three phenyl rings are clearly 

observed. 
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Fig. 2. Variable-temperature 1H NMR spectra of 8 in CD2Cl2.

Supported by previous reports [50,60], the spectroscopic data for compound 9 clearly 

indicated the formation of a disubstituted dinuclear complex [Re2(CO)8(1-tpp)2], formed via 

a step by step substitution of acetonitrile molecules by σ-coordination of tpp ligands through 

the phosphorus atom. 



  

Finally, compound 10 exhibited spectroscopic data that was closely related to the 

monosubstituted complex 2 (see experimental section), therefore a similar structure is 

proposed for 10 (Scheme 3). 

 

3.2. X-ray diffraction analysis.

The structure of 1 was confirmed by single-crystal X-ray diffraction, and its 

molecular structure is shown in Fig. 3. Selected bond lengths and angles are given in Table 

1. The distorted octahedral geometry contains four carbonyls, a btpp and hydride ligand (cis 

to btpp) binding a rhenium atom. The hydride ligand is not shown in the ORTEP structure, 

but the reduction of the trans-C100Re1C200 angle [170.7(5)°] suggests the presence of a 

hydride ligand in this position as observed for previously reported analogues [50]. The ReP 

distance is slightly longer than that for [ReH(CO)3(PTh3)2] [50] [2.461(3) Å versus 2.369(17)  

Å, respectively],  probably due to the presence of the bulkier btpp ligand. The phosphorus 

atom lies out of the main plane that contains the four carbon atoms of the phosphole ring 

[0.087(1) Å], drawing a ring with an opened envelope-type conformation.

Table 1. Selected bond lengths (Å) and angles (°) for compounds 1, 2, 4, 5, 6 and 7.

[ReH(CO)4(1-btpp)] (1) Re1P1 = 2.461(3)
C100Re1C200 = 170.7(5)

[Re2(CO)8(1-btpp)(CH3CN)] (2) Re1Re2 = 3.0241(3)
Re1P1 = 2.353(1)
Re1N100 = 2.151(6)
Re2–Re1 – P1 =175.55(4)
Re2–Re1 – N100 = 87.0(1)

[Re2(CO)7(µ-1:2:2-btpp)] (4) Re1Re2 = 3.0431(3)
Re2P1 = 2.402(2)
Re1C1 = 2.346(5)
Re1C2 = 2.309(6)
Re1C7 = 2.324(6)
Re1C8 = 2.342(6)
C203–Re2–Re1 = 166.8(2)



  

C103–Re1–Re2 = 162.8(2)
[Re2(CO)8(µ-1(P):1(S)-btpp)] (5) Re1Re2 = 3.0578(6)

ReP = 2.447(3)
Re2–S1 = 2.469(3)
Re2–Re1–P1 = 94.56(7)
Re1–Re2–S1 = 82.52(7)

[Re2(CO)8(1:1-bpypp)] (6) Re1–Re2 = 3.0859(7)
Re1–P1 = 2.441(2)
Re1–N1 = 2.251(8)
Re2–Re1–P1 = 100.49(6)
Re2–Re1–N1 = 91.8(2)

[Re2(CO)8(µ-1:1-bpypp)] (7) Re1–Re2 = 3.0442(4)
Re1–P1 = 2.425(2)
Re2–N1 = 2.252(6)
Re1–Re2–N1 = 91.5(1)
Re2–Re1–P1 = 87.39(4)

Fig. 3. Molecular structure of [ReH(CO)4(1-btpp)] (1), showing 50% probability ellipsoids.

The single-crystal X-ray diffraction analysis for compound 2 afforded the molecular 

structure shown in Fig. 4 (selected bond lengths and angles are given in Table 1). The 

structure shows a dinuclear rhenium complex containing three carbonyls, an acetonitrile and 



  

a btpp ligand bound to Re1 and four carbonyl ligands bound to Re2. The btpp ligand is axially 

coordinated while the acetonitrile occupies an equatorial site. The ReRe, ReP and ReN 

distances [3.0241(3) Å, 2.353(1) Å and 2.151(6) Å, respectively] are similar to those found 

for analogue dirhenium derivatives [50,59,61]. The distance between the phosphorus atom 

and the plane containing the phosphole dienic system [0.136(1) Å] is longer than that 

observed for 1.

Fig. 4. Molecular structure of [Re2(CO)8(1-btpp)(CH3CN)] (2), showing 50% probability 

ellipsoids.

The molecular structure of 4 is shown in Fig. 5; selected bond lengths and angles are 

given in Table 1. The structure shows a σ,π-complex where the btpp displays a bridging 

coordination and behaves as a six-electron donor: two electrons by σ-coordination through 

the phosphorus atom and four electrons by π-coordination of the phosphole dienic system. 

The ReRe distance of 3.0431(3) Å is in concordance with the values found for similar 

reported complexes [38]. The ReP bond length [2.402(2) Å] is slightly longer than that for 



  

[Re2(CO)7(η1:η2:η2-P] [P = 3,4-dimethyl-1-phenylphosphole and 3-methyl-1-phenyl-

phosphole) [38], probably due to the bulkier btpp ligand. The phosphorus atom is 0.320(1) 

Å out of the plane that contains the four carbons of the dienic system, slightly shorter than 

that reported for analogues σ,π-complexes containing 3,4-disubstituted phospholes [38]. 

Fig. 5. Molecular structure of [Re2(CO)7(µ-1:2:2-btpp)] (4), showing 50% probability 

ellipsoids.

The X-ray diffraction analysis for 5 confirmed the proposed structure previously 

described. The ORTEP structure is shown in Fig. 6 (bond lengths and angles are given in 

Table 1). The molecular structure consists of an octacarbonyl dirhenium complex with a btpp 

ligand that displays a bridging coordination mode and behaves as four-electron donor. The 

coordination occurs via the phosphorus atom and a sulfur atom from one of the thienyl 

groups: both groups occupying equatorial sites. The ReP bond distance [2.447(3) Å] is 

somewhat longer than that observed for 1 and 2, and the ReS length [2.469(3) Å] is slightly 

shorter than that found for [Re2(CO)9(1-SC12H8)], [Re2(CO)7(1:1-SC8H6)(PMe3)3] and 



  

[Re2(CO)7((s)-1-SC8H6)(PMe3)2] [62,63]. The distance between the phosphorus atom and 

the plane that contains the four carbon atoms of phosphole ring [0.071(1) Å] is shorter than 

that found for 1, 2 and 4. The torsion angle between C3-C4 and C6-C5 bonds is 66(1), which 

explains the inequivalence among these CH2 groups on the 1H NMR.

Fig. 6. Molecular structure of [Re2(CO)8(µ-1(P):1(S)-btpp)] (5), showing 50% probability 

ellipsoids.

The X-ray diffraction analyses for 6 and 7 confirmed the proposed structural isomers. 

Their molecular structures are showed in the Fig. 7 and 8, respectively. The structures of 6 

and 7 show both having the bpypp ligand coordinated through the phosphorus atom and a 

pyridyl nitrogen atom, however, 6 presents the ligand in a chelating coordination mode while 

that 7 carries a bridging mode of the ligand. Both structures displayed the phosphorus and 

nitrogen atoms occupying axial and equatorial sites, respectively. The structure of 6 shows 

the phosphorus atom at 0.014(1) Å out of plane that contains the four carbon atoms of the 

dienic system, which is much shorter than those found for 1, 2, 4 and 5, probably due to the 



  

chelating coordination mode. In the structure of 7, this distance was of 0.062(1) Å, consistent 

with the value found for 5 whose coordination was also a bridging mode. The Re–N bond 

distance for both structures are similar [Re1–N1= 2.251(8) Å (6), Re2–N1 = 2.252(6) Å (7)], 

while the Re-P length in 6 [2.441(2) Å] is slightly longer than that found for 7 [2.425(2) Å].

Fig. 7. Molecular structure of [Re2(CO)8(1:1-bpypp)] (6), showing 50% probability 

ellipsoids.



  

Fig. 8. Molecular structure of [Re2(CO)8(µ-1:1-bpypp)] (7), showing 50% probability 

ellipsoids.

Conclusions

This work provided a new example of reactivity between the labile dinuclear 

[Re2(CO)8(CH3CN)2] and three different π-conjugated phosphole derivatives: 2,5-bis(2-

thienyl)-1-phenylphosphole (btpp), 2,5-bis(2-pyridyl)-1-phenylphosphole (bpypp), 1,2,5-

triphenylphosphole (tpp), which afforded ten new complexes. We found that phosphole 

ligands undergo σ- or σ,π-coordination to the labile rhenium dinuclear, behaving as two-, 

four- or six-electron donors. When the bidentate coordination of the π-conjugated phospholes 

occurs, bridging and chelating modes were obtained. σ,π-Complexes [Re2(CO)7(µ-1:2:2-

P)] [P = btpp (4), tpp (8)] presented a fluxional behavior in solution due to the restricted 

rotation around the P-Cipso-Ph and C-C bonds of the 2,5-substituents on the phophole ring, 

which was associated with steric effects of the bulky phosphole ligands. Additionally, we 

carried out X-ray diffraction analyses for six compounds (1, 2, 4, 5-7), which confirmed the 

proposed structures.
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π-Conjugated phospholes undergo σ- or σ,π-coordination to the dirhenium centre.

Phospholes undergo coordination to the dirhenium centre in bridging or chelate modes

Phospholes were found to behave as two-, four- or six-electron donor ligands

σ,π-Complexes show a fluxional behavior due to the restricted rotation of the ligand



  


