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shallow water two-component systems
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Abstract.

In the present study we consider three two-component (integrable and non-
integrable) systems which describe the propagation of shallow water waves on
a constant shear current. Namely, we consider the two-component Camassa–
Holm equations, the Zakharov–Itō system and the Kaup–Boussinesq equa-
tions all including constant vorticity effects. We analyze both solitary and
periodic-type travelling waves using the simple and geometrically intuitive
phase space analysis. We get the pulse-type solitary wave solutions and the
front solitary wave solutions. For the Zakharov–Itō system we underline the
occurrence of the pulse and anti-pulse solutions. The front wave solutions de-
cay algebraically in the far field. For the Kaup–Boussinesq system, interesting
analytical multi-pulsed travelling wave solutions are found.
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1. Introduction

Water wave theory has been traditionally based on the irrotational (and thus po-
tential) flow assumption [18]. Obviously, it allows to determine all components of the
velocity vector by taking partial derivatives of just one scalar function — the so-called
velocity potential. This approximation was shown to be very good in many practical sit-
uations. But in order to incorporate the ubiquitous effects of currents and wave-current
interactions, the vorticity is very important. The rotational effects are significant in
many circumstances, for instance, for wind-driven waves, waves riding upon a sheared
current, or waves near a ship or pier. The modern and large-amplitude theory for
periodic surface water waves with a general vorticity distribution was established by
Constantin and Strauss in [16], an investigation which initiated an intense study of
waves with vorticity — see, for example, [13, 17, 43] and the references therein. Addi-
tionally, there has been significant progress in the construction of numerical solutions
for many of these problems — see, for example, [39]. An intermediate situation be-
tween the irrotational and fully rotational flows is to consider a prescribed vorticity
distribution. Among all possible vorticity distributions the simplest one is the constant
vorticity. It is precisely the case we consider in the present study. The choice of con-
stant vorticity is not just a mathematical simplification since for waves propagating
at the surface of water over a nearly flat bed, which are long compared to the mean
water depth, the existence of a non-zero mean vorticity is more important than its
specific distribution (see the discussion in [19]). We also point out that the surface
wave flows of constant vorticity are inherently two-dimensional (see [12, 44]), with the
vorticity correlated with the direction of wave-propagation, and that the presence of
an underlying sheared current (signalled by constant non-zero vorticity) is, somewhat
surprisingly, known not to affect the symmetry of the surface travelling waves, at least
in the absence of flow reversal (see [14, 27]). Tidal flow is a well-known example when
constant vorticity flow is an appropriate model [19]. Teles da Silva and Peregrine [19]
were the first to show that the strong background vorticity may produce travelling
waves of unusual shape in the high amplitude region.

In the approximate theories of long waves on flows with an arbitrary vorticity distri-
bution, Freeman and Johnson [22] derived, by the use of asymptotic expansion, a KdV
equation with the coefficients modified to include the effect of shear. The wave prop-
agation controlled by the Camassa–Holm (CH) equation in the presence of vorticity
(with detailed results for the constant vorticity case) was studied in [30, 32, 36]. The
two-component (integrable and non-integrable) shallow water model equations with
constant vorticity that we analyse in our paper, that is, the two-component Camassa–
Holm equations, the Zakharov–Itō system and the Kaup–Boussinesq equations, were
derived by asymptotic expansion in Ivanov [33]. We focus on the travelling wave solu-
tions on a constant shear current, whose study was presumably initiated in [3, 5, 19, 42].
Burns [5] was the first to consider the propagation of small-amplitude shallow water
waves on the surface of an arbitrary shear flow. The travelling wave solutions to the
weakly nonlinear Benjamin model [3] were computed recently in [40]. However, most
of the works focus on the weakly nonlinear regime. Two notable exceptions are [42],
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where the full Euler equations on shear flow were solved using the Boundary Integral
Equation Method (BIEM), and [9], where fully nonlinear weakly dispersive Green–
Naghdi equations were derived. In our previous study [20] we provided a complete phase
plane analysis of all possible travelling wave solutions which may arise in several two-
component systems which model the propagation of shallow water waves, namely, the
Green–Naghdi equations, the integrable two-component Camassa–Holm equations and
a new two-component system of Green–Naghdi type. In the capillary-gravity regime,
a phase plane analysis of the solitary waves propagating in shallow water modelled by
the Green–Naghdi equations with surface tension, was done in [10, 11].

The significance of the results in the present study is the inclusion of vorticity. We
will consider in turn the two-component Camassa–Holm equations, the Zakharov–Itō
system and the Kaup–Boussinesq equations. For each model we derive the most general
ordinary differential equation describing the whole family of travelling wave solutions.
We provide a complete phase plane analysis of all possible solitary and periodic wave
solutions which may arise in these models. By appropriately choosing the constants
of integration, for each model we obtain the equations describing the solitary wave
solutions. For the first two systems, the solitary wave solutions are restricted to the
interval r 0, c c` s , with c the constant speed of propagation of the nonliner shallow
water wave described by the models and c` the constant speed of the linear shallow
water wave on the constant shear current obtained by Burns. We get the pulse-type
wave solutions and the front wave solutions. For the Zakharov–Itō system we underline
the occurrence of the pulse and anti-pulse solutions, in the case c c` ą 1 . The front
wave solutions decay algebraically in the far field. For the Kaup–Boussinesq system,
interesting analytical multi-pulsed travelling wave solutions are found. Chen [7] found
numerically multi-pulse travelling wave solutions to the (KB) system, solutions which
consist of an arbitrary number of troughs.

2. Mathematical models

The wave motion to be discussed will be assumed to occur in two dimensions on
a shallow water over a flat bottom. We consider a Cartesian coordinate system Oxy
with the axis O y directed vertically upwards (in the direction opposite to the gravity
vector ~g “ p0, ´gq) and the horizontal axis Ox along the flat impermeable bottom
y “ 0 . We assume that the wave motion is in the positive x-direction, and that
the physical variables depend only on x and y . The total water depth is given by the
function y “ H px, tq

def:“ d ` η px, tq , where d is the constant water depth and
η px, tq is the free surface elevation above the still water level. The sketch of the fluid
domain with free surface is given in Figure 1. By using a suitable set of scaled variables,
we can set d “ 1 and g “ 1 . Thus, these coefficients disappear from the equations
below.

In the shallow water regime, the horizontal component of the velocity averaged over
depth is independent of the vertical coordinate y ; we denote this component by u px, tq .
The particularity of the present study is that we consider the shallow water waves
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Figure 1. Sketch of the fluid domain: free surface flow on a shear current.

travelling over the constant shear current U pyq “ Ω y , where Ω “ const is the
vorticity. For Ω ą 0 , the underlying shear flow is propagating in the positive direction
of the x´coordinate, for Ω ă 0 it propagates in the negative direction. We look for
right-going waves travelling at a constant speed c ą 0 , whose profile are steady
relative to a frame of reference moving with velocity c in the x´direction. Thus, we
consider that:

H px, tq “ H pξq , u px, tq “ u pξq , ξ
def:“ x ´ c t . (2.1)

If we look for periodic waves, the functions H pξq and u pξq have to be periodic. For
solitary waves the profile pH, uq has to tend to a constant state p1, 0q at infinity, while
all the derivatives tend to p0, 0q , that is,

H Ñ 1 , H pnq
Ñ 0 , n ě 1 , ξ Ñ 8 , (2.2)

u pnq Ñ 0 , n ě 0 , ξ Ñ 8 . (2.3)

2.1. Two-component Camassa–Holm equations with constant
vorticity

In the shallow water regime, a system which models the wave-shear current interac-
tions was derived in [33]:

u t ` 3uux ´ u txx ´ 2ux uxx ´ uuxxx ` H Hx ´ Ωux “ 0 , (2.4)
H t `

“

H u
‰

x
“ 0 , (2.5)

This is an integrable bi-Hamiltonian system [33]. Wave-breaking criteria and a sufficient
condition guaranteeing the existence of a global solution are presented in [24]. The well-
posedness of this system was studied in [21].

For Ω “ 0 , we get the integrable two-component Camassa–Holm system [15, 31],
denoted CH2 in the sequel, a generalization of the celebrated Camassa–Holm equation
[6]. The inverse scattering for the CH2 equations was developed in [26]. The travelling
wave solutions to the CH2 system were analyzed in our previous study [20]. By following
a similar route here, we substitute the Ansatz (2.1) into the system (2.4), (2.5), and,
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after integration, we get

u “
cH ´ K 1

H
, (2.6)

and

´ c u `
3
2 u 2

` c u 2 ´ 1
2 pu

1
q

2
´ uu 2 ` 1

2 H
2
´ Ωu “ K 2 , (2.7)

where the prime denotes the usual derivative operation with respect to ξ and K 1 ,
K 2 P R are some integration constants. We multiply (2.7) by 2u 1 (2.6)

“
2 K 1 H

1

H 2 , we
integrate this equation once again:

´ c u 2
` u 3

` c pu 1q 2
´ u pu 1q 2

` K 1 H ´ Ωu 2
“ 2 K 2 u ` K 3 , (2.8)

K 3 an integration constant. We use in (2.7) the expression (2.6) for u along with its
first derivative and finally we get for the unknown H the following first order implicit
ordinary differential equation:

pH 1
q

2
“ H 2

¨R pHq def
“: P pHq (2.9)

where R pHq is the following polynomial function in H :

R pHq def:“
„

´
1

K 2
1
H 4

`

´c 2 Ω ` 2 cK 2 ` K 3

K 3
1

¯

H 3

`

´c 2 ´ 2 Ω c ´ 2 K 2

K 2
1

¯

H 2
´

´2 c ´ Ω
K 1

¯

H ` 1


. (2.10)

Thus, the key point is to understand the solutions to the equation (2.9) since the rest
of the information can be recovered from them.

2.1.1. Solitary wave solutions

Taking into account the conditions (2.2), (2.3), the values of the integration constants
in (2.6) and (2.9) are:

K 1 “ c , K 2 “
1
2 , K 3 “ c .

Thus, the ODE (2.9) which describes the solitary wave (SW) solutions becomes

pH 1
q

2
“ P pHq “ H 2

c 2 ¨Q pHq , (2.11)

where Q pHq is a polynomial function in H defined as

Q pHq def:“ ´H 4
` pcΩ ` 2q H 3

` pc 2
´ 2 Ω c ´ 1qH 2

` c pΩ ´ 2 cqH ` c 2

“ pH ´ 1q 2
¨ pc 2

` cΩH ´ H 2
q

“ pH ´ 1q 2
¨ pc c` ´ Hq ¨ p H ´ c c´q , (2.12)

with c˘ given by:
c˘

def:“ 1
2
`

Ω ˘
?

4 ` Ω 2
˘

, (2.13)
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Figure 2. The graph of the inequality c c` ą 1 against the vorticity Ω .

c´ being always negative and c` always positive. We recognize that c˘ are the solutions
to the equation

c 2
´ Ω c ´ 1 “ 0 ,

for the speed of the linear shallow water waves on the constant shear flow. This equation
is the Burns condition [5]

ż 1

0

d y
`

U pyq ´ c
˘ 2 “ 1 , (2.14)

with U pyq “ Ω y . Thompson [41] and Biésel [4] obtained early this dispersion relation
for a constant shear flow. Burns [5] obtained the general formula (2.14) for the speed
of linear shallow water waves for general shear profiles U pyq . For more details about
the Burns condition see also [3, 22, 35].

We return to the equation (2.11). From the decomposition (2.12), it follows that
real-valued solutions exist only if

c c´ ď H ď c c` .

The wave height H being positive, we have a slightly stricter condition:
0 ď H ď c c` . (2.15)

According to the asymptotic behaviour of H, it follows that
1 ď c c` . (2.16)

The graph of this inequality is presented in Figure 2.
We give a description of the solitary wave profiles for the CH2 model with constant

vorticity, by performing a phase plane analysis of the equation (2.11) for c c` ą 1
and c c` “ 1 . The corresponding phase portraits and the solitary wave profiles are
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presented in Figure 3. The homoclinic orbits in the phase portrait lead to the pulse-
type wave solutions and the heteroclinic orbits correspond to the front (or kink-type)
wave solutions. We highlight the fact that two fronts tend only algebraically∗ to the
equilibrium state H “ 1 . For solitary waves decaying algebraically in the far field,
we have H pξq « 1 ` ξ ´a as ξ Ñ 8 , a ą 1 being a parameter.

2.1.2. Periodic wave solutions

The analysis of periodic wave solutions in the CH2 model with constant vorticity is
done along the lines of our previous study [20]. The sixth order polynomial in (2.9) has
0 as double root. The leading coefficient of the forth order polynomial R pHq in (2.10)
is smaller than zero and its constant term is greater than zero, thus, by Viète formulas,
this polynomial has at least one positive root and one negative root. Although the
parameter space is now pc , Ω , K 1 , K 2 , K 3q , the discussion on the possible number
and location of the roots turn out to be the same as in the case without vorticity.
Consequently, the phase portraits are topologically exactly the same. So, we refer to
[20, Figures 9, 11, 13] for the description of all possible periodic wave solutions in the
CH2 model with constant vorticity.

2.2. Zakharov–Itō system with constant vorticity

The Zakharov–Itō (ZI) system with constant vorticity represents a two-component
generalization of the classical KdV equation. This system, deduced in the shallow water
regime in [33], is formally integrable and it matches the ZI system [29, 45]. Its form is
the following:

u t ´ Ωux ` uxxx ` 3uux ` H Hx “ 0 , (2.17)
H t `

“

H u
‰

x
“ 0 . (2.18)

From the governing equations (2.17), (2.18) one can derive the ‘total energy’ conserva-
tion equation using the methods explained in [8]:

`1
2 pH

2
` u 2

q
˘

t
`

“

u 3
` H 2 u ` uuxx ´

1
2 u

2
x ´

1
2 Ωu 2 ‰

x
“ 0 .

The last relation can be used in theoretical investigations, but also in numerical studies
to check the discretization scheme accuracy by tracking the conservation of the energy
in time.

By substituting the travelling wave solution (2.1) into the ZI system with vorticity
(2.17), (2.18) and by integrating, we obtain again the equation (2.6) and the following

∗In order to see better the asymptotic behaviour of the travelling solution while approaching
H “ 1 , we make a zoom on the governing equation around H “ 1 . For c c` “ 1 the root
H “ 1 becomes triple according to decomposition (2.12), thus, locally Equation (2.11) becomes:
p1 ´ Hq 1 ∼ p1 ´ Hq

3
2 . After integrating this relation we obtain the desired conclusion 1 ´ H ∼

1
ξ 2

as ξ Ñ 8 . A similar reasoning shows that the decay to H “ 0 is exponential since the root H “ 0
is double according to Equation (2.11).
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Figure 3. The phase-portrait and the solitary wave profiles in the CH2
model with constant vorticity, for: (a) c c` ą 1 ; (b) c c` “ 1 . We
highlight the fact that two fronts tend only algebraically to the equilibrium
state H “ 1 .

ODE:

pH 1
q

2
“ H ¨

„

´
1

K 1
H 4

`

´c 2 Ω ` 2 cK 2 ` K 3

K 2
1

¯

H 3

`

´c 2 ´ 2 Ω c ´ 2 K 2

K 1

¯

H 2
` pΩ ´ 2 cq H ` K 1



“ K1 H ¨

„

´
1

K 2
1
H 4

`

´c 2 Ω ` 2 cK 2 ` K 3

K 3
1

¯

H 3

`

´c 2 ´ 2 Ω c ´ 2 K 2

K 2
1

¯

H 2
´

´2 c ´ Ω
K 1

¯

H ` 1


“ K1 H ¨ R pHq def
“: P pHq , (2.19)
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with K 1, 2, 3 P R some integration constants and R pHq the polynomial (2.10) obtained
in the CH2 case.

2.2.1. Solitary wave solutions

From (2.2), (2.3), we obtain for the integration constants K 1, 2, 3 the values:
K 1 “ c , K 2 “ 1

2 , K 3 “ c .

Substituting these values into the equation (2.19) yields the following ODE which
describes the solitary wave solutions:

pH 1
q

2
“

H

c
¨Q pHq (2.12)

“
H

c
pH ´ 1q 2

¨ pc c` ´ Hq ¨ p H ´ c c´q ,

with c˘ defined in (2.13). A necessary condition for the existence of the solitary waves
is (2.15). We get the condition (2.16) too. We distinguish in our study the following
situations: c c` ą 1 and c c` “ 1 . The phase-portraits and the solitary waves profiles
are depicted in Figure 4. We underline the occurrence of a pulse and an anti-pulse in
the case c c` ą 1 .

2.2.2. Periodic wave solutions

For the periodic wave solutions to the ZI system (2.17), (2.18) with constant vor-
ticity, we return to the general ODE (2.19). The values taken by the parameters
pc, Ω, K 1, K 2, K 3q , will have a direct influence on the nature and location of the
polynomial R pHq in (2.19). The fifth order polynomial P pHq in (2.19) has 0 as single
root and it is written as a factorization into K 1 H and the forth order polynomial
R pHq . The leading coefficient of R pHq being smaller than zero and its constant term
greater than zero, by Viète formulas, this polynomial has at least one positive root and
one negative root. For distinct roots, the following situations are possible:

‚ The polynomial R pHq has two real roots, H 1 ă 0 and H2 ą 0 , and two
complex conjugate roots. For K 1 ă 0 , the sketch of the graph of polynomial
P pHq , the corresponding phase-plane portrait and the wave profile look like
in Figure 5. For K 1 ą 0 we have no admissible periodic solutions (they turn
out to be below the bottom).

‚ The polynomial R pHq has four real roots,H 1 ă 0 and 0 ă H 2 ă H 3 ă H 4 .
Then, the phase plane portraits for K 1 ą 0 and K 1 ă 0 are depicted in
Figure 6. In all these cases we have at least one family of admissible periodic
wave solutions.

‚ The polynomial R pHq has four real roots, H 1 ă H 2 ă H 3 ă 0 and
H 4 ą 0 . The phase plane portraits for K 1 ą 0 and K 1 ă 0 are depicted
in Figure 7. One can see that physically admissible periodic waves exist only
when K 1 ă 0 .
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Figure 4. The phase-portrait and the solitary wave profiles in the ZI model
with constant vorticity, for: (a) c c` ą 1 ; (b) c c` “ 1 . We highlight the
fact that two fronts tend only algebraically to the equilibrium state H “ 1 .
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Figure 5. The phase-portrait and the wave profiles for the ZI model with
constant vorticity, in the case the polynomial R pHq has only two real roots,
H 1 ă 0 and H 2 ą 0 and the constant K 1 ă 0 .

2.3. Kaup–Boussinesq system with constant vorticity

A derivation of the Kaup–Bousinesq (KB) system:

u t `
” 1

2 u 2
` H

ı

x
“ 0 , (2.20)

H t ´
1
4 uxxx `

C pΩq
2

“

pH ´ 1qu
‰

x
“ 0 , (2.21)

with
C pΩq def:“ 1 `

1
4
`

Ω `
?

4 ` Ω 2
˘2

loooooooooooomoooooooooooon

(2.13)
“ pc`q 2

“ 1 ` pc`q 2 , (2.22)

as a model of shallow water waves in the presence of a linear shear current is presented
in [33]. This system is integrable iff Ω “ 0 , see [33, 38]. In the original derivation
proposed by Kaup in [38] as an early example of a coupled pair of equations that admits
an inverse-scattering formalism, the second term in the equation (2.21) appears with
’`’ sign. However, this yields a linearly ill-posed model, see [2]. The inverse scattering
for the KB equations was developed further in [25]. For other studies on the KB system
see, for example, the papers [7, 23, 34, 37] and the references therein.

By using direct integration, we obtain below all travelling wave solutions to the KB
system. We substitute (2.1) into the KB system (2.20), (2.21) and by integrating once,
we get

H “ K 1 ` c u ´ 1
2 u

2 , (2.23)
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Figure 6. The phase-portrait and the wave profiles for the ZI model with
constant vorticity in the case the polynomial R pHq has four real roots:
H 1 ă 0 and 0 ă H 2 ă H 3 ă H 4 , and the constant: (a) K 1 ą 0 ; (b)
K 1 ă 0 .

and
´ cH ´

1
4 u 2 `

C pΩq
2 pH ´ 1qu “ K 2 , (2.24)

where the prime denotes the usual derivative operation with respect to ξ and K 1 ,
K 2 P R are some integration constants. We replace (2.23) into (2.24), and we get a
differential equation in u only. We multiply this equation by 2u 1 , we integrate again
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Figure 7. The phase-portrait and the wave profiles for the ZI model with
constant vorticity in the case the polynomial R pHq has four real roots:
H 1 ă H 2 ă H 3 ă 0 and H 4 ą 0 , and the constant: (a) K 1 ą 0 ; (b)
K 1 ă 0 .
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and we get the following ODE:

pu 1q 2
“ ´

C pΩq
2 u 4

`
4 c

“

1 ` C pΩq
‰

3 u 3

` 2
“

pK 1 ´ 1q C pΩq ´ 2 c 2‰ u 2
´ 8 pcK 1 ` K 2qu ` K3

def
“: P puq , (2.25)

K 3 P R being an integration constant.

2.3.1. Multi-pulse travelling wave solutions

With the conditions (2.2) and (2.3) in view, the integration constants K 1, 2, 3 in
(2.23) – (2.25) take the values:

K 1 “ 1 , K 2 “ ´ c , K 3 “ 0 , (2.26)
and the ODE (2.25) becomes:

pu 1q 2
“ u 2

”

´
C pΩq

2 u 2
`

4 c
“

1 ` C pΩq
‰

3 u ´ 4 c 2
ı

def
“: u 2 Q puq. (2.27)

In the integrable case, that is, for Ω “ 0 (which implies that C pΩq “ 2q , this
equation becomes

pu 1q 2
“ u 2

´

´u 2
` 4 c u ´ 4 c 2

¯

“ ´ u 2
pu ´ 2c q2 ,

and has the solutions u “ 0, u “ 2 c, which yields H ” 1.
A necessary condition for the existence of the waves in (2.27) is Q puq ě 0 . Since

C pΩq ą 0 , this condition is satisfied iff the polynomial Q puq has two real roots u˘
such that:

u´ ď u ď u` .

The polynomial Q puq in (2.27) has two real roots iff

16 c2 `1 ` C pΩq
˘2

9 ´ 8 c 2 C pΩq ě 0 ,

which yields
C pΩq ď 1

2 or C pΩq ě 2 .
Hence, with the notation (2.22) in view, we get the following restriction on the constant
vorticity:

Ω ě
3
2 . (2.28)

The solution of the separable differential equation (2.27) is obtained by integration.
We denote by

U
def:“ 1

u
. (2.29)
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Then, we get the integral

I :“
ż du
d

u 2
„

´
C pΩq

2 u 2 `
4 c

“

1 ` C pΩq
‰

3 u ´ 4 c 2


“ ´

ż dU
c

´ 4 c 2 U2 `
4 c

“

1 ` C pΩq
‰

3 U ´
C pΩq

2

. (2.30)

Since ´4 c 2 ă 0 , for Ω ą
3
2 , the integral (2.30) can be calculated (c.f. [1, Chapter 3])

if:

|´ 8 c2 U `
4 c

“

1 ` C pΩq
‰

3 | ă 2
?

2 c
3

a

2 ´ 5 C pΩq ` 2 C pΩq2 ,

that is,
U 1 ă U ă U 2 ,

U 1 :“
2
“

1 ` C pΩq
‰

´
?

2
a

2 ´ 5 C pΩq ` 2 C pΩq2
12 c ą 0 (2.31)

U 2 :“
2
“

1 ` C pΩq
‰

`
?

2
a

2 ´ 5 C pΩq ` 2 C pΩq2
12 c ą 0 , (2.32)

and has the expression:

I “ ´
1

2 c arcsin
?

2 r´ 6 c U ` 1 ` C pΩqs
a

2 ´ 5 C pΩq ` 2 C pΩq2
. (2.33)

Therefore, for constant vorticity Ω ą
3
2 , in the interval

1
U 2

ă u ă
1
U 1

, (2.34)

with U 1 , U 2 ą 0 given in (2.31), (2.32), the solution of the differential equation (2.27)
has the implicit form

´
1

2 c arcsin
?

2 r´ 6 c ` r1 ` C pΩqsu pξqs
u pξq

a

2 ´ 5 C pΩq ` 2 C pΩq2
“ ξ ,

which yields:

u pξq “
6
?

2 c
?

2 r1 ` C pΩqs `
a

2 ´ 5 C pΩq ` 2 C pΩq2 sinr2 c ξs
, (2.35)

and, by (2.23), the function H has the expression:

H pξq “ 1 ` 6
?

2 c2
?

2 r1 ` C pΩqs `
a

2 ´ 5 C pΩq ` 2 C pΩq2 sinr2 c ξs
(2.36)

´
36 c2

“?
2 r1 ` C pΩqs `

a

2 ´ 5 C pΩq ` 2 C pΩq2 sinr2 c ξs
‰2 .
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Figure 8. Analytical expressions (2.36) and (2.35), respectively, for
different values of the constant vorticity Ω and of the speed of propagation c.

H

O O

u

u

uH

Figure 9. Multi-pulse travelling wave solutions with two troughs.

Thus, surprisingly, for the values (2.26) of the integration constants, which are obtained
under the conditions (2.2) and (2.3), we got some periodic solutions. We point out
however that the velocity u has the expression (2.35) only in the interval (2.34) which
is situated above ξ “ 0. We plot in Figure 8 the analytical expressions (2.35) and
(2.36) for Ω “ 1.6 ; 4.0 and c “ 1.1 ; 0.5 ; 0.9 . The number of crests and troughs
increases with higher value of the constant vorticity Ω or at higher speed of propagation
c . Chen [7] found numerically multi-pulse travelling wave solutions to the (KB) system,
solutions which consist of an arbitrary number of troughs; a multi-pulse travelling wave
solution with two troughs is plotted in Figure 9.

2.3.2. One-trough travelling wave solutions

Let us take the following values for the integration constants K 1, 2, 3 in (2.23) –
(2.25):

K 1 “ 2 , K 2 “ ´2 c , K 3 “ 0 , (2.37)

19 / 27



D. Dutykh and D. Ionescu-Kruse

which will mean that the wave profile pH, uq tends to the constant state p2, 0q at
infinity. Then, the ODE (2.25) becomes:

pu 1q 2
“ u 2

”

´
C pΩq

2 u 2
`

4 c
“

1 ` C pΩq
‰

3 u ` 2 C pΩq ´ 4 c 2
ı

def
“: u 2 Q puq . (2.38)

A necessary condition for the existence of these waves is Q puq ě 0 . Since C pΩq ą 0 ,
this condition is satisfied iff the polynomial Q puq in (2.38) has two real roots u˘ such
that:

u´ ď u ď u` .

By using the notation (2.29), the solution of the equation (2.38) is obtained by inte-
gration:

I :“
ż du
d

u 2
„

´
C pΩq

2 u 2 `
4 c

“

1 ` C pΩq
‰

3 u ` 2 C pΩq ´ 4 c 2


“ ´

ż dU
?
αU2 ` β U ` γ

, (2.39)

where the constants α , β and γ are:

α
def:“ 2

“

C pΩq ´ 2 c 2‰ , β
def:“

4 c
`

1 ` C pΩq
˘

3 , γ
def:“ ´

C pΩq
2 .

If α ą 0 , that is,
2 c 2

ă C pΩq , ∗ (2.40)
since γ ă 0 , we have β 2 ´ 4α γ ą 0. In this case, we do not have any restriction
on the value of the constant vorticity Ω and the result of the integral in (2.39) is (c.f.
[1, Chapter 3]):

I “ ´
1
?
α

ln r2
?
α ¨

a

αU 2 ` β U ` γ ` 2αU ` βs . (2.41)

From the notation (2.29) we conclude that,

I “ ´
1
?
α

ln
„

2
?
α ¨
?
γ u 2 ` β u ` α ` 2α ` β u

u



.

Therefore, the solution of the differential equation (2.38) has the implicit form
2
?
α ¨

a

γ u 2 pξq ` β u pξq ` α ` 2α ` β u pξq

u pξq
“ e´

?
α ξ ,

with ξ “ x ´ c t . After algebraic manipulations we arrive to the explicit expression
of the function u :

u pξq “
e´

?
α ξ

`

e´
?
α ξ ´ β

˘ 2

4α ´ γ

. (2.42)

∗For Ω “ 0 , the condition (2.40) becomes c 2 ă 1 .

20 / 27



D. Dutykh and D. Ionescu-Kruse

-10 -5 0 5 10

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(a)

ξ
-10 -5 0 5 10

u
(ξ
)

0

0.5

1

1.5

2

2.5

3

3.5

4

Ω = 1, c = 0.75
Ω = −1, c = 0.75
Ω = 0, c = 0.75

(b)

Figure 10. One-trough travelling wave solutions to the KB system based on
analytical formulas (2.42) and (2.43).

Taking into account (2.23), the function H has the expression:

H pξq “ 2 ` c
e´

?
α ξ

`

e´
?
α ξ ´ β

˘ 2

4α ´ γ

´
e´2

?
α ξ

2
«

`

e´
?
α ξ ´ β

˘ 2

4α ´ γ

ff2 . (2.43)

We plot in Figure 10 the solutions (2.42) and (2.43) for different values of the con-
stant vorticity Ω and of the speed of propagation c. We get one-trough travelling wave
solutions.

If α ă 0 , that is,
2 c 2

ą C pΩq , ∗ (2.44)
the integral (2.39) can be calculated (c.f. [1, Chapter 3]) only if:

β 2
´ 4αγ “

16 c2 `1 ` C pΩq
˘2

9 ` 4CpΩq
“

C pΩq ´ 2 c 2‰
ą 0 ,

and
| 2αU ` β | ă

a

β 2 ´ 4α γ . (2.45)
In this case, its expression is:

I “ ´
1

?
´α

arcsin 2αU ` β
?
β2 ´ 4αγ . (2.46)

Therefore, the solution of the differential equation (2.38) has the implicit form

´
1

?
´α

arcsin 2α ` β upξq

upξq
?
β2 ´ 4αγ “ ξ ,

which yields:
u pξq “

´2α
β `

?
β2 ´ 4αγ sinr

?
´α ξs

. (2.47)

∗For Ω “ 0, the condition (2.44) becomes c 2 ą 1.
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Figure 11. Analytical expressions (2.49) and (2.47), respectively, for
different values of the constant vorticity Ω and of the speed of propagation c.

With (2.45) in view, the solution (2.47) is restricted to the interval

| 2α 1
u
` β | ă

a

β 2 ´ 4α γ . (2.48)

By (2.23), the function H has the expression:

H pξq “ 2 ` c
´2α

β `
?
β2 ´ 4αγ sinr

?
´α ξs

´
2α2

“

β `
?
β2 ´ 4αγ sinr

?
´α ξs

‰2 . (2.49)

In this case we obtained the same type of solutions as in Section 2.3.1. We plot in
Figure 11 the graphs of the analytical expressions (2.47) and (2.49) for different values
of Ω and c.

2.3.3. Periodic wave solutions

In the general ODE (2.25), by Viète formulas, we obtain for the right-going travelling
waves that

u 1 ` u 2 ` u 3 ` u 3 “
8 c p1 ` C pΩqq

3 C pΩq ą 0 ,

where u 1 , 2 , 3 , 4 are roots of the polynomial P puq . Thus, we can conclude that at least
one of the roots has to be positive. Further, by the phase plane analysis methods, we
study the qualitatively possible types of periodic solutions to the KB system (2.20),
(2.21). Depending on the roots of the fourth order polynomial P puq defined in (2.25),
the following situations are possible:

‚ one positive real root, one negative real root and two complex conjugate roots.
We obtain one family of periodic waves with a velocity which changes the sign
(see Figure 12).
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O

O

Figure 12. The periodic velocity profile for the KB system in the case the
polynomial P pHq has one positive real root, one negative real root and two
complex conjugate roots.

‚ two positive real roots and two complex conjugate roots. In this case, we obtain
one family of periodic waves with positive velocity.

‚ one positive real root and three negative real roots. Then, we obtain two families
of periodic waves: one with negative velocity and the another one with a velocity
which changes the sign.

‚ two positive real roots and two negative real roots. We obtain two families of
periodic waves: one with negative velocity and one with positive velocity (see
Figure 13).

‚ three real positive roots and one negative real root. We have two families of
periodic solutions: one with positive velocity and one with a velocity which
changes the sign (see Figure 14).

‚ four positive real roots. We get two families of periodic solutions with positive
velocities.

Acknowledgments

The authors acknowledge the support of this work by CNRS and Le Groupement
de Recherche International (GDRI) ECO–Math.

References

[1] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables 1972, Dover: New York. 18, 20, 21

23 / 27



D. Dutykh and D. Ionescu-Kruse

O

O

Figure 13. The periodic velocity profiles for the KB system in the case the
polynomial P pHq has two positive real roots and two negative real roots.

O

O

Figure 14. The periodic velocity profiles for the KB system in the case the
polynomial P pHq has three real positive roots and one negative real root.

[2] D. M. Ambrose, J. L. Bona and T. Milgrom, Global solutions and ill-posedness for the
Kaup system and related Boussinesq systems, 2017, preprint. 14

[3] T. B. Benjamin, The solitary wave on a stream with an arbitrary distribution of vorticity,
J. Fluid Mech 12 (1962), 97–116. 5, 9

[4] F. Biesel, Etude théorique de la houle en eau courante, Houille Blanche 5 (1950), 279–
285.. 9

[5] J. C. Burns, Long waves in running water, Mathematical Proceedings of the Cambridge
Philosophical Society 49 (1953), 695–706. 5, 9

24 / 27



D. Dutykh and D. Ionescu-Kruse

[6] R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,
Phys. Rev. Lett. 71 (1993), 1661–1664. 7

[7] M. Chen, Solitary-wave and multi-pulsed traveling-wave solutions of Boussinesq systems,
Applicable Analysis 72 (2000), 213–240. 6, 14, 19

[8] A. F. Cheviakov, Symbolic Computation of Local Symmetries of Nonlinear and Linear
Partial and Ordinary Differential Equations,Mathematics in Computer Science 4 (2010),
203–222. 10

[9] W. Choi, Strongly nonlinear long gravity waves in uniform shear flows, Phys. Rev. E
68 (2003), 026305. 6

[10] D. Clamond, D. Dutykh and A. Galligo, Computer algebra applied to a solitary waves
study, Proceedings of the International Symposium on Symbolic and Algebraic Compu-
tation 2015, 125–132. 6

[11] D. Clamond, D. Dutykh and A. Galligo, Algebraic method for constructing singular
steady solitary waves: A case study, Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 472 (2016), 2191. 6

[12] A. Constantin, Two-dimensionality of gravity water flows of constant nonzero vorticity
beneath a surface wave train, Eur. J. Mech. B (Fluids) 30 (2011), 12–16. 5

[13] A. Constantin, Nonlinear water waves with applications to wave-current interactions
and tsunamis, CBMS-NSF Conference series in applied mathematics, Vol. 81, SIAM,
Philadelphia, 2011. 5

[14] A.Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water
waves with vorticity, Duke Math. J. 140 (2007), 591–603. 5

[15] A. Constantin and R. I. Ivanov, On an integrable two-component Camassa–Holm shal-
low water system, Phys. Lett. A 372 (2008), 7129–7132. 7

[16] A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity. Com-
mun. Pure Appl. Math. 57 (2004), 481–527. 5

[17] A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity:
regularity and local bifurcation, Arch. Ration. Mech. Anal. 199 (2011), 33–67. 5

[18] A. D. D. Craik, The origins of water wave theory, Ann. Rev. Fluid Mech. 36 (2004),
1–28. 5

[19] A. F. T. Da Silva and D. H. Peregrine, Steep, steady surface waves on water of finite
depth with constant vorticity J. Fluid Mech. 195 (1988), 281–302. 5

[20] D. Dutykh and D. Ionescu-Kruse, Travelling wave solutions for some two-component
shallow water models, Journal of Differential Equations 261 (2016), 1099–1114. 6, 7, 10

[21] J. Escher, D. Henry, B. Kolev and T. Lyons, Two-component equations modelling water
waves with constant vorticity, Annali di Matematica 195 (2016) 249–271. 7

[22] N. C. Freeman and R. S. Johnson, Shallow water waves on shear flows, J. Fluid Mech.
42 (1970), 401–409. 5, 9

[23] G. A. El, R. H. J. Grimshaw and M. V. Pavlov, Integrable shallow-water equations and
undular bores, Stud. Appl. Math. 106 (2001), 157–186. 14

[24] G. Gui, Y. Liu, On the global existence and wave–breaking criteria for the two-
component Camassa–Holm system, Journal of Functional Analysis 258 (2010), 4251–
4278. 7

25 / 27



D. Dutykh and D. Ionescu-Kruse

[25] J. Haberlin and T. Lyons, Solitons of shallow water models from energy dependent
spectral problems, Eur. Phys. J. Plus, 133 (1), (2018). 14

[26] D. Holm and R. Ivanov, Two-component CH system: Inverse Scattering, Peakons and
Geometry, Inverse Problems 27 (2011), 045013. 7

[27] V. M. Hur, Symmetry of solitary water waves with vorticity, Math. Res. Lett. 15 (2008),
491–509. 5

[28] T. Iguchi, A long wave approximation for capillary-gravity waves and the Kawahara
equation, Bull. Inst. Math. Acad. Sin. 2 (2007), 179–220.

[29] M. Ito, Symmetries and conservation laws of a coupled nonlinear wave equation, Phys.
Lett. A 91 (1982), 335–338. 10

[30] D. Ionescu-Kruse, Variational derivation of the Camassa–Holm shallow water equation
with non-zero vorticity, Disc. Cont. Dyn. Syst.-A 19 (2007), 531–543. 5

[31] D. Ionescu-Kruse, Variational derivation of two-component Camassa–Holm shallow wa-
ter system, Appl. Anal. 92 (2013), 1241–1253. 7

[32] D. Ionescu-Kruse, On the small-amplitude long waves in linear shear flows and the
Camassa–Holm equation, J. Math. Fluid Mech. 16 (2014), 365–374. 5

[33] R. Ivanov, Two-component integrable systems modelling shallow water waves: The con-
stant vorticity case, Wave Motion 46 (2009), 389–396. 5, 7, 10, 14

[34] R. Ivanov and T. Lyons, Integrable models for shallow water with energy dependent
spectral problems, Journal of Nonlinear Mathematical Physics, 19 (2012), 1240008. 14

[35] R. S. Johnson, On solutions of the Burns condition (which determines the speed of
propagation of linear long waves on a shear flow with or without a critical layer),Geophys.
Astrophys. Fluid. Dyn. 57 (1991), 115–133. 9

[36] R. S. Johnson, The Camassa–Holm equation for water waves moving over a shear flow,
Fluid Dynam. Res. 33 (2003), 97–111. 5

[37] A. M. Kamchatnov, R. A. Kraenkel and B. A. Umarov, Asymptotic soliton train solu-
tions of Kaup–Boussinesq equations, Wave Motion 38 (2003), 355–365. 14

[38] D. J. Kaup, A higher-order water-wave equation and method for solving it, Prog. Theor.
Phys. 54 (1975), 396–408. 14

[39] J. Ko and W. Strauss, Effect of vorticity on steady water waves, J. Fluid Mech. 608
(2008), 197–215. 5

[40] B. L. Segal, D. Moldabayev and H. Kalisch, Explicit solutions for a long-wave model
with constant vorticity, Eur. J. Mech. B/Fluids 65 (2017), 247–256. 5

[41] P. D. Thompson, The propagation of small surface disturbances through rotational flow,
Ann. NY Acad. Sci. 51 (1949), 463–474. 9

[42] J.-M. Vanden-Broeck Steep solitary waves in water of finite depth with constant vorticity,
J. Fluid Mech. 274 (1994), 339–348. 5

[43] E. Wahlén, Steady water waves with a critical layer, J. Differential Equations 246 (2009),
2468–2483. 5

[44] E. Wahlén, Non-existence of three-dimensional travelling water waves with constant
non-zero vorticity, J. Fluid Mech. 746 (2014), R2. 5

[45] V. E. Zakharov, The Inverse Scattering Method, In: Solitons (Topics in Current Physics,
vol 17) ed. R. K. Bullough and P. J. Caudrey (Berlin: Springer, 1980), 243–285. 10

26 / 27



D. Dutykh and D. Ionescu-Kruse

D. Dutykh: Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000
Chambéry, France and LAMA, UMR 5127 CNRS, Université Savoie Mont Blanc, Cam-
pus Scientifique, 73376 Le Bourget-du-Lac Cedex, France

E-mail address: Denys.Dutykh@univ-smb.fr

URL: http://www.denys-dutykh.com/

D. Ionescu-Kruse: Simion Stoilow Institute of Mathematics of the Romanian Acad-
emy, Research Unit No. 6, P.O. Box 1-764, 014700 Bucharest, Romania

E-mail address: Delia.Ionescu@imar.ro

27 / 27


