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Abstract—To design faster and more energy-efficient systems,
numerous inexact arithmetic operators have been proposed,
generally obtained by modifying the logic structure of con-
ventional circuits. However, as the quality of service of an
application has to be ensured, these operators need to be precisely
characterized to be usable in commercial or real-life applications.
The characterization of the error induced by inexact operators
is commonly achieved with exhaustive or stochastic bit-accurate
gate-level simulations. However, for high bit-widths, the time and
memory required for such simulations become prohibitive. To
overcome these limitations, a new characterization framework
for inexact operators is proposed. The proposed framework
characterizes the error induced by inexact operators in terms
of mean error distance, error rate and maximum error distance,
allowing to completely define the error probability mass function.
By exploiting statistical properties of the approximation error,
the number of simulations needed for precise characterization
is minimized. From user-defined confidence requirements, the
proposed method computes the minimal number of simulations to
obtain the desired accuracy on the characterization for the error
rate and mean error distance. The maximum error distance value
is then extracted from the simulated samples using the extreme
value theory. For 32-bit adders, the proposed method reduces
the number of simulations needed up to a few tens of thousands
points.

Index Terms—Approximate computing, error modelization,
statistics, extreme values, inexact circuits, quality of service.

I. INTRODUCTION

Real-time and energy constraints for the current design
of embedded systems increase the need for developing new
techniques to save resources during the implementation phase.
Approximate computing is one of the main approaches for
post-Moore’s Law computing. It exploits the error resilience
of numerous applications in order to save energy or accelerate
processing. The numerical accuracy of an application is now
taken as a new tunable parameter to design more efficient
systems.

Approximations have been introduced at different levels. At
data level, approximation can be introduced by reducing the
volume of stored or processed data [1] or by optimizing the
data representation. For example, one may carefully choose
the type of arithmetic used, which can be floating-point, fixed-
point, logarithmic etc. or carefully tune the precision in opti-
mizing the bit-widths of the data [2], [3]. At algorithmic level,
the processing complexity can be reduced, for instance, by
skipping or approximating a fraction of the computations [4]–
[6]. Finally, at hardware level, approximations have been
exploited in different manners such as overclocking [7] or by

modifying the logic structure of original exact operators into
an inexact version [8]–[12] with a lower logic complexity or
shorter critical paths. Inexact operators generate errors with
varied amplitude and error rate. The error amplitude depends
on the location of the erroneous bits of the operator output.

Before analyzing the effects of the errors induced by
the chosen approximations on the application quality metric,
the errors induced by the inexact operator have themselves
to be modeled, to avoid exhaustive simulation. A thorough
characterization of the approximation error allows to choose
the most suitable operator with respect to the implementation
constraints and to quantify the impact of the approximation
on the application quality metric.

The error induced by inexact operators can be evalu-
ated with two types of approaches: 1) Analytical meth-
ods [13]–[16] mathematically express error statistics as the
mean error distance or the error rate, but are dedicated to
specific logic structures and can become really complex to
implement in terms of computation time and memory for high
bit-widths operators. 2) Functional simulation techniques [17]–
[19] simulate the inexact operator on a representative set of
data and computes statistics on the approximation error. To
mimic the inexact operator behavior, bit-accurate simulations
at the logic-level (BALL simulations) are required to catch the
internal structure modifications of the operator. Nevertheless,
BALL simulations are two or three orders of magnitude more
complex than classical simulations with native data types.
Thus, exhaustively testing the operator for all the input value
combinations is not feasible for high bit-widths because of the
required simulation time.

Commonly, the error statistics are computed by simulating
a given number of random inputs [17]–[19]. The quality of the
statistical characterization obtained from a random sampling
is highly dependent on the number of samples taken and on
the chosen input distribution. Besides, classical simulation-
based analysis do not provide any confidence information
on the obtained statistical estimation. Using a great number
of samples can be ineffective in terms of simulation time.
Furthermore, to the best of our knowledge, no generic method
has been proposed to evaluate the upper bound of the error
distance induced by inexact operators, which is a critical
characteristic to know when implementing inexact circuits.

In this paper, we propose a characterization method for
inexact operators according to three different metrics: the
mean error distance, the error rate and the upper bound of



the error distance, called maximum error distance in the rest
of the paper. This framework extends the preliminary work
proposed in [20]. To estimate the mean error distance and the
error rate, the proposed method derives the minimal number
of samples to simulate, to get an accuracy on the estimation
according to a given user-defined confidence interval. Our
approach drastically reduces the number of simulations needed
and thus the characterization time, by exploiting the statistical
properties of the approximation error. The simulated samples
are then analyzed with the extreme value theory to derive the
maximum error distance according to user-defined confidence
information. Reducing the characterization time allows to
characterize high bit-widths operators. The efficiency of our
method is evaluated on several inexact adders of different bit-
widths, from 8 to 32 bits.

The remainder of this paper is organized as follows: Sec-
tion II reviews the existing analytical and simulation-based
techniques to characterize the approximation error induced by
inexact operators. Section III details the metrics used for the
characterization of inexact operators and the methods to es-
timate them according to user-defined confidence parameters.
Section IV presents the proposed framework combining the
estimation of the mean error distance, error rate and maximum
error distance. Section V presents the experimental setup and
the obtained results in terms of number of simulated samples
and quality of the obtained estimation.

II. CONTEXT AND RELATED WORKS

Inexact arithmetic operators generate varied error profiles.
When implementing inexact operators in an application, the
objective is to derive the impact of the induced approximations
on the application quality metric.

The evaluation of the impact of the inexact operator on the
application quality metric is done in two steps as presented
in Figure 1. The errors induced by the inexact operator have
first to be modeled (Block 1) for different error metrics.
Then, the error metrics derived are used to evaluate the output
application Quality of Service (QoS) (Block 2) despite the
induced approximations.

A. Error Metrics

Performance metrics have been proposed to evaluate the
savings offered by the use of this functional approximation,
as the energy/area reduction. Nevertheless, inexact arithmetic
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Fig. 1: Proposed framework for evaluating the impact of
inexact operators on an application.

operators have also to be characterized in terms of approxi-
mation error.

1) Metrics for Quality of Service: The characterization of
the error induced by the approximations allows to know the
impact of the approximation on the application QoS. This step
corresponds to Block 2 in Figure 1. The application quality
metric, whose measurement depends on the application, quan-
tifies the output quality of the application. For instance, for
a signal processing application, the application quality metric
can be the Signal-to-Noise Ratio (SNR), whereas for an image
processing application, the application quality metric can be
the Structural Similarity Index Measure (SSIM). Nevertheless,
to derive the QoS at the output of an application, the errors
induced by inexact operators have first to be modeled.

2) Circuit Error Metrics: Numerous error metrics for in-
exact arithmetic operators have been proposed (Block 1 in
Figure 1). Inexact arithmetic circuits are traditionally char-
acterized based on the absolute Error Distance (e) of the
calculation output, expressed as:

e = |ẑ − z| (1)

where ẑ and z are the erroneous and exact outputs of the com-
putation, respectively. Then, statistical error characteristics, the
mean Error Distance (mean ED) µe, the Standard Deviation
(erms) and the Error Rate (f ), are derived from e, defined as:

µe =
1

N

∑
i∈I

ei (2)

f = 1
N

∑
i∈I

fei ,with fei =

{
1 if ei = 0

0 else
(3)

erms =

√
1

N

∑
i∈I

ei2 (4)

where ei is the Error Distance of the ith stimuli on a sample
set I of size N .

The error can also be characterized in terms of maximum
Error Distance (maximum ED) M e defined as:

M e = max
i∈I

ei (5)

Finally, the Probability Mass Function (PMF) of the error
induced by the inexact operator can also be used as a metric.
The PMF of the approximation error is the function indicating
the probability that the error distance is exactly equal to a
particular value.

B. Application Quality Metric Determination

Currently, two types of state-of-the-art approaches can be
used to evaluate the quality metric of an application im-
plementing inexact operators: analytical and simulation-based
approaches.



1) Analytical Techniques: Analytical methods mathemat-
ically express statistics on the error at the output of the
application. Based on the error propagation method proposed
with Interval Arithmetic (IA) or Affine Arithmetic (AA),
in [21] the authors proposed an adaptation of these methods
to inexact circuits. IA derives guaranteed error bounds at the
output of an application by propagating intervals representing
the different variables. For instance, IA models a variable x
by [x;x] where x represent the minimum value of the variable
x and x its maximum value. Then, rules are proposed in [22]
to propagate the intervals through simple and non recursive
systems. IA gives guaranteed but pessimistic error bounds.

AA has then been proposed to take into account first order
correlations between variables contrary to IA. AA models the
variables by affine forms. For instance, a variable x is modeled
by x0 + x1 · ε1 + ... + xn · εn where x0 is the mean value
of the distribution of x, xi are the coefficients of the affine
form and εi are independant and identically distributed (i.i.d.)
variables in [−1; 1]. The asset of AA compared to IA is that
the relationship between variables is kept when computing the
error bounds leading to less conservative error bounds.

When applying IA or AA to inexact arithmetic circuits,
the asymmetric nature of the error profile induces poor re-
sults. Thus, in [21], Modified Interval Arithmetic (MIA) and
Modified Affine Arithmetic (MAA) are proposed as variants
of IA and AA. In this case, intervals/affine forms are used
to represent the bars of the PMF of the approximation error.
Finally, rules are used to propagate the PMF through simple
blocks (addition, substraction, multiplication and division) so
as to get the output error profile. When implementing MIA or
MAA in Block 2, the error metric required from Block 1 is
the PMF of the inexact operator implemented. Nevertheless,
as presented in [21], these techniques are suffering from
range explosion and pessimistic bounds in the case of MIA,
and storage explosion when it comes to MAA. Besides, the
PMF of the inexact operator has first to be characterized by
simulations, which becomes prohibitive in case of large bit-
widths inexact operators. The application of such techniques
in complex applications is then questionned.

In [13], an analytical framework is proposed to compute
the Peak Signal-to-Noise Ratio (PSNR) metric for image
processing applications implementing specific types of inexact
arithmetic adders. When implementing this analytical tech-
nique, the error metric required from Block 1 is the mean ED.
Nevertheless this analytical framework is specific to particular
inexact adder types.

Sengupta et al. [23] proposed an analytical framework to
characterize the variance of the error at the output of a
Directed Acyclic Graph (DAG) composed of inexact adders.
In the proposed method, the approximation is supposed to be
applied only on the Least Significant Bits (LSBs). For each
node of the DAG potentially composed of inexact adders, the
variance of the error is computed depending on the number of
LSBs approximated and on the error distribution. Nevertheless,
to determine the relationship between the variance and the
number of LSBs approximated, for each considered inexact

adder, exhaustive simulations are required.
Finally, in [24], a more generic analytical approach based

on the Fourier and Mellin transforms has been proposed to
evaluate the PMF of the error at the output of a circuit
implementing inexact operators. The asset of the proposed
method is to be applicable to varied inexact operators while
giving results very close to the results obtained with Monte-
Carlo simulations, but the gain in terms of time are not enough
to answer to the growing space to explore when implementing
inexact operators in a complex application, considering its
exponential theoretical complexity.

2) Simulation-based Techniques: When implementing an
approximation in an application, functional simulation tech-
niques are mainly used to link the errors induced by the
approximation to the application QoS.

Functional simulation techniques run the approximate appli-
cation on data and checks the obtained QoS. Finally, statistics
on the impact of the approximation on the application QoS can
be computed. Functional simulation is used in [17]–[19] with
inexact arithmetic operators. Nevertheless, the simulation of
inexact arithmetic operators is complex. To mimic the behav-
ior of inexact arithmetic operators, Bit-Accurate Logic-Level
(BALL) simulations are required to catch the internal structure
modifications of the operator at the logic-level. The BALL
simulation time of a 16-bit inexact adder is around 300 times
longer than the one of a native accurate processor instruction,
and even 4000 times longer in the case of an inexact multiplier,
which makes exhaustive simulation impossible.

To reduce the simulation time of applications implementing
inexact operators, a technique to accelerate the simulation of
inexact arithmetic operators, “Fast and Fuzzy”, is proposed
in [25]. The “Fast and Fuzzy” simulator simplifies the ap-
proximation error model to fasten the simulation. The BALL
simulation of an inexact operator is replaced by the exact op-
eration to which is added a pseudo-random variable modeling
the approximation error. The “Fast and Fuzzy” simulator is
designed to quickly evaluate the impact of different approxi-
mations at the hardware level on the QoS of an application.
When implementing the “Fast and Fuzzy” simulator in Block
2, the error metrics required from Block 1 are the mean ED,
the Error Rate and the maximum ED of the inexact operator
implemented.

C. Inexact Operator Characterization

1) Analytical Techniques: Analytical techniques have been
proposed to evaluate error metrics of inexact operators. In [13],
estimated values for the error rate and the mean error distance
of several block-based inexact adders are analytically derived.
The derivation of error metrics for the different adders is
handled separately. For instance, to derive the error metrics
of the Almost Correct Adder (ACA), the authors form the
universal error set composed by all the possible error patterns
in the inexact operator. With a n-bit ACA, it is possible to
derive n disjoint subsets whose union form the universal error
set. The total mean ED of the operator is then defined by the
sum of the mean ED in each subset, and the mean ED in



each subset is approximately equal to 2i · qi where qi is the
probability to be in the considered subset. The Error Rate can
be derived as

∑
i qi. Through the probabilistic analysis of the

inexact operator, the values of qi are analytically derived.
When it comes to an n-bit Equally-Segmented Adder (ESA)

divided into r = dnk e − 1 sub-adders, since all the sub-adders
have an equal size except the first sub-adder which is exact, the
Error Rate is equal to 1−( 12 )

r. An approximation is then used
to compute the mean ED. A similar method is applied for the
Error-Tolerant Adder type II (ETAII) also giving approximate
values of the Error Rate and mean ED.

As an improvement of the method proposed in [13], [14]
derived a method to compute the exact error profile of block-
based inexact adders. Another improvement brought by [14] is
to provide a generic method to compute the error statistics of
block-based adders. Making the assumption that the inputs are
uniformely distributed, the authors compute the probabilites of
the signals propagating, generating and killing the carry.

Given these probabilites, the computation of the Error
Rate is possible. To derive the error distribution, the binary
representation of the Error Distance, named the “error pattern”
is analyzed. All the possible error patterns are enumerated and
their probability of occurrence is computed.

In [15], a method to compute the exact error distribution
of inexact arithmetic adders is also proposed. The method
trades off complexity for genericity, not only targetting block-
based adders. Nevertheless, this method is particularly long
to analyze large bit-width adders. Again, the conditions on
the inputs that led to an error are identified and treated as
independent events using probabilities.

Roy and Dhar [26] complemented the method proposed
in [15], deriving the accurate value of the mean ED of inexact
Lower Significant Bit (LSB) adders. This method is based
on the structure of these adders decomposed into several
approximate sub-adders and an accurate one on the Most
Significant Bit (MSB). Matrices storing the different error
amplitudes for each sub-adder are built to finally compute
the mean ED. Nevertheless, the proposed method targets only
the estimation of the mean ED which is not enough to
characterize the error generated by an inexact operator, and
is also particular to a class of operator.

Finally, the methods in [13]–[15], [26] are all dedicated
to specific structures of inexact operators. If the application
designer is willing to test inexact operators belonging to
different types, the analytical method to compute the error
statistics requires a new mathematical derivation. Besides, to
compute the desired metrics, the number of computations to
do becomes really high with the bit-width and an important
memory storage is required. To end with, no estimation has
been proposed on the maximum ED, which is a critical param-
eter when implementing an approximation in an application.

2) Simulation-based Techniques: To characterize the error
induced by inexact operators, simulation-based techniques are
massively used.

For instance, before using MIA or MAA to propagate the
errors through an application, a characterization phase based

on simulations is required. This characterization phase is
required to derive the PMF of the error-free input data, the
PMF of the error generated by the inexact operator and if the
input is noisy, the PMF of the error on the input data. Once the
different PMF have been derived, they are stored in Look-Up
Tables (LUTs).

Functional simulation can also be used to compute the
statistics of the error induced by the approximations. The
inexact operator can be simulated exhaustively, i.e. for all
possible inputs. For instance, if the considered inexact operator
has two unsigned inputs x and y coded on Nx-bit and Ny-bit
respectively, the exhaustive input set I = Ix×Iy is composed
of 2Nx+Ny values. Consequently, for high bit-widths in the
case of inexact operators, and more generally if the input
design space is large, exhaustive simulations are not feasible
because of the required simulation time.

Commonly, functional simulation is applied on a given
number of random inputs. Inexact operators are generally
simulated with 5 million random inputs as proposed in [19],
which is the typical inexact circuit characterization method.
Nevertheless, the quality of the statistical characterization
obtained from a random sampling is highly dependent on the
number of samples taken and on the chosen input distribution.
Besides, the quality of the estimation of the statistics is not
evaluated, and the random sampling based on a fixed number
of samples can be ineffective in terms of simulation time. To be
used in a real application, a method to characterize the error
induced by inexact arithmetic operators with a user-defined
confidence interval is proposed in this paper.

III. ESTIMATION OF THE ERROR OF APPROXIMATION

The proposed method is intended to be used as Block 1
from Figure 1 to estimate the following metrics for inex-
act operators: the mean ED µe, the Error Rate f and the
maximum ED M e. The proposed method demonstrates that
the statistical study of the approximation error can lead to a
significant reduction in the size of the sample set to simulate in
order to characterize an inexact operator given user-confidence
information. The proposed framework is not specific to a
class of inexact operators and can be applied to adders,
multipliers or even more sophisticated operators, which has
not been proposed yet. First, statistical parameters as the mean
ED and f are estimated with inferential statistics. Then, the
extremum bounds on the approximation error are derived with
the extreme value theory.

A. Statistical Estimation of the mean ED and the Error Rate

Inferential statistics, presented in [27], aim at reproducing
the behavior of a large population using a subset of this
population. This statistical analysis is particularly interesting
in the case of high bit-width inexact arithmetic operators,
where the exhaustive characterization is not feasible. Using
inferential statistics, the input operands set is sampled to give
an estimation with an accuracy h and a probability p that
the estimation is contained within the estimated confidence
interval, instead of simulating exhaustively all the possible



input operands combinations in I. This method is used to
compute confidence intervals on the mean ED µe and the Error
Rate f . Since the probabilistic laws used to estimate those
parameters are centered, the obtained confidence intervals also
are. In this case, the accuracy h on the estimation of the
confidence interval I = [a, b] is expressed as h = b−a

2 .
The objectives of the proposed method are: 1) to estimate
the error characteristics more efficiently, using a reduced but
sufficient number of samples, 2) to provide the estimated
error characteristics with a given confidence information. The
proposed method computes the minimal number of samples
to simulate, to estimate the error characteristics µe and f
according to (h, p). Nµe

and Nf represent the minimal number
of samples to estimate µe and f , respectively.

1) Computation of the minimal number of samples Nµe
to

estimate µe: The empirical mean µe, a punctual estimator
of µe, is used to estimate the real value of the mean error
distance, µe. That is to say, µe is an estimation of µe computed
over a given number of samples. µe is used to compute the
theoretical number of samples Nµe

to simulate to get an
estimation according to the confidence parameters (h, p). To
estimate Nµe

, the standard deviation of the simulated samples
is needed. The empirical mean µe and the empirical standard
deviation S̃2, a biased estimator of the standard deviation σe,
are computed over T samples as:

µe =
1

T

T∑
i=1

ei (6)

S̃2 =
1

T

T∑
i=1

(ei − µe)2 (7)

The estimators µe and S̃2 are associated to confidence inter-
vals ICµe

and ICσe
respectively, defined such that they include

µe and σe with a probability p. Then, according to the Central
Limit Theorem, since (e1, e2, ..., eT ) are belonging to the same
probability set, are independent and identically distributed, the
property in Equation 8 is verified if the number of samples Nµe

is higher than 30 [27]. Consequently, no assumption has to be
made on the distribution of the population. In Equation 8,
N (0, σ) represents a gaussian distribution whose mean is 0
and standard deviation is σ.√

Nµe(µe − µe)
law−−→ N (0, σ) (8)

The confidence interval ICpµe
is developed in Equation 9 and

contains µe with a probability p. The term aαµe
embodies the

accuracy on the estimation and is computed as in Equation 10.

ICpµe
= [µe − aαµe

;µe + aαµe
] (9)

In Equation 10, zα is given by the table of the standard
normal distribution given p [27]. Nµe

is the minimal number
of samples to simulate to get an estimation respecting the user-
defined parameters (h, p).

aαµe
= zα ·

S̃√
Nµe − 1

(10)

The desired accuracy h on the estimation of the mean ED
impacts the number of samples to simulate as expressed in
Equation 11. To get a desired accuracy of h, aαµe

must be
lower or equal to h.

Nµe
>
z2α · S̃2

h2
(11)

According to Equation 11, if the standard deviation of the
error generated by the inexact adder is very large, Nµe

can be
very high. Inexact operators with a large standard deviation
renders circuits with poor interest. In the proposed method, a
maximal number of simulated points Nmax has been set. If the
required number of points is higher than Nmax, the estimated
mean ED and Error Rate f are given according to p but with
a precision h depending on Nmax.

2) Computation of the minimal number of samples Nf
to estimate f : The proportion of input operands in I that
generate an error is embodied by the Error Rate f . f follows
a hypergeometric law [27]. The estimator used for the error
rate is fe, the proportion of samples generating an error in the
random sampling. The estimator is computed as in Equation 3,
applied on the sampled set. Such an estimator can also be
associated to a confidence interval ICpf that is defined such
that the real error rate f of the population E is contained in
this confidence interval with a probability p. The confidence
interval ICpf is defined in Equation 12.

ICkf = [fe − aαf ; fe + aαf ] (12)

In Equation 12, aαf represents the accuracy on the estimation
of f , zα is given by the table of the standard normal distribu-
tion [27] and Nf represents the minimal number of samples to
simulate, to get an estimation with the user-defined parameters
(h, p).

aαf = zα ·

√
fe(1− fe)

Nf
(13)

To get a desired accuracy of h, aαf must be lower or equal
to h, which impacts Nf as in Equation 14.

Nf >
z2α · fe(1− fe)

h2
(14)

B. Estimation of the maximum ED with Extreme Value Theory

The proposed method aims at estimating the maximum ED
according to an in-range probability p. An interesting ap-
proximate computing technique rarely generates the maximum
ED which can consequently be considered as a rare event.
Currently, simulation-based techniques are used to estimate
the maximum ED but no guarantee is obtained that the real
maximum value is not higher than the observed maximum
value.

The user-defined confidence parameter p allows to be more
or less conservative on the estimation depending on the critical
nature of the application. Our approach exploits the statistical
properties of the maximum approximation error, using the
Extreme Values Theory (EVT). The probability p corresponds
to the probability that the real value of the maximum ED M e



is lower or equal to the estimated value of the maximum ED
M̃ . The higher p, the more conservative the estimation. The
studied population for estimating the maximum ED is the set
(e1, e2, ..., eT ) of error distance values, that are independent
and identically distributed events.

EVT [29], [30] aims at describing the stochastic behavior of
minima or maxima, and is particularly useful in domains such
as finance or insurance. EVT aims at predicting the occurrence
or amplitude of rare events even though no observation is
available.

The Cumulative Distribution Function (CDF) of the set of
error distance values is called G and its associated survivor
function is G = 1−G. The ordered statistics on a sample of
size T can be defined as e1,T ≤ e2,T ≤ ... ≤ eT,T = MT .
The proposed method aims at estimating the value M̃ such
that:

M̃ = G
−1

(αT )

where αT = 1−p < 1
T when lim

T→∞
αT = 0, i.e. estimating the

extreme quantile value for αT . Nevertheless, the CDF and its
survivor function are unknown. To estimate M̃ , the following
property from [29] and [30] is used:

Property III-B.1: The distributions of extremum values
converge towards an extreme value distribution.

Three types of extreme value distributions exist, the Gum-
bel, Weibull and Fréchet distributions. For estimating the upper
bound on the error induced by inexact operators, the followed
distribution is the Gumbel distribution [31]. Contrary to the
estimation of mean ED or f , no confidence interval can be
computed on the estimation of M e. The value M̃ estimated
corresponds to the value that encompasses M e with a given
user-defined probability p. The proposed method is inspired
of the dynamic range determination processed in fixed-point
theory as presented in [31].

To estimate the real value of the maximum ED, the value
M̃ = G

−1
(αT ) is computed. So as to compute M̃ for a given

probability p, the distribution of the maximum error values
has to be studied and identified to a Gumbel distribution.

To derive the maximum error values distribution, T samples
are simulated k times. The maximum error value over each
sample of size T is extracted, and the obtained list of max-
imum error values models the experimental maximum error
values distribution. It can then be identified to a Gumbel
distribution defined hereafter by its density function g in
Equation 15 and its CDF G in Equation 16:

g(x) =
1

σ
exp(− (x− µG)

σG
)exp(−exp(−−(x− µG)

σG
)) (15)

G(x) = exp(−exp(− (x− µG)
σG

)) (16)

The parameters (σG, µG) are used to fit the Gumbel dis-
tribution to the experimental distribution of maximum error
values. The term σG is called the scale parameter and is used
to stretch or shrink the distribution. The term µG is called the
location parameter and is used to shift the distribution on the

horizontal axis. The computation of (σG, µG) is detailed in
Equations 17, 18:

σG = 1
π ·
√
6S̃G (17)

µG = µG − σG · λ (18)

where S̃G is the empirical standard deviation of the ex-
perimental maximum error values, µG is the empirical mean
of the experimental maximum error values, and λ is the
Euler constant. The parameters (σG, µG) completely define
the Gumbel distribution fitting the maximum error values
distribution.

Once the distribution of maximum error values has been
completely defined, the goal of our proposed method is to
compute the value M̃ such that G(M̃) = P (X ≤ M̃) = p
where p is the in-range probability. Equations 19, 20 can then
be derived.

p = P (X ≤ M̃) = exp(−exp− (M̃−µG)
σG

) (19)

M̃ = µG − σG · ln(ln( 1p )) (20)

IV. PROPOSED ALGORITHM

Algorithm 1 presents the estimation of the mean ED and
the Error Rate f with a fair number of samples. From the
simulated samples, the maximum ED is also estimated. The
population on which inferential statistics are applied is the
set E = {ei/i ∈ I}. The statistical variables mean ED µe,
the Error Rate f and the Standard Deviation (STD) σe are
describing the population E and are consequently characterized
by probability laws. To sample the population E , a random
sampling method without replacement is used. So that the
exhaustive sampling behaves like a non exhaustive sampling,
T , the initial number of simulated samples, is taken higher or
equal to 30.

To characterize an inexact arithmetic operator, the user
provides the following information: the desired accuracy on
the estimation h, the probability p that the estimated interval
contains the real value for µe and f , and that the real maximum
is lower than the estimated maximum, and the refreshment
period T . T is used to refine the number of samples required.
A first sampling extracts T samples from the population E , on
which are computed the empirical mean µe, standard deviation
S̃2 and empirical error rate fe. From these estimations, the
theoretical minimal numbers of samples to compute to esti-
mate µe and f according to the user’s precision constraints is
obtained. The maximum error value of the simulated samples
is also extracted, and appended to the set of maximum error
values J .

Then, to estimate µe and f , the empirical standard deviation
S̃, empirical mean µe and error rate fe of the samples are used.
Those three estimators are computed to derive the theoretical
numbers of samples to simulate to estimate µe and f , Nµe

and Nf respectively. The maximum of these two values, N ,
is taken as the reference number of samples to simulate.
The same process is refined every T samples to converge



towards a minimized value of N , and every T samples, the
maximum error value is extracted and appended to the set
J . Consequently, the higher T , the more the computations of
Nµe

and Nf are accurate. If N is higher than Nmax, Nmax
points are simulated but the estimated results are not fulfilling
the accuracy requirement, embodied by h. In this case, the
obtained accuracy h can be computed depending on Nmax as:

h =
zα · S̃√
Nmax − 1

(21)

Algorithm 1 Characterization of µe, f and M e of popu-
lation E

1: procedure CHARACTERIZEµe,f,M E(E , h, p, T,Nmax)
2: α = 1− p
3: J = ∅
4: E = (e1, .., eT ) = sampling(E , T )
5: M = max(E)
6: J = J ∪M
7: µe = computeMean(E, T ) . Equation 6
8: S̃2 = computeSD(E, T, µe) . Equation 7
9: fe = computeFreq(E, T ) . Equation 3

10: Nµe = computeNMean(S̃2, h) . Equation 11
11: Nf = computeNFreq(fe, h) . Equation 14

12: N = max(Nµe , Nf )
13: n = T
14: E = E\E
15: while n < N do
16: E′ = (en, .., en+T ) = sampling(E , T )
17: M = max(E)
18: J = J ∪M
19: E = E ∪ E′
20: µe = computeMean(E,n+ T )
21: S̃2 = computeSD(E,n+ T, µe)
22: fe = computeFreq(E,n+ T )

23: n+ = T

24: Nµe
= computeN(S̃2, h)

25: Nf = computeNFreq(fe, h)
26: N = max(Nµe

, Nf )
27: E = E\E
28: if N ≥ Nmax then
29: N = Nmax
30: end if
31: end while
32: σG = computeScale(J, n) . Equation 17
33: µG = computeLocation(J, n, σG) . Equation 18
34: M̃ = computeMax(µG, σG, p) . Equation 20
35: end procedure

Once the N points have been simulated, the set of maximum
error values J is used to identify the obtained distribution
of maximum error values to a Gumbel distribution. The
parameters σG and µG are computed and used to compute

the estimation of the maximum ED according to the in-range
probability p.

V. EXPERIMENTAL STUDY

A. Inexact Adders under Consideration

For this experimental study, inexact adders have been se-
lected among three major kinds of topology explored in the
literature: timing-starved adders [9], speculative adders [10],
[11] and carry cut-back adders [12].

The ACA [9] is the most known timing-starved adder. It
is composed of an array of overlapping and translated sub-
adders, so that each sum bit is constructed using exactly the
same amount of preceding carry stages, except the first ones.
The critical-path delay is thus limited, but the circuit cost is
fairly high. The ACA is an interesting case study due to its
very low Error Rate. Errors occur when carry chains are longer
than the ACA sub-adder size, which is the main ACA design
parameter. Thus, ACA designs have a very low frequency of
errors, but of high arithmetic distance.

The Inexact Speculative Adder (ISA) [10] is the leading
architecture of speculative adders. As an evolution of the
ETAII [11], it also segments the addition into several sub-
adders with carry speculated from preceding sub-blocks. The
ISA features a shorter speculative overhead that improves
speed and energy efficiency, and introduces a dual-direction
error correction-reduction scheme that lowers mean and worst-
case errors. ISA designs typically display higher Error Rates
than ACA but with lower error values, depending of the
number of sub-blocks and error compensation level, which
are the main ISA design parameters.

The Carry Cut-Back Adder (CCBA) [12] exploits a novel
idea of artificially-built false paths (i.e. paths that cannot be
logically activated) [19], co-optimizing arithmetic precision to-
gether with physical netlist delay. To guarantee floating-point-
like precision, high-significance carry stages are monitored
to cut the carry chain at lower-significance positions. These
cuts prevent the critical-path activation, thus relaxing timing
constraints and enabling energy efficiency levels out of reach
from conventionally designed circuits. The Error Rate ranges
similarly as for the ISA, but the error values are lower than
those generated by the ACA and the ISA, depending of the
number of cuts and cutting distance, which are the main CCBA
design parameters.

The important error characteristics when implementing in-
exact operators are the mean ED, the Error Rate and the
maximum ED. The PMF of the ACA with two different carry-
chain lengths are presented in Figure 2.

B. Estimation of the mean ED and the Error Rate

The proposed experimental study aims at showing that 1) the
proposed method correctly estimates the error characteristics
mean ED µe and Error Rate f of circuits for various bit-widths,
2) this estimation remains consistent for higher bit-widths
where exhaustive simulation is not possible, and 3) for the
majority of inexact adders, the proposed method outperforms
naive stochastic simulation with a fixed-number of samples
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Fig. 2: Probability mass functions of 8-bit inexact adders.

(FNS simulation). Indeed, two cases are shown: the proposed
method requires less samples and thus converges faster to-
wards an accurate error estimation, or the proposed method
requires more samples than the traditional FNS simulation
which is, in this case, not accurate enough.

Each above-mentioned adder architecture have been synthe-
sized, with different bit-widths, from 8 to 32 bits, and varying
main design parameters, in order to cover a large spectrum
of error behaviors. The proposed characterizations have been
completed with h = 5% and p = 95% on an Intel Core i7-
6700 processor. The consistency of the error characterization
remains the same even with varied h and p. The higher p and
the lower h, the larger the sample set to simulate.

1) Quality of the estimation for small bit-widths: To first
check the quality of the proposed method, small bit-width
inexact adders have been characterized with our method,
as well as with an exhaustive characterization using BALL
simulations to obtain their real error characteristics. That
is to say that the Error Distance values generated by the
inexact operators under consideration have been computed
for all their possible input values. For instance, for 16-bit
inexact operators, the exhaustive characterization requires the
simulation of 232 operations.

Table I reports the confidence intervals on µe and f obtained
by the proposed method, compared to their real values, and the
numbers of samples N used for the proposed characterization.
The ratio N ratio between the number of simulations N done
using the proposed characterization method, and the number of
simulations done when using an exhaustive characterization is

also indicated. For 8-bit operators, the number of simulations
when using an exhaustive characterization is 216, while for
16-bit operators, the number of simulations when using an
exhaustive characterization is 232. For both 8-bit and 16-
bit adders, the obtained confidence intervals almost always
contain the real values, demonstrating that our method is
accurate. The 16-bit ACA8 is the only design for which the
obtained confidence intervals do not contain the real values
(c.f. bold numbers), but the relative error between confidence
interval bound and real value is extremely small.

For most operators, only a few tens of thousands of simu-
lated samples were required to get precise error characteristics.
For both 16-bit ACA12 and ACA8, the number of simulated
samples has been saturated with Nmax = 25 millions (c.f.
bold sample number). This is due to the fact that ACA adders
have a large standard deviation in error values. Though, the
proposed method outputs very accurate estimated values of
f and mean ED. The largest relative error on the estimated
values compared to the exhaustive characterization is on the
estimation of f of the operator ACA8, and is equal to 1.27%.

2) Consistency of the estimation for 32-bit operators: To
check the consistency of the proposed method for this larger
bit-width, the proposed characterization has been compared
to random FNS simulation with 5 million samples from [19],
which is the typical inexact circuit characterization method
as exhaustive simulation is not feasible. The chosen CCBA
and ACA adders are Pareto-optimal designs shown in the
comparative study of [19]. Those adders are realistic designs
to be implemented, and thus represent ideal subjects for the
proposed characterization.

Table II reports the results for 32-bit inexact adder charac-
terization. In the case of 32-bit operators, it is to be noted that
both characterizations (the proposed characterization and the
one obtained with FNS simulation) are statistical estimates. In
case the two methods do not converge towards the same es-
timation, bold numbers represent values obtained with higher
amount of samples, assumed more accurate. The ratio N ratio
between the number of simulations N done using the proposed
characterization method, and the total number of simulations
(264) is also indicated.

For 2 out of 8 designs (CCBA1,5 and ISA2,8), the obtained
confidence intervals obtained with less simulation samples
than the FNS simulation do not contain the error values from
this latter. Nevertheless, the obtained estimated values of f
and mean ED are very close from the random characterization.
Inversely, for 3 of them (CCBA1,6, ISA2,2 and ACA17), the
proposed method has converged into different confidence inter-
vals than the BALL simulation, as it has determined that more
samples were required for safe estimation. This is coherent, as
by user decision, the confidence interval has only 95 % chance
to contain the real value. The most critical case concerns
ACA17. For this characterization, naive BALL simulation
has dangerously underestimated mean ED compared to the
proposed method. This is due to the very low error rate of
the 32-bit ACA, for which 5 million samples is insufficient to
make good statistics on errors.



TABLE I: Estimation results and comparison with exhaustive characterization for operators of small word-lengths (bold numbers
if confidence intervals do not contain the real values).

Nbits Op. type Name ICµe µe ICf f N Nratio

8
ISA ISA2,2 8.63·10−1 9.55·10−1 8.75 ·10−1 1.08·10−1 1.19·10−1 1.09 ·10−1 11,765 0.180

ISA2,4 4.16 ·10−2 1.38 ·10−1 9.38·10−2 1.04·10−2 3.46·10−2 2.34·10−2 578 0.009
ACA ACA6 1.67 1.99 1.75 1.51·10−2 1.77·10−2 1.56·10−2 35,873 0.547

16

CCBA CCBA1,6 7.30·10−1 8.18·10−1 7.50 ·10−1 1.83·10−1 2.04 ·10−1 1.88·10−1 5041 1.175·10−6

ISA ISA2,4 1.95 2.06 1.97 3.05·10−2 3.21·10−2 3.08·10−2 178,930 4.166·10−5

ISA2,6 1.73·10−1 2.69·10−1 2.42·10−1 5.40·10−3 8.40·10−3 7.60·10−3 11,602 2.701·10−6

ACA ACA12 9.50 9.94 9.69 4.86·10−4 4.91·10−4 4.88·10−4 25M 0.006
ACA8 1.71·102 1.72·102 1.70 · 102 1.57·10−2 1.58·10−2 1.56 · 10−2 25M 0.006

TABLE II: Estimation results and comparison with 5-million BALL simulations for 32-bit operators (bold numbers if confidence
intervals do not contain the FNS values).

Op. type Name ICµe µe 5M ICf f 5M N Nratio

CCBA

CCBA1,5 1.564·101 1.574·101 1.576 · 101 1.222·10−1 1.230·10−1 1.231 · 10−1 2,792,512 10−13

CCBA1,6 1.877·101 1.889 · 101 1.897·101 2.867 · 10−2 2.880 ·10−2 2.860·10−2 17,008,400 10−12

CCBA1,7 2.132·10−1 2.613·10−1 2.420·10−1 6.700·10−3 8.200·10−3 7.600·10−3 50,176 10−15

CCBA1,9 4.421·10−1 5.482·10−1 5.017·10−1 1.700·10−3 2.100·10−3 2.000·10−3 172,676 10−14

ISA
ISA2,2 8.166·103 8.183 · 103 8.189·103 1.246·10−1 1.249 · 10−1 1.250·10−1 25M 10−12

ISA2,8 3.826 3.933 3.763 7.505·10−3 7.698·10−3 7.600·10−3 3,130,201 10−13

ISA2,10 9.125·10−1 1.012 1.003 4.566·10−4 5.104·10−4 4.954·10−4 3,084,740 10−13

ACA ACA17 1.433 · 104 1.812·104 1.391·104 4.999·10−5 5.004·10−5 5.002·10−5 25M 10−12

3) Number of simulations required for accurate estimation:
Algorithm 1 refines the estimation of mean ED and f given a
refreshment period T . Figures 3a and 3b illustrates the conver-
gence of the estimation on f and mean ED respectively. The
different curves, corresponding to the different operators, have
different starting points depending on the chosen refreshment
period T . The relative error of estimation of mean ED and
f depending on the simulation length are represented. To
compute the relative error of estimation ε of the confidence
interval on mean ED, ICµe = [a; b], the computation of the
center of the estimated interval µe is required and is computed
as:

µe = a+
b− a
2

(22)

Finally, the center of the estimated interval µe is compared
to the FNS value obtained with 5-million BALL simulation
µe,5M as:

ε =
|µe − µe,5M |

µe,5M
(23)

The same process is applied to compute the relative error of
estimation of f .

The final estimated values are all very accurate since the
relative error of estimation is always lower than 0.1 %. Small
bumps can be noted in the convergence of the estimated values
due to the random sampling processed in each iteration of the
algorithm. Besides, the speed of convergence strongly varies
depending of the chosen operator. This is why the proposed
method, which is an adaptive sample-size method, better fits
any operator rather than naive FNS simulations.

C. Estimation of the maximum ED

The proposed experimental study aims at showing that the
proposed method correctly estimates the maximum ED of
circuits for various bit-widths, and that the quality of the
estimated maximum error value is configurable depending on
the in-range probability p, the size of the sample sets T and
the number of times the T samples are simulated, k. The
total number of simulated points is then k × T . Two cases
are shown: the dependency of the quality of the estimation
on the total number of simulated samples k × T , and on the
in-range probability p. maximum ED estimations have been
completed with varying p, T and k.

1) Quality of the estimation for small bit-widths: To first
check the quality of the proposed estimation method, the max-
imum ED of small bit-width inexact adders has been compared
to an exhaustive characterization using BALL simulations
which shows the real maximum error distance characteristics.
Table III reports the estimated values M̃ of the maximum
ED obtained by the proposed method, compared to their real
values Me, depending on the parameters (k, T, p).

For most 8-bit adders, only k × T = 1000 simulations are
required to correctly estimate the maximum ED encompassing
the real value Me. The in-range probability p can be used to be
more or less conservative on the estimation. For the example
of the ACA6, the in-range probability can also be used to
adjust the accuracy of the estimation. If p is lower than 95%,
the obtained estimation M̃ does not always encompass the
real maximum Me. For an in-range probability p = 95%,
the estimated maximum value always encompasses the real
maximum Me, demonstrating that the proposed estimation is
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Fig. 3: Convergence of the estimation of mean ED and f
depending on the number of simulated samples N , with
p = 95% and h = 0.5% for different 32-bit adders.

conservative.
For most 16-bit adders, the estimation of the maximum ED

is accurate with only k × T = 104 simulations. The ACA8

still requires an in-range probability of 95% to encompass the
real maximum value Me. Nevertheless, the ACA12 is the only
design for which the estimation is accurate only for p > 95%.
This operator has very scattered error values and the chance
to catch the real maximum during the determination of the
error distance values distribution is lower than for the other
inexact operators. However, this renders a poor quality inexact
operator.

2) Consistency of the estimation for 32-bit operators:
Table IV reports the results for 32-bit inexact adder maximum
ED estimation. To check the consistency of the proposed
estimation method for this larger bit-width, the obtained es-
timations have been compared to random BALL simulation
with 5 million samples from [19].

In the case of 32-bit operators, it is to be noted that both
obtained values M̃ and Me (5M) are estimates. For most 32-
bit adders excepted the CCBA1,6 and ISA2,10, the proposed
method gives conservative estimates even with an in-range
probability of 90%. For the operator ISA2,10, the in-range
probability has to be greater or equal to 95% to obtain a
correct estimation. However, the CCBA1,6 requires to set the
in-range probability up to 99.9% to encompass the maximum

TABLE III: Estimation results of maximum ED and compar-
ison with exhaustive characterization for operators of small
word-lengths (bold numbers if M̃ < Me).

Nbits Op. type Name p k T M̃ Me

8

ISA

ISA2,2

90 10 100 8 8
95 10 100 8 8
98 10 100 8 8

ISA2,4

90 10 100 4 4
95 10 100 6 4
98 10 100 7 4

ACA ACA6

90 10 100 151 192
90 10 100 199 192
95 10 100 210 192
98 10 100 249 192

16

CCBA CCBA1,6

90 10 1000 4 4
95 10 1000 4 4
98 10 1000 4 4

ISA

ISA2,4

90 10 1000 64 64
95 10 1000 64 64
98 10 1000 64 64

ISA2,6

90 10 100 32 32
95 10 1000 32 32
98 10 1000 32 32

ACA

ACA12

90 10 1000 28467 61440
95 10 1000 41646 61440
98 10 1000 66068 61440

ACA8

90 10 1000 63305 65280
95 10 1000 67008 65280
98 10 1000 84188 65280

TABLE IV: Estimation results of maximum ED and com-
parison with Monte-Carlo characterization (5M) for 32-bit
operators (bold numbers if M̃ < Me).

Nbits Op. type Name p k T M̃ Me (5M)

32

CCBA

CCBA1,5

90 500 1000 128 128
95 500 1000 128 128
98 500 1000 128 128

CCBA1,6

90 500 1000 1349 1641.6
95 500 1000 1409 1641.6
98 500 1000 1491 1641.6

99.9 500 1000 1743 1642

CCBA1,7

90 500 1000 32 32
95 500 1000 32 32
98 500 1000 32 32

CCBA1,9

90 500 1000 325 256
95 500 1000 373 256
98 500 1000 439 256

ISA

ISA2,2

90 500 1000 65536 65536
95 500 1000 65536 65536
98 500 1000 65536 65536

ISA2,8

90 500 1000 16384 16384
95 500 1000 16384 16384
98 500 1000 16384 16384

ISA2,10

90 500 1000 1945 2048
95 500 1000 2614 2048
98 500 1000 3289 2048

ACA ACA17

90 500 1000 4·109 2·109

95 500 1000 4·109 2·109

98 500 1000 4·109 2·109

error distance estimated with 5 million samples.
3) Accuracy of the estimation depending on the in-range

probability: The in-range probability allows to be more or
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(a) 8-bit adders.
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(b) 16-bit adders.

Fig. 4: Estimation of maximum ED as a percentage of Me

depending on the in-range probability p for a fixed number
of simulated samples k × T , k = 10, T = 100. Vertical lines
indicate M̃ =Me.

less conservative on the estimate of Me. Figures 4a and 4b
depict the link between the parameter p and the accuracy
of estimation. Indeed, when implementing an approximate
computing technique, the maximum ED must not be under-
estimated. However, if the obtained value overshoots the real
maximum ED, the application designer may wrongly discard
a technique, hence the importance of adjusting the parameter
p.

The estimated maximum error distance values M̃ are rep-
resented as a percentage of the accurate maximum ED values
Me for each inexact adder in Figures 4a and 4b. Vertical lines
indicate for each inexact adder, when p is high enough to
accurately estimate M̃ (M̃ = Me). The proposed method
correctly estimates the maximum ED for both inexact adders
8-bit ISA2,2 and 16-bit CCBA1,6 and for p varying from 25%
to 100% since these adders frequently generate the maximum
error distance.

For the 8-bit ISA2,4, M̃ encompasses Me when p ≥ 72%
and for the 16-bit ISA2,6, when p ≥ 68. Nevertheless, for the
ISA2,6, ACA6 and ACA8, the in-range probability p has to
be very high to encompass the real maximum error distance
(higher than 85%, 88% and 97% respetively). Indeed, the
generated errors are scattered and local maxima may be found
in the different samples, leading to a lower value of M̃ .
When p increases, the estimated maximum ED becomes very

~

(a) 8-bit adders.

~
(b) 16-bit adders.

Fig. 5: Estimation of maximum ED as a percentage of Me

depending on the T with k = 10, p = 90%. Vertical lines
indicate M̃ =Me.

conservative. Small bumps can be observed for the ACA6 and
ACA8, also caused by the large standard deviation generated
by this type of inexact adder. It is still to be noted that for 8-
bit and 16-bit estimations, the number of simulated samples is
small, since equal to 1000 samples which represents 1.5% of
the whole input space for 8-bit operators, and only 2.3·10−5%
of the whole input space for 16-bit operators.

4) Accuracy of the estimation depending on the number
of simulated samples: The accuracy of the estimation can
also be controlled with the total number of simulated points
k × T taken to derive the distribution of the maximum error
distance values. Figures 5a and 5b represent the evolution
of the accuracy of estimation depending on the size of the
simulated samples T , with k set to 10, for different 8-bit and
16-bit adders respectively.

Figures 5a and 5b represent the estimated value M̃ as a
percentage of Me depending on T . In this case, T samples
are simulated and their maximum is extracted. This operation
is done k = 10 times. For 8-bit adders, the estimates converge
towards a value for 8-bit ISA2,2 and ISA2,4 as soon as T ≥ 25.
For 16-bit adders, the estimates converge towards a value for
ISA2,4, ISA2,6 as soon as T ≥ 250 and for CCBA1,6 as soon
as T ≥ 50. As soon as the size of the samples exceeds 25 for
8-bit adders, and 250 for 16-bit adders, simulating additional
samples does not impact the estimated maximum value M̃ .
The adders ISA2,2, 16-bit ISA2,4, ISA2,6 and CCBA1,6 are
converging towards the real value Me when T ≥ 25 for the



8-bit adder and T ≥ 250 for the 16-bit adders. For the 8-bit
adder ISA2,4, the estimation is conservative since Me = 4
and the estimate converges towards M̃ = 5. This case is not
problematic since the relative error of estimation is equal to
25%.

Nevertheless, to estimate correctly M̃ for the ACA6 and
ACA8, the size of the simulated samples has to be really high
compared to the other considered inexact operators, 72 and 870
respectively. Indeed, as shown in Figure 4a and 4b, for a fixed
sample size T = 100, the estimation of M̃ for both inexact
operators ACA6 and ACA8 needs a high in-range probability
to reach the accurate value Me.

Figures 6a and 6b represent the estimated value M̃ as a
percentage of Me depending on k. In this case, T samples
(T = 100 for 8-bit adders, T = 250 for 16-bit adders) and
their maximum is extracted. This operation is done a varying
number of times k. For 8-bit adders, the ISA2,2 and ISA2,4

converge towards a value as soon as k = 5. As shown in
Figures 5a, the ACA6 would require more simulations to
converge. Nevertheless, contrary to the impact of T on the
quality of the estimation, in this case, a single adder (ISA2,2)
has converged towards the exact value Me. This is due to
the frequent generation of the maximum error value with
this inexact adder. For the ACA6, the estimated maximum
M̃ is underestimated. Indeed, if the maximum extracted in
the samples of size T is a local maximum, which induces
parasite results when computing the Gumbel distribution. For
the ISA2,4, the estimated maximum M̃ is overestimated, with
a relative error of estimation of 25%. For 16-bit adders, the
estimates converge towards a value as soon as k = 25.
The curve representing the ISA2,4 is overlapping the curve
representing the CCBA1,6. In this case, for both adders ISA2,4

and CCBA1,6, only k = 5 simulations are required to correctly
estimate the value M̃ . For the ISA2,6, the value M̃ is slightly
overestimated. Finally, for the same reasons as for the 8-
bit ACA6, the ACA8 underestimate the value M̃ . However,
as stated for the estimation of the fand mean ED, inexact
operators with a large standard deviation renders circuits with
poor interest.

To draw a conclusion, to correctly estimate the maximum
error distance for an inexact adder, the user will mainly
modify the in-range probability p, allowing to be more or less
conservative on the estimation without simulating additional
samples, or the size of the samples T to ensure to converge
towards global and not local maximum values to derive the
Gumbel distribution.

VI. CONCLUSION

In this paper, we propose a characterization method of the
approximation error induced by inexact arithmetic circuits, that
exploits the statistical properties of the error. The benefits of
the proposed method are demonstrated on different inexact
arithmetic adders (ACA, ISA and CCBA) and the mean error
distance, error rate and maximum error distance are esti-
mated. From user-defined confidence requirements, the pro-
posed method automatically adjusts the number of simulations

~

(a) 8-bit adders, T = 100.

~
(b) 16-bit adders, T = 250.

Fig. 6: Estimation of maximum ED as a percentage of Me

depending on k, p = 90%. Vertical lines indicate M̃ =Me.

required by using statistical properties of the approximation
error. Validated by its accurate estimation of error character-
istics on 8 to 16-bit circuits, the proposed method has been
proven coherence and consistency on larger bit-widths, with
32-bit circuits, where exhaustive simulation is not feasible.
This experimental study has demonstrated that the proposed
method outperforms naive stochastic BALL simulations with
a fixed number of samples, either by converging towards a
more accurate characterization, or by drastically reducing the
amount of samples required for an accurate estimation, saving
time and resources.
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[31] E. Özer, A. P. Nisbet, and D. Gregg, “A stochastic bitwidth estimation

technique for compact and low-power custom processors,” ACM Trans-
actions on Embedded Computing Systems (TECS), vol. 7, no. 3, p. 34,
2008.

[32] A. Chapoutot, L.-S. Didier, and F. Villers, “Range estimation of floating-
point variables in simulink models,” in Design and Architectures for
Signal and Image Processing (DASIP), 2012 Conference on. IEEE,
2012, pp. 1–8.


