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Meta-heuristics and Artificial Intelligence

Jin-Kao Hao and Christine Solnon

Abstract Meta-heuristics are generic search methods that are used to solve challeng-
ing combinatorial problems. We describe these methods and highlight their common
features and differences by grouping them in two main kinds of approaches: Pertur-
bative meta-heuristics that build new combinations by modifying existing combina-
tions (such as, for example, genetic algorithms and local search), and Constructive
meta-heuristics that generate new combinations in an incremental way by using a
stochastic model (such as, for example, estimation of distribution algorithms and
ant colony optimization). These approaches may be hybridised, and we describe
some classical hybrid schemes. We also introduce the notions of diversification (ex-
ploration) and intensification (exploitation), which are shared by all these meta-
heuristics: diversification aims at ensuring a good sampling of the search space and,
therefore, at reducing the risk of ignoring a promising sub-area which actually con-
tains high-quality solutions, whereas intensification aims at locating the best com-
binations within a limited region of the search space. Finally, we describe two ap-
plications of meta-heuristics to typical artificial intelligence problems: satisfiability
of Boolean formulas, and constraint satisfaction problems.
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1 Introduction

Meta-heuristics are generic methods that may be used to solve complex and chal-
lenging combinatorial search problems. These problems are challenging for com-
puter scientists because solving them involves examining a huge number – usu-
ally exponential – of combinations. Every man jack has already encountered such a
combinatorial explosion phenomenon, which transforms an apparently very simple
problem into a tricky brain-teaser as soon as one increases the size of the prob-
lem to solve. This is the case, for example, when we try to solve tiling puzzles
such as pentaminoes: when the number of tiles is small enough, these problems are
rather easily solved by a systematic review of all possible combinations; however,
when slightly increasing the number of tiles, the number of different combinations
to review increases so drastically that the problem cannot be solved any longer by
a simple enumeration and, for larger problems, even the most powerful computer
cannot enumerate all combinations within a reasonable amount of time.

The challenge for solving these problems clearly goes beyond puzzles. Indeed,
this combinatorial explosion phenomenon also occurs in many industrial problems
such as, for example, scheduling activities, planning a production, or packing ob-
jects of different volumes into a finite number of bins. Hence, it is most important to
design intelligent algorithms that are actually able to solve these hard combinatorial
problems in a reasonable amount of time.

There exist three main approaches for tackling combinatorial problems. Exact
approaches explore the space of combinations (i.e., candidate solutions) in a sys-
tematic way until either a solution is found or an inconsistency is proven. In or-
der to (try to) restrain combinatorial explosion, these approaches structure the set
of all combinations in a tree and use pruning techniques —to reduce the search
space— and ordering heuristics —to define the order in which it is explored. These
approaches are able to solve many problems. However, pruning techniques and or-
dering heuristics are not always able to restrain combinatorial explosion, and some
problem instances cannot be solved by these approaches within a reasonable amount
of time.

Heuristic approaches get round combinatorial explosion by willfully ignoring
some combinations. As a consequence, these approaches may miss the optimal so-
lution and, of course, they cannot prove the optimality of the combination they found
even if it is actually optimal. As a counterpart, their time complexity usually is poly-
nomial.

Approximation approaches aim to find approximate solutions with provable guar-
antees on the distance of the achieved solution to the optimum. If an algorithm can
find a solution within a factor α of the optimum for every instance of the given
problem, it is an α-approximation algorithm.
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Organisation of the chapter

There mainly exist two kinds of heuristic approaches: Perturbative heuristic ap-
proaches —described in Section 2— build new combinations by modifying exist-
ing combinations; Constructive heuristic approaches —described in Section 3—
generate new combinations in an incremental way by using a (stochastic) model.
These approaches may be hybridised, and we describe in Section 4 some classical
hybrid schemes. Then, we introduce in Section 5 the notions of diversification (ex-
ploration) and intensification (exploitation) which are shared by all these heuristic
approaches: diversification aims at ensuring a good sampling of the search space
and, therefore, at reducing the risk of ignoring a sub-area which actually contains a
solution, whereas intensification aims at guiding the search towards the best combi-
nations within a limited region of the search space. Finally, we describe in Section 6
two applications of meta-heuristics to typical artificial intelligence problems: satis-
fiability of Boolean formulas (SAT), and constraint satisfaction problems (CSPs).

Notations

In this chapter, we assume that the search problem to be solved is defined by a couple
(S, f ) such that S is a set of candidate combinations, and f : S→ R is an objective
function that associates a numerical value with every combination of S. Solving
such a problem involves finding the combination s∗ ∈ S that optimises (maximises
or minimises) f .

We more particularly illustrate the different meta-heuristics introduced in this
chapter on the traveling salesman problem (TSP): given a set V of cities and a func-
tion d : V ×V → R such that for each pair of cities {i, j} ⊆V , d(i, j) is the distance
between i and j, the goal is to find the shortest route that passes through each city of
V exactly once. For this problem, the set S of candidate combinations is defined by
the set of all circular permutations of V and the objective function f to be minimised
is defined by the sum of the distances between every couple of consecutive cities in
the permutation.

2 Perturbative Meta-heuristics

Perturbative approaches explore the combination space S by iteratively perturbat-
ing combinations: starting from one or more initial combinations (that can be ob-
tained by any means, often randomly or greedily), the idea is to iteratively generate
new combinations by modifying some previously generated combinations. These
approaches are said to be instance-based in [Zlochin et al, 2004]. The most well
known perturbative approaches are genetic algorithms, described in Section 2.1,
and local search, described in Section 2.2.
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2.1 Genetic Algorithms

Genetic algorithms [Holland, 1975; Goldberg, 1989; Eiben and Smith, 2003] draw
their inspiration from the evolutionary process of biological organisms in nature
and, more particularly, from three main mechanisms which allow them to better fit
their environment:

• Natural selection implies that individuals that are well fitted to their environment
usually have a better chance of surviving and, therefore, reproducing.

• Reproduction by cross-over implies that an individual inherits its features from
its two parents in such a way that two well-fitted individuals tend to generate new
individuals that also are well-fitted, and hopefully, better fitted.

• Mutation implies that some features may randomly appear or disappear, thus al-
lowing nature to introduce new abilities that are spread to the next generations
thanks to natural selection and cross-over if these new abilities better fit the indi-
vidual to its environment.

Genetic algorithms combine these three mechanisms to define a meta-heuristic for
solving combinatorial optimisation problems. The idea is to evolve a population of
combinations—by applying selection, cross-over and mutation— in order to find
better fitted combinations, where the fitness of a combination is assessed with re-
spect to the objective function to optimise. Algorithm 1 describes this basic princi-
ple, the main steps of which are briefly described in the next paragraphs.

Algorithm 1: Genetic Algorithm
Initialise the population
while stopping criteria not reached do

Select combinations from the population
Create new combinations by recombination and mutation
Update the population

return the best combination that ever belonged to the population

Initialisation of the population: In most cases, the initial population is randomly
generated with respect to a uniform distribution in order to ensure a good diversity
of the combinations.

Selection: This step involves choosing the combinations of the population that
will be used to generate new combinations (by recombination and mutation). Selec-
tion procedures are usually stochastic and designed in such a way that the selection
of the best combinations is favoured while leaving a small chance to worse combi-
nations to be selected. There exist many different ways to implement this selection
step. For example, tournament selection consists in randomly selecting a few com-
binations in the population, and keeping the best one (or randomly selecting one
with respect to a probability proportional to the objective function). Selection may
also consider other criteria, such as diversity.
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Recombination (cross-over): This step aims at generating new combinations
from selected combinations. The goal is to lead the search towards a new zone of
the space where better combinations may be found. To this aim, the recombina-
tion should be well-fitted to the function to be optimised, and able to transmit good
properties of the parents to the new combination. Moreover, recombination should
allow to create diversified children. From a diversification/intensification point of
view, recombination has a strategic diversification role, with a long term goal of
intensification.

Mutation: Mutation aims at slightly modifying combinations obtained after
cross-over. It is usually implemented by randomly selecting combination compo-
nents and randomly choosing new values to these components.

Exemple 1 For the TSP, a simple recombination consists in copying a sub-sequence
of the first parent, and completing the permutation by sequencing the cities that are
missing in the order they occur in the second parent. A classical mutation operator
consists in randomly choosing some cities and exchanging their positions.

Population updating step: This step aims at replacing some combinations of the
population by some of the new combinations —that have been generated by apply-
ing recombination and mutation operators— in order to create the next generation
population. The update policy is essential to maintain an appropriate level of diver-
sity in the population, to prevent the search process from premature convergence,
and to allow the algorithm to discover new promising areas of the search space.
Hence, decisions are often taken with respect to criteria related to quality and di-
versity. For example, a well known quality-based update rule consists in replacing
the worse combination of the population, while a diversity-based rule consists in re-
placing old combinations by similar new combinations, with respect to some given
similarity measure [Lü and Hao, 2010; Porumbel et al, 2010]. Other criteria such as
the age may also be considered.

Stopping criteria: The evolution process is iterated, from generation to genera-
tion, until either it has found a solution whose quality reaches some given bound
or a fixed number of generations or a CPU-time limit have been reached. One may
also use diversity indicators such as, for example, the resampling rate or the average
pairwise distance, to restart a new search when the population becomes too uniform.

2.2 Local Search

Local Search (LS) explores the search space by iteratively modifying a combination:
starting from an initial combination, it iteratively moves from the current combina-
tion to a neighbour combination obtained by applying some transformation to it
[Hoos and Stützle, 2005]. LS may be viewed as a very particular case of GA whose
population is composed of only one combination. Algorithm 2 describes this basic
principle, the main steps of which are briefly described in the next paragraphs.
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Algorithm 2: Local Search (LS)
Generate an initial combination s ∈ S
while stopping criteria not reached do

Choose s′ ∈ n(s)
s← s′

return the best combination encountered during the search

Neighbourhood function: The LS algorithm is parameterised by a neighbour-
hood function n : S→P(S) which defines the set of combinations n(s) that may be
obtained by applying some transformation operators to a given combination s ∈ S.
One may consider different kinds of transformation operators such as, for exam-
ple, changing the value of one variable, or swapping the values of two variables.
Each different transformation operator induces a different neighbourhood, the size
of which may vary. Hence, the choice of the transformation operators has a strong
influence on the solution process. A strongly desirable property of the transforma-
tion operator is that it must allow the search to reach the optimal combination from
any initial combination. In other words, the directed graph which associates a vertex
with each combination of S, and an edge (si,s j) with each couple of combinations
such that s j ∈ n(si), must contain a path from any of its vertices to the vertex asso-
ciated with the optimal combination.

Exemple 2 For the TSP, the 2-opt operator consists in deleting deux edges, and
replacing them by two new edges that reconnect the two paths created by the edge
deletion. More generally, the k-opt operator consists in deleting k mutually disjoint
edges and re-assembling the different sub-paths created by these deletions by adding
k new edges in such a way that a complete tour is reconstituted. The larger k, the
larger the neighbourhood size.

Generation of the initial combination: The search is started from a combination
which is often randomly generated. The initial combination may also be generated
with a greedy approach such as those introduced in 3.1. When local search is hy-
bridised with another meta-heuristic such as, for example, genetic algorithms or
ant colony optimisation, the initial combination may be the result of another search
process.

Choice of a neighbour: At each iteration of LS, one has to choose a combination
s′ in the neighbourhood of the current combination s and substitute s with s′ (this is
called a move). There exist many different strategies for choosing a neighbour. For
example, greedy strategies always choose better (or at least as good) neighbours. In
particular, the best improvement greedy strategy scans the whole neighbourhood and
selects the best neighbour, that is, the one which most improves the objective func-
tion [Selman et al, 1992], whereas the first improvement greedy strategy selects the
first neighbour which improves the objective function. These greedy strategies may
be compared to hill climbers that always choose a raising path. This kind of strat-
egy usually allows the search to quickly improve the initial combination. However,
once the search has reached a locally optimal combination —that is, a combination
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whose neighbours all have worse objective function values— it becomes stuck on it.
To escape from these local optima, one may consider different alternative strategies
offered by meta-heuristics like:

• random walk [Selman et al, 1994], that allows with a very small probability (con-
trolled by a parameter) to randomly select a neighbour;

• simulated annealing [Aarts and Korst, 1989], that allows to select neighbours of
worse quality with respect to a probability that decreases with time;

• tabu search [Glover and Laguna, 1993], that prevents the search from cycling
on a small subset of combinations around local optima by memorising the last
moves in a tabu list, and forbidding inverse moves to these tabu moves.

Repetition of local search: Local search may be repeated several times, starting
from different initial combinations. These initial combinations may be randomly and
independently generated, as proposed in multi-start local search. They may also be
obtained by perturbing a combination generated during the previous local search
process, as proposed in iterated local search [Lourenco et al, 2002] and breakout
local search [Benlic and Hao, 2013a,b]. We may also perform several local searches
in parallel, starting from different initial combinations, and evenly redistributing
current combinations by removing the worst ones and duplicating the best ones, as
proposed in go with the winner [Aldous and Vazirani, 1994].

Local search with multiple neighbourhoods: A typical local search algorithm
usually relies on a single neighbourhood to explore the search space. However, in
a number of settings, several neighbourhoods can be jointly employed to reinforce
the search capacity of local search. Variable neighborhood search is a well-known
example, which employs the greedy strategy and a strict neighbourhood transition
rule to examine a set of nested neighbourhoods with increasing sizes. Each time a
local optimum is reached within the current neighborhood, the search switches to the
next (larger) neighborhood and switches back again to the smallest neighourhood
once an improving solution is found [Hansen and Mladenovic, 2001]. Other local
search algorithms using more flexible neighbourhood transition rules can be found
in [Goëffon et al, 2008; Ma and Hao, 2017; Wu et al, 2012].

3 Constructive Meta-heuristics

Constructive approaches build one or more combinations in an incremental way:
starting from an empty combination, they iteratively add combination components
until obtaining a complete combination. These approaches are said to be model-
based in [Zlochin et al, 2004], as they use a model (which is often stochastic) to
choose, at each iteration, the next component to be added to the partial combination.

There exist different strategies to choose the components to be added, at each
iteration, the most well known being greedy randomised strategies, described in
Section 3.1, Estimation of Distribution Algorithms, described in Section 3.2, and
Ant Colony Optimisation, described in Section 3.3.
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3.1 Greedy Randomised Algorithms

A greedy algorithm builds a combination in an incremental way: it starts from an
empty combination and incrementally completes it by adding components to it. At
each step, the component to be added is chosen in a greedy way, that is, one chooses
the component which maximises some problem-dependent heuristic function which
locally evaluates the interest of adding the component with respect to the objective
function. A greedy algorithm usually has a very low time complexity, as it never
backtracks to a previous choice. The quality of the final combination depends on
the heuristic.

Exemple 3 A greedy algorithm for the TSP may be defined as follows: starting from
an initial city which is randomly chosen, one chooses, at each iteration, the closest
city that has not yet been visited, until all cities have been visited.

Greedy randomised algorithms deliberately introduce a slight amount of ran-
domness into greedy algorithms in order to diversify the constructed combinations.
In this case, greedy randomised constructions are iteratively performed, until some
stopping criteria is reached, and the best constructed combination is returned. To
introduce randomness in the construction, one may randomly choose the next com-
ponent within the k best ones, or within the set of components whose quality is
bounded by a given ratio with respect to the best component [Feo and Resende,
1989]. Another possibility is to select the next component with respect to probabil-
ities which are defined proportionally to component qualities [Jagota and Sanchis,
2001].

Exemple 4 For the TSP, if the last visited city is i, and if C contains the set of
cities that have not yet been visited, we may define the probability to select a city

j ∈C by p( j) = [1/d(i, j)]β

∑k∈C [1/d(i,k)]β
. β is a parameter that allows one to tune the level of

greediness/randomisation: if β = 0, then all cities in C have the same probability to
be selected; the higher β , the higher the probability of selecting cities that are close
to i.

3.2 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) are greedy randomised algorithms
[Larranaga and Lozano, 2001]: at each iteration, a set of combinations is generated
according to a greedy randomised principle as described in the previous section.
However, EDAs take benefit of previously computed combinations to bias the con-
struction of new combinations. Algorithm 3 describes this basic principle, the main
steps of which are briefly described in the next paragraphs.

Generation of the initial population: In most cases, the initial population is ran-
domly generated with respect to a uniform distribution, and only the best constructed
combinations are kept in the population.
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Algorithm 3: Estimation of Distribution Algorithm (EDA)
begin

Generate an initial population of combinations P⊆ S
while stopping criteria not reached do

Use P to construct a probabilistic model M
Use M to generate new combinations
Update P with respect to these new combinations

return the best combination that has been built during the search process

Construction of a probabilistic model: Different kinds of probabilistic models
may be considered. The simplest one, called PBIL [Baluja, 1994], is based on the
probability distribution of each combination component, independently from other
components. In this case, one computes for each component its occurrence fre-
quency in the population, and one defines the probability of selecting this component
proportionnaly to its frequency. Other models may take into account dependency re-
lationships between components by using bayesian networks [Pelikan et al, 1999].
In this case, the dependency relationships between components are modelled by
edges in a graph, and conditional probability distributions are associated with these
edges. Such models usually allow the search to build better combinations, but they
are also more expensive to compute.

Exemple 5 For the TSP, if the last visited city is i, and if C contains the set of
cities that have not yet been visited, we may define the probability to select a city
j ∈C by p( j) = f reqP(i, j)

∑k∈C f reqP(i,k)
, where f reqP(i, j) is the number of combinations of P

that use edge (i, j). Hence, the more the population uses edge (i, j), the higher the
probability to select j.

Generation of new combinations: New combinations are built in a greedy ran-
domised way, using the probabilistic model to choose components.

Update of the population: In most cases, only the best combinations are kept
in the population for the next iteration of the search process, whatever they belong
to the current population or to the set of new generated combinations. However,
it is also possible to keep lower quality combinations in order to maintain a good
diversity in the population, thus ensuring a good sampling of the search space.

3.3 Ant Colony Optimisation

There exists a strong similarity between Ant Colony Optimisation (ACO) and EDAs
[Zlochin et al, 2004]. Both approaches use a probabilistic model to build new com-
binations, and in both approaches, this probabilistic model evolves during the search
process with respect to previously built combinations, in an iterative learning pro-
cess. The originality and the main contribution of ACO are that it borrows features
from the collective behaviour of ants to update the probabilistic model. Indeed, the
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probability of choosing a component depends on a quantity of pheromone which
represents the past experience of the colony with respect to the choice of this compo-
nent. This quantity of pheromone evolves by combining two mechanisms. The first
mechanism is a pheromone laying step: pheromone trails associated with the best
combinations are reinforced in order to increase the probability of selecting these
components. The second mechanism is pheromone evaporation: pheromone trails
are uniformly and progressively decreased in order to progressively forget older ex-
perience. Algorithm 4 describes this basic principle, the main steps of which are
briefly described in the next paragraphs.

Algorithm 4: Ant Colony Optimisation
Initialise pheromone trails to τ0
while Stopping conditions are not reached do

Each ant builds a combination
Pheromone trails are updated

return the best combination

Pheromone trails: Pheromone is used to bias selection probabilities when build-
ing combinations in a greedy randomised way. A key point lies in the choice of
the components on which pheromone is laid. At the beginning of the search, all
pheromone trails are initialised to a given value τ0.

Exemple 6 For the TSP, a trail τi j is associated with each pair of cities (i, j). This
trail represents the past experience of the colony with respect to visiting i and j
consecutively.

Construction of a combination by an ant: At each cycle of an ACO algorithm,
each ant builds a combination according to a greedy randomised principle, as intro-
duced in 3.1. Starting from an empty combination (or a combination that contains a
first combination component), at each iteration, the ant selects a new component to
be added to the combination, until the combination is complete. At each iteration,
the next combination component is selected with respect to a probabilistic transition
rule: given a partial combination X , and a set C of combination components that
may be added to X , the ant selects a component i ∈ C with probability:

pX (i) =
[τX (i)]α · [ηX (i)]β

∑ j∈C[τX ( j)]α · [ηX ( j)]β
(1)

where τX (i) (resp. ηX (i)) is the pheromone (resp. heuristic) factor associated with
component i, given the partial combination X (the definition of this factor is
problem-dependant), and α and β are two parameters used to balance the relative
influence of pheromone and heuristic factors in the transition probability. In partic-
ular, if α = 0 then the pheromone factor does not influence the selection and the
algorithm behaves like a pure greedy randomised algorithms. On the contrary, if
β = 0 then transition probabilities only depend on pheromone trails.
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Exemple 7 For the TSP, the pheromone factor τX (i) is defined by the quantity of
pheromone τki laying between the last city k visited in X and the candidate city i.
The heuristic factor is proportionally inverse to the distance between the last city
visited in X and the candidate city i.

Pheromone updating step: Once each ant has built a combination, pheromone
trails are updated. First, they are decreased by multiplying each trail with a factor
(1−ρ), where ρ ∈ [0;1] is the evaporation rate. Then, some combinations are ”re-
warded”, by laying pheromone on their components. There exist different strategies
for selecting the combinations to be rewarded. We may reward all combinations built
during the current cycle, or only the best combinations of the current cycles, or the
best combination found since the beginning of the search. These different strategies
influence the search intensification and diversification. In general, the quantity of
pheromone added is proportional to the quality of the rewarded combination. This
quantity is added on the pheromone trails associated with the rewarded combina-
tion. To prevent the algorithm from premature convergence, pheromone trails may
be bounded between two bounds, τmin and τmax, as proposed in the MAX-MIN Ant
System [Stützle and Hoos, 2000].

Exemple 8 For example, for the TSP, we add pheromone on each trail τi j such that
cities i and j have been consecutively visited in the rewarded combination.

4 Hybrid Meta-heuristics

The different meta-heuristics presented in Sections 2 and 3 may be combined to
define new meta-heuristics. Two classical examples of such hybridisations are de-
scribed in Sections 4.1 and 4.2.

4.1 Memetic Algorithms

Memetic algorithms combine population-based approaches (evolutionary algorithms)
with local search [Moscato, 1999; Neri et al, 2012]. This hybridisation aims at taking
benefit of the diversification abilities of population-based approaches and intensifi-
cation abilities of local search [Hao, 2012].

A memetic algorithm may be viewed as a genetic algorithm (as described in
Algorithm 1) extended by a local search process. As in genetic algorithms, a pop-
ulation of combinations is used to sample the search space, and a recombination
operator is used to create new combinations from combinations of the population.
Selection and replacement mechanisms are used to determine the combinations that
are recombined and those that are eliminated. However, the mutation operator of
genetic algorithms is replaced by a local search process, that may be viewed as
a guided macro-mutation process. The goal of the local search step is to improve
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the quality of the generated combinations. It mainly aims at intensifying the search
by exploiting search paths determined by the considered neighbourhood operators.
Like recombination, local search is a key component of memetic approaches.

4.2 Hybridisation between Perturbative and Constructive
Approaches

Perturbative and constructive approaches may be hybridised in a straightforward
way: at each iteration, one or more combinations are built according to a greedy
randomised principle (that may be guided by EDA or ACO), and then some of these
combinations are improved with a local search process. This hybridisation is called
GRASP (Greedy Randomised Adaptive Search Procedure) [Resende and Ribeiro,
2003]. A key point is the choice of the neighbourhood operator and the strategy
used to select moves for the local search. The goal is to find a compromise between
the time spent by the local search to improve combinations, and the quality of these
improvements. Typically, one chooses a simple greedy local search, that improves
combinations until reaching a local optimum.

Note that the best performing EDA and ACO algorithms usually include this kind
of hybridisation with local search.

5 Intensification versus Diversification

For all meta-heuristics described in this chapter, a key point highly relies on their
capability to find a suitable balance between two dual goals:

• intensification (also called exploitation), which aims at guiding the search to-
wards the most promising areas of the search space, that is, around the best com-
binations found so far;

• diversification (also called exploration), which aims at allowing the search to
move away from local optima and discover new areas, that may contain better
combinations.

The way the search is intensified/diversified depends on the considered meta-
heuristic and is achieved by modifying parameters. For perturbative approaches,
intensification is achieved by favouring the best neighbours: for genetic algorithms,
elitist selection and replacement strategies favour the reproduction of the best com-
binations; for local search, greedy strategies favour the selection of the best neigh-
bours. Diversification of perturbative approaches is usually achieved by introduc-
ing a mild amount of randomness: for genetic algorithms, diversification is mainly
achieved by mutation; for local search, diversification is achieved by allowing the
search to select ”bad” neighbours with small probabilities.
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For constructive approaches, intensification is achieved by favouring, at each step
of the construction, the selection of components that belong to the best combinations
built so far. Diversification is achieved by introducing randomness in the selection
procedures, thus allowing to choose (with small probabilities) worse components.

In general, the more the search is intensified, the quicker it converges towards
rather good combinations. However, if one over-intensifies search, the algorithm
may stagnate around local optima, concentrating all the search effort on a small
sub-area without being able to escape from this attracting sub-area to explore other
areas. On the contrary, if one over-diversifies the search, so that it behaves like a
random search, the algorithm may spend most of its time on exploring poor quality
combinations. It is worth mentioning here that the right balance between intensi-
fication and diversification clearly depends on the CPU time the user is willing to
spend on the solution process: the shorter the CPU time limit, the more the search
should be intensified to quickly converge towards solutions. The right balance be-
tween intensification and diversification also highly depends on the instance to be
solved or, more precisely, on the topology of its search landscape. In particular, if
there is a good correlation between the quality of a locally optimal combination and
its distance to the closest optimal combination (such as massif central landscapes),
then the best results are usually obtained with a strong intensification of the search.
On the contrary, if the search landscape contains a lot of local optima which are
uniformly distributed in the search space independently from their quality, then the
best results are usually obtained with a strong diversification of the search.

Different approaches have proposed to dynamically adapt parameters that bal-
ance intensification and diversification during the search process. This is usually re-
ferred to as reactive search [Battiti et al, 2008]. For example, the reactive tabu search
approach proposed in [Battiti and Protasi, 2001] dynamically adapts the length of
the tabu list by increasing it when combinations are recomputed (thus indicating
that it is turning around a local optima), and decreasing it when the search has not
recomputed combinations for a while. Also, the IDwalk local search of [Neveu et al,
2004] dynamically adapts the number of neighbours considered at each move. More
generally, machine learning techniques may be used to automatically learn how to
dynamically adapt parameters during the search [Battiti and Brunato, 2017].

Other approaches have studied how to automatically search for the best static
parameter settings, either for a given class of instances (parameter configuration),
or for each new instance to solve (parameter selection) [Hoos et al, 2017].

6 Applications in Artificial Intelligence

Meta-heuristics have been applied successfully to solve a very large number of clas-
sical NP-hard problems and practical applications in highly varied areas. In this sec-
tion, we discuss their application to two central problems in artificial intelligence:
satisfiability of Boolean formulas (SAT) and satisfaction of constraints (CSP).
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6.1 Satisfiability of Boolean Formulas

SAT is one of the central problems in artificial intelligence. For a Boolean formula,
SAT involves determining a model, namely an assignment of a Boolean value (true
or false) to each variable such that the valuation of the formula is true. For practical
reasons, it is often assumed that the Boolean formula under consideration is given
in its clausal form (CNF) even if from a general point of view, this is not a necessary
condition to apply a meta-heuristic.

Note that SAT per se is not an optimisation problem and does not have an ex-
plicit objective function to optimise. Since meta-heuristics are generally conceived
to solve optimisation problems, they consider a more general problem MAXSAT
whose goal is to find the valuation maximising the number of satisfied clauses. In
this context, the result of a meta-heuristic algorithm to an instance MAXSAT can be
of two kinds: either the returned assignment satisfies all the clauses of the formula,
in which case a solution (model) is found for the given SAT instance, or it does
not satisfy all the clauses, in which case we can not know if the given instance is
satisfiable or not.

The search space of a SAT instance is naturally given by the set of possible as-
signments of Boolean values to the set of variables. Thus, for an instance with n
variables, the size of the search space is 2n. The objective function (also called eval-
uation function) counts the number of satisfied clauses. This function introduces a
total order on the combinations of the search space. We can also consider the dual
objective (or evaluation) function, counting the number of falsified clauses, and cor-
responding to a penalty function to minimise: each falsified clause has a penalty
weight equal to 1, and a combination with an evaluation of 0 indicates a solution
(model). This function can be further fine-tuned by a dynamic penalty mechanism
or an extension including other information than the number of falsified clauses.

A lot of work has been done during the last decades for practical solving of SAT.
Various competitions on SAT solvers regularly organised by the scientific commu-
nity continually boost research activities, assessment and comparison of SAT algo-
rithms. These researches resulted in a very large number of contributions that im-
prove the performance and robustness of SAT algorithms, especially stochastic local
search (SLS).

6.1.1 Stochastic Local Search

SLS algorithms generally consider the following simple neighbourhood function:
two combinations are neighbouring if their Hamming distance is exactly 1. The
transition from one combination to another is conveniently achieved by flipping a
variable. For a formula with n variables, the neighbourhood has a size of n (since
each of the n variable can be flipped to obtain a neighbour). This neighbourhood
can be shrunk by limiting the choice of the modified variable to those that appear
in at least one falsified clause. This reduced neighbourhood is often used in SLS
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algorithms, because in addition to its reduced size, it makes the search more focused
(recall that the goal is to satisfy all the clauses).

SLS algorithms differ essentially in the techniques used to find the suitable com-
promise between 1) exploration of the search space sufficiently broad to reduce the
risk of search stagnation in a non-promising region and 2) exploitation of available
information to discover a solution in the region currently under examination. In or-
der to classify these different algorithms, we can consider on the one hand the way
the constraints are exploited, and on the other hand the way the search history is
used [Bailleux and Hao, 2008].

Exploitation of instance structures

The structure of the given problem instance is induced by its clauses. We can distin-
guish three levels of exploitation of this structure.

The search can be simply guided by the objective function, so that only the num-
ber of clauses falsified by the current assignment is taken into account. A typical
example is the popular GSAT algorithm [Selman et al, 1992] that, at each iteration,
randomly selects a neighbouring assignment from those minimising the number of
falsified clauses. This greedy descent strategy is an aggressive exploitation tech-
nique that can be easily trapped in local optima. To work around this problem, GSAT
uses a simple diversification technique based on the restart of the search from a new
initial configuration after a fixed number of iterations. Several variants of GSAT such
as CSAT et TSAT [Gent and Walsh, 1993] and simulated annealing [Spears, 1996]
are based on the same principle of minimising the number of falsified clauses.

The search can also be guided by conflicts, so that falsified clauses are explicitly
taken into account. This approach is particularly useful when the neighbourhood
no longer contains a combination improving the objective value. In order to bet-
ter guide the search, other information obtained via, for example, an analysis of
falsified clauses can be used. The archetype example of this type of algorithms is
WALKSAT [McAllester et al, 1997] that, at each iteration, randomly selects one of
the falsified clauses in the current assignment. A heuristic is then used to choose one
of the variables of this clause, the value of which will be modified to obtain the new
assignment. The GWSAT algorithm (GSAT with random walk) [Selman and Kautz,
1994] also uses a random walk guided by falsified clauses that, at each iteration,
modifies a variable belonging to a falsified clause with a probability p (called noise)
and uses the descent strategy of GSAT with a probability 1− p.

Finally, exploitation of deductive constraints makes it possible to use deductive
rules to modify the current combination. This is the case for UNITWALK [Hirsch,
2005], which uses the unit resolution to determine the value of some variables of the
current assignment from the values of other variables fixed by local search. Another
type of deductive approach is used in NON-CNF ADAPT NOVELTY [Pham et al,
2007], which analyses the formula to be processed to search for dependency links
between variables.
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Exploitation of search history

To classify SLS approaches for SAT, we can also consider the way the action history
is exploited since the beginning of the search as well as possibly their effects. There
are three levels of exploitation of this history.

For Markov algorithms (or without memory), the choice of each new combi-
nation depends only on the current combination. The algorithms GSAT, GRSAT,
WALKSAT/SKC, as well as the general simulated annealing algorithm are typical
examples of SLS algorithms without memory. These algorithms have the advantage
of minimising the processing time necessary for each iteration, yet they have been
outperformed in practice during the last decades by algorithms with memory.

For algorithms with short-term memory, the choice of each new combination
takes into account a history of all or part of the changes of the variable values. SAT
solvers based on tabu search, such as WALKSAT/TABU [McAllester et al, 1997] or
TSAT [Mazure et al, 1997] are typical examples. Some algorithms like WALKSAT,
NOVELTY, RNOVELY, and G2WSAT [Li and Huang, 2005] also integrate aging in-
formation in the choice criterion. Typically, this criterion is used to favour amongst
several candidate variables the oldest modified one.

For algorithms with long-term memory, the choice of each new combination de-
pends on choices made since the start of the search and their effects, in particular
in terms of satisfied and falsified clauses. The idea is to use a learning mechanism
to take advantage of the failures and accelerate the search. In practice, the history
of falsified clauses is exploited by associating weights with clauses, the objective
being to diversify the search by forcing it to take new directions. A first example
is weighted-GSAT [Selman and Kautz, 1993] where, after each change of a vari-
able, weights of falsified clauses are incremented. The score used by the search
process is simply the sum of the weights of the falsified clauses. As the weight of
frequently falsified clauses increases, the process tends to favour the modification
of variables belonging to these clauses, until the evolution of the weights of the
other clauses influences the search again. Other examples include DLM (discrete
lagrangian method) [Shang and Wah, 1998], DDWF (Divide and Distribute Fixed
Weight) [Ishtaiwi et al, 2005], PAWS (Pure Additive Weighting Scheme) [Thornton
et al, 2004], ESG (Exponentiated Subgradient Algorithm) [Schuurmans et al, 2001],
SAPS (Scaling and Probabilistic Smoothing) [Hutter et al, 2002] and WV (weighted
variables) [Prestwich, 2005].

6.1.2 Population-based Algorithms

Genetic algorithms (GAs) have been repeatedly applied to SAT [Jong and Spears,
1989; Young and Reel, 1990; Crawford and Auton, 1993; Hao and Dorne, 1994].
Like local search algorithms, these GAs adopt a representation of a candidate com-
bination as an assignment of values 0/1 to the set of variables. First GAs handle
general formulas, not limited to the CNF form. Unfortunately, the results obtained
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by these algorithms are generally disappointing when they are applied to SAT bench-
marks.

The first GA dealing with CNF formulas is presented in [Fleurent and Ferland,
1996]. The originality of this algorithm is the use of a specific and original cross-
over operator that tries to exploit the semantics of two parent assignments. Given
two parents p1 and p2, one examines the clauses that are satisfied by one parent, but
falsified by the other parent. When a clause is true in one parent p1 and false in the
other parent, the values of all variables in this clause are passed directly to the child.
The memetic algorithm integrating this cross-over operator and a tabu search pro-
cedure yielded very interesting results during the second DIMACS implementation
challenge.

Another representative hybrid genetic algorithm is GASAT [Lardeux et al, 2006].
As the algorithm of [Fleurent and Ferland, 1996], GASAT attaches a preponderant
importance to the design of a semantic cross-over operator. Thus, a new class of
cross-overs is introduced aimed at correcting the ”errors” of the parents and combin-
ing their good characteristics. For example, if a clause is false in two good-quality
parents, we can force this clause to become true in the child by flipping a variable
of the clause. The intuitive argument that justifies this consists in considering such a
clause as difficult to satisfy otherwise and consequently it is preferable to satisfy the
clause by force. Similarly, recombination mechanisms are developed to exploit the
semantics associated with a clause that is made simultaneously true by both parents.
With this type of cross-overs and a tabu search algorithm, GASAT is very competing
on some categories of SAT benchmarks.

FlipGA [Rossi et al, 1999] is a genetic algorithm that relies on a standard uniform
cross-over that generates, by an equiprobable mixture of the values of both parents,
a child which is further improved by local search.

Other GAs are presented in [Eiben and van der Hauw, 1997; Gottlieb and Voss,
1998; Rossi et al, 2000], but they are in fact local search algorithms since the popu-
lation is reduced to a single assignment. Their interest lies in the techniques used to
refine the basic evaluation function (the number of falsified clauses) by a dynamic
adjustment during the search process. We find in [Gottlieb et al, 2002] an experi-
mental comparison of these few genetic algorithms for SAT. However, their practical
interest remains to be demonstrated since they have rarely been directly confronted
with state-of-the-art SLS algorithms.

Note that in these population-based algorithms, local search is often an essential
component in order to reinforce intensification capabilities. The cross-over’s role
may differ depending on whether it is completely random [Rossi et al, 1999] in
which case it is used essentially to diversify the search, or is based on the semantics
of the problem [Fleurent and Ferland, 1996; Lardeux et al, 2006] in which case it
allows both to diversify and intensify the search.
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6.2 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a combinatorial problem modelled in the
form of a set of constraints defined over a set of variables, each of these variables
taking its values in a given domain.

As for SAT, one generally considers the optimisation problem MaxCSP whose
objective is to find a complete assignment (assigning a domain value to each vari-
able) that maximises the number of satisfied constraints. The search space is thus
defined by the set of all possible complete assignments, while the objective function
to be maximised counts the number of satisfied constraints for a complete assign-
ment.

6.2.1 Genetic Algorithms

In its simplest form, a genetic algorithm for CSPs uses a population of complete
assignments that are recombined by simple cross-over, as well as mutation con-
sisting of changing the value of a variable. An experimental comparison of eleven
genetic algorithms for solving binary CSPs is presented in [Craenen et al, 2003]. It
is showed that the three best algorithms (Heuristics GA version 3, Stepwise Adap-
tation of Weights et Glass-Box) have equivalent performances and are significantly
better than the other eight algorithms. However, these best genetic algorithms are
clearly not competitive, either with exact approaches based on a tree search, or with
other heuristic approaches, such as local search or Ant colony optimisation [van
Hemert and Solnon, 2004].

Other genetic algorithms have been proposed for particular CSPs. These specific
algorithms exploit knowledge of the constraints of the problem to be solved in or-
der to define better cross-over and mutation operators, leading to better results. We
can cite in particular [Zinflou et al, 2007] that obtains competitive results for a car
sequencing problem.

6.2.2 Local Search

There is a great deal of work on CSP solving using local search techniques, and this
approach generally yields excellent results. These local search algorithms for CSPs
differ essentially by the neighbourhood and the selection strategy considered.

Neighbourhood. Given a candidate assignment, a move operation typically mod-
ifies the value of a variable. So the neighbourhood of an assignment is composed of
all assignments that can be obtained by changing the value of a variable in this as-
signment. Depending on the nature of the constraints, it is possible to consider other
neighbourhoods, such as the neighbourhood induced by swap moves (that exchange
the values of two variables), typically considered when there is a permutation con-
straint (that enforces a given set of variables to be assigned to a permutation of a
given set of values).
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Some studies consider neighbourhoods not only between complete assignments,
but also between partial assignments. In particular, the decision repair approach in
[Jussien and Lhomme, 2002] combines filtering techniques such as those described
in Chapter 6 of this volume with local search on the space of partial assignments.
Given a current partial assignment A, if the filtering detects an inconsistency then the
neighbourhood of A is the set of assignments resulting from the removal of a “vari-
able/value” couple of A, otherwise the neighbourhood of A is the set of assignments
resulting from the addition of a “variable/value” couple to A.

Selection strategies. Many strategies for choosing the next move have been pro-
posed. The min-conflict strategy [Minton et al, 1992] randomly selects a variable
involved in at least one violated constraint and chooses for this variable the value
that minimises the number of constraint violations. This greedy strategy, which is
famous for having found solutions to the N-queen problem for a million of queens,
tends to be easily trapped in local optima. A simple and classical way to get the min-
conflict strategy out of local minima is to combine it with the random walk strategy
[Wallace, 1996]. Other strategies for choosing the variable/value pair are studied in
[Hao and Dorne, 1996].

Local search using tabu search (TabuCSP) [Galinier and Hao, 1997] obtains ex-
cellent results for binary CSPs. Starting from an initial assignment, the idea is to
choose the non-tabu move that most increases the number of satisfied constraints
at each iteration. A move consists in changing the value of a conflicting variable
(i.e., a variable involved in at least one unsatisfied constraint). Each time a move
is performed, it is forbidden to select the move again during the next k iterations
(the move is said to be tabued, k being the tabu tenure). However, a move leading
to a solution better than any discovered solution is always performed even if the
move is currently declared as tabu. This selection criterion is called aspiration in
the terminology of tabu search.

CBLS (Constraint Based Local Search) [Hentenryck and Michel, 2005] adapts
ideas of constraint programming to local search and allows one to quickly design
local search algorithms for solving CSPs. In particular, it introduces the concept
of incremental variable allowing an incremental evaluation of neighbourhoods, and
uses invariants that are stated declaratively to achieve this. In [Björdal et al, 2015],
a CBLS backend is described for the MiniZinc CSP modelling language. Other
generic systems of CSP solving based on local search are presented in [Davenport
et al, 1994; Nonobe and Ibaraki, 1998; Codognet and Diaz, 2001; Galinier and Hao,
2004].

6.2.3 Greedy Construction Algorithms

We can construct a complete assignment for a CSP according to the following
greedy principle: starting from an empty assignment, we iteratively select an unas-
signed variable and a value for this variable, until all variables receive a value. To
choose a variable and a value at each step, we can use the ordering heuristics that
are employed by exact approaches described in Chapter 6 of this volume. A well-
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known example of using this principle is the DSATUR algorithm [Brélaz, 1979] for
the graph coloring problem, which is a particular CSP. DSATUR constructs a col-
oring by choosing at each iteration the uncoloured vertex having the largest number
of neighbours colored with different colors (the most saturated neighbour). Ties are
broken by choosing the vertex of the highest degree. The selected vertex is then
colored by the smallest possible color.

6.2.4 Ant Colony Optimisation

Ant colony optimisation has been applied to CSPs in [Solnon, 2002, 2010]. The
idea is to construct complete assignments according to a random greedy principle:
starting from an empty assignment, one selects at each iteration an unassigned vari-
able and a value to be assigned to this variable, until all variables are assigned. The
main contribution of ACO is to provide a value selection heuristic: it is chosen ac-
cording to a probability that depends on a heuristic factor (inversely proportional to
the number of new violations introduced by the value), and a pheromone factor that
reflects the past experience with the use of this value.

The pheromone structure is generic and can be used to solve any CSP. It asso-
ciates a pheromone trail to each variable xi and each value vi that can be assigned to
xi: intuitively, this trail represents the colony’s past experience of assigning value vi
to variable xi. Other pheromone structures have been proposed for solving particular
CSPs such as the car sequencing problem [Solnon, 2008] or the multidimensional
knapsack problem [Alaya et al, 2007].

Ant colony optimisation has been integrated into general CSP libraries and
IBM/Ilog Solver for constraint optimisation problems and CP Optimizer [Khichane
et al, 2008, 2010]. These generic systems make it possible to use high level lan-
guages to describe in a declarative way the problem to be solved, the solution of the
problem is automatically supported by an ACO algorithm built into the language.

7 Discussions

Meta-heuristics have been used successfully to solve many difficult combinatorial
search problems, and these approaches often obtain very good results during various
implementation competitions, either for solving real problems such as car sequenc-
ing, timetabling and nurse rostering, or well-known NP-hard problems such as the
SAT problem and many graph problems (e.g., graph coloring).

The variability of meta-heuristics naturally raises the question of how to choose
the most suitable meta-heuristic to solve a given problem. Obviously, this question
is complex and comes close to a fundamental quest in artificial intelligence, namely
the automatic problem solving. We are only discussing some of the answers.
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In particular, the choice of a meta-heuristic depends on the relevance of its ba-
sic mechanisms for the problem considered, that is, their ability to generate good
combinations:

• For GAs, the recombination operator should be able to identify interesting pat-
terns that can be assembled and recombined [Hao, 2012]. For example, for graph
coloring, an interesting pattern is a group of vertices of the same color and shared
by good solutions; This type of information allowed the design of very successful
cross-over operators with two parents [Dorne and Hao, 1998; Galinier and Hao,
1999] or with several parents [Galinier et al, 2008; Malaguti et al, 2008; Lü and
Hao, 2010; Porumbel et al, 2010].

• For local search, the neighbourhood must favour the construction of better com-
binations. For example, for the SAT and CSP problems, the neighbourhood cen-
tred on conflicting variables (see section 6.2) is relevant because it favours elim-
ination of conflicts.

• For ACO, the pheromone structure must be able to guide the search for bet-
ter combinations. For example, for CSP, the pheromone structure associating a
pheromone trail with each variable/value couple is relevant because it allows to
learn what are the right values to be assigned to each variable.

Another crucial point is the time complexity of the elementary operators of the
meta-heuristic considered (recombination and mutation for GAs, move for local
search, addition of a solution component for constructive approaches, ...). This com-
plexity depends on the data structures used to represent the combinations. Thus, the
choice of a meta-heuristic depends on the existence of data structures that allow a
fast evaluation of the evaluation function after each application of the elementary
operators of the meta-heuristic.

Other important elements are shared by all meta-heuristics. In particular, the eval-
uation function (which may be the same as or different from the objective function
of the problem) is a key element because it measures the relevance of a combina-
tion. For example, for CSP, the evaluation function can simply count the number
of unsatisfied constraints, but in this case the relative importance of each constraint
violation is not recognized. An interesting refinement is to introduce into the eval-
uation function a penalty term to quantify the degree of violation of a constraint
[Galinier and Hao, 2004]. This function can be further refined, as in the case of the
SAT problem (see section 6.1), by using weights that can be dynamically adjusted
according to the history of violations of each constraint.

Meta-heuristic algorithms often have a number of parameters that have a sig-
nificant influence on their efficiency. Thus, we can consider the development of a
meta-heuristic algorithm as a configuration problem: the goal is to choose the best
building blocks to combine (recombination or mutation operators, neighbourhoods,
move selection strategies, heuristic factors, etc.) as well as the best parameter set-
ting (mutation rate, evaporation rate, noise, tabu tenure, the weight of pheromone
structures and heuristic factors, etc.). A promising approach to solve this configu-
ration problem consists in using automatic configuration algorithms to design the
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algorithm which is best suited to a set of given instances [Bezerra et al, 2016; Hutter
et al, 2017; Xu et al, 2010].

We terminate this chapter with a word of caution. In the last years, the commu-
nity has witnessed the appearance of a great number of metaphor-based or nature-
inspired metaheuristics. These ”novel” methods are often proposed by recasting a
natural phenomenon or species in terms of a search method without a real justi-
fication or understanding of the underlying search strategies. The proliferation of
these fancy methods pollutes in some sens the research in the area of metaheuris-
tics and makes it difficult for people to figure out which are the true methods that
can be used. Fortunately, the dangers related to this proliferation begin to be rec-
ognized by the research community, as justly analyzed in [Sörensen, 2013]. On the
other hand, other interesting trends begin to emerge and attract the attention of the
meta-heuristic community. In the continuation of the effort of creating hybridised
methods, the combination of artificial intelligence techniques (e.g., machine learn-
ing and data mining) and meta-heuristics seems to offer a great potential for creat-
ing improved search methods, as exemplified by the studies reported in [] [Je vais
ajouter quelques references recentes ici.].

8 Conclusion

In this chapter, we have presented a panorama of meta-heuristics, a class of gen-
eral methods useful to solve difficult combinatorial search problems. Even if these
methods have no provable guarantees on the distance of the achieved solution to the
optimum of the given problem, they have the advantage of being virtually applicable
to any difficult search problem. Meanwhile, to obtain an effective search algorithm,
it is critical to adapt the general search strategies offered by these general methods
to the problem at hand. In particular, the targeted problem needs to be understood in
depth to identify problem specific knowledge, which can be then incorporated into
the search components of the algorithm. The pursuit design goal is to build an al-
gorithm that is able to ensure a balanced exploitation and exploration of the search
space. It is equally important to apply the lean design principle in order to avoid
redundant or superficial algorithmic components. To sum up, meta-heuristic frame-
work constitutes an interesting enrichment to the arsenal of existing search methods
and offers a valuable alternative for tackling hard combinatorial problems.
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Mazure B, Sais L, Grégoire E (1997) Tabu search for sat. In: Proc. of the AAAI-97,
pp 281–285

McAllester D, Selman B, Kautz H (1997) Evidence for invariants in local search.
In: Proc. of the AAAI 97

Minton S, Johnston MD, Philips AB, Laird P (1992) Minimizing conflicts: a heuris-
tic repair method for constraint satisfaction and scheduling problems. Artificial
Intelligence 58:161–205

Moscato P (1999) Memetic algorithms: a short introduction. In: Corne D, Dorigo
M, Glover F (eds) New Ideas in Optimization, McGraw-Hill Ltd., Maidenhead,
UK., pp 219–234

Neri F, Cotta C, (Eds) PM (2012) Handbook of memetic algorithms, studies in com-
putational intelligence 379. Springer

Neveu B, Trombettoni G, Glover F (2004) Id walk: A candidate list strategy with
a simple diversification device. In: International Conference on Principles and
Practice of Constraint Programming (CP), Springer Verlag, LNCS, vol 3258, pp
423–437

Nonobe K, Ibaraki T (1998) A tabu search approach to the constraint satisfaction
problem as a general problem solver. European Journal of Operational Research
106:599–623
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