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Summary - The synthesis of a nove! microemulsion system composed of a mixed fluorinated and hydrogenated oil 
C8F17-CH2CH=CH-C4H9 with a biocompatible hydrogenated surfactant, Montanox 80 is described. Investigation of 
the solubility of oxygen in these microemulsions showed that they absorbed more oxygen than Fluosol-DA which is 
currently used as an oxygen transporter in biomedical applications. Oxygen absorption was similar to that of blood. 
Light scattering studies showed that the system was composed of small sized aggregates which should in principle be 
compatible with blood. The toxicity of the rnicroemulsions was tested after intraperitoneal injection in rats, and in mice 
after intravenous administration. The microemulsions appeared to be well tolerated. These results show promise for 
the development of oxygen transporting compounds. 

Résumé - Nouvelle stratégie dans la formulaôon de substituts du sang: opômisation de nouvelles microémulsions 
fluorées. Pour la première fois, nous décrivons des sytèmes de microémulsions d'une huile mixte fluorée et hydrogénée 
C8F17CH2-CH=CH-C4H9 à l'aide d'un tensioactif hydrogéné biocompatible: le Montanox 80. Les études de solubilité 
de l'oxygène dans ces microémulsions montrent qu'elles absorbent davantage l'oxygène que l'émulsion Fluosol DA, 
actuellement utilisée dans le domaine biomédical des transporteurs d'oxygène. Cette absorption s'effectue dans des propor
tions analogues à celles du sang. Du point de vue de la toxicité de ces systèmes, des mesures de la diffusion de la lumière 
mettent en évidence des agrégats de petite taille compatibles théoriquement avec le système sanguin. La toxicité des,microé
mulsions a été testée en i.p. chez le rat et en i.v. chez la souris. Les microémulsions semblent bien tolérées. Le travail décrit 
ici constitue donc une ouverture d'une nouvelle voie de recherche dans le domaine des transporteurs d'oxygène. 

fluorinated. microemulsioos/ oxygen transporting compounds 

Introduction 

Ali body organs and tissues require a constant supply of 
oxygen. At present, blood transfusion is the only effective 
way of restoring oxygen in situations where the supply is 
seriously impaired, although it is not indicated in ail cases. 
The development of an artificial transporter of respiratory 
gases would be of great value especially if it was devoid of 
immunological and infectious risks, chemically stable, 
and readily utilizable, especially outside a hospital envi
ronment. 

Fluorocarbons are the best gas solvents known, and 
they are also chemically and biologically stable. Aqueous 
emulsions of these compounds have thus been considered 
as potential blood substitutes for the transport of 
02 / CO2 • Non-transfusional indications include the treat
ment of cardiac or cerebral ischemia, for cardioplegja, 

angioplasty and in the radio- or chemotherapy of cancer 
where oxygen has been shown to have a synergistic action. 
Such blood substitutes would also be of value for perfusion 
of isolated organs and in cell culture, e te [ 1-7]. 

A commonly used preparation is represented by Fluo
sol-DA, an emulsion of F-decaline and Pluronic F68, a 
copolymer of repeating ethylene propylene oxide units 
with an average m.w. of 8350. However, it is rather un
stable, and must be kept refrigerated (9-11 ]. 

The use of oil in water microemulsions using perfluori
nated oils would overcome this obstacle. These micro
emulsions have the double advantage of fonning sponta
neousry and remaining stable for periods of up to several 
years L12-14]. However, production of a microemulsion 
with a perfluorinated oil requires the use of a fluorinated 
surfactant due to segregation between the fluorinated and 
hydrogenated chains [15, 16). Unfortunately some of 



these surfactants are eliminated slowly from the organism, 
and the y are degraded to taxie fluoride ions [ 17]. 

In this study, a diff erent approach was adopted by using 
hydrogenated surfactants which are known to be biocom
patible. The mixed oils must be sufficiently fluorinated to 
dissolve gases and be eliminated rapidly from the orga
nism, but sufficiently hydrogenated to enable microemul
sification with hydrogenated surfactants. 

Synthesis of mixed bydrogenated and fluorinated oils 

The mixed oils were of the type RF-CH2-CH=CH-RH. 
Using the following synthetic scheme the balance between 
the fluorinated and hydrogenated parts of the molecule 
could be altered: 

Stage 1: RpCH2CH2I + (CJI5)3P ___ .,,. 
( C6H5).3P+ -CH2CH2Rp, I -

Stage 2: Rtt-CHO + (CJI5)3P+CH2CH2RF , J- - - -� 
Rp-CH2-CH=CH-RH + (C6Hs)3PO. 

First stage: synthesis of the ftuorinated phosphonium sait 
This was carried out by reacting triphenylphosphine with 
the fluoroalkyl iodide at 95°C in the absence of solvent. 

(C6Hs)3P + CmF2m+1-C2H4I --· � 
(C6Hs)3P+-C2H4-CmF2m+1, I ·. 

Three compounds were synthesized, starting from diffe
rent fluoroalkyl iodides. The results are summarized in 
Table I.

Table I. Synthesis of ffuorinated pho5phonium salis RF-CH2-CH2P+ 

(C.Hs);, J-. 

Compounds No. Yield (%) MP (0C) 

(Cr,l-I5)3- p+ -CH2CH2-CiF9, 1-

(4,Hs) i-P• -CH2C�-Ci,F13, I

(C6H5)i-P+-CH2CH2-C8F17 , J-

1 

2 

3 

95 

95 

85 

104 

170 

180 

Second stage: synthesis of the olejin b y condensation of the 
phosphonium sait with an aldehyde 
This was first tried under strongly alkaline conditions, but 
yields were low: 

-n-butyl lithium/THF /QoC
-n-butyl lithium/THF /-40°C
-sodium hydride/THF /25-60°C

-lithium diisopropylamide/THF / -7()oC
Under ail these conditions the bases attacked all the

protons in the phosphonium salt indiscriminately, since 
the presence of the fluorinated chain tended to acidify the 
protons f3 to the phosphorus a tom, and the expected ylide 
not formed. 

ln order to get round this problem, the phase transfer 
method developed by Escoula et al. [17) in our laboratory 
was employed. 

dioxan/11�0 
(C6H5)ap+ - C2H4 - Rp, 1- + RH - CHO - - - - - - - ...

K,C039�•c 

RF - CH2 - CH= CH-RH+ (C6Hs)a P = 0 

Water acts as a catalyst and liberates carbonate ions by 
solvating K-. Under these mild alkaline conditions the 
yields were considerably increased since co�- selectively 
removes the proton a: to the phosphorus atom. There is no 
degradation of the phosphonium sait. 

Four mixed o\efins with different RF-RH balance were 
thus synthesized ( cf Table II). 

Table Il. Synthesis of mixcd fluorinated and hydrogenated olefins 
R .. -CH2-CH•CH-R11 • 

Compounds No. Yield (%) 

C8Fi;-CH2-CH=CH-C41-¼ 4 74 

CoFn-CH2-CH=CH-C;-I9 5 35 

C.F9-CH2-CH=CH-C,;H13 (i 30 

C4F9-CH2-CH=CH -CRH11 7 60 

NB. These mixed olefins contained 70% of the Zisomer and 30%, of the 
E isomcr (determined by 13C NMR) [17, 18). The predominance of the 
Z fonn can be explained by the formation of non-stabilized ylides during 
the reaction. The isomcric mixture was uscd for the subsequent stages. 

Selection of the oleftn 

The solubility of oxygen was uscd as a criterion for selec
tion of the olefin for the preparation of the microemul
sions. Among the various methods for measurement of 
oxygen solubility (van Slyke, NMR, polarography, Clark 
electrodc [19J), we selected the Clark electrode which had 
given good results for fluorinated compounds and emul
sions in previous studies [20]. 

In order to quantitate the results, the electrode was cali
brated with commercially available fluorinated oils whose 
oxygen solubilities were known (9). This also evaluated 
the reliability of the method. Five perfluorinated or par
tially fluorinated oils were chosen, and the amounts of 
oxygen absorbed were measured at 25°C and37°C (cf. Fig. 
1). The method was found to be accurate to ± 2 ml 
02/ 100 ml (recorder error). 

F-decalîn was selected as a reference with a value of
40 ml 02 / 100 ml. The L.102 values for the other com
pounds could thus be converted into volumes of oxygen 
dissolved by the other compounds. The results are shown 
in Table III. 

The results in the table show that the measured values 
were close to those reported in the literature. The method 
was considered to be reliable, and the compounds C4F9-



CH=CH-C4F9 and F-decalin were chosen as references 
at 37°C. The absorption of oxygen by compounds 4 and 7 
at 37°C are shown in Table IV. 
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Fig. l. Absorption of oxygen in 5 commercially available fluorinated 
oils. Calibration curves. 

Table Ill. Calibratiûn of Clark electrode ( ± 2 ml/ 100 ml). 

C'Aimpounds 

F-decalin

CRFl)C1Hi 

C�F,7CH-CH1 

No. T("C) Absorption 02 (5) Measured 02 
{ml/ 100ml) absorption (ml/ 100 ml) 

8 25 40 

37 

9 25 38 

10 25 38 

40 

43 

40 

38 

40 

50 

Table IV, Absorption of oxygen in mix:ed oils (:t: 2 ml/ 100 ml). 

Compound 

CRF1,-CH2-CH=cCH-C4H9 

C4F9-CH2-CH-"CH-C�H11 

C4F9-CH""CH-C4f9 

F-decalin

No. Absorption 

4 

7 

12 

8 

(ml/lOOml) 

43 

31 

50 

43 

The results indicate that: 
-the mixed oils 4 and 7 are good oxygen solvents: Csf17-

CH2-CH =CH-C4H9 is particularly interesting, since it 
bas a larger fluorinated part than C4F9-CH2-CH=CH-
CsH11; 

-the compounds 4 and 12, although possessing less
fluorine than F-decalin dissolve oxygen to as great an 
extent. In fact, C4F9-CH=CH-C4H9 dissolved more 
oxygen than F-decalin. 

This shows the importance of steric factors in the solubi
lity of oxygen in the fluorinated compounds. The double 
bond in the center of the molecule appears to lead to a ste
ric hindrance that favors the dissolution of oxygen. Csf 17-
CH2-CH=CH-C4H9 thus appears to be a viable alterna
tive to F-decalin, the principal component of Fluosol-DA. 

Various microemulsions with C8F17-CH2-CH=CH
C4H9 were produced, and all experiments were canied out 
at 37°C in order to approximate physiological conditions. 

Microemulsions with CaF17-CHi,-CH=CH-C4H" 

Use of ethoxy nonylphenols (NPn) as surfactants 
These surfactants of general fonnula C.,H19-CJ-=4-
(0CiH4)nOH are wîdely used in the production of micro
emulsions. In the range of compounds NP2 to NPlS only 
the NP14 derivative produced a monophasic zone with the 
mixed oil C8F17-CH2-CH=CH-C4H9 (Fig. 2). The 

MJCRO[MULSION ZONE 



microemulsion zone was observed in the water-rich 
region, making it sui table for intravenous administration. 
However, in view of the potential toxicity of this aromatic 
non-ionic surfactant (NP14) we investigated non-toxic 
analogues based on the HLB criteria (hydrophile-lipo
phile balance). 

The HLB value can be determined experimentally or 
theoretically. The theoretical methods described by 
Griffin [21] and Davîes [22] are commonly employed. 
Thus the HLB for NP14 is calculated to be� 14.5. Surfac
tants with an HLB of around 14 were selected. 

Microemulsification of C8F17-CH2-CH=CH-C,,Jf9 

using Montanox 80
Montanox 80 is a non-ionic surfactant manufactured by 
Seppic with an HLB of 14. lt has a very low toxicity (oral 
LD50 > 16 ml/kg) and is used in the formulation of vacci
nes by the Institut Pasteur. It has the following formula: 

10-C2H4)x-OH , 

H

CH-C"z•ID-cH
2
-c,

2
),-CllD-c,,

1
,-c,-c,.c,,17 

KO(C2H40}w (O-C2H4)z•OH 

X+Y+Z+W•20 

MICP.O[MUL510N ZONE 

HO:fTk_�OX fO 

,/. ;_,_ 
F B 

Fig, 3. Pseudoternary phase dîagram of the system H2O-Montanox 80-
C6F17-CHz-CH=CH-C4H9. 

N 
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Montanox 80 produced a microemulsion zone similar to ·. !:l 
that obtained with ethoxy nonylphenol (NP14) described : above (cf. Fig. 3). The microemulsion zone is found in the .:: 
water-rich regions up to systems containing equal amounts � 
of oil and water (point B), which would make it suitable 
for use in physiological conditions. 

These properties thus encouraged us to attempt to deve
lop oxygen transporting systems. Structural investigations 
(viscosity and light scattering) of various microemulsions 
of the system Montanox 80-water-C8F17-CH2-CH=

CH-C4H9 were therefore carried out. These were follow
ed by oxygen absorption and toxicological studies. 

Structural investigation of the microemulsions CsF17
-

CH2-CH=CH-C4H9-water-Montanox 80 

Four microemulsions were selected (points B, C, D and E 
in the phase diagram of Figure 3). Their compositions are 
shown in Table V. 

lll1E � 

Fig. 4. Curves of absorption of oxygen in microemulsions B, C, D and 
E (reierence C4F9-CH=CH-C4F9). 

Viscosity 
Viscosity was measured in a coaxial cylinder type viscosi
meter [23] (cf. Experimental protocols). The results are 
also listed in Table V. 

It can seen that the microemulsions C, D and E have a 
viscosity close to that of water (1 cp), a further indication 
that they are rich in water (O/W type). However, the 
microemulsion B containing equal amounts of water and 
oil had a particularly high viscosity (70 cp). It is nota true 
microemulsion (the viscosity of the oil itself is only 
3. 15 cp), but it is prohably represented by a lamellar
structure.

Table V, Characteristics of micmemulsions B, C, D, and E of the system H2O-Montanox 80-CsF11-CH2-CH=CH-C,H9.

No. Composition of microcmulsions (% weighr) Viscosity(cp) ± 0.1 cp Micelle radius (A) ± 1 A Oxygen absorption (ml/ 100 ml) 

Montanox 80 CsF11 -CH2-CH=CH-C4H9 H20 Measured Calculated 
(±2ml/100ml) 

B 2.6 48.7 48.7 70.0 23 17.0 

C 5.5 16.6 77.8 1.1 64 32 S.4

D 7.15 7.15 85.7 l.l 36 9 2.3 

E 1.3 9.1 89.6 0.9 43 21 2.8 



Quasi-elastic lighf scattering 
The quasî-elastic light scattering of the microemulsions C, 
D, and E (water as continuous phase) was measured (cf.
Experimental protocols) . This gives an estima te of the size 
of the spherical aggregates [24] . The results are shown in 
Table V. 

These physicochemical studies showed that the Monta
nox 80 - water - C8F17CH2 -CH=CH-C4H9 microemu1-
sions in the area rich in water are composed of small-sizcd 
aggregates of the oil in water type . They are thus likely to 
be suitable for blood substitutes. 

Solubility of oxygen in the microemulsions C8F17-CH2-
CH = CH -C41L,i - water - Montanox 80 

Measurement of the absorption of oxygen were carricd 
out at 37°C with C4F9-CH =CH-C4F9 as reference as for 
the ftuorinated oils. It should be noted that the method 
measured the solubility of oxygen in the microemulsion 
after dilution in the sample cell. ln some respects this 
mimics the dilution of the agent in blood after intravenous 
administration . We also calculated the expected absorp� 
tion of just the oil fraction of each of the microemulsions. 
The results are summarized in Figure 4 and Table V. 
These results showed that a part from microemulsion D ,  
the other microemulsions dissolved oxygen to a greater 
extent than Fluosol-DA (7.5 ml Oz / 100 ml) and, to a 
similar extent, to that of blood (20.6 ml 02 / 100 ml) .  

It should also be noted that the theoretical values of 
oxygen solubility (taking into account the proportion of oil 
in the microemulsion) are much Jess than the measured 
values in microemulsions C, D and E which have a true 
micellar structure. The excess solubility was in fact 
= 500% . This would indicate that the structure of the 
microemulsion (presence of micellar cages) increases their 
capacity to take up oxygen. This phenomenon bas been 
observed, albeit to a lesser extent ( excess solubility of 
a round 200%) with perh ydrogenated microemulsi on [ 19] , 

lt should be emphasized that the prescnce of a fluori
nated oil is required to observe this phenomenon of solu
bilization. The corresponding micellar solutions ( wi th out 
oil) only took up low proportions of oxygen ( ""-' 6 mJ / 
100 ml). Moreover, the solubility of oxygen appeared to 
depend on the size of the micelles. The larger the micelles, 
the higher the solubility (cf Table V). 

lt would appear that solubilization of gas is favored by 
the oil in water nature of these microemulsions using Mon
tanox 80 . Toxicological studies were thus carried out in the 
rat after peritoneal injection and in the mouse after intra
venous administration. 

Tmdcology of the microemulsions C8F1,-CH2-CH;;c 
CH -C4Hy - water - Montanox 80 

Toxicity in Wistar rats a/ter intraperitoneal administration 
The initial objective was to evaluate the toxicity of the 
fluorinated oil C8F17-CH2-CH=CH-C4H9 itself. Wc 
thus administered microemulsion F (57% water, 40% oil 
and 3% Montanox 80) . 

Doses and route of administration 
Male and female Wistar rats were treated by intraperito
neal injection . The animais were housed in plastic cages, 
and had ad libitum access to food and water. They were 
left to habituate for 8 days the experiments. Two 15-day 
trials separated by an interval of one week were carried 
out on the same groups of animais. Each group consisted 
of 5 males and 5 femalcs. The doses used for the 2 trials 
are summarized in Table VI. 

Table VI. Amounts of solute [26) (5 ml / kg) injected i,p. 

Trial Male rats Female racs 

Treated Controls Treated Controls 

0.7 g oil 0.7 g oil 
1 0,05g Mx 80 0.05 g MJ,; 80 0,05 g Mx80 0.OS g Mx 80

l g water 1.7 g water 1 g water 1 .7 g water

1 .4 g oil 1 g oil 
2 0,1. g Mx 80 0.1 g Mx 80 0.07 g Mx80 0.07 g Mx.80 

2 g water 3.4 g water 1 .4 g water 2.4 g water 

Parameters evaluated 

Weight gain. The animais were weighed at the same time 
on each day during the trials .  Weight gain was comparable 
between the 2 groups. 

Autopsy. At the end of trial 2, the rats were anesthetized 
with ether, and killed by aortic puncture. Blood was 
collected on lithium heparinate, and centrifuged at 
12 000 rpm for 10 min. The various body organs were exa
mined macroscopically . Administration of these microe
mulsions by the intraperitoneal route was not found to 
lead to any macroscopically observable lesions. 

Biochemistry. Plasma samples were analyzed in the cli
nicat chemistry department at Purpan Hospital (Tou
louse) . Student's t-test was used to compare the results 
(Table VII) . 

Statistically significant alterations were observed in both 
males and females in: albumin, calcium; and in females 
only in: phosphorus , -y-glutamyl transferase and iron . These 
alterations were slight, and were observed in some cases 
as elevations and in others as decreases with respect to 
control levels. They wcre assumed to be of no toxicolo
gical significancc , The fluorinated oil C8F17-CH2-CH=

CH -C4H9 can th us be considered to be well talera ted 
after intraperitoncal administration . 

Toxicity in CDF1 rnice after intravenous administration 

Doses and route of administration. ln order to prepare a 
solution suitable for intravenous administration (neutral 
pH , isotonie and isoionic), salts and glucose were added
in the same proportions as those used in Fluosol-DA 
(Table VIII). 



Table VU. Biochemical parameters and statistical comparisons; i.p. toxicological studies. 

Females: Na K Cl Alk.• Alh. TP•� Urea Creat.Ca p Alk.ph B11 GTP GOT Urie vGT LDH Chol. Trig. Glue. Fe

Cnt m 142,8 3.66 105 21.4 570 67.4 8.32 40.2 2.6 1.55 205 8 1.4 57,2 71.8 41.4 1.4 398 2.18 0.368 10.26 55.2 
SE 0.45 0.31 1.23 2.0 28.1 2.19 1.59 2.86 0.06 0,25 62,71 0.55 5.68 9.45 19.82 0.55 342 0.36 0.17 0.31 8.87 

Exp m 142.0 5.56 103 22.8 61& 72.2 !UO 39.0 2.79 2.03 187,0 1.0 47.2 'fl.2 48.6 0.2 1004 2.56 0.65 9.56 85.6 
SE 2.0 1.35 1.58 1.64 26.8 5.81 1.49 5.61 0.09 0.34 42.2 0.71 16.5 52.4 39.6 0.45 1118 0.53 0.32 1.60 16.4 

t 0.87 1.45 2.24 1.23 2.76 1.73 1.21 0,43 H7 2.51 0.53 1.0 1.28 1.07 036 3.79 1.16 1.33 1.17 0.87 3.64 
df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 s 8 8 8 

Males: Na K Cl Alk.• Alb. TP0 Urea Creat.Ca p Alk.ph B11 GTP GOT Ur. A vGT LDH Chol. Trig. Glue. Fe 

Ctn m 142.6 4.36 9fj.6 25.8 531 64.9 9.54 36.6 2.72 236 517.0 1.4 73.4 98.2 47.0 0.0 682 2.02 1.49 9.94 38.4 
SE 1.34 0.64 1.67 0.84 8.22 1.30 0.73 4.88 0.03 1.81 91.8 0.55 6.19 23.8 18.7 0.0 63(j 0.34 0.86 0.86 8.56 

Exp m 143.0 4.18 100 26.4 510 62.8 8.54 33.2 2.65 2.37 463.0 2.4 73.2 90.4 35.8 0.2 425 1.58 151 9.54 46.0 
SE 1.09 0.48 1.41 1.14 18.4 3.27 0.61 7.05 0.04 0.25 59.55 1.52 9.20 20,4 15.6 0.45 553 0.29 0.44 0.81 5.57 

t 0.78 0.51 0.41 0.95 2.33 1.27 2.28 0.89 3.43 0.65 1.11 1.39 0.04 0.57 1.03 1.0 0.6.� 2.18 0.07 0.76 1.66 
df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 

• Alk. = alkaline reserve.
••TP = total protein.

Table VIII. Amounts of salts and glucose (same proportions ru; Fluosol various doses (0.1, 0.2, 0.3 ml/ 10 g body weight). Ail ani-
DA) added 10 the microemulsions (g/ 100 ml). mals were given ad libitum access to food and water, and 

NaCl 0.600 

KCI 0.034 

MgO2 0.020 

CaCl2 0.028 

NaHC03 0.210 

Glucose 0.180 

Since microemulsion E dissolved as much oxygen as 
blood (cf Table V) we prepared an homologous micro
emulsion E' with the following characteristics: 

Table IX. Characteristics of microemulsion E', 

Composition(% welght) 

Oil* Mx 80 Sterile water 
Salts + glucose 

9. 1 1.3 89.6 

Micelle radius Measured oxygen 
A ( ± 1 A) absorption 

ml/IOOrnl 

( :t 2 rnl/ 100 ml) 

43 20 

lt should be noted that the presence of the salts and glu
cose did not affect the size of the aggregates or the solubi
lity of oxygen in the microemulsion. 

Microemulsion E' had a pH of 7. None of the solutions 
were as hemolytic as the solutions of physiological saline 
(0.9% NaCJ) used as controls. Microemulsion E' was thus 
injected into female CDF1 female mice via the tail vein at 

were weighed regularly. 

Parameters evaluated 

Body weight. The mice were weighed daily. Weight gain 
for treated and controls animals was not significantly dîffe
rent. 

Autopsy. The mice were killed by i.p. injection of 
sodium pentobarbita1 (50 mg/ kg) at the following times: 
8 days, 15 days, 1 month and 3 months after treatment. No 
macroscopic lesions were observed in any body organ. 
More detailed toxicological studies are in progress to 
investigate elimination of the constituents of this microe
mulsion. 

Conclusion 

The results show that microemulsions can be produced 
using a partially fluorinated olefin and a biocompatible 
hydrogenated surfactant. The oil Csf17-CH2-CH=CH
C4H9 was microemulsified using Montanox 80, a non
ionic, non-toxic surfactant. 

Determination of the solubility of oxygen in these 
microemulsions showed that they absorbed larger 
amounts of oxygen than Fluosol-DA which is widely used 
in biomedical applications. Oxygen absorption was in fact 
comparable to that of blood. 

Light scattering studies demonstrated the small size of 
their constituent aggregates. 

The results after intraperitoneal injection in the rat indi
cated that these microemulsions are well tolerated. For 
intravenous use, the microemulsions were optimized by 
addition of salts and glucose. The isotonie preparations of 
neutral pH also appeared to be well tolerated after intra-



venous administration in mice . These encouraging results 
are being followed up by further toxicological studies via

the intravenous route in mice. 

Experimental protocols 

The NMR spectra were recorded: for IH at 60 MHz on a Varian T 60, 
and at 90 MHz on a Brucker WH 90 instrument using TMS as internai 
references; for 1�F at 90 MHz on a Perkin-Elmer R 32 with CF3COOH 
as external reference; for 1�C at 300 MHz on a Brucker AM 300 WB with 
TMS as internai referencc. 

The chemical shifü are expressed in ppm with respect 10 the reference, 
and the signais were characterized as: s (single\), d (doublet), t (triplet), 
and m (multiplet). 

The infra-red spectra were recorded on a Perkin-Elmer 683, and the 
frequencies of absorptiùn arc expressed in cm- 1 .  

Microanalyses were carried out by  the central facilities of the CNRS. 
The melting points wcrc dctennined on a Kofller block. Viscosity was 
measured with a coaxial cylinder type viscosimeter ( Contraves Lowshear 
2) [23] . 

Light scattering in the microemulsions was mcasured using a Malvem
K 7025 128 channel corrclator coupled to a helium-neon laser (A = 
6323 À) [24]. 

Preparation of mi.xed hydrogenated and fluorinated oils 

I'reparation of pho�phonium salts 

General method. 0.1 mol of the fluoroalkyl iodidc and 0.1 mol of tri
phenylphosphine are heatecl in the absence of a solvent to 90- lOOOC 
under constant stirring: ovemight for RF = C4H9, and ail day for RF = 
C0F13 and CRF 17 . The reaction is stoppeo whcn the mixture solidifies. 
After cooling the solid residue is washed in toluene followed by anhy
drous eth cr, The white solid is dried under vacuum at 45°C for a whole 
day. 

Preparation uf ( C6Hs);P--GiH4- C4F9, l I 
Yield: 95% ;  MP: 104°C; NMR 1H CD3COCD,: 2.7 (2p, m, CH;?.BP);  
4-4.5 (2p, m ,  CH2o:P) ; 7.6-8.3 (15p ,  m (C6Hs)3). NMR 19f,
CD),COCDf 5.5 (3f, t, CF3� ; 3.� (2f, m, a�H2);  48 (:f, m, CF�CH2);
50 1.,2f, m, CF2aCF3). Found. C - 45.98, H - 3 .07, F - 25.19, P - 4.83, 
1 = 18.61. Ci4H1Ji?PI requires C = 45.28, H = 2.99, F = 26.89, P =

4.87 ,  1 = 19.97%.

Preparation of (Cf!ls).1P+-C2Hr CJJJ, /- 2 
Yield: 94% ; MP: 170°C; NMR 1H CD3COCD3: 2.6 (2p, m, CHi,BP); 4.2 
(2p, m, CH2aP); 7.4-8.4 (lSp, m (C6H5)3). NMR 1�F, CDJCOCD3: 5 .8 
(3f, t, CF3) ;  37.8 (2f, m. aCH2) ;  46.5 (2f. m, CFJICH2); 47.4 (2f, m, 
Cf2-yCH2); 51 (2f, m, CF2aCF3) .  Found: C = 42.S8, H = 2.63, F = 
31.84, P = 3.98, I = 17.57. C26H1.;'13PI rcquires C = 42.37, H= 2.59, 
F = 33.55, P = 4.21, r = 17.25%. 

Preparation of (C6HsJJP+- C2H4- C�17, J- 3 
Yield: 85% ; MP: 18(}oC; NMR 1H CD3COCD3: 2.7 (2p, m, CH2,8P); 4.2 
(2p, m, CH2o,P) ; 7.9-8.5 (15p, m, (CJ-I5)i) .  NMR 19F, CDiCOCD3: 5.3 
(3f, t, CF3) ;  37.8 (2f, m, _aCH2) ;  46.9 (2f, m, CF� /3 and î' .CHtl; 46 .1 (6f,
m. CF2 /1, y and c5 CF3) ,  50.5 (2f, m, CH2aCF3J. Found. C - 49.78, H
= 2.21 , F = 37 .80, P = 3.82,  ( = 15.10. C2&H19F17Pl requircs C = 40.18,
H = 2.27, F = 38.62, P = 4.3 1 ,  I = 15 .18%. 
Preparation of rhe mixed uils b y a Wiuig reaction 

General method. 2.5· 10 2 mol of the fluorinated phosphonium sait, 2·
10-2 mol of aldehyde, 3-10-2 mol of potassium carbonate, 1 .7· 10  2 mol 
of water or formamide, and 20 ml of anhydrous 1 ,4-dioxan are placed in 
a flask. The mixture is maintained at 95oC under constant stirring for 
4 h .  The reactioo mixture is then filtere<l to remove the K2CO3. The 
solvcnt is cvaporatcd under vacuum without heating, and the residue is 
takcn up in ether to precipitate most of the triphenylphosphine oxidc. 
This prccipitatc is filtcrcd, and the ether is evaporated. The residue is
takcn up in hcxane, and extracted 2 to 3 times with water to remove the 
remaining dioxan. The org,mic phase is dried over sodium sulfate and 
the hexane is evaporated. A colorless l iquid is obtaîned after purification 
by rapid distillation. 

Preparatlon of C8F17-CH2-CH= CH-CJ9 4 
Yield: 74% ; NMR 1H CDCl;: 0.6-2.2 (9p, m, C4H9); 2.4-3.2 (2p, split 
t, CH2 aC�F 17); 5-6 (2p, m, CH=CH). NMR 19F, CDCI:;: 6 (3f, s, CF3) ;  
39-40 (2f, s, CF2aCH2) ;  48-50 (tof, m, (CF2)s); 53 (2f, s ,  CF2aCF3).Found: C "'  35.67, H "" 2.76, F = 63.31 ,  C1�H 1:iF17 requires C = 34.88,
H = 2.52, F = 62.59%. 
Preparatîon of Cr,F1r CH2-CH= C4F9 S 
Yicld; 35% ; NMR 1H CDCI,: 0 .6-2.2 (9p, m, C4lig); 2.4- 3.2 (2p, split 
t, CH1aC8F17); 5-6 (2p, m, CH=CH). NMR 19F, CDCI,: 6 (3f, s, CF.1); 
39-40 (2f, s, CF20iCH2);  48-50 (6f, m, (CF2l)); 53 (2f, s, CF2aCF1).
Found: C = 37.24, H = 3.33, F .. 58.93. CuH 13Fi , requires C = 37.5Ô, 
H = 3. 12, F = 59.37%. 

l'reparation of CJ9- CH2-CH=CH-CJ-11 6 
Yield: 30% ; NMR 1H CDC13 : 0.9-2.2 (Bp, m, C4Hn)i 2.4-3.4 (2p,
split t, CH20iCF2); 5.2-6.1 (2p, m, CH=CH). NMR 19F, CDCl3 : 6 (3f, 
s; CFJ; 39-40 (2f, s ,  CF2o:CH2) ;  48-50 (lOf, m, (CF2)s) ; 53 (2f

_, 
s,

CF2aCF))• Found: C = 45.87, H = 5 . 1 5 ,  F = 50.25. C,�H 17F9 reqmres
C = 45.35, H = 4.94, F = 49.70%. 

Prepurativn of C4F9-CH2- CH=CH-C8F11 7 
Yield: 60%; N MR 1H CDCl3: 0.8-2.2 (17p, m, C8H17); 2.4-3.2 (2p, 
split t, CH2oC8Fn); 5.2-6 (2p, m, CH=CH). NMR 19F, CDClf 6 (3f, 
s, CF1); 39-40 (2f, s, CF2aCH2); 48�50 (lüf, m, (CF2),) ; 53 (2f, s, 
CF2ciCF.,) . .  Found: C = 48.50, H = 5.98, F = 45.48. C1�H21F9 requires 
C = 48.38, H = 4.64, F = 45.96%. 

Determination of microemulsion zones 
The microemulsion zones were determined by direct observation after 
addition of a mixture or 11 pure constituent. The sample suddenly be
comes transparent on formation of a microemulsion. Increasing amounts 
of water were added to mixtures of surfactant and oil. The experimental 
points lay within the dotted lines on the phase diagram (cf. Fig. 2). 
Clark elecuode: measurement principle a1id procedure 
The Clark e\ectrode consists of 2 electrodes: one of silver (anode) and 
the other of platinum (cathode). The 2 are connected ))fa a semi-satu
rated solulîon of potassium chlorîde. A voltage of 0.8 V is applied 
betweeo the 2 electrodes which produces a depolarization current cor
responding to the reduction of oxyge-n at the cathode. The solution 
under test is placed in a thermostated holder in contact with the Clark 
electrode through an oxygen-pcrmeable Teflon membrane. 

The rate of diffusion of oxygcn across this membrane is rclatively slow 
with respect to the rate of depolarization of the electrode. The depolari
zation current thus gives a measure of the rate of diffusion of oxygen 
across the membrane. This rate of diffusion is dependent on the oxygen 
concentration of the solution, and so the currem is proporlional to the 
oxygen concentration. 

The thermostated sample holder is filled with water previously satu
rated with oxygen (1.5 ml) . The oxygen concentration is recorded. Then 
20 µ,i of the degassed fluorinated oil or microemulsion is added, and the 
reduction in the oxygen concentration of the solution is recorded. This 
gives an cstimates of the oxygen consumption of the system. 
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