Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA - Archive ouverte HAL
Journal Articles Proceedings of the National Academy of Sciences of the United States of America Year : 2018

Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA

Abstract

Coronaviruses (CoVs) stand out among RNA viruses because of their unusually large genomes (∼30 kb) associated with low mutation rates. CoVs code for nsp14, a bifunctional enzyme carrying RNA cap guanine N7-methyltransferase (MTase) and 3'-5' exoribonuclease (ExoN) activities. ExoN excises nucleotide mismatches at the RNA 3'-end in vitro, and its inactivation in vivo jeopardizes viral genetic stability. Here, we demonstrate for severe acute respiratory syndrome (SARS)-CoV an RNA synthesis and proofreading pathway through association of nsp14 with the low-fidelity nsp12 viral RNA polymerase. Through this pathway, the antiviral compound ribavirin 5'-monophosphate is significantly incorporated but also readily excised from RNA, which may explain its limited efficacy in vivo. The crystal structure at 3.38 Å resolution of SARS-CoV nsp14 in complex with its cofactor nsp10 adds to the uniqueness of CoVs among RNA viruses: The MTase domain presents a new fold that differs sharply from the canonical Rossmann fold.

Dates and versions

hal-02094607 , version 1 (09-04-2019)

Identifiers

Cite

Francois Ferron, Lorenzo Subissi, Ana Theresa Silveira de Morais, Nhung Thi Tuyet Le, Marion Sevajol, et al.. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (2), pp.E162-E171. ⟨10.1073/pnas.1718806115⟩. ⟨hal-02094607⟩
224 View
0 Download

Altmetric

Share

More