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Abstract

In this paper, we introduce a new class of processes which are diffusions with jumps driven by a
multivariate nonlinear Hawkes process. Our goal is to study their long-time behavior. In the case of
exponential memory kernels for the underlying Hawkes process we establish conditions for the positive
Harris recurrence of the couple (X,Y ), where X denotes the diffusion process and Y the piecewise
deterministic Markov process (PDMP) defining the stochastic intensity of the driving Hawkes. As a
direct consequence of the Harris recurrence, we obtain the ergodic theorem for X. Furthermore, we
provide sufficient conditions under which the process is exponentially β−mixing.
AMS Classification: 60J35, 60F99, 60H99, 60G55
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1 Introduction

1.1 Motivation

In this work, we introduce a new class of continuous time processes X = (Xt)t≥0 taking values in R,
with jumps driven by a multivariate nonlinear Hawkes process N, satisfying the following equation

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs +

∫ t

0
a(Xs−)

M∑
j=1

dN (j)
s , (1.1)

where W is the standard one-dimensional Brownian motion and N is a multivariate Hawkes process
having M components with intensity process λ. N is supposed to be independent from W. We shall
specify the dynamics of N later on, in particular, the precise form of the stochastic intensity process
λ is given in (2.1) below.

The jumps of the Hawkes process impact the dynamic of the diffusion process. In this model, the
structure of the jumps is different from classical jump-diffusion processes with Lévy jumps. Indeed:
1) the intensity of the jump process N does not depend on the dynamic of X,
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2) the Hawkes process has a special structure of time dependency: the state of the intensity at time t
depends on the entire past,
3) the multidimensional nature of the Hawkes process can be interpreted as the influence ofM subjects
communicating one with each other and impacting the dynamic of X along time.

Our main motivation is to be able to describe systems of interacting neurons, where we are in par-
ticular interested in modeling the membrane potential of a single neuron together with the sequence
of spike times of its presynaptic neurons. Indeed, neurons are communicating through the emission of
electrical signals, forming a network. When a (presynaptic) neuron sends a signal to another (postsy-
naptic) neuron, the membrane potential of the neuron increases sharply, and we say that the neuron
spikes at this time. If we are looking at one fixed neuron at the heart of this network, its activity
between two spikes of one of its presynaptic neurons can be designed by the present model. Indeed,
during this interval the membrane potential can be described by a diffusion process influenced by the
spikes coming from the presynaptic neurons which are modeled by the Hawkes process. Hawkes pro-
cesses have been studied recently in the context of neurosciences [see 34, 18] to model the interactions
between the neurons within their sequences of spikes. The new model we propose allows to use both
informations: the continuous membrane potential for a fixed neuron together with the spikes of several
other neurons around it.

The aim of the present article is to study the longtime behavior of the process X. Since X is not
Markov on its own, we propose a study of the couple of processes (X,λ) in the case when the intensity
λ of N can be described in terms of a piecewise deterministic Markov process (PDMP) Y, see (2.4)
below. Such a description is possible when the memory kernels are exponential. We prove the positive
Harris recurrence of (X,Y ) together with ergodicity, and we establish the speed of β−mixing. These
are important probabilistic properties which are interesting in its own right but which are also the
key ingredients for the theoretical study of estimators of the model parameters. The estimation of the
coefficients of the process is the issue of the companion paper [11].

1.2 State of the art

Time-homogeneous diffusion processes are well known Markov processes that have been widely studied.
Let us cite for example [22] which has initiated the work on Markovian properties of diffusion processes
or the by now classical references [21, 33] in which all properties of diffusions are summarized. Ergod-
icity and strong mixing have been established in the pioneering papers [37, 23]. Then, jump-diffusion
processes have been introduced, for example in the context of risk management [see 36], either driven
by a Poisson process or more generally by a Lévy process [see 1, for a review]. Their ergodicity and
mixing properties have been studied from a probabilistic point of view by [29].

On the other hand, Hawkes processes [17] have been studied a lot lately. These point processes gen-
eralize the Poisson processes by introducing what is commonly called “self-excitation”: Present jumps
are able to trigger (or to inhibit) future jumps, and in this way, correlations between successive jump
events are introduced. [9] gives a precise synthesis of earlier results published by Hawkes. Important
probabilistic results for these mutually exciting point processes, such as stability, limit theorems and
large population limits, have been obtained in [6, 10, 2, 3, 8, 5]. Ergodicity for general non-linear
Hawkes processes with general memory kernels has been recently established by [5]. For linear Hawkes
processes, [15] proves exponential ergodicity, giving very precise estimates on the regeneration times.
Finally [8] establishes exponential ergodicity in the particular case of linear Hawkes processes with
exponential memory kernels.

Relying on one of these recent results on ergodicity of Hawkes processes, it is therefore reasonable
to argue that the solution of (1.1) should be ergodic itself, provided we are able to ensure that the
diffusion part of (1.1), that is the dynamic (1.1) with a(·) ≡ 0, driving the motion in between successive
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jumps, is ergodic.
However, no such general criterion, ensuring that the ergodicity of the underlying jump process

implies the ergodicity of the associated diffusion with jumps, exists, at least not to our knowledge.
The present paper proposes therefore a short study of the ergodicity of diffusions with jumps driven

by Hawkes processes with exponential memory kernels. In this case, the associated stochastic intensity
processes of the jump part can be expressed in terms of particular Markov processes, PDMP’s, see e.g.
[13]. For these PDMP’s, ergodicity has been established by [8] in the case of linear Hawkes processes,
and by [13] in the case of non-linear Hawkes processes with Erlang kernels. Here, we extend these
results to the general non-linear case, including also inhibitions 1, and more importantly, we prove the
joint ergodicity as well as the β-mixing property for the couple (X,Y ) in the case of exponential kernel
functions. Finally, we give criteria ensuring that the mixing is exponential.

1.3 Main contributions and plan of the paper

We propose a general study of the longtime behavior of a jump diffusion process, where the jumps
are driven by a multivariate non-linear Hawkes process in dimension M, having exponential memory
kernels. Our proof of the Harris recurrence of (X,Y ) follows a well-known scheme, see e.g. [30, 31].

Firstly, we establish a local Döblin lower bound for the transition semigroup of the process (X,Y ),
based on a lower bound of the joint transition density of (X,Y ). This is the content of Theorem 3.1. The
ideas that we use to obtain this lower bound are very natural, and they have appeared independently
of our work already in [8]. They have also been exploited in [13] and in [26]: more precisely, we useM2

consecutive jumps which are carefully chosen to produce a part of Lebesgue density for the transition
of Y. Once the jump part of the process possesses some part of Lebesgue density, we have to ensure that
this density is preserved by the stochastic flow. This part of the proof relies on fine support properties
of (X,Y ) and provides, as a by-product, a simulation algorithm for the process. In particular we need
to localize the possible positions of the diffusion part, conditionally on the jump times of the underlying
Hawkes process that have already been chosen.

In a second step, a Foster-Lyapunov condition (see Proposition 3.4) ensures the control of the return
times to some compact set K. We then use control arguments to deduce from this a precise control of
the hitting times of the set C where the transition densities are lower-bounded according to the local
Döblin lower bound. Both results together imply the positive Harris recurrence of the couple (X,Y ),
as well as the ergodic theorem. This is our first main result, stated in Theorem 3.6.

Finally, following the steps of [29] where the ergodicity and exponential β-mixing bounds are
established for diffusions with jumps driven by a Lévy process and the general framework of [24], our
second main theorem 3.8 states the mixing property of the process together with a control on the rate
of convergence. To conclude, our Theorem 3.10 provides sufficient criteria implying the exponential
control of the β−mixing coefficient of (X,Y ).

Finally, let us mention that it is possible to extend our results to multivariate diffusions driven by
Hawkes processes. However, the primary aim of our article is to provide a theoretical probabilistic
foundation for a statistical application where we want to deal with data describing the membrane
potential of one single neuron together with the spike trains (the point process data associated to the
subsequent times of action potentials) of its presynaptic neurons. This is why we concentrate on a
one-dimensional diffusion model, driven by a multivariate Hawkes process in this paper. Indeed, in this
modeling context, the joint evolution of the membrane potentials of, say, d neurons, is independent,
conditional on the evolution of the spike trains of their presynaptic neurons. This is due to the fact
that the membrane potential processes of different neurons within a network do only interact via the

1Notice that [7] has obtained a control of the τ -mixing coefficient in the inhibitory case – but this does not imply the
β−mixing property of the process.
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incoming stimuli, that is, the incoming spike trains of the presynaptic neurons. In other words, their
driving Brownian motions are independent - no interaction is present in their drift nor in their diffusion
coefficient.

Our paper is organised as follows. We introduce our model together with all necessary notation
and assumptions in Section 2. Section 2.3 provides a simulation algorithm of the process which is
interesting in its own right. In Section 3, we prove the ergodicity and finally the exponential β−mixing
of the coupled process (X,Y ).

2 Presentation of the model and first properties

2.1 The model

Throughout this paper we work on a filtered probability space (Ω,F ,F). We start by introducing the
jump part of our process, that is, the multivariate Hawkes process.

This process is defined in terms of a collection of jump rate functions fi : R→ R+, 1 ≤ i ≤M, and
in terms of interaction functions (also called memory kernels) hij : R+ → R, 1 ≤ i, j ≤ M, which are
measurable functions. Let moreover n(i), 1 ≤ i ≤M, be discrete point measures on R− satisfying that∫

R−
|hij |(t− s)n(j)(ds) <∞ for all t ≥ 0.

We interpret them as initial condition of our process.

Assumption 2.1. We suppose that each fi, 1 ≤ i ≤M, is Lipschitz continuous with Lipschitz constant
γi.

Definition 2.2. A non-linear Hawkes process with parameters (fi, hij)1≤i,j≤M , and with initial condi-
tion n(i), 1 ≤ i ≤M, is a multivariate counting process Nt = (N

(1)
t , . . . , N

(M)
t ), t ≥ 0, such that

1. P−almost surely, for all i 6= j,N (i) and N (j) never jump simultaneously,

2. for all 1 ≤ i ≤M, the compensator of N (i)
t is given by

∫ t
0 λ

(i)
s ds, where

λ
(i)
t = fi

 M∑
j=1

∫ t−

0
hij(t− u)dN (j)

u +

M∑
j=1

∫ 0

−∞
hij(t− u)dn(j)u

 . (2.1)

If the functions hij are locally integrable, the existence of the process (Nt)t≥0 with the prescribed
intensity (2.1) on finite time intervals follows from standard arguments, see e.g. [6] or [10].

We consider a jump diffusion process X = (Xt)t≥0 taking values in R, whose jumps are governed
by N. More precisely, X is solution of the stochastic differential equation

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs +

∫ t

0
a(Xs−)

M∑
j=1

dN (j)
s , (2.2)

where X0 is a random variable independent of W and of N. Here W is the standard Brownian motion
in dimension one, independent of the multivariate Hawkes process N having intensity (2.1).

Proposition 2.3. Suppose that Assumption 2.1 holds, that the coefficients b, σ are globally Lipschitz
continuous, that a is measurable and that the memory kernel functions hij are locally integrable. Then
equation (2.2) admits a unique strong solution.
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Proof. Theorem 6 of [10] implies that for any T > 0, almost surely, Nt has only a finite number of jumps
on [0, T ]. We can therefore work conditionally with respect to the choice of these jumps and construct
the solution of (2.2) by pasting together trajectories of strong solutions to the diffusion equation (that
is, the solution of (2.2) with a(·) ≡ 0) at the successive jump times (see [20] for related ideas).

In the sequel we shall also need estimates on the transition densities of the diffusion process un-
derlying (2.2). We want to be able to deal with a general drift term b that is not bounded in order to
include Ornstein-Uhlenbeck type processes to the class of models that we consider. Unbounded drift
coefficients add however a substantial difficulty when one wishes to apply techniques from Malliavin
calculus to obtain bounds on the transition densities. Therefore, we impose the following additional
assumptions which are inspired by [14].

Assumption 2.4. 1. a is continuous.

2. b and σ are of class C2.

3. There exist positive constants c, q such that for all x ∈ R, |b′(x)| + |σ′(x)| ≤ c and |b′′(x)| +
|σ′′(x)| ≤ c(1 + |x|q).

4. There exist strictly positive constants σ0 and σ1 such that σ0 ≤ σ2(x) ≤ σ1 for all x ∈ R.

Remark 2.5. We do only need the above assumption to obtain good lower bounds on the transition
densities of the underlying non-jumping diffusion process, see (3.3) below.

To study the longtime behavior of X and to ensure its ergodicity, we introduce two additional
conditions which are classical in the study of diffusion processes and which are derived from [16], see
also [37].

In the following, we assume we are in one of the following frames.

Assumption 2.6. Exponential frame. There exist d ≥ 0, r > 0 such that for all x satisfying
|x| > r, we have xb(x) ≤ −dx2. Moreover, one of the two following conditions holds true.

1. For all |x| > r, 2xa(x) + a2(x) ≤ 0.

2. For all |x| > r, |a(x)| ≤ C|x|η for some η < 1.

Assumption 2.7. Polynomial rate. There exist γ > σ1/2, r > 0 and m ∈]2, 1 + 2γ
σ2
1
[, such that for

all x satisfying |x| > r, we have xb(x) ≤ −γ and |x+ a(x)|m − |x|m ≤ 0.

2.2 Markovian framework

Our study relies on the general theory of Markov processes. To be able to work within a Markovian
framework, we impose a special structure on the interaction functions and suppose that

Assumption 2.8. For all 1 ≤ i, j ≤M,

hij(t) = cije
−αijt, cij ∈ R, αij > 0. (2.3)

In this case we may introduce the auxiliary Markov process Y = Y (ij),

Y
(ij)
t = cij

∫ t

0
e−αij(t−s)dN (j)

s + cij

∫ 0

−∞
e−αij(t−s)dn(j)s , 1 ≤ i, j ≤M. (2.4)
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The intensities can be expressed in terms of sums of these Markov processes, that is, for all 1 ≤ i ≤M,

λ
(i)
t = fi

 M∑
j=1

Y
(ij)
t−

 .

Notice that

Y
(ij)
0 = y

(ij)
0 = cij

∫ 0

−∞
eαijsdn(j)s , and dY

(ij)
t = −αijY (ij)

t dt+ cijdN
(j)
t . (2.5)

In particular, the process
(Xt, Y

(ij)
t , 1 ≤ i, j ≤M)

is a Markov process. Its longtime behavior is determined on the one hand by the longtime behavior
of the underlying Hawkes process Nt and on the other hand on the one of the continuous diffusion
process with drift b and diffusion coefficient σ. Note also that Nt is an autonomous process, that is, Nt

does not depend on X.

2.3 First properties of the process (X, Y ) and an associated stochastic flow.

In the sequel, we shall denote the whole process by Zt := (Xt, Yt). It takes values in R × RM×M .
We write (Pt)t≥0 for its associated transition semigroup and z = (x, y), y = (y(ij))1≤i,j≤M for generic
elements of its state space.

Proposition 2.9. Grant Assumptions 2.1 and 2.4. Then the process Z is a Feller process, that is,
PtΦ belongs to Cb(R× RM×M ) whenever Φ ∈ Cb(R× RM×M ).

The proof of this result follows from classical arguments, see e.g. the proof of Proposition 4.8 in
[19], or [20]. In what follows we shall give an alternative proof relying on an explicit construction of the
process Z as a stochastic flow. This construction is interesting in its own right and based on the fact
that Z is a piecewise continuous Markov process, that is, a generalization of the piecewise deterministic
Markov processes to those traveling in between successive jumps according to stochastic flows instead
of deterministic ones, see [20]. We start by giving the principal elements needed to construct this flow.

The associated stochastic Brownian flow. Thanks to our assumptions on b and σ, by Theorem 4.2.5
of [25], there exists a unique stochastic flow of homeomorphisms Φt(x) for 0 ≤ t <∞, x ∈ R, such that

Φt(x) = x+

∫ t

0
b(Φu(x))du+

∫ t

0
σ(Φu(x))dWu. (2.6)

In particular, we have that

(t, x) 7→ Φt(x) is continuous (0≤t<∞, x ∈ R).

The stochastic flow Φ describes the evolution of X in between successive jumps of X (or, equivalently,
of N).

The associated deterministic flow. In between successive jump events of N, the process Y evolves
according to the deterministic flow

ϕt(y) = (ϕ
(ij)
t (y))1≤i,j≤M , where ϕ(ij)

t (y) = e−αijty(ij), 1 ≤ i, j ≤M. (2.7)

We are now ready to give the simulation algorithm for Z.
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Simulation algorithm for Z. We propose a simulation algorithm for Z for any family of starting
configurations z ∈ K1 × K2, where K1 ⊂ R, K2 ⊂ RM×M are compact sets. The first step is to
construct an upper bound N̄t on the number of jumps of Z, that is, of N, during some finite time
interval [0, t]. To do so, observe that by Lipschitz continuity of fi with Lipschitz constant γi, we have
for 1 ≤ i ≤M ,

fi(x) ≤ fi(0) + γi|x|.

Let
γ̄ := max

i
γi, c̄ := sup

1≤i,j≤M
|cij |. (2.8)

Consider now the one-dimensional auxiliary linear Hawkes process N∗t having intensity λ∗t , t ≥ 0,
where

λ∗0 := sup
y∈K2

sup
t≥0

M∑
i=1

fi(

M∑
j=1

e−αijty(ij))

and

λ∗t = λ∗0 +Mγ̄c̄

∫ t−

0
dN∗u = λ∗0 +Mγ̄c̄N∗t−, t ≥ 0.

Observe that N∗ is a one dimensional linear Hawkes process with memory kernel h̄(t) = Mγ̄c̄1R+(t).
Obviously, for all t ≥ 0,

M∑
i=1

N
(i)
t ≤ N∗t .

Moreover, for all t ≥ 0, N∗t <∞ almost surely. In what follows, we shall write T ∗1 < T ∗2 < . . . < T ∗n < . . .
for the successive jump times of N∗.

We work conditionally on the realization of N∗ on [0, t], that is, on the event {N∗t = n}, and on a
realization of the associated jump times 0 < t1 < t2 . . . < tn < t. Our goal is to construct a version of
Z, conditionally on these choices, which is continuous in the starting point z. This construction relies
on the classical thinning method, also known as acceptance-rejection method.

During this construction, we choose successively random variables U1, . . . , Un taking values in
{0, 1, . . . ,M} and define a process zs = zs(z, t

n
1 , U

n
1 ), depending on these choices, for 0 ≤ s ≤ t.

Here, tn1 = (t1, . . . , tn) denotes the choices of the successive jump times and Un1 = (U1, . . . , Un) the
sequence of indices of jumping particles. This process is defined recursively as follows. Firstly, we put

zs = (xs, ys) = (Φs(x), ϕs(y)) for all 0 ≤ s < t1.

Then, conditionally on yt1− = y1, we choose a random variable U1 ∈ {0, 1, . . . ,M} with law q(y1, t1, ·),
where

q(y, t, {i}) =
fi(
∑

j y
(ij))

λ∗t
, 1 ≤ i ≤M, q(y, t, {0}) = 1−

M∑
i=1

q(y, t, {i}). (2.9)

U1 gives the label of the particle (or component) that will jump at time t1, if U1 = 0, no jump happens
at this time. More precisely, on {U1 ≥ 1}, we put

xt1 := x1 + a(x1), y
(ij)
t1

:= y
(ij)
1 + cij1{U1=j}, for all 1 ≤ i, j ≤M,

and zt1 := z1 on {U1 = 0}.
Then we put

xs = Φs−t1(xt1), ys = ϕs−t1(yt1) for all t1 ≤ s < t2,
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and we proceed iteratively by choosing, conditionally on yt2− = y2, a random variable

U2 ∼ q(y2, t2, ·),

and so on. Finally, we obtain a terminal value xt = Φt−tn(xtn) and yt = ϕt−tn(ytn). It is easy to check
that

L(zt(z, t
n
1 , U

n
1 )) = L(Zt|N∗t = n, T ∗1 = t1, . . . , T

∗
n = tn).

The important point is that the above construction ensures the continuity of the application

z 7→ zt(z, t
n
1 , U

n
1 ).

Alternative proof of Proposition 2.9. Noticing that the law of N∗ does not depend on the starting point
z but only on an upper bound of the associated intensities, the above construction implies that for any
Φ ∈ Cb(R× RM×M ), the mapping

K 3 z 7→ PtΦ(z) ∈ R

is continuous, implying the assertion of Proposition 2.9. Indeed, we can write

PtΦ(z) =
∑
n≥0

P(N∗t = n)

∫
[0,t]n
L(T ∗1 , . . . , T

∗
n |N∗t = n)(dt1, . . . , dtn)

n∑
i=1

M∑
ui=0

P(U1 = u1, . . . , Un = un|T1 = t1, . . . , Tn = tn, Z0 = z)EWΦ(zt(z, u
n
1 )),

where the last expectation EW is only taken with respect to the underlying Brownian motion W.
Suppose now that (zk)k ⊂ K1 ×K2 is a sequence of initial configurations converging to z as k → ∞.
Then, by the structure of (2.9),

P(U1 = u1, . . . , Un = un|T1 = t1, . . . , Tn = tn, Z0 = zk)→
P(U1 = u1, . . . , Un = un|T1 = t1, . . . , Tn = tn, Z0 = z),

as k → ∞, by continuity of fi, 1 ≤ i ≤ M, and of z 7→ zs(z, t
n
1 , U

n
1 ), for all s ≤ t. Moreover, using

dominated convergence, EWΦ(zt(z
k, un1 )) → EWΦ(zt(z, u

n
1 )), as k → ∞, implying that PtΦ(zk) →

PtΦ(z), as k →∞, where we have used dominated convergence once more.

3 Ergodicity of the process (X, Y )

In this section, we start proving the positive Harris recurrence of Zt = (Xt, Yt) using the regeneration
technique.

3.1 A Döblin type lower bound

The following theorem is the main result of this section. It states a local Döblin lower bound for the
transition semigroup of the process, which is the main ingredient towards ergodicity of the process
(Zt).

Theorem 3.1. Grant Assumptions 2.4 and 2.8 and suppose moreover that fi(x) > 0 for all 1 ≤ i ≤M,
for all x ∈ R. Then there exists T > 0 such that for all z∗ = (x∗, y∗) ∈ R×RM×M and for all x∗∗ ∈ R
the following holds. There exist R > 0, open sets I1 ⊂ R and I2 ⊂ RM×M with strictly positive Lebesgue
measure such that

x∗∗ ∈ I1, (3.1)
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and a constant β ∈ (0, 1), depending on I1, I2, R and the coefficients of the system with

PT (z, dz′) ≥ β1C(z)ν(dz′), (3.2)

where C = BR(z∗) is the (open) ball of radius R centred at z∗, and where ν is the uniform probability
measure on I1 × I2.

Remark 3.2. 1. Together with a Lyapunov argument implying that the process Z comes back to the
set C infinitely often, the above result will imply the ν−irreducibility of the sampled chain (ZkT )k≥0.
We want to stress that the above construction implies that for any given x∗∗ ∈ R and some ε > 0
we can construct ν such that Bε(x∗∗) lies in the support of the projection on the x−variable of ν. Of
course, this property is related to the support properties of the underlying diffusion process, granted by
Assumption 2.4. It will imply that the invariant density of X is bounded away from 0 on each compact
set, see Proposition 3.7 below.
2. A lower bound of the type (3.2) is trivial if we are only interested in the transitions of the process
X. Indeed, in this case it is sufficient to consider the event where no jump has appeared up to time T
and to use known lower bounds on the transition densities of the diffusion part. However, since X is
not Markov on its own, we do need to work with the couple of processes (X,Y ), and therefore have to
establish such lower bounds for the joint transition of X and Y.

The main idea of the proof is to use the jump noise ofM2 successive jumps of the underlying Hawkes
process to create firstly a Lebesgue density for the process Y. Such ideas have already been exploited in
[8] and in [13]. The important second step is then to use density estimates of the underlying diffusion
to prove that a joint Lebesgue density of (XT , YT ) exists which is strictly lower-bounded on C.

The proof is done in several steps which are the subject of the next subsection.

3.2 Some useful properties of the underlying stochastic flow and proof of Theorem
3.1

We start by collecting useful properties of the stochastic flow governing the evolution of X in between
successive jumps.
Transition densities. Due to our assumptions on b and σ, the stochastic flow Φt(x) given by Equation
(2.6), possesses a transition density x 7→ pt(x, y) with explicit lower bounds. More precisely, Proposition
1.2 of [14] implies that, for some suitable constants c, C,

c−1t−1/2e−C(x−y)2/te−Ctx
2 ≤ pt(x, y) ≤ ct−1/2e−

1
C
(x−y)2/teCtx

2
. (3.3)

Here, the constants c and C do only depend on the coefficients b and σ. 2

Support properties. We will use the control theorem which goes back to Stroock and Varadhan
(1972) [35], see also Millet and Sanz-Sole (1994) [32], Theorem 3.5. For some time horizon T1 < ∞
which is arbitrary but fixed, write H for the Cameron-Martin space of measurable functions h : [0, T1]→
R having absolutely continuous components h(t) =

∫ t
0 ḣ(s)ds with

∫ T1
0 (ḣ)2(s)ds < ∞. For x ∈ R and

h ∈ H, consider the deterministic flow

(ϕ
(h)
t (x))t≥0 solution to dϕ

(h)
t (x) = b̃(ϕ

(h)
t (x))dt+ σ(ϕ(h)t(x))ḣ(t)dt, with ϕ(h)

0 (x) = x, (3.4)

on [0, T1]. In the above formula (3.4), b̃ is Stratonovich drift given by

b̃(x) = b(x)− 1

2
σ(x)σ′(x).

2It is possible to replace our Condition 2.4 by any other condition ensuring that pt(x, y) is strictly lower bounded on
compact sets for any t > 0 .
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Denote by QT1x the law of the solution (Φt(x))0≤t≤T1 . Then for any x ∈ R and h ∈ H,(
ϕ
(h)
t (x)

)
|t∈[0,T1]

∈ supp
(
QT1x

)
. (3.5)

We are now able to give the proof of Theorem 3.1.

Proof. We suppose without loss of generality that for all 1 ≤ j ≤M,

cij 6= 0 for all i, αij 6= αkj , for all 1 ≤ i, k ≤M, i 6= k. 3

In what follows, we impose first M consecutive jumps of N (1), followed by M jumps of N (2) etc up
to M consecutive jumps of N (M), and we suppose that they all happen before time T. Then we can
lower-bound, for all A ∈ B(R), B ∈ B(RM×M ), z ∈ R× RM×M ,

PT (z,A×B) ≥ Ez
(
1A(XT )1B(YT ), N

(i)
T = M, ∀1 ≤ i ≤M,

T
(1)
1 < T

(1)
2 < . . . < T

(1)
M < T

(2)
1 < . . . < T

(2)
M < . . . < T

(M)
1 < . . . T

(M)
M < T

)
,

where T (i)
k , k ≥ 1, are the successive jump times of N (i), 1 ≤ i ≤M. In what follows we shall write

AT := {N (i)
T = M, ∀1 ≤ i ≤M,

T
(1)
1 < T

(1)
2 < . . . < T

(1)
M < T

(2)
1 < . . . < T

(2)
M < . . . < T

(M)
1 < . . . T

(M)
M < T}.

Step 1. We first deal with the process Yt. This part of the proof follows well-known arguments that
have been developed independently from our work in [8], and that we have also already used in [13]
and [26]. We reproduce the main arguments here since the second step will be a control of the diffusion
part conditionally on the results of this first step.

Recall that in between successive jump events of N, the process Y evolves according to the deter-
ministic flow ϕt(y) introduced in (2.7) above. Thus, on the event AT , starting from Y0 = y ∈ RM×M ,
we first let the flow ϕ evolve starting from y up to some first jump time t1. At that jump time each
particle having index (i1) gains an additional value ci1. We then successively choose the following
inter-jump waiting times t2, . . . , tM2 under the constraint t1 + . . .+ tM2 < T. We write

s1 = T − t1, s2 = T − (t1 + t2), . . . , sM2 = T − (t1 + . . .+ tM2).

Conditionally on Y0 = y, the successive choices of s = (s1, . . . , s
2
M ) as above, the position of Y (ij)

T

is given by
γ(ij)(y, s) = e−αijT y(ij) + cij [e

−αijsjM−M+1 + . . .+ e−αijsjM ].

In what follows we work at fixed y and we write

γy : s 7→ γ(y, s) = (γ(11), . . . , γ(M1), γ(12), . . . , γ(M2), . . . , γ(1M), . . . , γ(MM))(y, s).

We will use the jump noise which is created by theM2 jumps, i.e., we will use a change of variables
on the account of s1, . . . , sM2 . Therefore, let

∂γy(s)

∂s
=
[∂γy(s)
∂s1

, . . . ,
∂γy(s)

∂sM2

]
3Otherwise, if αij = αkj , we introduce the new process Y (i+k),j

t := Y ijt + Y kjt which is Markov again.
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be the Jacobian matrix of the the map s 7→ γy(s). This matrix does not depend on the initial position
y. Indeed, one easily finds that

∂γy(s)

∂s
= C(s) =


C(1) 0 · · · 0 0

0 C(2) 0 · · · 0
...

...
...

. . . · · ·
0 · · · 0 0 C(M)

 (s),

where for each 1 ≤ j ≤M , C(j)(s) is the M ×M matrix given by

C(j)(s) = −


c1j(α1j)

−1e−α1jsjM−M+1 . . . c1j(α1j)
−1e−α1jsjM

c2j(α2j)
−1e−α2jsjM−M+1 . . . c2j(α2j)

−1e−α2jsjM

...
...

...
cMj(αMj)

−1e−αMjsjM−M+1 . . . cMj(αMj)
−1e−α2jsjM

 .

We have to prove that each C(j)(s) is invertible. This is difficult for general choices of s. But if we choose
t0 such that M2t0 < T and then s∗1 = M2t0, s

∗
2 = (M2 − 1)t0, . . . , s

∗
M2 = t0 such that sk − sk+1 = t0

for all 1 ≤ k < M2, then

detC(j)(s∗) =

(
M∏
i=1

cij(αij)
−1e−αijs

∗
jM

)
detV (j)(t0),

where

V (j)(t0) =


e−(M−1)α1jt0 . . . e−2α1jt0 e−α1jt0 1

e−(M−1)α2jt0 . . . e−2α2jt0 e−α2jt0 1
...

...
...

...
...

e−(M−1)αMjt0 . . . e−2αMjt0 e−αMjt0 1

 .

Therefore, detV (j)(t0) is a Vandermonde determinant which is different from 0 since by assumption
all e−αijt0 and e−αkjt0 are different, for all i 6= k.

By continuity we therefore have that for any choice of t0 < T/M2 there exists ε > 0 such that for
all s ∈ Bε(s∗), ∂γy(s)∂s is invertible.

It will be proved now that this uniform invertibility of the Jacobian matrix of the map s 7→ γy(s)
implies the first part of inequality (3.2). For that sake, we shall also need the following notation. For
each couple (y, s), we write y0 = y, and then define recursively for all jM −M + 1 ≤ k ≤ jM, where
j varies between 1 ≤ j ≤M,

y
(i`)
k = ϕ

(i`)
sk−1−sk(yk−1) + cij1{`=j}, (3.6)

for all 1 ≤ i, ` ≤M, where we put s0 = T.
The sequence y1, . . . , yM2 corresponds to the positions of the process Y right after the successive

jumps, starting from the initial location y ∈ RM×M , induced by the inter-jump waiting times T −
s1, s1 − s2, . . . , sM2−1 − sM2 which are determined by s.

Introduce now for each y ∈ RM×M the total jump rate

f̄(y) :=

M∑
i=1

fi

∑
j

y(ij)


and for each t ≥ 0, the survival rate

e(y, t) = exp
{
−
∫ t

0
f̄
(
ϕs(y)

)
ds
}
. (3.7)
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We define for each couple (y, s) (recall that s0 = T ),

qy(s) =

 M∏
j=1

jM−1∏
k=jM−M

fj(ϕsk−sk+1
(yk)) e(yk, sk − sk+1)

 e(yM2 , sM2). (3.8)

Since f̄(y) > 0 for all y ∈ RM×M and from the definition of e(·, ·), we deduce that for any couple
(y∗, s∗) there are neighborhoods Ws∗ and Uy∗ of s∗ and y∗ respectively such that

inf
(y,s)∈Uy∗×Ws∗

qy(s) > 0. (3.9)

Let us now fix (y∗, s∗) such that the matrix ∂γy∗ (s
∗)

∂s is invertible. By Lemma 6.2 of [4], there exist an
open neighborhood BR(y∗) of y∗, an open set I2 ⊂ RM×M , and for any y ∈ BR(y∗), an open set Wy

such that

γ̃y(s) :

{
Wy → I2
s 7→ γy(s)

is a diffeomorphism, with Wy ⊂Ws∗ , and also

inf
y∈BR(y∗)

inf
s∈Wy

∣∣∣det(∂γy(s)
∂s

)−1∣∣∣ > 0. (3.10)

Reducing (if necessary) R, we may assume also that BR(y∗) ⊂ Uy∗ . Thus we have that by (3.9) and
(3.10),

β1 := inf
y∈BR(y∗)

inf
s∈Wy

qy(s)
∣∣∣det(∂γy(s)

∂s

)−1∣∣∣ > 0. (3.11)

Once we have done all these steps we can conclude with the following preliminary result. For any
measurable B ∈ B(RM×M ) and for any z = (x, y) such that y ∈ BR(y∗), using the change of variables
y = γ̃y(s), we obtain the lower bound

Ey
(
1B(YT ), N

(i)
T = M,∀1 ≤ i ≤M,T

(1)
1 < . . . < T

(1)
M < T

(2)
1 < . . . < T

(M)
M < T

)
≥
∫
Wy

qy(s)1B(γ̃y(s))ds1 . . . dsM2 ≥ β1
∫
I2∩B

dy1 . . . dyM2 . (3.12)

This would establish the desired result if we were only interested in the autonomous process Y.
Step 2. We now deal with the process X. Of course, we still work conditionally on the choice of

s1, . . . , sM2 of the first step. Analogously to (3.6) we therefore introduce the successive jump positions
of the process X which are given by x0 = x and then for all 1 ≤ k ≤M2,

xk = Φsk−1−sk(xk−1) + a(Φsk−1−sk(xk−1)), (3.13)

where s0 = T as before.
Conditionally on X0 = x, Y0 = y, the successive choices of s = (s1, . . . , sM2) as above, the position

of XT is then given by
Γ(z, s) = ΦsM2 (xM2),

where z = (x, y). Notice that xM2 depends on the choices of s1, . . . , sM2 and of course on the evolution
of the stochastic flow between the successive jump times.
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Step 3. Therefore, conditioning with respect to XT−sM2 = xM2 , we obtain

PT (z,A×B) ≥ Ez (1A(XT )1B(YT ), AT )x

≥
∫
Wy

qy(s)1B(γ̃y(s)) E
(∫

A
psM2 (xM2 , u)du

)
ds1 . . . dsM2 , (3.14)

where psM2 (xM2 , u) is the transition density of (3.3).
Notice that in the last line, expectation E is taken with respect to Brownian motion only, that is,

with respect to the law of XT−sM2 under the Wiener measure, conditionally on the choices s1, . . . , sM2 .
The lower bound estimate given in (3.3) implies that for fixed sM2 and xM2 , u 7→ psM2 (xM2 , u)

is lower bounded in small neighborhoods of xM2 . Therefore, in what follows we need to localize the
possible positions of xM2 , conditionally on the choices of the jumps times s1, . . . , sM2 .

Step 4. Localization of xM2 .
We apply the support theorem, that is, (3.5), to our process Xt in between the successive jump

times 0, T1 := t1, T2 := t1+t2, . . . , TM2 := t1+. . . tM2 , by choosing on each time interval [Tn, Tn+1[, n =
0, . . . ,M2 − 1, the control function h ≡ 0. Consequently, introducing

x̃1 := ϕ
(0)
t1

(x) + a(ϕ
(0)
t1

(x)), . . . , x̃M2 := ϕ
(0)
sM2−1−sM2

(x̃M2−1) + a(ϕ
(0)
sM2−1−sM2

(x̃M2−1)),

there exists an open neighborhood Ux̃M of x̃M2 , such that

P(XT−sM2 ∈ Ux̃M2 ) > 0.

Notice that x̃M2 is a continuous function of the starting point x and of s; that is, x̃M2 = F (x, s) for
some continuous function F. This implies that for any starting point x∗ and for R > 0 sufficiently
small, reducing Ws∗ if necessary, there exists a compact K = K(x∗, s∗) such that F (x, s) ∈ K for all
x ∈ BR(x∗) and for all s ∈Ws∗ , whence

inf
x∈BR(x∗)

inf
s∈Ws∗

P(XT−sM2 ∈ J1) > 0,

where
J1 =

⋃
x̃M2∈K

Ux̃M2 .

Notice that J1 has compact closure.
Let now x∗∗ ∈ R be arbitrarily chosen. The lower bound of (3.3) implies that there exists an open

interval I1 3 x∗∗, such that
inf

x∈J1,y∈I1,s∈Ws∗
psM2 (x, y) > 0.

Therefore,
β2 := inf

x∈BR(x∗)
inf

y∈BR(y∗)
inf
s∈Wy

inf
u∈J1,v∈I1

psM2 (u, v)Px(XT−sM ∈ J1) > 0. (3.15)

Therefore, coming back to (3.14), for all z ∈ BR(x∗, y∗),

PT (z,A×B) ≥ Ez
(
1A(XT )1B(YT ), N

(i)
T = M, ∀1 ≤ i ≤M,T

(1)
1 < T

(1)
2 < . . . < T

(M)
M < T

)
≥

∫
Wy

qy(s)1B(γ̃y(s)) E
(
1{XT−s

M2
∈J1}

∫
A
psM2 (XT−sM2 , u)du

)
ds1 . . . dsM2

≥
∫
Wy

qy(s)1B(γ̃y(s)) E
(
1{XT−s

M2
∈J1}

∫
A∩I1

inf
x∈J1

psM2 (x, u)du

)
ds1 . . . dsM2

≥ β2λ(A ∩ I1)
∫
Wy

qy(s)1B(γ̃y(s))ds1 . . . dsM2

≥ β2λ(A ∩ I1)β1λM×M (B ∩ I2),
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where we have finally applied (3.12), and where λ and λM×M denote the Lebesgue measure on R,
RM×M , respectively. This implies the desired result putting

β := β1β2λ(I1)λ
M×M (I2) and ν := UI1×I2 ,

the uniform probability law on I1 × I2.

3.3 A Foster-Lyapunov type condition

In order to prove the positive Harris recurrence of the process Z, we need of course a stability condition
which is a Lyapunov type condition. Notice that the process Zt = (Xt, Yt) has the following extended
generator, defined for sufficiently smooth test functions g by

AZg(x, y) = −
M∑
i,j=1

αijy
(ij)∂y(ij)g(x, y) + ∂xg(x, y)b(x) +

1

2
σ2(x)∂2xg(x, y)

+
M∑
j=1

fj

(
M∑
k=1

y(jk)

)
[g (x+ a(x), y + ∆j)− g(x, y)] ,

with (∆j)
(il) = cij1{j=l} for all 1 ≤ i, l ≤M.

To obtain stability we first introduce the following classical stability assumption for Hawkes pro-
cesses. Recall that γi denotes the Lipschitz constant of the rate function fi.

Assumption 3.3. Let H be the M ×M−matrix with entries Hij = γj
|cij |
αij

, 1 ≤ i, j ≤ M. Then its
spectral radius satisfies

ρ := ρ(H) < 1.

Under the above stability condition, let κ ∈ RM+ be a left eigenvector of H, associated to the
eigenvalue ρ and having non-negative components, that is, for all j,

∑
i κiHij = ρκj ≥ 0. Such a vector

κ exists thanks to the theorem of Perron-Frobenius. Following [8], we introduce a Lyapunov function
by defining mij = κi

αij
for all 1 ≤ i, j ≤M and V : R× RM×M → R+ by

V (x, y) = V1(x) + e
∑
i,j mij |y(ij)|, (3.16)

where V1 : R→ R+ will be chosen in the sequel. Notice that V (x, y) ≥ 1 for all x, y.

Proposition 3.4. Grant Assumptions 2.4, 2.6 (Exponential frame) and 3.3. Let V1(x) = x2. Then
there exist positive constants d1, d2 such that the following Foster-Lyapunov type drift condition holds

AZV ≤ d1 − d2V. (3.17)

Proof. We write V (x, y) = V1(x) + V2(y), where V1(x) = x2, V2(y) = e
∑
i,j mij |y(ij)|, and AZV =

AZ1 V +AZ2 V, where

AZ1 V (x, y) = 2xb(x) + σ2(x) +

M∑
j=1

fj

(
M∑
k=1

y(jk)

)
[(x+ a(x))2 − x2]

is the diffusion part and AZ2 V = AZV − AZ1 V is the jump part of the generator. The arguments of
the proof of Proposition 4.5 of [8] imply that

AZ2 V (x, y) = AZ2 V2(y) ≤ −c1V2(y) + c21K1(y), (3.18)
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where c1, c2 > 0 and where K1 ⊂ RM×M is some compact. Moreover, writing for short f̄(y) =∑
i fi(

∑
j y

(ij)) for the total jump rate,

AZ1 V (x, y) = 2xb(x) + σ2(x) + (2xa(x) + a(x)2)f̄(y). (3.19)

Thanks to Assumption 2.7 and bound of σ2 from Assumption 2.4,

2xb(x) + σ2(x) ≤ −c3x2 + c41K2(x), (3.20)

where K2 ⊂ R is a compact set. Now, suppose that Assumption 2.6 is satisfied. Then for all |x| > r,
(2xa(x) + a(x)2)f̄(y) ≤ 0 (recall that all f̄ is non-negative) implying that

AZ1 V (x, y) ≤ −c3x2 + c41K2(x) + c5f̄(y).

This implies (3.17) since

f̄(y) ≤ c6 + c7
∑
i,j

|y(ij)| ≤ c6 + c̃7 log(V2(y))

which is thus negligible with respect to the negative term −c1V2(y) of (3.18).
If only Assumption 2.7 holds, then we upper bound the jump part of (3.19) by

(2xa(x) + a(x)2)f̄(y) ≤ Cf̄(y) + C|x|1+ηf̄(y).

Choose 1 < p < 2 and q > 2 such that (1 + η)p < 2 and 1
p + 1

q = 1. Then

|x|1+ηf̄(y) ≤ 1

p
|x|p(1+η) +

1

q
f̄ q(y).

Since (1 + η)p < 2, the first term

C
1

p
|x|(1+η)p

will again be negligible with respect to the negative term −c3x2 of (3.20). Finally, the second term
Cf̄(y) + C 1

q f̄
q(y) is treated as previously. This concludes our proof.

Proposition 3.5. Grant Assumptions 2.4, 2.7 (Polynomial frame) and 3.3. Let V1(x) = 1 + |x|m and
α = 2/m ∈]0, 1[. Then there exist positive constants d1, d2 such that the following Foster-Lyapunov type
drift condition holds

AZV ≤ d1 − d2V 1−α. (3.21)

Proof. Using the same arguments as in the proof of Proposition 3.4, we have that

AZ2 V (x, y) = AZ2 V2(y) ≤ −c1V2(y) + c21K1(y).

Moreover, for all |x| ≥ r, since |x+ a(x)|m − |x|m ≤ 0,

AZ1 V (x, y) = b(x)V ′1(x) +
1

2
σ2(x)V

′′
1 (x) +

M∑
j=1

fj

(
M∑
k=1

y(jk)

)
[|x+ a(x)|m − |x|m]

≤ b(x)V ′1(x) +
1

2
σ2(x)V

′′
1 (x).

A standard calculus, see e.g. [37] or [28], shows that, for suitable constants e1, e2 > 0,

b(x)V ′1(x) +
1

2
σ2(x)V

′′
1 (x) ≤ e1 − e2V1(x)1−α.

Using that V1(x) ≥ 1 such that (V1(x) + V2(y))1−α ≤ V1(x)1−α + (1−α)V2(y) ≤ V1(x)1−α + V2(y), we
deduce from this the drift condition (3.21) as in the proof of Proposition 3.4.
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3.4 Harris recurrence of Z

We do now possess all ingredients to obtain our main results.

Theorem 3.6. Grant Assumptions 2.4, 2.6, 2.8 and 3.3 and suppose that for all 1 ≤ i ≤M, fi(x) > 0
for all x ∈ R. Then (Zt)t≥0 is positive Harris recurrent with unique invariant measure π. In particular,
for any starting point z and any positive measurable function g : R × RM×M → R+, as T → ∞,
Pz−almost surely,

1

T

∫ T

0
g(Zs)ds→ π(g).

Proof of Theorem 3.6. 1) We fix any x∗ ∈ R and we wish to apply Theorem 3.1 with y∗ = 0 and
x∗ = x∗∗. Let R be the associated radius.

By Proposition 3.4 or Proposition 3.5, we know that for a suitable compact set K = K1×K2, with
K1 ⊂ R,K2 ⊂ RM×M , Z comes back to K infinitely often almost surely. Moreover,

sup
y∈K2,t≥0

‖ϕt(y)‖1 := F <∞ and sup
y∈K2

‖ϕt(y)‖1 → 0

as t→∞, by the explicit form of the flow in (2.7). Therefore there exists t∗ such that ϕt(y) ∈ BR(0)
for all t ≥ t∗, for all y ∈ K2.

Applying once more the support theorem for diffusions and observing that σ is strictly positive,
Equation (3.5) implies that

inf
x∈K1

P(Φt∗+s(x) ∈ BR(x∗), 0 ≤ s ≤ 2T ) > 0

and thus
inf
z∈K

Pz(Xt∗+s ∈ BR(x∗), Yt∗+s ∈ BR(0), 0 ≤ s ≤ 2T ) > 0.

Consequently, using a conditional version of the Borel-Cantelli lemma, the sampled Markov chain
(ZkT )k∈N visits BR(x∗, 0) infinitely often almost surely.
2) The standard regeneration technique (see e.g. [27]) allows to conclude that (ZkT )k∈N and therefore
(Zt)t are Harris recurrent. This concludes the proof.

The following by-product of the above result will prove to be useful when dealing with statistical
inference within this new model class.

Proposition 3.7. Grant all assumptions of Theorem 3.6 and write πX for the projection of the in-
variant measure π onto the X−coordinate, that is, πX(dx) =

∫
RM×M π(dx, dy). Then πX possesses a

Lebesgue density which is bounded away from zero on each compact of R.

Proof. Let A ∈ B(R). Then for any t > 0,

πX(A) =

∫
R×RM×M

π(dz)Ez[1A(Xt)]. (3.22)

Let Lt := sup{s ≤ t : ∃j : ∆N
(j)
s = 1} be the last jump time of the process before time t, Lt = 0 if

there is no such jump. Then by Fubini,

Ez[1A(Xt)] =

∫
A
Ez[pt−Lt(XLt , y)]dy,
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where pt(x, y) is the transition density of (3.3). This implies the existence of the density πX(x) which
is given by

πX(x) =

∫
R×RM×M

π(dz)Ez[pt−Lt(XLt , x)]

for any t > 0.
Notice that we do not dispose of any regularity results of πX(x) with respect to x. Indeed, the

upper bound in (3.3) does not allow to conclude that the almost sure continuity in x of pt−Lt(XLt , x)
survives the integration π(dz)Ez(. . .).

We are however able to prove that πX is lower bounded on compacts K ⊂ R. For that sake, fix any
x∗∗ ∈ K and apply (3.2) to (x∗, y∗) ∈ supp(π) such that π(BR(z∗)) = π(C) > 0 and to x∗∗. Then for
any measurable A ⊂ I1 = I1(x

∗∗), applying the lower bound of (3.2) to (3.22) and taking t = T,∫
A
πX(x)dx ≥ βπ(C)

1

λ(I1)

∫
A
dx

implying that

inf
x∈I1

πX(x) ≥ βπ(C)
1

λ(I1)
> 0.

Therefore we have just shown that for all x∗∗ ∈ K, there exists an open interval I1 = I1(x
∗∗) containing

x∗∗ ∈ I1 such that πX is strictly lower bounded on I1. Since we can cover the compact K by a finite
collection of such open intervals I1(x∗∗), this implies the desired lower bound of πX on compacts.

In the sequel, following [31], in any of the two frames (Assumption 2.6 or 2.7) and for the choice of
V as in Proposition 3.4 or Proposition 3.5, we introduce

‖µ‖V := sup
g:|g|≤V

|µ(g)|, ‖µ‖TV := sup
g:|g|≤1

µ(g).

It is now straightforward to obtain our second main result.

Theorem 3.8 (Ergodicity). Grant all assumptions of Theorem 3.6. Then there exist c1, c2 > 0 such
that for all z ∈ R× RM×M , under Assumption 2.6,

‖Pt(z, ·)− π‖V ≤ c1V (z)e−c2t, (3.23)

and under Assumption 2.7,
‖Pt(z, ·)− π‖TV ≤ c1V (z)t

1
α
−1, (3.24)

where α is as in Proposition 3.5.

Proof. The sampled chain (ZkT )k≥0 is Feller according to Proposition 2.9. Moreover it is ν−irreducible,
where ν is the measure introduced in Theorem 3.1, associated with the point (x∗, 0) and x∗∗, for any
choice of x∗, x∗∗ ∈ R, used in the proof of Theorem 3.6. Since ν is the uniform measure on some open
set of strictly positive Lebesgue measure, the support of ν has non-empty interior. Theorem 3.4 of [30]
implies that all compact sets are ‘petite’ sets of the sampled chain. Under Condition 2.6, the Lyapunov
condition established in Proposition 3.4 allows to apply Theorem 6.1 of [31] which implies the assertion
in the exponential frame. In the polynomial frame, the assertion follows from Theorem 3.2 of [12] or
from Theorems 1.19 and 1.23 in [24].
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Remark 3.9. In the above Theorem 3.8, we do only treat two cases for the rate of convergence to
equilibrium: the exponential and the polynomial one. Using slightly different Lyapunov functions, we
could also deal with more general sub-exponential rates of convergence, as they have for example been
considered in Theorem 1.20 in [24]. We do not detail these calculations here since we are mostly
interested in exponential rates of convergence. Finally, notice that it is also possible to interpolate
between the total variation norm considered in (3.24) and the weighted total variation norm ‖ · ‖V
considered in (3.23), however at the cost of slower rates of convergence. Details can be found in the
very instructive paper [12].

3.5 Exponential β-mixing for Z = (X, Y ).

It is now easy to deduce from the above results the exponentially β-mixing property of the process,
under Condition 2.6. Recall that the β−mixing coefficient of Z is given by

βZ(t) = sup
s≥0

∫
‖Pt(z, ·)− µPs+t(·)‖TV µPs(dz),

where µ = L(Z0) is the law of the initial configuration and where

‖µ‖TV := sup
g:|g|≤1

µ(g)

denotes the total variation distance. Notice that if µ = π, then the process is in its stationary regime,
and

βZ(t) =

∫
‖Pt(z, ·)− π‖TV π(dz).

Theorem 3.10. Grant all assumptions of Theorem 3.6 and suppose that Condition 2.6 holds. Then Z
is exponentially β−mixing, that is, there exist constants K, θ > 0 such that for any initial law µ with
µ(V ) <∞,

βZ(t) ≤ Ke−θt.

Proof. Suppose firstly that µ = π. Then Theorem 4.3 of [31] implies that
∫
V dπ <∞ such that we are

able to integrate (3.23) against π(dx) to obtain

βZ(t) ≤ c1π(V̄ )e−c2t.

Putting K := c1 and θ = c2, this implies the result in this case.
In order to deal with the general non-stationary process, we apply Lemma 3.9 of [29] with h = V̄ ,

δ(t) = c1e
−c2t and

κ = sup
s≥0

E(V̄ (Zs)),

to deduce that
βZ(t) ≤ 2c1κe

−c2t.

Putting K := 2c1κ and θ = c2, this implies the result, if we have already shown that κ is finite. This
last fact follows immediately from (3.17), following the first lines of the proof of Theorem 6.1 of [31].
Indeed, we have by Dynkin’s formula that

eαtEz(V (Zt)) ≤ V (z) +
β

α
eαt,

implying that

Ez(V (Zt)) ≤ e−αtV (z) +
β

α
.

Integrating this last inequality with respect to µ(dz) implies the result.
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