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Abstract

In this paper, we introduce a new class of processes which are diffusions with jumps, where the jumps
are driven by a multivariate linear Hawkes process, and study their long-time behavior. In the case of
exponential memory kernels for the underlying Hawkes process, we establish conditions for the positive
Harris recurrence of the couple (X,λ), where X denotes the diffusion process and λ the stochastic in-
tensity of the driving Hawkes. As a direct consequence of the Harris recurrence, we obtain the ergodic
theorem for X. Furthermore, we provide sufficient conditions under which the process is exponentially
β−mixing. This paper is the foundation for a second paper [11] in which we carry a statistical study
of diffusions driven by Hawkes jumps, with a view towards applications in neuroscience.
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1 Introduction

1.1 Motivation

In this work, we introduce a new class of continuous time processes X = (Xt)t≥0 with jumps driven
by a multivariate Hawkes process N, satisfying the following equation

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs +

∫ t

0
a(Xs−)

M∑
j=1

dN (j)
s , (1.1)

where W is the standard one-dimensional Brownian motion and N is a multivariate Hawkes process
having M components with intensity process λ. N is supposed to be independent from W. We shall
specify the dynamics of N later on, in particular, the precise form of the stochastic intensity process
λ is given in (2.1) below.

The jumps of the Hawkes process impact the dynamic of the diffusion process. In this model, the
structure of the jumps is different from classical jump-diffusion processes with Lévy jumps. Indeed:
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1) the intensity of the jump process N does not depend on the dynamic of X,
2) the Hawkes process has a special structure of time dependency: the state of the intensity at time t
depends on all the past,
3) the multidimensional nature of the Hawkes process can be interpreted as the influence ofM subjects
communicating one with each other and impacting the dynamic of X along time.

Before entering the theoretical study section, we present two examples of applications to allow the
reader to understand the interest of this model.

The first example is the study of the behavior of a set of neurons. Indeed, neurons are communicat-
ing through the emission of electrical signals, thus forming a network. When a neuron sends a signal
to another neuron, its membrane potential increases sharply and we say that the neuron spikes at this
time. If we are looking at one fixed neuron at the heart of this network, its activity between two spikes
can be designed by the present model. Indeed, during this interval the membrane potential can be
described by a diffusion process influenced by the spikes coming from the neurons around modelled by
the Hawkes process. Hawkes processes have been studied recently in the context of neurosciences [see
33, 18] to model the interactions between the neurons within their sequences of spikes. The new model
we propose allows to use both informations: the continuous membrane potential for a fixed neuron
together with the spikes of several other neurons around it.

The second example comes from financial mathematics where many models have been proposed for
the stochastic volatility of a stock price. Again, our jump-diffusion model could be adapted here. In
this case, the economic news (about the company that we study or about other companies impacting
the market) can be well described by a Hawkes process. There is a large literature in the financial
side that studied Hawkes processes, among others recently [36, 23, 3], which motivates also the present
work.

We have just detailed two examples but we hope that our model can have various other applications
in different areas.

The aim of the present article is to study the longtime behavior of the couple of processes (X,λ).
In particular we prove the positive Harris recurrence of (X,λ), implying ergodicity, and we establish
the speed of β−mixing. These are classical probabilistic properties, which are the key ingredients for
the theoretical study of estimators of the model parameters. The estimation of the coefficients of the
process will be the issue of coming works.

1.2 State of the art

On the one hand time-homogeneous diffusion processes are well known Markov processes that have
been widely studied. Let us cite for example [22] which has initiated the work on Markovian properties
on diffusion processes or the complete works [21, 32] in which all properties of diffusion are summarized.
Ergodicity and the exponential decrease of the uniformly strong mixing coefficient have been established
in the pioneering papers [37, 24]. Then, jump-diffusion processes have been introduced, for example
in the context of risk management [see 36], either driven by a Poisson process or more generally by
a Lévy process [see 1, for a review]. Their properties have been studied from a probabilistic point of
view by [27].

On the other hand, Hawkes processes [17] have been studied a lot lately. These point processes
generalize the Poisson processes by introducing what is commonly called “self-excitation”: Present
jumps are able to trigger future jumps, and in this way, correlations between successive jump events are
introduced. [9] gives a precise synthesis of earlier results published by Hawkes. Important probabilistic
results for these mutually exciting point processes, such as stability, limit theorems and large population
limits, have been obtained in [6, 10, 2, 4].
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The present paper is devoted to the particular case of linear Hawkes processes having exponen-
tial memory kernels. These processes are of special interest, since the associated stochastic intensity
processes are Markovian. The linear structure of the intensity process implies that a clustering rep-
resentation of the Hawkes process [see 16, 34] is available, and this is the reason why linear Hawkes
processes are the most studied ones. Linear Hawkes processes are generalized Poisson cluster processes
with clusters that are finite branching processes described by an offspring intensity measure that has
support in R+ [see 31]. For such processes, ergodicity has been established under mild conditions in [6].
However, the mixing property obtained there is stated without any control on the tails of the coupling
time such that no precise control on the speed of convergence to equilibrium is available. [34] exploits
the cluster representation to obtain properties in the case of kernel functions having bounded support.
In the present paper we wish however to deal with kernel functions having unbounded support such
that we can not rely on these results neither. More recently, [7] has obtained a control of the τ -mixing
coefficient in the inhibitory case – but this does not imply the β−mixing property of the process.

In this paper, we prove the exponential β-mixing property for the couple (X,λ) in the case of
exponential kernel functions having unbounded support.

1.3 Main contributions and plan of the paper

More precisely, this paper is devoted to a general study of the longtime behavior of a jump diffusion
process, where the jumps are driven by a multivariate linear Hawkes process having exponential memory
kernels. This study is separated into two parts, first, a study of the autonomous Hawkes process and
its long time behavior in a general frame, second, a study of the couple (X,λ), relying on the classical
regeneration technique ([28, 29]).

Using a contraction argument, Theorem 3.2 establishes the exponential rate of convergence to equi-
librium of a sub-critical linear Hawkes process having exponential memory kernels. This convergence
holds for the Wasserstein 1−distance, the memory kernels do not need to be exponential. Our proof
is inspired by the recent article [13].

We then study the long time behavior of the couple (X,λ). We do this in a Markovian framework,
that is, we suppose that the intensity process λ is a Markov process itself. This is why we restrict
attention to exponential memory kernels in this part of the paper. In this case, λ is a multidimensional
piecewise deterministic Markov process (PDMP), and our proof of the Harris recurrence of (X,λ)
follows a well-known scheme, see e.g. [28, 29].

Firstly, we establish a local Döblin lower bound for the transition semigroup of the process (X,λ),
based on a lower bound of the joint transition density of (X,λ). This is the content of Theorem 4.4. Let
us briefly describe the difficulties related to this result. If we suppose that the underlying diffusion part
is uniformly elliptic, e.g., σ2(·) is uniformly lower-bounded, then under mild assumptions on the drift
part, classical results on transition densities of diffusion processes imply that such lower bounds always
hold for the diffusion part of X (more precisely, we rely on density estimates obtained by [14]). So
obviously, the difficulty comes from the jump part of the process, that is, from the PDMP λ. Indeed,
the only randomness present in the evolution of λ is given by the random jump times – the jump
heights of λ being completely deterministic. To be able to make use of this randomness, we apply
an integration by parts formula with respect to these jump times. Since each jump time can at most
generate one direction of noise and since λ is M−dimensional, we have to iterate this integration by
parts procedure M times. Once the jump part of the process possesses some part of Lebesgue density,
we have to ensure that this density is preserved by the stochastic flow. Our proof, rather technical,
relies on fine support properties of (X,λ) and provides, as a by-product, a simulation algorithm for
the process.

In a second step, a Foster-Lyapunov condition (see Proposition 4.5) ensures the control of the return
times to some compact set K. We then use control arguments to deduce from this a precise control of
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the hitting times of the set C where the transition densities are lower-bounded according to the local
Döblin lower bound. Both results together imply the positive Harris recurrence of the process together
with the ergodic theorem. This is our first main result, stated in Theorem 4.6.

Finally, following the steps of [27] where the ergodicity and exponential β-mixing bounds are
established for diffusions with jumps driven by a Lévy process, we obtain the control of the β−mixing
coefficient of (X,λ) in our second main theorem, Theorem 4.9.

Our paper is organised as follows. We introduce our model together with all necessary notation and
assumptions in Section 2. Section 2.3 provides a simulation algorithm of the process which is interesting
in its own right. In Section 3, we establish the exponential rate of convergence to equilibrium of the
Hawkes process with respect to the Wasserstein distance. In Section 4, we prove the exponential
ergodicity and the exponential β−mixing of the coupled process (X,λ).

2 Presentation of the model and first properties

2.1 The model

Throughout this paper we work on a filtered probability space (Ω,F ,F). We start by introducing the
jump part of our process, that is, the multivariate Hawkes process.

This process is defined in terms of a collection of baseline intensities, which are positive constants
ξi ≥ 0, 1 ≤ i ≤ M, and in terms of interaction functions hij : R+ → R+, 1 ≤ i, j ≤ M, which are
measurable functions. Let moreover n(i), 1 ≤ i ≤M, be discrete point measures on R− satisfying that∫

R−

hij(t− s)n(j)(ds) <∞ for all t ≥ 0.

We interpret them as initial condition of our process.

Definition 2.1. A linear Hawkes process with parameters (ξi, hij)1≤i,j≤M and with initial condition
n(i), 1 ≤ i ≤M, is a multivariate counting process Nt = (N

(1)
t , . . . , N

(M)
t ), t ≥ 0, such that

1. P−almost surely, for all i 6= j,N (i) and N (j) never jump simultaneously,

2. for all 1 ≤ i ≤M, the compensator of N (i)
t is given by

∫ t
0 λ

(i)
s ds where

λ
(i)
t = ξi +

M∑
j=1

∫ t−

0
hij(t− u)dN (j)

u +
M∑
j=1

∫ 0

−∞
hij(t− u)dn(j)

u . (2.1)

If the functions hij are locally integrable, the existence of the process (Nt)t≥0 with the prescribed
intensity (2.1) on finite time intervals follows from standard arguments, see e.g. [10].

We consider a jump diffusion process X = (Xt)t≥0 taking values in R, whose jumps are governed
by N. More precisely, X is solution of the stochastic differential equation

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs +

∫ t

0
a(Xs−)

M∑
j=1

dN (j)
s , (2.2)

whereX0 is a random variable independent ofW. HereW is the standard Brownian motion in dimension
one, independent of the multivariate Hawkes process Nt having intensity (2.1).

To ensure that the above equation is well posed it is sufficient to impose Lipschitz conditions on the
coefficients σ and b and to suppose that a is measurable. In the sequel we shall also need estimates on
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the transition densities of the diffusion process underlying (2.2) 1. Therefore we impose the following
additional assumption.

Assumption 2.2. 1. a, b, σ are globally Lipschitz, and b and σ are of class C2.

2. There exist positive constants c, q such that for all x ∈ R, |b′(x)| + |σ′(x)| ≤ c and |b′′(x)| +
|σ′′(x)| ≤ c(1 + |x|q).

3. There exist positive constants a1 and σ1 such that a(x) < a1 and σ(x) < σ1 for all x ∈ R.

Under these assumptions, assuming only that the memory kernel functions hij are locally integrable,
Equation (2.2) admits a unique strong solution.

To study the longtime behavior of X and to ensure its ergodicity, we introduce two additional
conditions which are classical in the study of diffusions and which are derived from [15], see also [37].

Assumption 2.3. 1. We have that σ(x) ≥ σ0 > 0 for all x ∈ R.

2. There exist d ≥ 0, r > 0 such that for all x satisfying |x| > r, we have xb(x) ≤ −dx2.

2.2 Markovian framework

Our study relies on the general theory of Markov processes. To be able to work within a Markovian
framework, we impose a special structure on the interaction functions and suppose that

Assumption 2.4. For all 1 ≤ i, j ≤M,

hij(t) = cije
−αijt, cij ≥ 0, αij > 0. (2.3)

In this case we may introduce the auxiliary Markov processes

Y
(ij)
t = cij

∫ t

0
e−αij(t−s)dN (j)

s + cij

∫ 0

−∞
e−αij(t−s)dn(j)

s , 1 ≤ i, j ≤M, (2.4)

and the intensities can be expressed in terms of sums of these Markov processes, that is, λ(i)
t =

ξi +
∑M

j=1 Y
(ij)
t− . Notice that

Y
(ij)

0 = y
(ij)
0 = cij

∫ 0

−∞
eαijsdn(j)

s , and dY
(ij)
t = −αijY (ij)

t dt+ cijdN
(j)
t . (2.5)

In particular, the process
(Xt, Y

(ij)
t , 1 ≤ i, j ≤M)

is a Markov process. Its longtime behavior is determined on the one hand by the longtime behavior
of the underlying Hawkes process Nt and on the other hand on the one of the continuous diffusion
process with drift b and diffusion coefficient σ. Notice that Nt is an autonomous process, that is, Nt

does not depend on X.
1that is, the process X in between its successive jump times
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2.3 First properties of the process (X, Y ) and an associated stochastic flow.

In the sequel, we shall denote the whole process by Zt := (Xt, Yt). It takes values in R × RM×M .
We write (Pt)t≥0 for its associated transition semigroup and z = (x, y), y = (y(ij))1≤i,j≤M for generic
elements of its state space.

Proposition 2.5. Grant Assumption 2.2. Then the process Z is a Feller process, that is, Ptf belongs
to Cb(R× RM×M ) whenever f ∈ Cb(R× RM×M ).

The proof of this result follows from classical arguments, see e.g. the proof of Proposition 4.8 in
[19], or [20]. In what follows we shall give an alternative proof relying on an explicit construction of
the process Z as a stochastic flow. This construction is interesting in its own right and based on the
fact that Z is a sort of piecewise continuous Markov process, that is, a generalization of the piecewise
deterministic Markov processes to those traveling in between successive jumps according to stochastic
flows instead of deterministic ones. We start by giving the principal elements needed to construct this
flow.

The associated stochastic Brownian flow. Thanks to our assumptions on b and σ, by Theorem 4.2.5
of [25], there exists a unique stochastic flow of homeomorphisms

Φt(x), 0 ≤ t <∞, x ∈ R

such that for all t ≥ 0, x ∈ R,

Φt(x) = x+

∫ t

0
b(Φu(x))du+

∫ t

0
σ(Φu(x))dWu.

In particular, we have that

(t, x)→ Φt(x) is continuous (0≤t<∞, x ∈ R).

The stochastic flow Φ describes the evolution of X in between successive jumps of X (or, equivalently,
of N).

The associated deterministic flow. In between successive jump events of N, the process Y evolves
according to the deterministic flow

ϕt(y) = (ϕ
(ij)
t (y))1≤i,j≤M , where ϕ(ij)

t (y) = e−αijty(ij), 1 ≤ i, j ≤M. (2.6)

Simulation algorithm for Z. We propose a simulation algorithm for Z for any family of starting
configurations z ∈ K1 × K2, where K1 ⊂ R, K2 ⊂ RM×M are compact sets. The first step is to
construct an upper bound N̄t on the number of jumps of Z, that is, of N, during some finite time
interval [0, t]. To do so, let

c̄ := sup
1≤i,j≤M

cij (2.7)

be the maximal coefficient (weight) and consider the one-dimensional auxiliary Hawkes process N∗t
having intensity λ∗t

λ∗0 :=
M∑
j=1

ξj + sup
y∈K2

‖y‖1, λ∗s = λ̄∗0 +Mc̄

∫ s−

0
N∗(du) = λ∗0 +Mc̄N∗s−, s ≥ 0.
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Here, ‖y‖1 =
∑

1≤i,j≤M |y(ij)|. Observe that N∗ is a linear Hawkes process with memory kernel h̄(t) =
Mc̄1R+(t). Obviously, for all t ≥ 0,

M∑
i=1

N
(i)
t ≤ N∗t .

Moreover, for all t ≥ 0, N∗t <∞ almost surely. In what follows, we shall write T ∗1 < T ∗2 < . . . < T ∗n < . . .
for the successive jump times of N∗.

We work conditionally on the realization of N∗ on [0, t], that is, on the event {N∗t = n}, and on a
realization of the associated jump times 0 < t1 < t2 . . . < tn < t. Our goal is to construct a version of
Z, conditionally on these choices, which is continuous in the starting point z. This construction relies
on the classical thinning method.

During this construction, we choose successively random variables U1, . . . , Un taking values in
{0, 1, . . . ,M} and define a process zs(z, Un1 ), depending on these choices, for 0 ≤ s ≤ t. Here, Un1 =
(U1, . . . , Un). This process is defined recursively as follows. Firstly, we put

zs = (xs, ys) = (Φs(x), ϕs(y)) for all 0 ≤ s < t1.

Then, conditionally on zt1− = z1 = (x1, y1), we choose a random variable U1 ∈ {0, 1, . . . ,M} with law
q(z1, t1, ·), where

q(z, t, {i}) =
ξi +

∑
j y

(ij)
1

λ̄t
, 1 ≤ i ≤M, q(z, t, {0}) = 1−

M∑
i=1

q(z, t, {i}).

U1 gives the label of the particle (or component) that will jump at time t1, if U1 = 0, no jump happens
at this time. More precisely, on {U1 ≥ 1}, we put

xt1 := x1 + a(x1), y
(ij)
t1

:= y
(ij)
1 + cij1{U1=j}, for all 1 ≤ i, j ≤M,

and zt1 := z1 on {U1 = 0}.
Then we put

xs = Φs−t1(xt1), ys = ϕs−t1(yt1) for all t1 ≤ s < t2,

and we proceed iteratively by choosing, conditionally on yt2− = y2, a random variable

U2 ∼ q(y2, t2, ·),

and so on. Finally, we obtain a terminal value xt = Φt−tn(xtn) and yt = ϕt−tn(ytn). It is easy to check
that

L(zt(z, U
n
1 )) = L(Zt|N∗t = n, T ∗1 = t1, . . . , T

∗
n = tn).

The important point is that the above construction ensures the continuity of the application

z 7→ z1(z, Un1 ).

Alternative proof of Proposition 2.5. Noticing that the law of N∗ does not depend on the starting point
z but only on an upper bound of the associated intensities, this implies that for any f ∈ Cb(R×RM×M ),
the mapping

K 3 z 7→ Ptf(z) ∈ R

is continuous, implying the assertion of Proposition 2.5.
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3 Wasserstein coupling

This section concerns the case of a general Hawkes process with intensity given by Equation 2.1. We
start by discussing the longtime behavior of the Hawkes process N. To do so, it is well known that
linear Hawkes processes can be represented as a spatio-temporal branching process with immigrations
which can be either recurrent or transient, depending on whether the underlying branching mechanism
is sub-critical, critical or super-critical. Therefore we assume that

Assumption 3.1. Let H be the matrix with entries Hij =
∫∞

0 hij(t)dt. Then its spectral radius satisfies

ρ := ρ(H) < 1.

Assumption 3.1 ensures that we are in the sub-critical framework and its implies that a stationary
version of Nt exists [see 6]. To be able to implement statistical methods of parameter estimation, we
need however more qualitative properties of (Xt, Yt)t; in particular, we need ergodicity and exponential
β-mixing.

We start by proving the exponential convergence of the process Yt := (Y
(ij)
t )1≤i,j≤M to equilibrium

in Wasserstein distance, under the condition (3.1).
Recall that Yt takes values in RM×M and that for any y ∈ RM×M , ‖y‖1 =

∑M
i,j=1 |y(ij)| denotes

the associated L1−norm. Let µ and ν be two probability measures on RM×M . We call coupling of µ
and ν any probability measure on RM×M × RM×M whose marginals are µ and ν, and we denote by
Γ(µ, ν) the set of all such couplings. The Wasserstein distance between µ and ν is defined by

W1(µ, ν) = inf

{∫
RM×M

∫
RM×M

‖x− y‖1γ(dx, dy), γ ∈ Γ(µ, ν)

}
.

Write (P Yt )t≥0 for the transition semigroup of the process Y and introduce

α := min
1≤i,j≤M

αij > 0. (3.1)

The following theorem states the exponential rate of convergence to equilibrium of the process N with
respect to the Wasserstein distance.

Theorem 3.2. Grant Assumption (3.1).

1. Then there exist C > 0, κ > 0 such that for any choice of probability measures µ and ν on
B(RM×M ),

W1(µP Yt , νP
Y
t ) ≤ Ce−κtW1(µ, ν). (3.2)

2. In particular, there exists a unique invariant probability measure πY of the process Y such that
for any probability measure ν on B(RM×M ),

W1(πY , νP Yt ) ≤ Ce−κtW1(πY , ν).

Proof. The assertion of point 1. follows from a standard contraction argument. Let Yt and Ỹt be two
copies of the process Y, starting from initial configurations y0 and ỹ0 ∈ RM×M , and let N, Ñ be the
associated counting processes. Then

Y
(ij)
t − Ỹ (ij)

t = e−αijt(y
(ij)
0 − ỹ(ij)

0 ) +

∫ t

0
hij(t− s)(dN (j)

s − dÑ (j)
s ).
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Taking expectation, this implies that δ(ij)
t := E|Y (ij)

t − Ỹ (ij)
t | satisfies

δ
(ij)
t ≤ e−αtδ(ij)

0 +
M∑
k=1

∫ t

0
hij(t− s)δ(jk)

s ds.

Let δt = (δ
(ij)
t )1≤i,j≤M and h(t) = (hij(t))1≤i,j≤M . Hence we have just shown that

δt ≤ e−αtδ0 + h ∗ δ(t),

where h ∗ δ(t) denotes matrix convolution. Put Γ(t) =
∑

n≥1 h
∗n(t). Then by Corollary 3.1 of [8],

δt ≤ e−αtδ0 +

(∫ t

0
Γ(t− s)e−αsds

)
δ0

and there exist C > 0, κ > 0 such that
δ

(ij)
t ≤ Ce−κt

for all 1 ≤ i, j ≤ t, t ≥ 0. This concludes the proof of item 1.
Item 2. follows then from standard arguments, see e.g. the proof of Theorem 1 in [13].

Remark 3.3. Under the conditions of Theorem 3.2, write Ñt for the stationary version of the Hawkes
process having intensity (2.1); that is, Ñ (i)

t has intensity λ̃(i)
t = ξi+

∑M
j=1 Ỹ

(ij)
t , where Ỹ is the stationary

process evolving according to (2.5). Let moreover Nt be the Hawkes process such that each N (i)
t has

intensity λ(i)
t = ξi+

∑M
j=1 Y

(ij)
t starting from some fixed initial condition Y0 = y0 ∈ RM×M . Then (3.2)

implies that for any 1 ≤ i ≤M, ∫ ∞
0

E|λ(i)
t − λ̃

(i)
t |dt <∞.

It is then straightforward to deduce from this by standard coupling arguments, as explained e.g. the proof
of Theorem 1 in [6], that N and Ñ couple almost surely in finite time; that is, there exists Tcoupling > 0
such that for all t ≥ 0, NTcoupling+t−NTcoupling

= ÑTcoupling+t− ÑTcoupling
, meaning that N and Ñ have

the same jump times after time Tcoupling. Moreover, we have the control

P(Tcoupling > t) ≤ Ce−κt,

which follows from

P(Tcoupling > t) ≤ E

(
|
∑
i

N (i)([t,∞[)− Ñ (i)([t,∞[)|

)
≤
∫ ∞
t

∑
i,j

δ(ij)
s ds ≤ Ce−κt.

In the next section we prove a stronger result which is the positive Harris recurrence of the process
(Yt)t, together with (Xt)t.

4 Exponential ergodicity of the process (X, Y )

We start proving the positive Harris recurrence of (Xt, Yt)t using the regeneration technique. For
simplicity we shall assume that

Assumption 4.1. For all i, j we have that αij = αi > 0.
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This assumption is reasonable at least in the perspective of modeling systems of interacting neurons
as described in the introduction. Indeed, it means that the leakage rate of the i−th neuron does only
depend on the neuron i itself and not on the index of the presynaptic neuron j.

Under Assumption 4.1, the analysis of the M ×M−dimensional Markov process Yt = (Y
(ij)
t ) boils

down to the one of the M−dimensional process

Y
(i)
t =

M∑
j=1

Y
(ij)
t =

M∑
j=1

cij

∫ t

0
e−αi(t−s)dN (j)

s , 1 ≤ i ≤M,

having generator

AY f(y) = −
M∑
i=1

αi y
(i)∂y(i)f(y) +

M∑
i=1

(ξi + y(i))[f(y +
∑
j

cjiej)− f(y)], (4.1)

where ej is the j−the unit vector in RM . In the sequel, without changing notation, we shall therefore
work with the 1 +M−dimensional process

Zt = (Xt, Yt).

As before, we write for short z = (x, y) ∈ R × RM for the elements of the state space of Z; we write
P Yt for the transition semigroup of Y, now acting on smooth functions f : RM → R, and Pt for the
transition semigroup of the whole process Z.

Finally, we work under the following identifiability assumption.

Assumption 4.2. The offspring matrix H is invertible. Moreover we suppose that
∑M

i=1 ξi > 0.

Remark 4.3. Notice that the j−th column of H gives the total offspring vector that is produced by a
jump of the j−th component. If H would not be invertible, then this total offspring could be represented
by a linear combination of the total offspring vectors of the other components. In particular, in this
case the model would not be irreducible in the sense that M is the minimal number of independent
component (neurons for example) that is needed to describe to process.

4.1 A Döblin type lower bound

The following theorem is the main result of this section. It states a local Döblin lower bound for the
transition semigroup of the process, which is the main ingredient towards ergodicity of the process
Z = (X,Y ).

Theorem 4.4. Grant Assumptions 2.2, 2.3, 3.1 and 4.2. Then there exists T > 0 such that for all
z∗ = (x∗, y∗) ∈ R× RM and for all x∗∗ ∈ R the following holds. There exist R > 0, open sets I1 ⊂ R,
such that x∗∗ ∈ I1, and I2 ⊂ RM with strictly positive Lebesgue measure and a constant β ∈ (0, 1),
depending on I1, I2, R and the coefficients of the system with

PT (z, dz′) ≥ β1C(z)ν(dz′), (4.2)

where C = BR(z∗) is the (open) ball of radius R centred at z∗, and where ν is the uniform probability
measure on I1 × I2.

The main idea of the proof is to use the jump noise of M successive jumps of the underlying
Hawkes process to create a Lebesgue density for the process N, and then to use density estimates of
the underlying diffusion to deal with X.

The proof is done in several steps which are the subject of the next subsection.
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4.2 Some useful properties of the underlying stochastic flow and proof of Theorem
4.4

We start by collecting useful properties of the stochastic flow governing the evolution of X in between
successive jumps.
Transition densities. Due to our assumptions on b and σ, Φt(x, ·) possesses a transition density pt(x, y)
with explicit lower bounds. More precisely, Proposition 1.2 of [14] implies that, for some suitable
constants c, C,

c−1t−1/2e−C(x−y)2/te−Ctx
2 ≤ pt(x, y) ≤ ct−1/2e−

1
C

(x−y)2/teCtx
2
. (4.3)

Here, the constants c and C do only depend on the coefficients b and σ and on σ0 and σ1.
Support properties. We will use the control theorem which goes back to Strook and Varadhan (1972)

[35], see also Millet and Sanz-Sole (1994) [30], Theorem 3.5. For some time horizon T1 < ∞ which
is arbitrary but fixed, write H for the Cameron-Martin space of measurable functions h : [0, T1] → R
having absolutely continuous components h(t) =

∫ t
0 ḣ(s)ds with

∫ T1
0 (ḣ)2(s)ds < ∞. For x ∈ R and

h ∈ H, consider the deterministic flow

(ϕ
(h)
t (x))t≥0 solution to dϕ

(h)
t (x) = b̃(ϕ

(h)
t (x))dt+ σ(ϕ(h)t(x))ḣ(t)dt, with ϕ(h)

0 (x) = x, (4.4)

on [0, T1]. In the above formula (4.4), b̃ is Stratonovich drift given by

b̃(x) = b(x)− 1

2
σ(x)σ′(x).

Denote by QT1x the law of the solution (Φt(x))0≤t≤T1 . Then for any x ∈ R and h ∈ H,(
ϕ

(h)
t (x)

)
|t∈[0,T1]

∈ supp
(
QT1x

)
. (4.5)

We are now able to give the proof of Theorem 4.4.

Proof. Clearly, for all A ∈ B(R), B ∈ B(RM ), z ∈ R× RM ,

PT (z,A×B) ≥ Ez(1A(XT )1B(YT ), N
(i)
T = 1,∀1 ≤ i ≤M,T

(1)
1 < T

(2)
1 < . . . < T

(M)
1 < T ),

where T (i)
1 = inf{t ≥ 0 : N

(i)
t = 1} is the first jump time of N (i), 1 ≤ i ≤M.

Step 1. We first deal with the process Yt. In between successive jump events of N, the process Y
evolves according to the deterministic flow

ϕt(y) = (ϕ
(1)
t (y), . . . , ϕ

(M)
t (y)), where ϕ(i)

t (y) = e−αity(i), 1 ≤ i ≤M. (4.6)

Thus, on the event {N (i)
T = 1, ∀1 ≤ i ≤ M, T

(1)
1 < T

(2)
1 < . . . < T

(M)
1 < T}, starting from

Y0 = y ∈ RM , we first let the flow ϕ evolve starting from y up to some first jump time t1. At that jump
time each particle j gains an additional value cj1.We then successively choose the following inter-jump
waiting times t2, . . . , tM under the constraint t1 + . . .+ tM < T. We write

s1 = T − t1, s2 = T − (t1 + t2), . . . , sM = T − (t1 + . . .+ tM ).

Conditionally on Y0 = y, the successive choices of s = (s1, . . . , sM ) as above, the position of Y (i)
T is

given by
γ(i)(y, s) = e−αiT y(i) + ci1e

−αis1 + . . .+ ciMe
−αisM .
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In what follows we work at fixed y and we write

γy : s 7→ γ(y, s).

We will use the jump noise which is created by the M jumps, i.e., we will use a change of variables
on the account of s1, . . . , sM . Therefore, let

∂γy(s)

∂s
=
[∂γy(s)
∂s1

, . . . ,
∂γy(s)

∂sM

]
be the Jacobian matrix of the the map s 7→ γy(s). This matrix does not depend on the initial position
y. Indeed, one easily finds that

∂γy(s)

∂s
= C(s) =

[
C(1), . . . , C(M)

]
(s),

where for each 1 ≤ j ≤M , C(j)(s) is a column vector given by

C(j)(s) = −


c1j(α1)−1e−α1sj

c2j(α2)−1e−α2sj

...
cMj(αM )−1e−αMsj

 .

By Assumption 4.2, C(0) is invertible. Therefore, we may choose T sufficiently small such that ∂γy(s)
∂s is

invertible. In conclusion, we have just shown that for any y ∈ RM , the Jacobian of the map s 7→ γy(s)
is invertible at any s such that 0 < sM < . . . < s1 < T, for sufficiently small T.

It will be proved now that this uniform invertibility of the Jacobian matrix of the map s 7→ γy(s)
implies the first part of inequality (4.2). For that sake, we shall also need the following notation. For
each couple (y, s), we write y0 = x, and then define recursively for all 1 ≤ k ≤M,

yk = ϕsk−1−sk(yk−1) + c·k, where c·k :=
∑
i

cikei, (4.7)

with φ given by Equation (4.6) and s0 = T.
The sequence y1, . . . , yM corresponds to the positions of the process Y right after successive jumps,

starting from the initial location y ∈ RM , induced by the inter-jump waiting times T − s1, s1 −
s2, . . . , sM−1 − sM which are determined by s.

Introduce now for each y ∈ RM the total jump rate

f(y) :=
M∑
i=1

ξi + y(i)

(notice that f(y) ≥ f :=
∑M

i=1 ξi > 0,) and for each t ≥ 0, the survival rate

e(y, t) = exp
{
−
∫ t

0
f
(
ϕs(y)

)
ds
}
. (4.8)

We define for each couple (y, s) (here we set s0 = T ),

qy(s) =

(
M−1∏
k=0

(ξk+1 + ϕ
(k+1)
sk−sk+1

(yk)) e(yk, sk − sk+1)

)
e(yM , sM ). (4.9)
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Since f is bounded away from 0 and from the definition of e(·, ·), we deduce that for any couple
(y∗, s∗) there are neighborhoods Ws∗ and Uy∗ of s∗ and y∗ respectively such that

inf
(y,s)∈Uy∗×Ws∗

qy(s) > 0. (4.10)

Let us now fix (y∗, s∗) such that the matrix ∂γy∗ (s∗)

∂s is invertible. By Lemma 6.2 of [5], there exist an
open neighborhood BR(y∗) of y∗, an open set I2 ⊂ RM , and for any y ∈ BR(y∗), an open set Wy such
that

γ̃y(s) :

{
Wy → I2

s 7→ γy(s)

is a diffeomorphism, with Wy ⊂Ws∗ , and also

inf
y∈BR(y∗)

inf
s∈Wy

∣∣∣det(∂γy(s)
∂s

)−1∣∣∣ > 0. (4.11)

Reducing (if necessary) R, we may assume also that BR(y∗) ⊂ Uy∗ . Thus we have that by (4.10) and
(4.11),

β1 := inf
y∈BR(y∗)

inf
s∈Wy

qy(s)
∣∣∣det(∂γy(s)

∂s

)−1∣∣∣ > 0. (4.12)

Once we have done all these steps we can conclude with the following preliminary result. For any
measurable B ∈ B(RM ) and for any z = (x, y) such that y ∈ BR(y∗), using the change of variables
y = γ̃y(s), we obtain the lower bound

Ey(1B(YT ), N
(i)
T = 1, ∀1 ≤ i ≤M,T

(1)
1 < T

(2)
1 < . . . < T

(M)
1 < T )

≥
∫
Wy

qy(s)1B(γ̃y(s))ds1 . . . dsM ≥ β1

∫
I2∩B

dy1 . . . dyM . (4.13)

This would establish the desired result if we were only interested in the autonomous process Y.
Step 2. We now deal with the process X. Of course, we still work conditionally on the choice of

s1, . . . , sM of the first step. Analogously to (4.7) we therefore introduce the successive jump positions
of the process X which are given by x0 = x and then for all 1 ≤ k ≤M,

xk = Φsk−1−sk(xk−1) + a(Φsk−1−sk(xk−1)), (4.14)

where s0 = T as before.
Conditionally on X0 = x, Y0 = y, the successive choices of s = (s1, . . . , sM ) as above, the position

of XT is then given by
γ(z, s) = ΦsM (xM ),

where z = (x, y). Notice that xM depends on the choices of s1, . . . , sM and of course on the evolution
of the stochastic flow between the successive jump times.

Step 3. Therefore, conditioning with respect to XT−sM = xM , we obtain

PT (z,A×B) ≥ Ez(1A(XT )1B(YT ), N
(i)
T = 1, ∀1 ≤ i ≤M,T

(1)
1 < T

(2)
1 < . . . < T

(M)
1 < T )

≥
∫
Wy

qy(s)1B(γ̃y(s)) E
(∫

A
psM (xM , u)du

)
ds1 . . . dsM , (4.15)

where psM (xM , u) is the transition density of (4.3).
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Notice that in the last line, expectation E is taken with respect to Brownian motion only, that is,
with respect to the law of XT−sM under the Wiener measure, conditionally on the choices s1, . . . , sM .

The lower bound estimate given in (4.3) implies that for fixed sM and xM , psM (xM , u) is lower
bounded in small neighborhoods of xM . Therefore, in what follows we need to localize the possible
positions of xM , conditionally on the choices of the jumps times s1, . . . , sM .

Step 4. Localization of xM .
We apply the support theorem, that is, (4.5), to our process Xt in between the successive jump

times 0, T1 := t1, T2 := t1 + t2, . . . , TM := t1 + . . . tM , by choosing on each time interval [Tn, Tn+1[, n =
0, . . . ,M, the control function h ≡ 0. Consequently, introducing

x̃1 := ϕ
(0)
t1

(x) + a(ϕ
(0)
t1

(x)), . . . , x̃M := ϕ
(0)
sM−1−sM (x) + a(ϕ

(0)
sM−1−sM (x)),

there exists an open neighborhood Ux̃M of x̃M , such that

P(XT−sM ∈ Ux̃M ) > 0.

Notice that x̃M is a continuous function of the starting point x and of s; that is, x̃M = F (x, s) for
some continuous function F. This implies that for any starting point x∗ and any R > 0, there exists a
compact K = K(x∗, s) such that F (x, s) ∈ K for all x ∈ BR(x∗) and for all s ∈Ws∗ , whence

inf
x∈BR(x∗)

inf
s∈Ws∗

P(XT−sM ∈ J1) > 0,

where
J1 =

⋃
x̃M∈K

Ux̃M .

Let now x∗∗ ∈ R be arbitrarily chosen. The lower bound of (4.3) implies that there exists an open
interval I1 3 x∗∗, such that

inf
x∈J1,y∈I1

PsM (x, y) > 0.

Therefore,
β2 := inf

x∈BR(x∗)
inf

y∈BR(y∗)
inf
s∈Wy

inf
u∈J1,v∈I1

psM (u, v)Px(XT−sM ∈ J1) > 0. (4.16)

Therefore, coming back to (4.15), for all z ∈ BR(x∗, y∗),

PT (z,A×B) ≥ Ez(1A(XT )1B(YT ), N
(i)
T = 1, ∀1 ≤ i ≤M,T

(1)
1 < T

(2)
1 < . . . < T

(M)
1 < T )

≥
∫
Wy

qy(s)1B(γ̃y(s)) E
(

1{XT−sM
∈J1}

∫
A
psM (XT−sM , u)du

)
ds1 . . . dsM

≥
∫
Wy

qy(s)1B(γ̃y(s)) E
(

1{XT−sM
∈J1}

∫
A∩I1

inf
x∈J1

psM (x, u)du

)
ds1 . . . dsM

≥ β2λ(A ∩ I1)

∫
Wy

qy(s)1B(γ̃y(s))ds1 . . . dsM

≥ β2λ(A ∩ I1)β1λ
M (B ∩ I2),

where we have finally applied (4.13), and where λ and λM denote the Lebesgue measure on R, RM ,
respectively. This implies the desired result putting

β := β1β2λ(I1)λM (I2) and ν := UI1×I2 ,

the uniform probability law on I1 × I2.
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4.3 A Foster-Lyapunov type condition

In order to prove the positive Harris recurrence of the process Z, we need of course a stability condition
which is a Lyapunov type condition. Notice that the process Zt = (Xt, Yt), has the following extended
generator, defined for sufficiently smooth test functions f by

AZf(x, y) = −
M∑
i=1

αiy
(i)∂y(i)f(x, y) + ∂xf(x, y)b(x) +

1

2
σ2(x)∂2

xf(x, y)

+
M∑
i=1

y(i) [f (x+ a(x), y + ci·)− f(x, y)] ,

with ci· =
∑M

j=1 ci,jej .

Proposition 4.5. Consider the function V : RM+1 → R+, (x, y) 7→ x4 +
∑M

i=1(y(i))2. Then, there
exist positive constants d1, d2 such that the following Foster-Lyapunov type drift condition holds

AZV ≤ d1 − d2V. (4.17)

Proof. If |x| ≥ r, under Assumption 2.2 and Assumption 2.3.2, with α given in (3.1) and c̄ as in (2.7),
we obtain

AZV (x, y) = −2α

M∑
i=1

(y(i))2 + 4x2(xb(x) +
3

2
σ2(x)) +

M∑
i=1

y(i)

2

M∑
j=1

y(j)ci,j +

M∑
j=1

c2
i,j + (x+ a(x))4 − x4


≤ d1 − d2

x4 +

M∑
j=1

(y(j))2

 ,

with two non negative constants d1, d2 depending on σ1, a1,M, α, c̄, d.
If |x| ≤ r, we obtain

AZV (x, y) = −
M∑
i=1

2αi(y
(i))2 + 4r3 sup

|x|≤r
|b(x)|+ 3

2
σ2

1r
2 +

M∑
i=1

y(i)

2
M∑
j=1

y(j)ci,j +
M∑
j=1

c2
i,j + 7r4 + a4

1

 .
Finally for x ∈ R, y ∈ R+, AZV (x, y) ≤ d1

′ − d2
′V (x, y) with d1

′, d2
′ > 0 depending on σ1, a1,M, α, c̄.

4.4 Harris recurrence of Z

We do now possess all ingredients to obtain our main results.

Theorem 4.6. Grant Assumptions 2.2, 2.3, 3.1 and 4.2. Then (Zt)t≥0 is positive Harris recurrent
with unique invariant measure π. In particular, for any starting point z and any positive measurable
function g : R× RM → R+, as T →∞, Pz−almost surely,

1

T

∫ T

0
g(Zs)ds→ π(g).
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Proof of Theorem 4.6. 1) We fix any x∗ ∈ R and we wish to apply Theorem 4.4 with y∗ = 0 and
x∗ = x∗∗. Let R be the associated radius.

By Proposition 4.5, we know that for a suitable compact set K = K1×K2, with K1 ⊂ R,K2 ⊂ RM ,
Z comes back to K infinitely often almost surely. Moreover,

sup
y∈K2,t≥0

‖ϕt(y)‖1 := F <∞ and sup
y∈K2

‖ϕt(y)‖1 → 0

as t→∞, by the explicit form of the flow in (4.6). Therefore there exists t∗ such that ϕt(y) ∈ BR(0)
for all t ≥ t∗, for all y ∈ K2.

Applying once more the support theorem for diffusions and observing that σ is strictly positive,
Equation (4.5) implies that

inf
x∈K1

P(Φt∗+s(x) ∈ BR(x∗), 0 ≤ s ≤ 2T ) > 0

and thus
inf
z∈K

Pz(Xt∗+s ∈ BR(x∗), Yt∗+s ∈ BR(0), 0 ≤ s ≤ 2T ) > 0.

Consequently, using a conditional version of the Borel-Cantelli lemma, the sampled Markov chain
(ZkT )k∈N visits BR(x∗, 0) infinitely often almost surely.
2) The standard regeneration technique (see e.g. [26]) allows to conclude that (ZkT )k∈N and therefore
(Zt)t are Harris recurrent. This concludes the proof.

The following by-product of the above result will prove to be useful when dealing with statistical
inference within this new model class.

Proposition 4.7. Grant Assumptions 2.2, 2.3, 3.1 and 4.2 and write πX for the projection of the
invariant measure π onto the X−coordinate, that is, πX(dx) =

∫
RM π(dx, dy). Then πX possesses a

Lebesgue density which is bounded away from zero on each compact of R.

Proof. Let A ∈ B(R). Then for any t > 0,

πX(A) =

∫
R×RM

π(dz)Ez[1A(Xt)]. (4.18)

Let Lt := sup{s ≤ t : ∃j : ∆N
(j)
s = 1} be the last jump time of the process before time t. Then by

Fubini,

Ez[1A(Xt)] =

∫
A
Ez[pt−Lt(XLT

, y)]dy,

where pt(x, y) is the transition density of (4.3). This implies the existence of πX(x) given by

πX(x) =

∫
R×RM

π(dz)Ez[pt−Lt(XLt , x)]

for any t > 0.
Notice that we do not dispose of any regularity results of πX(x) with respect to x. Indeed, the

upper bound in (4.3) does not allow to conclude that the almost sure continuity in x of pt−Lt(XLt , x)
survives the integration π(dz)Ez(. . .).

We are however able to prove that πX is lower bounded on compacts K ⊂ R. For that sake, fix any
x∗∗ ∈ K and apply (4.2) to (x∗, y∗) ∈ supp(π) such that π(BR(z∗)) = π(C) > 0 and to x∗∗. Then for
any measurable A ⊂ I1 = I1(x∗∗), applying the lower bound of (4.2) to (4.18),∫

A
πX(x)dx ≥ βπ(C)

∫
A
dx
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implying that
inf
x∈I1

πX(x) ≥ βπ(C) > 0.

Therefore we have just shown that for all x∗∗ ∈ K, there exists an open interval x∗∗ ⊂ I1 = I1(x∗∗),
such that πX is strictly lower bounded on I1. Since we can cover the compact K by a finite collection
of such open intervals I1(x∗∗), this implies the desired lower bound of πX on compacts.

In the sequel, following [29], we introduce

V̄ (z) := V (z) + 1 and ‖µ‖V̄ := sup
g:|g|≤V̄

|µ(g)|.

It is now straightforward to obtain our second main result.

Theorem 4.8 (Exponential ergodicity). Grant Assumptions 2.2, 2.3, 3.1 and 4.2. Then there exist
c1, c2 > 0 such that for all z ∈ R× RM ,

‖Pt(z, ·)− π‖V̄ ≤ c1V̄ (z)e−c2t. (4.19)

Proof. The sampled chain (ZkT )k≥0 is Feller according to Proposition 2.5. Moreover it is ν−irreducible,
where ν is the measure introduced in Theorem 4.4, associated with the point (x∗, 0) and x∗∗, for any
choice of x∗, x∗∗ ∈ R, used in the proof of Theorem 4.6. Since ν is the uniform measure on some
open set of strictly positive Lebesgue measure, the support of ν has non-empty interior. Theorem 3.4
of [28] implies that all compact sets are ‘petite’ sets of the sampled chain. The Lyapunov condition
established in Proposition 4.5 allows to apply Theorem 6.1 of [29] which implies the assertion.

4.5 Exponential β-mixing for Z = (X, Y ).

It is now easy to deduce from the above results the exponentially β-mixing property of the process.
Recall that the β−mixing coefficient of Z is given by

βZ(t) = sup
s≥0

∫
‖Pt(z, ·)− µPs+t(·)‖TV µPs(dz),

where µ = L(Z0) is the law of the initial configuration and where

‖µ‖TV := sup
g:|g|≤1

µ(g)

denotes the total variation distance. Notice that if µ = π, then the process is in its stationary regime,
and

βZ(t) =

∫
‖Pt(z, ·)− π‖TV π(dz).

Theorem 4.9. Grant Assumptions 2.2, 2.3, 3.1 and 4.2. Then Z is exponentially β−mixing, that is,
there exist constants K, θ > 0 such that for any initial law µ with µ(V ) <∞,

βZ(t) ≤ Ke−θt.

Proof. Suppose firstly that µ = π. Then Theorem 4.3 of [29] implies that
∫
V dπ <∞ such that we are

able to integrate (4.19) against π(dx) to obtain

βZ(t) ≤ c1π(V̄ )e−c2t.
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Putting K := c1 and θ = c2, this implies the result in this case.
In order to deal with the general non-stationary process, we apply Lemma 3.9 of [27] with h = V̄ ,

δ(t) = c1e
−c2t and

κ = sup
s≥0

E(V̄ (Zs)),

to deduce that
βZ(t) ≤ 2c1κe

−c2t.

Putting K := 2c1κ and θ = c2, this implies the result, if we have already shown that κ is finite. This
last fact follows immediately from (4.17), following the first lines of the proof of Theorem 6.1 of [29].
Indeed, we have by Dynkin’s formula that

eαtEz(V (Zt)) ≤ V (z) +
β

α
eαt,

implying that

Ez(V (Zt)) ≤ e−αtV (z) +
β

α
.

Integrating this last inequality with respect to µ(dz) implies the result.

5 Discussion

In this paper, we have established unique ergodicity and exponential β-mixing for a new class of
Markov processes (X,λ) where X is a jump-diffusion and λ is the intensity process of aM -dimensional
multivariate Hawkes process. These properties will be used in a following paper in a statistical context
to study nonparametric estimators of the parameters of the process.

We can generalise these results to the non-linear case with eventually negative exponential kernels,
that is, where negative weights cij < 0 are allowed. The same kind of probabilistic results should also
hold if we replace the exponential kernels by Erlang kernels in the definition of the Hawkes intensity
(see [12]).

Lastly, even if this will add some complexity to the model, it will be interesting to consider also
in our model the case where we add jumps of the underlying diffusion process, which are driven by
an underlying independent Lévy process. If we take the example of neurons, this means that we will
add to the model the jumps of the fixed neurons (whose dynamic is described by the evolution X in
between jumps triggered by the Hawkes process) besides the jumps of the M neurons around. It will
be challenging to study this complete model.
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