k-indivisible noncrossing partitions

Henri Mühle, Philippe Nadeau, Nathan Williams

To cite this version:

Henri Mühle, Philippe Nadeau, Nathan Williams. k-indivisible noncrossing partitions. Seminaire Lotharingien de Combinatoire, 2020. hal-02094383

HAL Id: hal-02094383

https://hal.science/hal-02094383

Submitted on 9 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

k-INDIVISIBLE NONCROSSING PARTITIONS

HENRI MÜHLE, PHILIPPE NADEAU, AND NATHAN WILLIAMS

Dedicated to Christian Krattenthaler on the occasion of his 60th birthday.

Abstract

For a fixed integer k, we consider the set of noncrossing partitions, where both the block sizes and the difference between adjacent elements in a block is $1 \bmod k$. We show that these k-indivisible noncrossing partitions can be recovered in the setting of subgroups of the symmetric group generated by $(k+1)$ cycles, and that the poset of k-indivisible noncrossing partitions under refinement order has many beautiful enumerative and structural properties. We encounter k-parking functions and some special Cambrian lattices on the way, and show that a special class of lattice paths constitutes a nonnesting analogue.

1. Introduction

1.1. Classical noncrossing partitions. For an integer $n \geq 0$, a (classical) noncrossing partition of the set $[n+1] \stackrel{\text { def }}{=}\{1,2, \ldots, n+1\}$ is a set partition whose blocks have pairwise disjoint convex hulls when drawn on a regular ($n+1$)-gon with vertices labeled clockwise by $[n+1]$ (Figure 1 illustrates some examples).

Figure 1. The leftmost image represents the noncrossing partition $\left(\begin{array}{llllll}1 & 2 & 7\end{array}\right)\left(\begin{array}{llll}3 & 4 & 5 & 6\end{array}\right)(8)(911)(10)(12)$. The middle image then illustrates the computation of its Kreweras complement $(1)(26)(781112)(3)(4)(5)(910)$, shown on the right.

Recall that the symmetric group \mathfrak{S}_{n+1} is generated by the set of transpositions $\{(i j)\}_{1 \leq i<j \leq n+1}$, and the noncrossing partitions $N C_{n+1}$ are naturally identified (by sending blocks to cycles) with the elements occuring as prefixes of the long cycle ($12 \ldots n+1$) [5]. Noncrossing partitions lie at the intersection of many seemingly unrelated areas of mathematics-for more information, we refer to the surveys [3,21,25].

[^0]1.2. k-Indivisible noncrossing partitions. Fix integers $k, n \geq 1$. Throughout this article we write
$$
N \stackrel{\text { def }}{=} k n+1
$$
and we denote by $\mathfrak{S}_{N ; k}$ the subgroup of \mathfrak{S}_{N} generated by the set of all $(k+1)$ cycles.

The previous construction of noncrossing partitions as prefixes of the long cycle naturally generalizes to $\mathfrak{S}_{N ; k}$ as the set $N C_{N ; k}$ of elements occurring as prefixes of the cycle $c_{N} \stackrel{\text { def }}{=}\left(\begin{array}{llll}1 & \ldots\end{array}\right)$ (with respect to the generating set of all $(k+1)$ cycles). In reference to Edelman and Armstrong's k-divisible noncrossing partitions (noncrossing partitions whose block sizes are all divisble by k) $[1,10$], we call the elements of $N C_{N ; k}$ the k-indivisible noncrossing partitions. Our first result characterizes $N C_{N ; k}$ as a condition on block sizes, explaining the nomenclature "k-indivisible."

Recall that the Kreweras complement of a noncrossing partition $w \in N C_{n}$ is defined as the coarsest noncrossing partition $\operatorname{Krew}(w) \in N C_{n}$ that can be drawn on the dual n-gon without intersecting w (see Figure 1 for an illustration).

Theorem 1.1. Fix $k, n \geq 1$ and write $N=n k+1$. The following are equivalent.
(i) w is a k-indivisible noncrossing partition on $[N]$.
(ii) w is a noncrossing partition on $[N]$ and all cycles in both w and its Kreweras complement $\operatorname{Krew}(w)$ have lengths $1 \bmod k$.
(iii) w is a noncrossing partition on $[N]$, all its cycles have lengths $1 \bmod k$, and if $i<j$ are consecutive in a cycle of w, then $j-i \equiv 1(\bmod k)$.

We prove Theorem 1.1 in Section 3.3. Note that the k-indivisible noncrossing partitions recover the ordinary noncrossing partitions when $k=1$ (so that the congruence constraint on the lengths of blocks is trivially satisfied), and the constructions of [23] when $k=2$.

This combinatorial description allows us to enumerate $N C_{N ; k}$.
Theorem 1.2. The cardinality of $N C_{N ; k}$ is

$$
\frac{2}{N+1}\binom{N+n}{n}
$$

1.3. The k-indivisible noncrossing partition poset. As with the noncrossing partitions, the set of k-indivisible noncrossing partitions is naturally ordered by refinement. We denote this poset by $\mathcal{N C}_{N ; k}$. In contrast to when $k=1, \mathcal{N C}_{N ; k}$ is generally not a lattice. Nevertheless, we prove the following formula for its zeta polynomial at the end of Section 4.
Theorem 1.3. For $k, n \geq 1$, the number of q-multichains of $\mathcal{N C}_{N ; k}$ is

$$
\mathcal{Z}_{N ; k}(q+1)=\frac{q+1}{N q+1}\binom{N q+n}{n}
$$

The remainder of the paper is devoted to generalizing enumerative results, objects, and bijections from the classical noncrossing partition lattice (obtained by specializing k to 1) to $\mathcal{N C} \mathcal{C}_{N ; k}$.
1.4. k-Parking functions. In Section 5, we give a bijection from the maximal chains of $\mathcal{N C}_{N ; k}$ to k-parking functions, generalizing [28, Theorem 5.1].
1.5. Cambrian lattices. In Section 6, we give a bijection from the maximal chains of $\mathcal{N C}_{N ; k}$ up to commutation equivalence, to $(2 k+2)$-angulations of a convex 2 N -gon following [22]. This construction recovers an instance of a $2 k$-Cambrian lattice from [30].
1.6. Nonnesting partitions. In Section 7 we construct the k-indivisible nonnesting partitions as the order ideals of a subposet of a triangular poset. These are shown to be in bijection with the k-indivisible noncrossing partitions.
1.7. Open problems. We conclude in Section 8 with some open problems: we conjecture that $\mathcal{N C}_{N ; k}$ is EL-shellable, and we conjecture many enumerative properties of a certain poset whose elements are the q-multichains of $\mathcal{N C} \mathcal{C}_{N ; k}$.

2. k-Absolute Order

2.1. Hurwitz Action. Let G be a group and let $n>0$. The i-th standard generator σ_{i} of the braid group \mathfrak{B}_{n} sends $\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in G^{n}$ to

$$
\left(g_{1}, g_{2}, \ldots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_{i} g_{i+1}, g_{i+2}, \ldots, g_{n}\right) \in G^{n}
$$

This is a group action of \mathfrak{B}_{n} on G^{n}, and it is clear that it does not change the product of such a tuple. We call this the Hurwitz action.
2.2. k-Absolute order. Let $K>0$ be an integer, and let \mathfrak{S}_{K} be the symmetric group on $[K]$. For $k>1$ let $C_{K ; k}$ be the set of all $(k+1)$-cycles of \mathfrak{S}_{K} and let $\mathfrak{S}_{K ; k} \leq \mathfrak{S}_{K}$ denote the subgroup generated by $C_{N ; k}$. If k is odd, then $\mathfrak{S}_{K ; k}=\mathfrak{S}_{N}$; if k is even, then $\mathfrak{S}_{K ; k}$ is the alternating group \mathfrak{A}_{K} on $[K]$.

It will be useful to have some notation regarding multiplication by cycles. Let ($i j$) be a transposition. If $w \in \mathfrak{S}_{K}$ has two distinct cycles containing i and j, we may write $w=w^{\prime}\left(\mathbf{s}_{i}\right)\left(\mathbf{s}_{j}\right)$ where \mathbf{s}_{i} and \mathbf{s}_{j} are sequences ending with i and j respectively. Then $w \cdot(i j)=w^{\prime}\left(\mathbf{s}_{i} \mathbf{s}_{j}\right)$, and we say that we j oin the two cycles. More generally, given m disjoint cycles of w, we may join them in a new cycle by multiplying by an m-cycle having exactly one element in common with each of them. The inverse operation is called cutting a cycle.

Let $\ell_{k}: \mathfrak{S}_{K ; k} \rightarrow \mathbb{N}$ be the map that assigns to $w \in \mathfrak{S}_{K ; k}$ the minimum length of a factorization of w into $(k+1)$-cycles. The k-absolute order is the following partial order on $\mathfrak{S}_{K ; k}$:

$$
w \leq_{k} w^{\prime} \quad \text { if and only if } \quad \ell_{k}(w)+\ell_{k}\left(w^{-1} w^{\prime}\right)=\ell_{k}\left(w^{\prime}\right)
$$

Since the set of $(k+1)$-cycles is a full \mathfrak{S}_{K}-conjugacy class, the map ℓ_{k} is invariant under \mathfrak{S}_{K}-conjugation by [23, Proposition 2.3]. We are only aware of simple formulas for ℓ_{k} for $k \in\{1,2,3\}$. For example, for $k=1$, if we let $\operatorname{cyc}(w)$ denote the number of cycles of $w \in \mathfrak{S}_{K}$, then $\ell_{1}(w)=K-\operatorname{cyc}(w)$. For $k=2$, then $\ell_{2}(w)=K-\operatorname{ocyc}(\mathrm{w})$ where $\operatorname{ocyc}(w)$ denote the number of cycles of $w \in \mathfrak{A}_{K}$ [23]. Some general bounds for ℓ_{k} are given in [16].
2.3. $(1 \bmod k)$-Permutations. There is a subset of elements of $\mathfrak{S}_{K ; k}$ for which ℓ_{k} has a similarly simple form.

Definition 2.1. A permutation $w \in \mathfrak{S}_{K ; k}$ is $1 \bmod k$ if—when written as a product of disjoint cycles—all cycles of w have length $1 \bmod k$. We denote by $\mathfrak{S}_{K ; k}^{(1)}$ the set of all $(1 \bmod k)$-permutations.

Lemma 2.2. A permutation $w \in \mathfrak{S}_{K}$ is $1 \bmod k$ if and only if $\ell_{k}(w)=\frac{K-\operatorname{cyc}(w)}{k}$.
In particular this gives the well-known fact that $\ell_{1}(w)=K-\operatorname{cyc}(w)$ for any permutation w.

Proof. Let $w \in \mathfrak{S}_{K ; k}$, and let t be a $(k+1)$-cycle. Note that t can be written as a product of k transpositions, and so by analyzing the cut and join possibilities, we obtain that $\operatorname{cyc}(w t) \geq \operatorname{cyc}(w)-k$. Furthermore, equality holds if and only if t has at most one element in common with each cycle of w-in this case $w t$ is obtained from w by joining the $k+1$ cycles of w that have a common element with t. Now fix a minimal factorization of w into $(k+1)$-cycles. By induction, starting from the fact that the identity permutation has K cycles of length 1 , the previous inequality that any $w \in \mathfrak{S}_{K ; k} \operatorname{satisfies} \operatorname{cyc}(w) \geq K-k \ell_{k}(w)$, and equality occurs if and only if w was built by joining $k+1$ cycles at a time, as described above.

In the case of equality, w is $1 \bmod k$ since joining $k+1$ cycles of length $1 \bmod k$ gives back another cycle of length $1 \bmod k$. Conversely, every $1 \bmod k$ permutation can be written as a product of $\frac{K-\operatorname{cyc}(w)}{k}$ elements of $C_{K ; k}$, for instance by factoring each of its cycles as follows:

$$
\left(a_{1} a_{2} \ldots a_{s k+1}\right)=\left(\begin{array}{l}
a_{1} \ldots
\end{array} \ldots a_{k+1}\right) \cdot\left(\begin{array}{llll}
a_{k+1} & \ldots & a_{2 k+1}
\end{array}\right) \cdots\left(a_{(s-1) k+1} \ldots a_{s k+1}\right) .
$$

The covering relations of \leq_{k} in which the top element belongs to $\mathfrak{S}_{K ; k}^{(1)}$ are particularly simple to describe.

Corollary 2.3. Let $w \in \mathfrak{S}_{K ; k}^{(1)}$ and $u \in \mathfrak{S}_{K ; k}$. Then one has $u \lessdot_{k} w$ if and only if u can obtained from w by cutting one cycle of w into $k+1$ cycles of length $1 \bmod k$.
Proof. This is an immediate corollary of the proof of Lemma 2.2.
Corollary 2.4. If $w \in \mathfrak{S}_{K ; k}^{(1)}$ and $u \leq_{k} w$, then $u \in \mathfrak{S}_{K ; k}^{(1)}$ and $u^{-1} w \in \mathfrak{S}_{K ; k}^{(1)}$.
Proof. That $u \in \mathfrak{S}_{K ; k}^{(1)}$ follows from Corollary 2.3 by induction. So fix a reduced factorization $w=t_{1} \cdot t_{2} \cdots t_{n}$ with $t_{i} \in C_{N ; k}$ for $i \in[n]$ such that $u=t_{1} t_{2} \cdots t_{s}$ for some $s \in[n]$. Now, $t_{s+1} t_{s+2} \cdots t_{n}=u^{-1} w$. The Hurwitz action allows us to write $w=t_{s+1} \cdots t_{n} t_{1}^{\prime} t_{2}^{\prime} \cdots t_{s}^{\prime}$ for certain $t_{i}^{\prime} \in C_{N ; k}$, so that $u^{-1} w \leq_{k} w$ as well.

3. k-Indivisible noncrossing partitions

3.1. k-Indivisible noncrossing partitions. For $k, n \geq 1$ and $N=k n+1$, we fix the long cycle $c_{N} \stackrel{\text { def }}{=}(12 \ldots N)$. Notice that $c_{N} \in \mathfrak{S}_{N, k}^{(1)}$, so that $\ell_{k}\left(c_{N}\right)=n$ by Lemma 2.2.

Definition 3.1. The k-indivisible noncrossing partitions are the elements of

$$
N C_{N ; k} \stackrel{\text { def }}{=}\left\{w \in \mathfrak{S}_{N, k} \mid w \leq_{k} c_{N}\right\}
$$

We denote the corresponding poset by $\mathcal{N C} \mathcal{C}_{N ; k} \stackrel{\text { def }}{=}\left(N C_{N ; k}, \leq_{k}\right)$. For $k=1$, the poset $\mathcal{N C}_{n+1 ; 1}=\mathcal{N C}_{n+1}$ is isomorphic to the lattice of noncrossing partitions of $[n+1]$ [5]. Figure 2 illustrates $\mathcal{N C}_{N ; k}$ for $n=3$ and $k=2$.

Figure 2. The poset $\mathcal{N C}_{7 ; 2}$.

Remark 3.2. Let $\Pi_{K ; k}^{(i)}$ be defined as the poset of all partitions of $[K]$ with block sizes congruent to $i \bmod k$. Some history and results regarding these posets is summarized in [33, Examples 4.3.4 and 4.3.5, Exercise 4.3.6, and Remark 4.3.7]and we are not aware of any substantive results beyond $i=0,1$.

The lattices $\Pi_{K ; k}^{(0)}$ first appear in [31], and were subsequently studied by Stanley and Sagan in $[24,27]$. The corresponding noncrossing partitions were considered by Edelman [10], and extended to finite Coxeter groups by Armstrong [1].

The posets $\Pi_{K ; k}^{(1)}$ were studied in [9]. However, as far as we know, the corresponding noncrossing partitions have not previously been considered. On the other hand, the study of the maximal chains in $\mathcal{N C}{ }_{N ; k}$ is a classical problem, for example when phrased in the language of transitive factorizations and cacti. We revisit some of the combinatorics related to these maximal chains in Sections 5 and 6.
3.2. The Kreweras complement. As in Section 1.1, we graphically represent $w \in$ $N C_{N}$ as the convex hull of the cycles of w on a regular N-gon whose vertices are labeled clockwise by $[N]$. The terminology "noncrossing partition" is justified by the fact that no two convex hulls intersect in this representation.

The Kreweras complement of $w \in N C_{N}$ is the noncrossing partition $\operatorname{Krew}(w) \stackrel{\text { def }}{=}$ $w^{-1} c$. In the graphical representation, this can be visualized by drawing the convex hulls of w on a N-gon labeled clockwise by $\{1, \overline{1}, 2, \overline{2}, \ldots, N, \bar{N}\}$, where the blocks of w use only the non-barred vertices. Then Krew (w) corresponds to the coarsest noncrossing partition that can be drawn using the barred vertices without intersecting the blocks of w (see Figure 1). The following is immediate from Corollary 2.4
Corollary 3.3. For any $w \in \mathfrak{S}_{N ; k}, w \leq_{k} c_{N}$ implies $\operatorname{Krew}(w) \leq_{k} c_{N}$; that is, $N C_{N ; k}$ is stable under Kreweras complementation.

3.3. Combinatorial characterization of k-indivisible noncrossing partitions.

Theorem 1.1. Fix $n, k>0$ and write $N=n k+1$. The following are equivalent.
(i) w is a k-indivisible noncrossing partition on $[N]$.
(ii) w is a noncrossing partition on $[N]$, and w and $\operatorname{Krew}(w)$ are $1 \bmod k$.
(iii) w is a noncrossing partition on $[N], w$ is $1 \bmod k$, and if $i<j$ are consecutive in a cycle of w, then $j-i \equiv 1(\bmod k)$.

Observe that the additional conditions on cycles in (ii) and (iii) are vacuous if $k=1$, so the claim is trivial in this case.

Proof. (i) \Longrightarrow (ii). We assume $w \leq_{k} c_{N}$. Since $c_{N} \in \mathfrak{S}_{N ; k^{\prime}}^{(1)}$, by Corollary 2.4, we have $w, \operatorname{Krew}(w) \in \mathfrak{S}_{N ; k}^{(1)}$. Now $\ell_{k}(w)+\ell_{k}(\operatorname{Krew}(w))=n$ which can be written as $\ell_{1}(w)+\ell_{1}(\operatorname{Krew}(w))=n k$ by Lemma 2.2. This means that $w \leq_{1} c_{N}$, that is, w is a noncrossing partition.
(ii) \Longrightarrow (iii). Let $w \in N C_{N ; 1}$ such that both w and $\operatorname{Krew}(w)$ are $1 \bmod k$. Let i, j be two consecutive entries in a cycle of w with $i<j$. We want to show that $j-i=1(\bmod k)$. This is trivial if $j=i+1$, and we'll assume by induction that this holds for any consecutive entries $i_{1}<j_{1}$ in a cycle of w such that $j_{1}-i_{1}<$ $j-i$. Consider the maximal (with respect to nesting) cycles of w that are between i and j : their number is a multiple of k because this number is one less that the length of a cycle of $\operatorname{Krew}(w)$, which is $1 \bmod k$. Order these cycles $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{m k}$ so that $\max \left(\zeta_{p}\right)<\min \left(\zeta_{p+1}\right)$. In fact, if $a_{p}=\min \left(\zeta_{p}\right)$ and $b_{p}=\max \left(\zeta_{p}\right)$, we have $b_{p}=a_{p+1}-1$ for $p=1, \cdots, m k-1$, with boundary conditions $a_{1}=i+1$ and $b_{m k}=j-1$. We can therefore write

$$
j-i=\sum_{p=1}^{m k}\left(b_{p}-a_{p}\right)+1+m k
$$

By induction each ζ_{p} satisfies the cycle conditions in (iii), which immediately implies $b_{p}-a_{p} \equiv 0(\bmod k)$. Therefore the expression above for $j-i$ is $1 \bmod k$ as desired.
(iii) \Longrightarrow (i). Given w a noncrossing partition satisfying the $\bmod k$ conditions of (iii), we want to prove $w \leq_{k} c_{N}$. If $w=c_{N}$ we are done, so we suppose that $w \neq c_{N}$. We will construct a $w^{\prime} \in \mathfrak{S}_{N ; k}$ such that $w \lessdot_{k} w^{\prime}$ and w^{\prime} also satisfies (iii).

Consider the cycle ζ_{0} of w containing $1, \zeta_{0}=\left(u_{1}<u_{2}<\cdots<u_{k r_{1}+1}\right)$ with $u_{1}=1$. Since $w \neq c$, either there exists $q \in\left[k r_{1}\right]$ such that $u_{q+1}-u_{q}>1$, or $u_{i}=i$ for all i, in which case pick $q=u_{q}=k r_{1}+1<N$ and set $u_{q+1}=N+1$. Now consider the maximal cycles from left to right $\zeta_{1}, \cdots, \zeta_{d}$ between u_{q} and u_{q+1}, so $d \geq 1$ by our choice of q. Write a_{p}, b_{p} for the minimal and maximal elements of ζ_{p}, so that we get

$$
u_{q+1}-u_{q}=\sum_{p=1}^{d}\left(b_{p}-a_{p}\right)+1+d .
$$

Now we have $b_{p}-a_{p} \equiv 0(\bmod k)$ as above. Since $u_{q+1}-u_{q} \equiv 1(\bmod k)$, it follows that d is a multiple of k, and so $d \geq k$ because $d \geq 1$. Now $\zeta_{0} \zeta_{1} \cdots \zeta_{k}$. $\left(u_{p} b_{1} \ldots b_{k}\right)$ is the cycle that joins $\zeta_{0}, \zeta_{1}, \ldots, \zeta_{k}$ to form an increasing cycle. Thus $w^{\prime}=w \cdot\left(\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{k+1}\end{array}\right)$ satisfies all conditions in (iii), so by induction we have $w^{\prime} \leq_{k} c$. Moreover, we have $w \lessdot_{k} w^{\prime}$ by Corollary 2.3, so that $w \leq_{k} c_{N}$.

Remark 3.4. Theorem 1.1 implies that each cycle of $w \in N C_{N ; k}$ can be written such that its entries form an increasing sequence of integers.

Theorem 1.1 implies that $\mathcal{N C}_{N ; k}$ is an interval in $\left(\mathfrak{S}_{N ; k}, \leq_{k}\right)$.
Corollary 3.5. The poset $\mathcal{N C}_{N ; k}$ is an induced subposet of $\mathcal{N C} C_{N ; 1}$: for all $w, w^{\prime} \in N_{N ; k}$, $w \leq_{k} w^{\prime}$ if and only if $w \leq_{1} w^{\prime}$.

Proof. Let $w, w^{\prime} \in N C_{N ; k}$. By Theorem 1.1, each of $w, w^{\prime}, \operatorname{Krew}(w), \operatorname{Krew}\left(w^{\prime}\right)$ is $1 \bmod k$.

Assume first that $w \leq_{k} w^{\prime}$, that is, $\ell_{k}(w)+\ell_{k}\left(w^{-1} w^{\prime}\right)=\ell_{k}\left(w^{\prime}\right)$. Then by Theorem 1.1 which applies to all three permutations thanks to Corollary 2.4, we get $\frac{\ell_{1}(w)}{k}+\frac{\ell_{1}\left(w^{-1} w^{\prime}\right)}{k}=\frac{\ell_{1}\left(w^{\prime}\right)}{k}$, which after multipliying by k tells us precisely $w \leq_{1} w^{\prime}$.

Conversely, assume $w \leq_{1} w^{\prime}$. Because $w, w^{\prime} \in N C_{N ; k}$, this simply means that the supports of the cycles of w are included in those of w^{\prime}. We can thus assume wlog that w^{\prime} consists of a single cycle. Moreover, because of the invariance of ℓ_{k} under conjugation, we can even assume $w^{\prime}=c_{N^{\prime}}=\left(1 \cdots N^{\prime}\right)$ for $N^{\prime}=m k+1$ with $m \leq n$. So we have $w \leq_{k} c_{N}$ and w is a noncrossing partition on $\left[N^{\prime}\right]$. By Theorem 1.1, using the characterization (ii), it follows that $w \leq_{k} c_{N^{\prime}}$, which achieves the proof.

4. EnUmerative properties of k-Indivisible noncrossing partitions

For integers $p, r, s \geq 1$, let us define the Raney number by

$$
\operatorname{Ran}(n, p, r) \stackrel{\text { def }}{=} \frac{r}{n p+r}\binom{n p+r}{n}
$$

The specialization $\operatorname{Ran}(n, 2,1)$ recovers the Catalan number $\frac{1}{n+1}\binom{2 n}{n}$, while $\operatorname{Ran}(n, p, 1)$ recovers the Fuß-Catalan number $\frac{1}{(p-1) n+1}\binom{p n}{n}$.

The Raney numbers satisfy the following Catalan-like recurrence.
Lemma 4.1 ([15, p. 202, Equation (5.63)]). For integers $n, p, r, s \geq 1$ we have

$$
\operatorname{Ran}(n, p, r+s)=\sum_{i=0}^{n} \operatorname{Ran}(i, p, r) \cdot \operatorname{Ran}(n-i, p, s)
$$

Remark 4.2. Let us say that a plane rooted tree is k-divisible if each vertex has 0 mod k-many children. It is $(k+1)$-ary if every non-leaf vertex has exactly $k+1$ children.

It is well known that k-divisible trees with $k n+1$ vertices are enumerated by the Fuß-Catalan number $\operatorname{Ran}(n, k+1,1)$. Such trees T are in bijection with $(k+1)$ ary trees T^{\prime} with n non-leaf vertices. Indeed, start at the root of T. If it has no children, it must be that $n=0$, and we set $T^{\prime}=T$. Otherwise, by assumption, the root of T has $i k$ children. We keep the first k of them, and add a new root child to which we attach all the remaining $(i-1) k$ root children. We now proceed inductively, until we obtain the desired tree T^{\prime}. This process is clearly reversible (and thus bijective), by contracting along right-most children.

4.1. Cardinality.

Theorem 1.2. The cardinality of $N C_{N ; k}$ is

$$
\operatorname{Ran}(n, k+1,2)=\frac{2}{N+1}\binom{N+n}{n}
$$

Proof. We will prove this bijectively (see Corollary 4.7 for another proof); the reader is invited to look at Figure 3 which illustrates the bijection.

We first map $w \in N C_{N ; k}$ to the factorization $c_{N}=w \cdot \operatorname{Krew}(w)$ and apply a classical bijection due to Goulden-Jackson [13, Theorem 2.1]. Since it is reduced, factorizations of the form $w \cdot \operatorname{Krew}(w)$ are in bijection with the set of plane edgerooted trees with N edges and $N+1$ vertices each of degree $1 \bmod k$, with vertices alternately colored white and black. The white vertices correspond to cycles in w, and the black vertices to the cycles in $\operatorname{Krew}(w)$ as follows. Starting from the rooted edge (moving from white to black), we walk around the tree (keeping the tree to our right). Each of the N edges of the tree is encountered twice, and we label them by the order in which they are visited when moving from a white to a black vertex. Reading the cyclic sequence of edge labels clockwise around the white vertices recovers the cycles of w; and similarly for the black vertices and $\operatorname{Krew}(w)$.

Break this tree into two by deleting the root edge, and root both of the resulting trees using the vertex adjacent to the deleted root edge. Since both w and $\operatorname{Krew}(w)$ are $1 \bmod k$, each of the vertices in the resulting pair of trees has a multiple of k many children. By Remark 4.2, the resulting trees are counted by the Fuß-Catalan number ${ }^{1}$, from which we conclude that

$$
\left|N C_{N ; k}\right|=\sum_{i=0}^{n} \operatorname{Ran}(i, k+1,1) \cdot \operatorname{Ran}(n-i, k+1,1)
$$

Hence, $\left|N C_{N ; k}\right|$ satisfies the recursion given in Lemma 4.1, and by checking the initial condition, we see that $\left|N C_{N ; k}\right|=\operatorname{Ran}(n, k+1,2)$ as desired.
4.2. Multichains. A q-multichain in $N C_{N ; k}$ is a tuple $\left(w_{1}, w_{2}, \ldots, w_{q}\right) \in\left(\mathfrak{S}_{N ; k}\right)^{q}$ with $w_{1} \leq_{k} w_{2} \leq_{k} \cdots \leq_{k} w_{q} \leq_{k} c_{N}$.

Lemma 4.3. Each q-multichain $\left(u_{1}, u_{2}, \ldots, u_{q}\right)$ in $N C_{N ; k}$ corresponds bijectively to a reduced factorization $v_{1} v_{2} \cdots v_{q+1}=c_{N}$ such that

$$
\ell_{1}\left(v_{1}\right)+\ell_{1}\left(v_{2}\right)+\cdots+\ell_{1}\left(v_{q+1}\right)=k n
$$

and $v_{i} \in \mathfrak{S}_{N ; k}^{(1)}$ for $i \in[q+1]$.
Proof. Let $u_{0}=\mathrm{id}$ and $u_{q+1}=c_{N}$, and define $v_{i}=u_{i-1}^{-1} u_{i}$ for $i \in[q+1]$. We immediately see that $v_{1} v_{2} \cdots v_{q+1}=c_{N}$. Moreover, since $u_{i} \leq_{k} u_{i+1}$ we conclude from the definition that $\ell_{k}\left(v_{i+1}\right)=\ell_{k}\left(u_{i+1}\right)-\ell_{k}\left(u_{i}\right)$. We obtain

$$
\sum_{i=1}^{q+1} \ell_{k}\left(v_{i}\right)=\sum_{i=1}^{q+1}\left(\ell_{k}\left(u_{i}\right)-\ell_{k}\left(u_{i-1}\right)\right)=\ell_{k}\left(u_{q+1}\right)-\ell_{k}\left(u_{0}\right)=\ell_{k}\left(c_{N}\right)-\ell_{k}(\mathrm{id})=n
$$

[^1]

Figure 3. Illustration of the bijection from Theorem 1.2 for $n=8$, $k=3$, and $w=(1141516202122)(234591011) \in N C_{25 ; 3}$. On the left is the plane, edge-rooted bicolored tree corresponding to $w \cdot \operatorname{Krew}(w)$, in the middle the pair of 3-divisible trees with a total of 26 vertices, and on the right the pair of 4 -ary trees with a total of 8 non-leaf vertices.

We conclude from Theorem 1.1 that $v_{i} \in \mathfrak{S}_{N ; k}^{(1)}$ and the final claim follows then from Lemma 2.2.

Let $C=\left(w_{1}, w_{2}, \ldots, w_{q}\right)$ be a q-multichain in $\mathcal{N C}{ }_{N ; k}$, and let $w_{0}=\mathrm{id}, w_{q+1}=$ c_{N}. We define the rank jump vector of C by $r(C) \stackrel{\text { def }}{=}\left(r_{1}, r_{2}, \ldots, r_{q+1}\right)$, where $r_{i}=$ $\ell_{k}\left(w_{i}\right)-\ell_{k}\left(w_{i-1}\right)$ for $i \in[q+1]$. We write $\mathcal{Z}_{N ; k}(q+1)$ for the number of q multichains of $\mathcal{N C}_{N ; k}$.

Theorem 4.4. The number of q-multichains of $\mathcal{N C}_{N ; k}$ that have the rank jump vector $\left(r_{1}, r_{2}, \ldots, r_{q}\right)$ is

$$
\frac{1}{N} \prod_{i=1}^{q+1} \operatorname{Ran}\left(r_{i}, 1-k, N\right)=\frac{1}{N} \prod_{i=1}^{q+1} \frac{N}{N-(k-1) r_{i}}\binom{N-(k-1) r_{i}}{r_{i}}
$$

Proof. Let $C=\left(w_{1}, w_{2}, \ldots, w_{q}\right)$ be a q-multichain with rank jump vector $r(C)=$ $\left(r_{1}, r_{2}, \ldots, r_{q+1}\right)$, where $r_{i}=\ell_{k}\left(w_{i}\right)-\ell_{k}\left(w_{i-1}\right)$. By Lemma 4.3, C corresponds to a factorization $v_{1} v_{2} \cdots v_{q+1}=c_{N}$, where $v_{i} \in \mathfrak{S}_{N ; k}^{(1)}$ and $r_{i}=\ell_{k}\left(v_{i}\right)$ for $i \in[q+1]$. By Lemma 2.2 we have $r_{i}=\ell_{1}\left(v_{i}\right) / k$. If we suppose that v_{i} has exactly $p_{j}^{(i)}$ cycles of size $k j+1$, for $j \geq 1$, then [18, Theorem 5] implies that the number of factorizations is

$$
N^{q} \prod_{i=1}^{q+1} \frac{1}{k n-k r_{i}+1}\binom{k n-k r_{i}+1}{p_{1}^{(i)} p_{2}^{(i)} \ldots}
$$

where $r_{i}=\sum_{j} j p_{j}^{(i)}$. We now sum over all such sequences $\left(p_{1}^{(i)}, p_{2}^{(i)}, \ldots\right)$ by using [18, Lemma 4] and find that the number of all such factorizations is

$$
N^{q} \prod_{i=1}^{q+1} \frac{1}{k n-k r_{i}+1}\binom{k n-(k-1) r_{i}}{r_{i}}=\frac{1}{N} \prod_{i=1}^{q+1} \frac{N}{N-k r_{i}}\binom{N-1-(k-1) r_{i}}{r_{i}}
$$

This formula is equivalent to the formula in the statement.
Corollary 4.5. The number of maximal chains of $\mathcal{N C}_{N ; k}$ is N^{n-1}, and the number of elements of $\mathcal{N C}_{N ; k}$ of rank l is

$$
\frac{N}{(N-(k-1) l)(N-(k-1)(n-l))}\binom{N-(k-1) l}{l}\binom{N-(k-1)(n-l)}{n-l} .
$$

Proof. Maximal chains of $\mathcal{N C}_{N ; k}$ correspond by definition to $(n-1)$-multichains with rank jump vector $(1,1, \ldots, 1)$, while elements of rank l correspond to 1 multichains with rank jump vector $(l, n-l)$. The result now follows from Theorem 4.4.

Remark 4.6. The result on the number of maximal chains of $\mathcal{N C}_{N ; k}$ has been obtained before by Goulden and Jackson in [14, Corollary 5.1], and was later extended by Biane in [4, Theorem 1].
4.3. Zeta polynomial and Möbius function. We may now conclude Theorem 1.3.

Theorem 1.3. For $k, n \geq 1$, the number of q-multichains of $\mathcal{N C}_{N ; k}$ is

$$
\mathcal{Z}_{N ; k}(q+1)=\frac{q+1}{N q+1}\binom{N q+n}{n}
$$

Proof. In order to determine $\mathcal{Z}_{N ; k}(q+1)$, we have to sum the formula from Theorem 4.4 over all possible rank jump vectors. Recall from [23, Lemma 5.5] that for integers $a, a_{1}, a_{2}, \ldots, a_{r}, b, n$ with $a=a_{1}+a_{2}+\cdots+a_{r}$ we have

$$
\sum_{n_{1}+n_{2}+\cdots+n_{r}} \prod_{i=1}^{r} \operatorname{Ran}\left(n_{i}, b, a_{i}\right)=\operatorname{Ran}(n, b, a) .
$$

We obtain

$$
\begin{aligned}
\mathcal{Z}_{N ; k}(q+1) & =\sum_{r_{1}+r_{2}+\cdots+r_{q+1}=n} \frac{1}{N} \prod_{i=1}^{q+1} \operatorname{Ran}\left(r_{i}, 1-k, N\right) \\
& =\frac{1}{N}\left(\sum_{r_{1}+r_{2}+\cdots+r_{q+1}=n} \prod_{i=1}^{q+1} \operatorname{Ran}\left(r_{i}, 1-k, N\right)\right) \\
& =\frac{\operatorname{Ran}(n, 1-k,(q+1) N)}{N} \\
& =\operatorname{Ran}(n, q k+1, q+1) \\
& =\frac{q+1}{N q+1}\binom{N q+n}{n}
\end{aligned}
$$

Specializing Theorem 1.3 at $q=1$ gives a second (non-bijective) proof of Theorem 1.2.

Corollary 4.7. The cardinality of $N C_{N ; k}$ is $\operatorname{Ran}(n, k+1,2)$.
Proof. Every element of $N C_{N ; k}$ can be regarded as a 1-multichain of $\mathcal{N C}{ }_{N ; k}$. The claim thus follows by plugging in $q=1$ into Theorem 1.3.

Since $\mathcal{N C}_{N ; k}$ is a poset with a least and a greatest element, we can define the Möbius invariant of $\mathcal{N C} C_{N ; k}$; which is the value $\mu\left(\mathcal{N C}_{N ; k}\right)$ of the Möbius function of $\mathcal{N C}_{N ; k}$ applied to id and c_{N}. See also [29, Sections 3.8 and 3.12].

Corollary 4.8. The Möbius invariant of $\mathcal{N C}_{N ; k}$ is

$$
\mu\left(\mathcal{N C} \mathcal{N}_{N ; k}\right)=(-1)^{n} \operatorname{Ran}(n, 2 k, 1)=\frac{(-1)^{n}}{2 n k+1}\binom{2 n k+1}{n}
$$

Proof. The numbers $\mathcal{Z}_{N ; k}(q)$ can be regarded as evaluations of a polynomial over the integers. It follows for instance from [29, Proposition 3.12.1(c)] that $\mu_{\mathcal{N C}_{N ; k}}=\mathcal{Z}_{N ; k}(-1)$. The claim follows from application of Theorem 1.3, by using the equality $\binom{-a}{b}=(-1)^{b}\binom{a+b-1}{b}$ for positive integers a, b.

5. Maximal chains of $\mathcal{N C}_{N ; k}$ and k-parking functions

5.1. Maximal chains and the Hurwitz action. Let us denote the set of reduced factorizations of $c_{N}=(12 \ldots N)$ into $(k+1)$-cycles by $\operatorname{Fact}_{k}(c)$; by construction, these are in bijection with maximal chains in $\mathcal{N C}_{N ; k} ;$ see also Lemma 4.3. Since $C_{N ; k}$ is invariant under \mathfrak{S}_{N}-conjugation, the Hurwitz action is a bijection on the set of reduced factorizations of $w \in \mathfrak{S}_{N ; k}$ into $(k+1)$-cycles.

Theorem 5.1. For $k, n \geq 1$ the braid group \mathfrak{B}_{n} acts transitively on $\operatorname{Fact}_{k}\left(c_{N}\right)$.
Proof. This is a special case of [19, Theorem 5.4.11]. One may also give a direct inductive proof as in [23, Proposition 6.2] for the case $k=2$.

We write the entries of a cycle in a factorization $\mathbf{t}=t_{1} t_{2} \cdots t_{n} \in \operatorname{Fact}_{k}\left(c_{N}\right)$ in increasing order as $t_{i}=\left(t_{i, 1}<t_{i, 2}<\cdots<t_{i, k+1}\right)$, which is well defined by Remark 3.4. A factorization $\mathbf{t} \in$ Fact $_{k}$ is non-decreasing if $t_{1,1} \leq t_{2,1} \leq \cdots \leq t_{n, 1}$.

Lemma 5.2. For $k, n \geq 1$ there is an action of the symmetric group \mathfrak{S}_{n} on $\operatorname{Fact}_{k}\left(c_{N}\right)$ which restricts to the permutation action on the set of smallest elements of each factor $\left\{t_{i, 1}\right\}_{i=1}^{n}$.

Proof. Such an action is known to exist for $k=1$, see [6,28]; we generalize it here. Consider the simple transposition $s_{i}=(i i+1)$, and a factorization $\mathbf{t}=t_{1} \cdots t_{n}$ in $\operatorname{Fact}_{k}\left(c_{N}\right)$. The action of s_{i} on is defined as follows: it acts as the Hurwitz operator σ_{i} if $t_{i, 1}<t_{i+1,1}$; as the Hurwitz operator σ_{i}^{-1} if $t_{i, 1}>t_{i+1,1}$; and as the identity if $t_{i, 1}=t_{i+1,1}$.

One verifies that s_{i} transposes the values of $t_{i, 1}$ and $t_{i+1,1}$: this uses the fact that the the product $t_{i} t_{i+1}$ is an increasing cycle. From this, one easily checks that one can extend this to a symmetric group action by showing that the defining relations of \mathfrak{S}_{n} hold.
5.2. k-Parking functions. We proved in Corollary 4.5 that the maximal chains of $\mathcal{N C} \mathcal{C}_{N ; k}$ are enumerated by N^{n-1}. In this section, we generalize Stanley's bijection in [28] between maximal chains in the noncrossing partition lattice and parking functions.

For $k, n \geq 1$ define a k-parking function of length n to be any permutation of an integer tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ satisfying $1 \leq a_{i} \leq k(i-1)+1$ for $i \in[n]$. We write $\mathcal{P}_{N ; k}$ for the set of all k-parking functions. We call $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathcal{P}_{N ; k}$ non-decreasing if $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$.

It is a routine application of the cycle lemma (and follows from [34, Theorem 1]) that the number of k-parking functions of length n is N^{n-1}. Note also that there is an obvious \mathfrak{S}_{n}-action on $\mathcal{P}_{N ; k}$, obtained by permuting the entries.

Theorem 5.3. For $k, n \geq 1$, the map from maximal chains in $\mathcal{N C}_{N ; k}$ to k-parking functions

$$
\begin{aligned}
\phi: \operatorname{Fact}_{k}\left(c_{N}\right) & \rightarrow \mathcal{P}_{N ; k} \\
t_{1} t_{2} \cdots t_{n} & \mapsto t_{1,1} t_{2,1} \cdots t_{n, 1}
\end{aligned}
$$

is a bijection.
Proof. We give a proof based on the $k=1$ case from [6]. It is enough to show that ϕ is a bijection between non-decreasing factorizations of c_{N} and non-decreasing k parking functions-indeed the map is clearly equivariant with respect to the symmetric group actions on parking functions and on factorizations from Lemma 5.2.

We show by induction on n that if $t_{1} t_{2} \cdots t_{n} \in \operatorname{Fact}_{k}\left(c_{N}\right)$ is non-decreasing, then $t_{1,1} t_{2,1} \cdots t_{n, 1}$ is a non-decreasing k-parking function. To prove this, we first claim that if $t_{1} t_{2} \cdots t_{n} \in \operatorname{Fact}_{k}\left(c_{N}\right)$ with $t_{1,1} \leq t_{2,1} \leq \cdots \leq t_{n, 1}$, then we must have that

$$
t_{n, 1}=t_{n, 2}-1=\cdots=t_{n, k+1}-k
$$

Since we may write the factorization

$$
\left.\begin{array}{rl}
t_{1} \cdots t_{n-1} & =c_{N} t_{n}^{-1} \\
& =(12 \cdots N)\left(t_{n, k+1} \cdots t_{n, 2} t_{n, 1}\right) \\
& =\left(\begin{array}{llll}
1 & 2 & \cdots & t_{n, 1} \\
t_{n, k+1}+1 & \cdots & N
\end{array}\right)\left(t_{n, 1}+1 \cdots t_{n, 2}\right) \cdots\left(t_{n, k}+1 \cdots\right.
\end{array} \cdots t_{n, k+1}\right), ~ l
$$

where the last factorization is into disjoint cycles, each of t_{1}, \ldots, t_{n-1} must have support in the set $\left\{1,2, \ldots, t_{n, 1}, t_{n, k+1}+1, \ldots, N\right\}$ (by $\left.[6,(F)]\right)$. Therefore, each cycle $\left(t_{n, i}+1, \ldots, t_{n, i+1}\right)$ is trivial, from which the claim follows.

By induction, $t_{1,1} t_{2,1} \cdots t_{n-1,1}$ is a non-decreasing k-parking function of length $n-1$. By assumption we have $t_{n-1,1} \leq t_{n, 1}$, and since $t_{n, 1}+k=t_{n, k+1} \leq k n+1$ we conclude $t_{n, 1} \leq k(n-1)+1$. Thus, $t_{1,1} t_{2,1} \cdots t_{n, 1}$ is a non-decreasing k-parking function of length n.

6. Cambrian Lattices

Let $\mathbf{u}=u_{1} u_{2} \cdots u_{n}$ and $\mathbf{v}=v_{1} v_{2} \cdots v_{n}$ be two reduced factorizations of c_{N} into $(k+1)$-cycles. We say that \mathbf{u} and \mathbf{v} are commutation equivalent if \mathbf{u} can be obtained from \mathbf{v} by a sequence of Hurwitz moves on adjacent cycles with disjoint support (so that each move acts as a commutation).

Theorem 6.1 ([14, Theorem 5.5]). The number of reduced factorizations of c_{N} in $(k+1)$-cycles up to commutation equivalence is the Fuß-Catalan number $\operatorname{Ran}(n, 2 k+$ $1,1)$.

Remark 6.2. This result was proven for $k=1$ by Eidswick and Longyear [11,20], while Springer solved a more general factorization problem in [26].

More recently, such factorizations for $k=1$ were considered in the context of the associahedron by McCammond [22], which led us to develop the combinatorics of this section.

There is another well-known set with this same cardinality.
Theorem 6.3 ([32]). The number of $(2 k+2)$-angulations of a convex $2 N$-gon is given by $\operatorname{Ran}(n, 2 k+1,1)$.

Following [22, Section 3], we now describe a bijection between the objects of Theorem 6.3 and Theorem 6.1.

Theorem 6.4. For $k, n \geq 1$ there is bijection between the set of reduced factorizations of $(12 \ldots N)$ in $(k+1)$-cycles up to commutation equivalence and the set of $(2 k+2)$ angulations of a convex 2 N -gon.

Proof. Let $\mathbf{t}=t_{1} t_{2} \cdots t_{n} \in \operatorname{Fact}_{k}\left(c_{N}\right)$. We visualize \mathbf{t} by drawing the convex hulls of the factors $t_{1}, t_{2}, \ldots, t_{n}$ on a convex polygon with N labeled vertices. Since is a minimal factorization of c_{N}, these convex hulls intersect pairwise in at most one vertex, and every vertex is contained in at least one convex hull. If we were to label these hulls with the order in which the factor appeared this would be a bijection-forgoing these labels records only the commutation class of the factorization: for every vertex at which at least two convex hulls meet, we can determine the order of the corresponding factors by taking the order counterclockwise around the vertex inside the polygon. This produces a partial order on the convex hulls, every linear extension of this partial order is a reduced factorization of c_{N}, and any two linear extensions differ only by a commutation of letters.

We now perform a procedure very similar to the Kreweras complement on these unlabeled convex hulls. Insert a vertex labeled \bar{a} in between a and $a+1$ (where we identify $N+1$ and 1). When two convex hulls intersect in a vertex a, there is a unique vertex \bar{b} that lies "opposite" to a between the convex hulls intersecting in a. Connect a and \bar{b} by a line segment, which we call a diagonal. Two diagonals are adjacent if they intersect a common convex hull. Removing the convex hulls leaves only the diagonals, which by construction form a $(2 k+2)$ angulation of a 2 N -gon.

Conversely, any diagonal connects an even and an odd node in a $(2 k+2)$ angulation of a convex $2 N$-gon. The convex hulls of the odd vertices in each $(2 k+2)$-gon now give the factors in a commutation class of a factorization from $\operatorname{Fact}_{k}\left(c_{N}\right)$.

Proposition 6.5. A Hurwitz move on a commutation-class of a reduced factorization corresponds to rotating a diagonal in the corresponding $(2 k+2)$-angulation one step.

Figure 4. Illustration of the bijection Θ from Theorem 6.4 for $n=5$ and $k=3$.

Proof. Let $\mathbf{t}=t_{1} t_{2} \cdots t_{n} \in \operatorname{Fact}_{k} c_{N}$, and choose $i \in[n-1]$ such that t_{i} and t_{i+1} do not commute. Then, there is a unique integer a which belongs to both t_{i} and t_{i+1}. Let \bar{b} be the unique vertex in between the convex hulls of t_{i} and t_{i+1} visible from a. Then, by construction, $b+1$ belongs t_{i} and b belongs to t_{i+1}.

Now, σ_{i} is obtained by removing a from t_{i} and adding b in the appropriate position (thus obtaining $t_{i+1}^{-1} t_{i} t_{i+1}$), and by exchanging the order of these two factors. Analogously, σ_{i}^{-1} is obtained by removing a from t_{i+1} and adding $b+1$ in the appropriate position (thus obtaining $t_{i} t_{i+1} t_{i}^{-1}$), and by exchanging the order of these two factors.

In view of the bijection Θ from Theorem 6.4 the $(k+2)$-angulations $\Theta(\mathbf{t})$ and $\Theta\left(\sigma_{i} \mathbf{t}\right)$ (resp. $\Theta\left(\sigma_{i}^{-1} \mathbf{t}\right)$) differ by only shifting a unique diagonal one step in counterclockwise (resp. clockwise) direction.

In [30, Section 6.6], a lattice was constructed parametrized with a Coxeter group W, a Coxeter element $c \in W$, and an integer m; the m-Cambrian lattice of W with respect to the orientation c. In the case where $W=\mathfrak{S}_{n}$, and c is given as the product of the simple transpositions in lexicographic order, the corresponding m-Cambrian lattice was realized combinatorially in [12, Chapter 3] as a lattice on $(m+2)$-angulations of a convex $(m n+2)$-gon, where the cover relations are given by rotating a diagonal one step clockwise. Let us refer to this lattice as the (m, n)-Cambrian lattice.

Figure 5. For $k=1$ and $n=3$, the (2,3)-Cambrian lattice realized as a lattice of reduced factorizations of ($\left.\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$ up to commutation equivalence (left), and realized as a lattice of quadrangulations of an 8-gon (right).

Corollary 6.6. The $(2 k, n)$-Cambrian lattice is isomorphic to the poset whose elements are the reduced factorizations of c_{N} up to commutation equivalence, with the cover relations given by Hurwitz moves.

Proof. Consider the $(2 k n+2)$-gon from the proof of Theorem 6.4, labeled clockwise by the numbers $1, \overline{1}, 2, \overline{2}, \ldots, N, \bar{N}$. We replace these labels as described in [12, Section 3.2] starting from \bar{N}. Under this substitution, the reduced factorization

$$
(1,2, \ldots, k+1) \cdot(k+1, k+2, \ldots, 2 k+1) \cdots(N-k, N-k+1, \ldots, N)
$$

corresponds to the $(2 k+2)$-angulation of the $(2 k n+2)$-gon that is minimal in the $(2 k, n)$-Cambrian lattice, and the reduced factorization

$$
(k+1, k+2, \ldots, 2 k+1) \cdot(2 k+1,2 k+2, \ldots, 3 k+1) \cdots(1,2, \ldots, k, N)
$$

corresponds to the $(2 k+2)$-angulation of the $(2 k n+2)$-gon that is maximal. The claim then follows by Theorem 6.4 and Proposition 6.5.

Figure 5 illustrates Corollary 6.6 for $n=3$ and $k=1$.

Figure 6. The poset $\Delta_{13 ; 3}$ inside Δ_{11}. It has $340=\operatorname{Ran}(4,4,2)$ order ideals.

7. Nonnesting Partitions

We also find analogues of the above construction in the world of nonnesting partitions. Consider the triangular poset defined by

$$
\Delta_{K} \stackrel{\text { def }}{=}(\{(a, b) \mid 1 \leq a<b \leq K\}, \leq)
$$

where $(a, b) \leq(c, d)$ if and only if $a \geq c$ and $b \leq d$.
We define $\Delta_{N ; k}$ to be the induced subposet of $\Delta_{N-(k-1)}$ that consists of all pairs (a, b) with $a \equiv 1(\bmod k)$. For $k=3$ and $n=4$ the poset $\Delta_{13 ; 3}$ is shown in Figure 6.

We call an order ideal of $\Delta_{N ; k}$ a k-indivisible nonnesting partition, and we write $N N_{N ; k}$ for their set; for $k=1$ we get the usual nonnesting partitions. We may equivalently view k-indivisible nonnesting partitions as north-east paths from $(0,0)$ to $(N, n+1)$ that stay above the boundary path $\mathfrak{b}_{N, k} \stackrel{\text { def }}{=} U R\left(U R^{k}\right)^{n}$ Here we use the letter U to indicate north-steps (U for up), and the letter R to indicate east-steps (R for right).

Let $\mathcal{P}_{N ; k}$ denote the set of all such paths. Recall that a k-Dyck path of height n is a north-east path from $(0,0)$ to $(k n, n)$ that stays weakly above the boundary path $\left(U R^{k}\right)^{n}$. Let us write $\mathcal{D}_{n}^{(k)}$ denote the set of all k-Dyck paths. It follows from [7] that the cardinality of $\mathcal{D}_{n}^{(k)}$ is the Fuß-Catalan number $\operatorname{Ran}(n, k+1,1)$.

Theorem 7.1. For $n, k \geq 1$, the set of order ideals of $\Delta_{N ; k}$ is in bijection with the set of pairs of k-Dyck paths whose heights sum to n. Consequently, we have $\left|N N_{N ; k}\right|=$ $\operatorname{Ran}(n, k+1,2)$.

Proof. In terms of paths, this bijection is a standard decomposition that we detail here for completeness. For $\mathfrak{p} \in \mathcal{P}_{N ; k}$ we say that \mathfrak{p} touches $\mathfrak{b}_{N ; k}$ at step i, if the

Figure 7. Illustration of the decomposition in the proof of Theorem 7.1 for $n=6$ and $k=5$. By construction, the path \mathfrak{p}_{1} never enters the light-gray boxes.
i-th east steps of \mathfrak{p} and $\mathfrak{b}_{N ; k}$ agree. Every path in $\mathcal{P}_{N ; k}$ touches $\mathfrak{b}_{N ; k}$ at steps $N-k+1, N-k+2, \ldots, N$.

Now let $\mathfrak{p} \in \mathcal{P}_{N ; k}$ and fix the smallest $i \in\{0,1, \ldots, n\}$ such that \mathfrak{p} touches $\mathfrak{b}_{N ; k}$ at step $i k+1$. We break \mathfrak{p} in two pieces, by removing the first north-step and the $(i k+1)$-st east-step. Let \mathfrak{p}_{1} and \mathfrak{p}_{2} denote the resulting paths. Clearly, \mathfrak{p}_{1} is a northeast path from $(0,1)$ to $(i k, i+1)$ that stays weakly above $R\left(U R^{k}\right)^{(i-1)} U R^{(k-1)}$, and \mathfrak{p}_{2} is a north-east path from $(i k+1, i+1)$ to $(N, n+1)$ that stays weakly above $\left(U R^{k}\right)^{n-i}$. Since i was chosen minimal \mathfrak{p}_{1} does not touch $\mathfrak{b}_{N ; k}$ at $j k+1$ for $j<i$, which means that \mathfrak{p}_{1} in fact stays above $\left(U R^{k}\right)^{i}$. Thus, $\mathfrak{p}_{1} \in \mathcal{D}_{i}^{(k)}$ and $\mathfrak{p}_{2} \in \mathcal{D}_{n-i}^{(k)}$. We have just established

$$
\begin{aligned}
\left|\mathcal{P}_{N ; k}\right| & =\sum_{i=0}^{n}\left|\mathcal{D}_{i}^{(k)}\right| \cdot\left|\mathcal{D}_{n-i}^{(k)}\right| \\
& =\sum_{i=0}^{n} \operatorname{Ran}(i, k+1,1) \cdot \operatorname{Ran}(n-i, k+1,1)
\end{aligned}
$$

Moreover, it is easily checked that for $n=1$ we have

$$
\left|\mathcal{P}_{k+1 ; k}\right|=2=\operatorname{Ran}(1, k+1,2) .
$$

By Lemma 4.1, we find that the numbers $\left|\mathcal{P}_{N ; k}\right|$ and $\operatorname{Ran}(n, k+1,2)$ satisfy the same recurrence relation with the same initial conditions, and must therefore be equal.

Figure 7 illustrates the decomposition from the proof of Theorem 7.1.
Corollary 7.2. For $n>2$ and $k \geq 1$ we have

$$
\operatorname{Ran}(n, k+1,2)=\sum_{i=1}^{n-1}(-1)^{(i+1)}\binom{(n-i) k+2}{i} \operatorname{Ran}(n-i, k+1,2)
$$

Proof. We have already argued that the order ideals of $\Delta_{N ; k}$ are in bijection with north-east path weakly above the boundary path $R\left(U^{k} R\right)^{n-1} U$. In view of [17, Theorem 10.7.1] the number of such paths is given by the determinant of the matrix

$$
M_{N ; k}=\left(\binom{(n-j) k+2}{j-i+1}\right)_{1 \leq i, j \leq n}
$$

By Laplace expansion we see that for $n>2$ the determinant of $M_{n, k}$ satisfes the recursion given in the statement, and Theorem 7.1 we conclude the result.

Remark 7.3. The set of k-Dyck paths of height n is classically in bijection with the set of $(k+1)$-ary trees with n non-leaf vertices. The bijections described in Theorem 1.2 and Theorem 7.1 thus extend to a bijection from $N C_{N ; k}$ to $N N_{N ; k}$.

8. Open Problems

8.1. EL-shellability. From a topological point of view, the lattice $\mathcal{N C}_{N ; 1}$ of noncrossing partitions is particularly interesting: its order complex is a wedge of Catalan-many spheres. This was established by Björner-Edelman [8, Remark 2] by showing that $\mathcal{N C}_{N ; 1}$ admits a particular edge-labeling. Such an EL-labeling induces a shelling of the order complex, from which the mentioned property follows.

We have attempted to extend this result to $\mathcal{N C}_{N ; k}$, but many natural choices for such a labeling did not have the desired properties. Nevertheless, we still make the following conjecture.
Conjecture 8.1. The poset $\mathcal{N C}_{N ; k}$ admits an EL-labeling. Consequently, the order complex of $\mathcal{N C}_{N ; k}$ with least and greatest element removed is homotopic to a wedge of spheres.
8.2. m-Divisible k-indivisible noncrossing partitions. In the spirit of $[1,10]$ we define a partial order on the set of multichains of $\mathcal{N C} \mathcal{C}_{N ; k}$; we leave its enumerative properties as conjectures. For an m-multichain $C=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ of $\mathcal{N C}_{N ; k}$ we define the delta sequence $\delta_{o}(C)=\left(d_{0} ; d_{1}, \ldots, d_{m}\right)$, where $d_{i}=x_{i}^{-1} x_{i+1}$ for $i \in[m+1]$, and where we denote by x_{0} the identity and by x_{m+1} the long cycle c_{N}.

For two such multichains C, C^{\prime} with $\delta_{0}(C)=\left(d_{0} ; d_{1}, \ldots, d_{m}\right)$ and $\delta_{0}\left(C^{\prime}\right)=$ $\left(d_{0}^{\prime} ; d_{1}^{\prime}, \ldots, d_{m}^{\prime}\right)$ set $C \leq_{k} C^{\prime}$ if and only if $d_{i} \geq_{\mathbf{k}} d_{i}^{\prime}$ for all $i \in[m]$. Let $\mathcal{N C}{ }_{N ; k}^{(m)}$ denote the corresponding poset.

Conjecture 8.2. The number of q-multichains of $\mathcal{N C}_{N ; k}^{(m)}$ is

$$
\mathcal{Z}_{\mathcal{N C}}^{N ; k}(m)(q+1)=\operatorname{Ran}(n, m k q+1, m q+1)=\frac{m q+1}{m N q+1}\binom{m N q+n}{n}
$$

Conjecture 8.3. The number of maximal chains in $\mathcal{N C}_{N ; k}^{(m)}$ is $m^{n} N^{n-1}$.
Observe that $\mathcal{N C}_{N ; k}^{(m)}$ has several minimal elements when $m>1$. Let $\widehat{\mathcal{N C}}_{N ; k}^{(m)}$ denote the poset that is created from $\mathcal{N C}_{N ; k}^{(m)}$ by adding a least element. Let $\overline{\mathcal{N C}}_{N ; k}^{(m)}$ denote the poset that is created from $\mathcal{N C}_{N ; k}^{(m)}$ by merging all minimal elements into one.

Conjecture 8.4. We have

$$
\mu\left(\widehat{\mathcal{N C}}_{N ; k}^{(m)}\right)=(-1)^{n-1} \operatorname{Ran}(n, k m, m-1)=(-1)^{n-1} \frac{m-1}{N m-1}\binom{N m-1}{n}
$$

as well as

$$
\begin{aligned}
\mu\left(\overline{\mathcal{N C}}_{N ; k}^{(m)}\right) & =(-1)^{n}(\operatorname{Ran}(n, k(m+1), m)-\operatorname{Ran}(n, k m, m-1)) \\
& =(-1)^{n}\left(\frac{m}{N(m+1)-1}\binom{N(m+1)-1}{n}-\frac{m-1}{N m-1}\binom{N m-1}{n}\right) .
\end{aligned}
$$

For $k=1$, the first equality in Conjecture 8.4 follows from [1, Theorem 3.7.7], and the second equality follows from [2, Theorem 3].
8.3. Other types. We give some conjectures for extended the combinatorics of this article to type B. Fix simple reflections $s_{0}, s_{1}, \ldots, s_{k n-1}$ in the hyperoctahedral group of type $B_{k n}$ with $\left(s_{0} s_{1}\right)^{4}=1$. Analogously to the symmetric group, we group the transpositions of the factorization $c=s_{0} \cdot s_{1} \cdots \cdot s_{k n-1}$ of the linear Coxeter element as

$$
\mathbf{t}=\left(s_{0} \cdots s_{k-1}\right) \cdot\left(s_{k} \cdots s_{2 k-1}\right) \cdots\left(s_{k n-k} \cdots s_{k n-1}\right)
$$

Conjecture 8.5. The Hurwitz orbit of \mathbf{t} contains $k^{n-1} n^{n}$ elements.
We can take elements that occur as prefixes of the factorizations in the Hurwitz orbit of \mathbf{t} to form the type $B_{n} k$-indivisible noncrossing partitions.

Conjecture 8.6. There are $2\binom{n k+n-1}{n-1}$ type $B_{n} k$-indivisible noncrossing partitions. The zeta function of the restriction of the absolute order to those elements is $q\binom{n k(q-1)+n-1}{n-1}$.

Acknowledgements

N.W. thanks Jon McCammond for pointing him to [22], Louis-François PrévilleRatelle and Guillaume Chapuy for helpful conversations, and Christian Stump for providing TikZ code to draw noncrossing partitions. N.W. was partially supported by a Simons collaboration grant.

References

[1] Drew Armstrong, Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups, Memoirs of the American Mathematical Society 202 (2009).
[2] Drew Armstrong and Christian Krattenthaler, Euler Characteristic of the Truncated Order Complex of Generalized Noncrossing Partitions, The Electronic Journal of Combinatorics 16 (2009).
[3] Barbara Baumeister, Kai-Uwe Bux, Friedrich Götze, Dawid Kielak, and Henning Krause, NonCrossing Partitions (2019), available at arXiv:1903.01146.
[4] Philippe Biane, Minimal Factorizations of a Cycle and Central Multiplicative Functions on the Infinite Symmetric Group, Journal of Combinatorial Theory (Series A) 76 (1996), 197-212.
[5] Philippe Biane, Some Properties of Crossings and Partitions, Discrete Mathematics 175 (1997), 41-53.
[6] Philippe Biane, Parking Functions of Types A and B, The Electronic Journal of Combinatorics 9 (2002).
[7] Michael T. L. Bizley, Derivation of a New Formula for the Number of Minimal Lattice Paths from $(0,0)$ to $(k m, k n)$ Having just t Contacts with the Line $m y=n x$ and Having no Points above this Line; and a Proof of Grossman's Formula for the Number of Paths which May Touch but Do not Rise above this Line, Journal for the Institute of Actuaries 80 (1954), 55-62.
[8] Anders Björner, Shellable and Cohen-Macaulay Partially Ordered Sets, Transactions of the American Mathematical Society 260 (1980), 159-183.
[9] A. Robert Calderbank, Philipp J. Hanlon, and Robert W. Robinson, Partitions into even and odd Block Size and some unusual Characters of the Symmetric Groups, Proceedings of the London Mathematical Society 3 (1986), no. 2, 288-320.
[10] Paul H. Edelman, Chain Enumeration and Non-Crossing Partitions, Discrete Mathematics 31 (1980), 171-180.
[11] Jennifer A. Eidswick, Short Factorizations of Permutations into Transpositions, Discrete Mathematics 73 (1989), no. 3, 239-243.
[12] Mike Freeze, Combinatorial Descriptions of the m-Cambrian Lattices, Master's Thesis, The University of New Brunswick, 2016.
[13] Ian P. Goulden and David M. Jackson, The Combinatorial Relationship between Trees, Cacti and Certain Connection Coefficients for the Symmetric Group, European Journal of Combinatorics 13 (1992), 357-365.
[14] Ian P. Goulden and David M. Jackson, Symmetrical Functions and Macdonald's Result for Top Connexion Coefficients in the Symmetrical Group, Journal of Algebra 166 (1994), no. 2, 364-378.
[15] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994.
[16] Marcel Herzog and Kenneth B. Reid, Representation of Permutations as Products of Cycles of Fixed Length, Journal of the Australian Mathematical Society (Series A) 22 (1976), 321-331.
[17] Christian Krattenthaler, Lattice Path Enumeration, Handbook of Enumerative Combinatorics, 2015, pp. 589-678.
[18] Christian Krattenthaler and Thomas W. Müller, Decomposition Numbers for Finite Coxeter Groups and Generalised Non-Crossing Partitions, Transactions of the American Mathematical Society 362 (2010), 2723-2787.
[19] Sergei K. Lando and Alexander K. Zvonkin, Graphs on Surfaces and their Applications, Vol. 141, Springer, Berlin, 2004.
[20] Judith Q. Longyear, A Peculiar Partition Formula, Discrete Mathematics 78 (1989), no. 1-2, 115-118.
[21] Jon McCammond, Noncrossing Partitions in Surprising Locations, American Mathematical Monthly 113 (2006), 598-610.
[22] Jon McCammond, Noncrossing Hypertrees (2017), available at arXiv:1707.06634.
[23] Henri Mühle and Philippe Nadeau, A Poset Structure on the Alternating Group Generated by 3-Cycles (2018), available at arXiv:1803.00540.
[24] Bruce E. Sagan, Shellability of Exponential Structures, Order 3 (1986), no. 1, 47-54.
[25] Rodica Simion, Noncrossing Partitions, Discrete Mathematics 217 (2000), 397-409.
[26] Colin Springer, Factorizations, Trees, and Cacti, Proceedings of the Eighth International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC), University of Minnesota, 1996, pp. 427-438.
[27] Richard P. Stanley, Exponential Structures, Studies in Applied Mathematics 59 (1978), no. 1, 73-82.
[28] Richard P. Stanley, Parking Functions and Noncrossing Partitions, The Electronic Journal of Combinatorics 4 (1997).
[29] Richard P. Stanley, Enumerative Combinatorics, Vol. 1, 2nd ed., Cambridge University Press, Cambridge, 2011.
[30] Christian Stump, Hugh Thomas, and Nathan Williams, Cataland: Why the Fuss? (2018), available at arXiv:1503.00710.
[31] Garrett S. Sylvester, Continuous-Spin Ising Ferromagnets, Ph.D. Thesis, Massachusetts Institute of Technology, 1976.
[32] Nikolaus von Fuß, Solutio Quaestionis quot Modis Polygonum n Laterum in Polygona m Laterum per Diagonales Resolvi queat, Nova Acta Academiae Scientiarum Imperialis Petropolitanae IX (1791), 243-251.
[33] Michelle L. Wachs, Poset Topology: Tools and Applications, Geometric Combinatorics, 2007, pp. 497615.
[34] Catherine H. Yan, Generalized Parking Functions, Tree Inversions, and Multicolored Graphs, Advances in Applied Mathematics 27 (2001), 641-670.

Institut für Algebra, Technische Universität Dresden, Zellescher Weg 12-14, 01069 Dresden, Germany.

Email address: henri.muehle@tu-dresden.de
Université de Lyon, CNRS , UMR5208, Institut Camille Jordan, F-69622 Villeurbanne, France
Email address: nadeau@math.univ-lyon1.fr
University of Texas at Dallas.
Email address: nathan.f.williams@gmail.com

[^0]: Key words and phrases. noncrossing partition, Hurwitz action, parking function, Cambrian lattice, nonnesting partition.

[^1]: ${ }^{1}$ In other words, a k-indivisible noncrossing partition can be broken into a pair of k-divisible noncrossing partitions.

