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ABSTRACT: In this study, we investigate, using direct numerical simulation, the motion of a small bubble in a horizontal 
microchannel filled with a liquid containing surfactants. In particular, we study the combined effect of surfactants and bubble 
deformability on the bubble shape, bubble-liquid relative velocity, velocity field in the liquid, liquid velocity on the gas-liquid 
interface, and surfactant distribution on the interface. The level set method is used to capture the gas-liquid interface. The 
surfactant transport equation on the gas-liquid interface is solved in an Eulerian framework and is coupled to an equation 
describing the transport of surfactants inside the liquid phase. The Marangoni stress, induced by surfactant concentration 
gradients, is computed using the continuum surface force mode!. The simulation results give insights into the complexity of the 
coupling of the different phenomena controlling the dynamics of the studied system. For instance, the results show that for 
values of the capillary number much smaller than unity, that is, for spherical bubbles, the bubble velocity decreases as the bubble 
diameter increases. Moreover, surfactants tend to decrease significantly the bubble velocity, when compared with a bubble with 
a clean surface. Indeed, they accumulate at a convergent stagnation point/ circle on the bubble surface and deplete at a divergent 
stagnation point/ circle. As a consequence, the velocity of the liquid adjacent to the bubble is reduced in between the convergent 
and divergent stagnation points/circles because of Marangoni stresses. It is shown that regarding the bubble-liquid relative 
velocity, the bubble behaves as a rigid sphere when the Langmuir number is larger than unity, at least for the range of 
parameters explored in this study. For values of the capillary number of the order of unity, the bubble can take a "bullet shape". 
In this case, the bubble velocity increases as the bubble diameter increases. This increase of the bubble-liquid relative velocity is 
linked to a drastic change in the liquid flow structure near the bubble. Surfactants are swept to the rear of the bubble and have 
Jess influence on the bubble dynamics than for spherical bubbles. Finally, it is shown that increasing the amount of surfactants 
adsorbing to the surface eventually leads to the bursting of the bubble. 

• INTRODUCTION

Investigation of microscale flows is relevant for many 
microfluidic applications such as microheat exchangers, 
microabsorbers, and microextractors. 1'

2 In recent years, bubble 
microabsorbers were developed for industrial applications, and 
consequently, the motion of bubbles in microchannels was 
investigated thoroughly. In such a gas-liquid microscale flow, 
inertial effects are often negligible while surface tension and 
viscous forces dominate the system. The relative importance of 
inertial to viscous forces is assessed by the means of the 
Reynolds number: Re= p]id/µ, where p, µ, ]1, and d are the 
density and viscosity of the liquid, the mean flow velocity, and 
the bubble diameter, respectively. The Reynolds number 

characterizing these microscale flows is often close or smaller 
than unity. The relative importance of viscous forces to surface 
tension forces is assessed by the me ans of the capillary number: 
Ca = J,µ/<J, where <J is the surface tension of the gas-liquid 
interface. 

Among the investigations regarding the motion of bubbles in 
microchannels, the dynamics of bubbles with a volume 
equivalent diameter, d, larger than the channel eiuivalent
diameter, dhJ has received considerable attention. -7 The 
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bubble equivalent diameter is defined as d = (6V/π)1/3, where
V is the bubble volume. For example, it was shown that the
mass transfer in those systems is considerably enhanced due to
recirculation of the liquid in between bubbles, promoting
mixing.3 On the other hand, the motion and dissolution of
small bubbles in microchannels, that is, bubbles with d/dh < 1,
has received less attention. Cubaud et al. (2012) studied
experimentally and globally the dissolution of spherical bubbles
within microchannels.8 Feng (2010) studied the effect of Re
and Ca on the dynamics of an isolated small bubble in a
horizontal channel.9 Khodaparast et al. (2015) studied, with
experiments and numerical simulations, the motion of bubbles
inside horizontal channels.10 In their work, Re and Ca were
varied (in the ranges 10−3 < Re < 103 and 10−4 < Ca < 10−1)
and the shape and the velocity of the bubble, Vb, was
monitored. For d/dh < 1, they observed that Vb/Jl decreases as
d/dh is increased. The same behavior was observed by
Kurimoto et al. (2013) for buoyancy driven bubbles in vertical
pipes.11 Stan et al. (2011) studied the influence of Archimedes’
thrust on the vertical position of spherical bubbles within a
horizontal and straight rectangular microchannel.12 They also
observed that, for neutrally buoyant bubbles characterized by
small Re and moderate Ca, the equilibrium position of the
bubble is near the symmetry axis of the channel. At larger Re,
they observed that inertial migration forces shift this position
off the horizontal symmetry plane of the channel.
When surfactants are introduced in the liquid, they may

adsorb on the bubble surface and alter the surface tension of
the gas−liquid interface. Consequently, an inhomogeneous
distribution of the surfactants on the interface causes
Marangoni stresses, influencing the dynamics of the
bubble.13−17 This property of surfactants make them widely
used in microfluidics to stabilize emulsions or to favor the
formation of bubbles or droplets.18,19 Regarding the dynamics
of small bubbles translating along microchannels, Mikaelian et
al. (2015) performed direct numerical simulations of spherical
bubbles, that is, for Ca → 0, translating along a horizontal
channel.20 They investigated the effect of bubble confinement,
through varying the parameter d/dh, on the bubble velocity.
They considered two limiting situations to model the presence
of surfactants. They imposed a zero shear stress on the gas−
liquid interface to model the case of a clean interface. The
presence of surfactants was accounted for by imposing a no slip
condition on the gas−liquid interface (i.e., by imposing that
the bubble behaves as a rigid sphere). They established
correlations to calculate the ratio of the bubble velocity to the
mean flow velocity, Vb/Jl, as a function of d/dh, for the case of a
clean interface

i

k

jjjjjjj
i
k
jjjjj

y
{
zzzzz

y

{

zzzzzzz
V
J

d
d

1 exp 1.83b

l h

5

= + −
(1)

and for a bubble behaving as a rigid sphere
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These correlations were established in the range 0.15 ≤ d/dh
≤ 0.75. Note that Rivero Rodriguez and Scheid (2018)
extended the explored numerical range to 0 < d/dh ≤ 0.9
and used polynomial fittings to express Vb/Jl as a function of d/
dh.
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The effect of the surfactants on the velocity of the liquid
adjacent to the bubble surface depends on their distribution on
the gas−liquid interface. This distribution can be determined
by solving the complete set of coupled partial differential
equations governing the transport of surfactants on the bubble
surface and in the liquid. In a microchannel bubbly flow,
because of the bubble confinement created by the channel
walls, the distribution of surfactants on the gas−liquid interface
is expected to be fundamentally different from their
distribution in the case of a bubble rising in an infinite liquid
medium. To the best of our knowledge, the distribution of
surfactants on the surface of a small bubble (i.e., d/dh < 1)
translating in a horizontal microchannel has not been studied
yet. Furthermore, the effect of the bubble deformability (i.e.,
the effect of Ca) on Vb/Jl in the presence of surfactants has not
been studied in previous works.
Accordingly, in this study, we investigate, by direct

numerical simulations, the combined effect of the bubble
deformability, the presence of surfactants, and the bubble
confinement on the dynamics of small bubbles (i.e., d/dh < 1)
transported by a liquid in a horizontal microchannel. We
consider the presence of surfactants by simulating their
transport on the surface of the bubble and inside the liquid
phase. We compute the Marangoni stress induced by their
inhomogeneous distribution on the surface. The numerical
code used for this study is the JADIM code, which has been
developed to simulate dispersed two phase flows.14,22−25 Our
analysis emphasizes on several parameters characterizing the
system: the bubble shape, the ratio of the bubble velocity to
the mean flow velocity, Vb/Jl, the drag coefficient of the bubble,
Cd, the fluid velocity tangent to the bubble surface, Vs/Vb, and
the surfactant distribution on the interface, Γ. Our goal is to
highlight and quantify the key phenomena governing the
studied system.

■ PROBLEM STATEMENT

Geometry. We consider an axisymmetric bubble of
diameter d moving in a horizontal and rectilinear microchannel
with a circular cross section (referred to as a cylindrical
microchannel in this work) of diameter dh, as sketched in
Figure 1. The channel has a length L and a pressure difference
Δp > 0 is imposed between the left and the right boundaries of
the domain. The bubble is centered in the channel. Rivero
Rodriguez and Scheid (2018) have recently shown that
centered bubbles are stable provided that d/dh is larger than
0.85 or that the Ohnesorge number Oh Ca/Re= is larger or

Figure 1. Axisymmetric bubble of density ρd and viscosity μd
immersed in a viscous liquid of density ρc and viscosity μc inside a
cylindrical microchannel of length L and diameter dh. The unit vector
normal to the gas−liquid interface, n, and the unit vector tangent to
the gas−liquid interface, t, are sketched in this figure.



equal to 0.2 for bubbles with d/dh < 0.85. In addition, they
showed that regardless of the value of Oh, Vb/Jl and the bubble
shape are not affected by Re provided that Re ≲ 8. In this
study, a particular attention is held to ensure that Oh ≥ 0.2, so
that the bubble can be considered as centered. The liquid and
the bubble surface contain surfactants with initial concen
trations C∞ and Γ0, respectively.
Equations and Modeling Assumptions. Under the

assumptions that (i) the fluids are Newtonian and incompres
sible, (ii) there is no gas−liquid mass transfer through the
interface, and (iii) the flow is isothermal, the velocity field v
and the pressure p satisfy the classical one fluid formulation of
the Navier−Stokes equations:26

v 0∇· = (3)

v
v v T n n

t
p

1 1
( )

1
I Iρ ρ

σ
ρ

δ
ρ

σδ∂
∂

+ ·∇ = − ∇ + ∇· ̅ − ∇· − ∇

(4)

where T = μ(∇v + (∇v)T) is the viscous stress tensor, ρ, μ, σ
are the density, dynamic viscosity, and surface tension,
respectively, n is a unit vector normal to the interface,
arbitrarily chosen pointing toward the liquid phase (see Figure
1), and δI is the Dirac distribution associated with the bubble−
liquid interface.
The transport equations of the surfactants in the liquid

phase and on the gas−liquid interface are given by14,27

v
C
t

C D C( )c c
∂
∂

+ ·∇ = ∇· ∇
(5)

v
t

D S( )s s s s
2∂Γ

∂
+ ∇· Γ = ∇ Γ + Γ (6)

where C is the surfactant concentration in the liquid phase, Γ is
the surfactant concentration on the gas−liquid interface, Dc
and Ds are the diffusion coefficients of the surfactants in the
liquid phase and along the interface, respectively, vc is the
velocity field in the liquid phase, vs is the projection of vc on
the tangent to the interface, ∇s = ((I − (n ⊗ n))·∇) is the
surface gradient operator,28 and SΓ is the flux of surfactants
from the liquid phase to the interface because of the
adsorption/desorption of the surfactants, i.e., SΓ =
(Dcn·∇C)|I, where the subscript I denotes the bubble−liquid
interface. It is given by14,29

S k C k( )a I d= Γ − Γ − ΓΓ ∞ (7)

where ka and kd are adsorption and desorption kinetic
constants, respectively, and CI is the surfactant concentration
in the liquid in contact with the interface.
It is assumed that the surface tension depends on the

surfactant concentration on the interface according to an
equation of state derived from the Langmuir adsorption
isotherm30
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where R is the ideal gas constant, T is the absolute
temperature, σ0 is the surface tension of the clean interface,
and Γ∞ is the maximum packing concentration of surfactants
on the interface.
Considering the boundary conditions, periodicity is imposed

between the inlet and the outlet of the domain, simulating
therefore a train of bubbles, a no slip condition with zero

transfer rate is imposed on the wall and a symmetry condition
is imposed on the symmetry axis:
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where nw is the unit vector normal to the channel wall, na is the
unit vector normal to the symmetry axis, (z,r) are the axial and
radial coordinates, respectively (see Figure 1), and zleft and
zright are the axial coordinates localizing the left and right
boundaries of the computational domain, respectively.

Dimensional Analysis. The governing equations are
solved in their dimensional forms and the results are expressed
in terms of relevant dimensionless parameters. Let and
be appropriately defined length and velocity scales, respec
tively. The number of dimensional parameters, 16, minus the
number of dimensions, 4, results in 12 dimensionless numbers
allowing the characterization of the problem. Two of them
characterize the geometry of the system, whereas 10 others
characterize its dynamics. These 10 dimensionless numbers are
defined as follows

Re Ca m, , ,c

c

c

0

d

c

d

c

ρ
μ

μ
σ

ρ
ρ
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μ
μ

= = = =
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,

RT k C
k C

k C

D Ds
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a
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∞

∞

(13)

where Re, Ca, E, La, Da, α, Pe, Pes, m, and λ are the Reynolds
number, capillary number, elasticity number, Langmuir
number, Damkohler number, dimensionless adsorption rate,
Peclet number based on the bulk surfactant diffusivity, Peclet
number based on the interfacial surfactant diffusivity, ratio of
the gas viscosity (μd) to the liquid viscosity (μc), and ratio of
the gas density (ρd) to the liquid density (ρc), respectively.
The velocity scale is set equal to the mean velocity of the

monophasic liquid Poiseuille flow that would have been
generated by the imposed pressure gradient, Δp/L:

J pd L/(32 )lref h
2

cμ= = Δ , and the length scale is set as
d= . This length scale sets the two dimensionless numbers

characterizing the geometry: d/dh and L/d. It has been verified
that the difference between Jlref and the actual value of Jl
obtained in the simulations varies between 0.8 and 2.8%,
confirming that the chosen scale is appropriate for the setup
considered in this work. The capillary number, Langmuir
number, and ratio of the bubble equivalent diameter to the
tube diameter are varied in the range 10−2 < Ca < 1, 0 < La <
10, and 0.15 < d/dh < 0.75, respectively. The other parameters



are set to values usually encountered for surfactants in bubbly
flows: Da = 0.1, E = 0.12, α = 0.1, Pes = ∞.16,31 Furthermore,
the parameters m and λ are set to m = 10−3 and λ = 10−2,
which are typical values encountered in bubbly flows. To
satisfy the criterion Ca/Re 0.2≥ , the value of Re is either set
equal to 1 if Ca ≥ 0.04 or to Ca/0.04 if Ca < 0.04. As discussed
earlier, the bubble shape and Vb/Jl do not depend on Re for Re
≲ 8. The value of Pe sets the thickness of the surfactant
diffusion boundary layer around the bubble. A particular
attention has to be paid to capture the surfactant concentration
gradients within this boundary layer. As a consequence, the
value of Pe is set to a moderate value, Pe = 500, to avoid too
large computational costs. The value of L/d is increased
gradually, starting from 4, until Vb/Jl becomes independent of
L/d.

■ NUMERICAL PROCEDURE
The numerical code used for this study is the JADIM code
developed to perform local analyses of dispersed two phase
flows. To study the dynamics of a small bubble in a
microchannel in the presence of surfactants, we have
introduced the resolution of the surfactant transport equation
on the gas−liquid interface and in the liquid in the level set
(LS) modulus of JADIM.23,32 The distribution on the interface
of the Marangoni stress induced by the inhomogeneous
distribution of the surfactants on the gas−liquid interface is
computed using the continuum surface force (CSF) model. In
JADIM, the implemented LS method consists in an Eulerian
description of each phase on a fixed grid, the interface between
the two phases being calculated using the transport equation of
the signed distance function to the interface, ϕ. The two fluids
are assumed to be Newtonian and incompressible, with no
phase change.
Level-Set Method. The location of each phase with

respect to the interface is given by the signed distance function
to the interface (or LS function), ϕ(x,t). This distance function
obeys to the following transport equation33

v
t

0
ϕ ϕ∂

∂
+ ·∇ =

(14)

ϕ is defined as being positive in the gas phase and negative in
the liquid phase. A classical redistanciation equation is applied
to the LS function at each time step

sign( )( 1) 0
ϕ
τ

ϕ ϕ∂
∂

+ |∇ | − =
(15)

where τ is a fictitious time. The sign function is34

t
x

xsign( ( , ))
2 2

ϕ ϕ

ϕ
=

+ Δ (16)

where Δx is the grid size.
The normal to the interface, n, and the interface curvature, κ,

are computed with the LS function as follows:

n
ϕ
ϕ

= − ∇
∇ (17)

and
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The tangent to the interface, t (see Figure 1), is calculated as

( )t ,
r z

1= − −
ϕ

ϕ ϕ
∇

∂
∂

∂
∂ . The volume fraction of the gas phase

in a given computational cell, F, is computed from the LS
function using a smooth Heaviside function
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where x2ϵ = Δ is the half numerical thickness of the
interface. The local viscosity and density, μ and ρ, are
calculated using an arithmetic mean of the properties of each
phase: μ = μc(1 − F) + μdF, ρ = ρc(1 − F) + ρdF.

Transport of the Surfactants in the Bulk of the Liquid
and on the Gas−Liquid Interface. In an Eulerian
description of each phase on a fixed grid and for
incompressible fluids, the following equivalent form of eq 6
is used34−36

v n v n n n n
t

D SD( ) s
2 2κ∂Γ̃

∂
+ ·∇Γ̃ − Γ̃ · ∇ · = [∇ Γ̃ − ∇Γ̃· − · Γ̃· ] + Γ̃

(20)

where D2Γ̃ is the Hessian matrix of Γ̃, SΓ = kaCI(Γ∞ − Γ̃) −
kdΓ̃ and Γ̃ is a scalar field defined on the whole computational
domain; Γ̃ is the result of the extrapolation of Γ from the
interface toward the liquid and gas phases. Accordingly, the
following partial differential equation (PDE) is solved after
each physical time step of the procedure, with the initial
condition Γ̃*(x,τ = 0) = Γ̃(x,t)34

sign( ) 0
τ

ϕ ϕ
ϕ

∂Γ̃*
∂

+ ∇
∇

·∇Γ̃* =
(21)

This method allows calculating the time evolution of Γ, a
quantity associated with a moving and deforming surface, in a
fixed coordinate system.34 As pointed out by Xu and Zhao
(2003), it has been observed that five iterations are sufficient
when solving eq 21, for Γ̃* to reach its converged values with
respect to τ. Indeed, we have checked that the relative variation
of the values of Γ̃* is less than 0.5% when the number of
fictitious time step is increased from 4 to 8.
Following Muradoglu and Trigvason (2008) and Hayashi

and Tomiyama (2012), eq 5 is solved under a no flux
boundary condition at the interface: (Dcn·∇C)|I = 0.
Consequently, the boundary condition of eq 5, SΓ =
(Dcn·∇C)|I, is included in the bulk transport equation as an
interfacial source term SΓδI

v
C
t

C D C S( )c Iδ∂
∂

+ ·∇ = ∇· ∇ − Γ
∼

(22)

In this technique, an implicit assumption is made that all of
the surfactant transfer from the liquid phase to the gas−liquid
interface takes place in a thin layer adjacent to the interface. In
other words, the total amount of surfactants adsorbed from the
liquid to the interface is distributed along this thin layer and
added as an interfacial source term in the transport equation.
The no flux condition is enforced by extrapolating C from the
interface to the gas phase, solving the following PDE at each
physical time step, with the initial condition C*(x,τ = 0) =
C(x,t)



C
Csign( ) 0

τ
ϕ ϕ

ϕ
∂ *
∂

+ ∇
∇

·∇ * =
(23)

In this study, eq 23 was solved performing five fictitious time
step. It has been verified that the computed values of C* are
not modified by more than 0.5% if more iterations are
performed. The time scheme used for solving eqs 14, 15, and
20−23 is a third order Runge−Kutta scheme. The spatial
scheme used for the advective terms in the different equations
is the conservative form of the fifth order WENO scheme,
whereas a second order centered scheme is used for the other
terms.
Equation 8 is slightly modified to avoid negative values of

the surface tension15 and is rewritten in terms of Γ̃
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where ϵ0 = 0.05. Equation 24 is representative of the variation
of the surface tension of an interface with its surfactant
concentration. For instance, in the case of stretching liquid
bridges, it was shown that σ reaches a plateau when Γ
approaches Γ∞.
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Navier−Stokes Equations Solver. The system of eqs 3
and 4 is discretized on a staggered grid using a finite volume
method. All spatial derivatives are discretized using second
order centered schemes. The time scheme used to compute
the advective terms in the Navier−Stokes equations is a third
order Runge−Kutta scheme, whereas the viscous stresses are
computed using a semi implicit Crank−Nicolson method. The
incompressibility is ensured using a projection method.
Further details on the numerical algorithms concerning the
spatial discretization, as well as the time advancement
procedure, can be found in Magnaudet el al. (1995) or in
Legendre and Magnaudet (1998).24,38

The CSF model is used to compute the capillary term in eq
339

n n n
V

F S( ) d
s

I cell∫σ
ρ

δ σ
ρ

ϕ
ϕ

∇· ≈ − ̅ ∇ ∇
∇

·
(25)

where ncell is the unit vector normal to the faces of the cells
centered on the velocity points, σ is the local value of σ at the
center of these cells, dS is the area of the cell faces, and s
denotes a surface integral. The Marangoni stress is also
computed at the center of the cells centered on the velocity
points
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where δ(ϕ)I is a smoothed Dirac function, which allows
spreading the effect of the Marangoni stress over the numerical
thickness of the interface
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Grid. A uniform grid with square cells is used for the
computations. At least four cells are placed inside the
concentration boundary layers. The thickness of the boundary
layers on the channel wall and on the gas−liquid interface (δw

and δb) are estimated as d Pe/bδ ≈ and d Pe/w hδ ≈ . The
dimensions of the square cells are deduced such that at least
four cells are placed in the concentration boundary layer
around the bubble: z r d Pe/(4 )Δ = Δ = .

■ VALIDATION OF THE NUMERICAL PROCEDURE
The LS modulus of JADIM has been validated previously.5,23

Specific validation tests regarding surfactant induced Mar
angoni stress have been performed and are reported in the
Supporting Information. Those tests aim to validate the
numerical implementation of (i) the different terms in the
equation describing the surfactant transport on the gas−liquid
interface, (ii) the source/sink term in the equation describing
the exchanges of surfactants between the bulk and the
interface, and (iii) the computation of the Marangoni stress.
Namely those tests include

1 (i) A surface expansion test where the implementation
of the term Γ̃n·∇v·v in eq 20 is validated,

2 (i) A surface advection test where the implementation of
the term v·∇Γ̃ in eq 20 is validated,

3 (i) A surface adsorption test where the implementation
of the term (kaCI(Γ∞ − Γ̃) − kdΓ̃)δI in eq 20 is
validated,

4 (i) A diffusion test where the implementation of the
term Ds[∇2Γ̃ − κ∇Γ̃·n − n·D2Γ̃·n] in eq 20 is validated,

5 (ii) A bulk exchange test where the implementation of
the term (kaCI(Γ∞ − Γ̃) − kdΓ̃)δI in eq 22 is validated,

6 (iii) A test to validate the computation of the Marangoni
stress, that is, ∇sσ in eq 3.

For each test case (i, ii, and iii), the convergence of the
simulation is investigated. As a result, the overall convergence
order of the solver is third order in time and near second order
in space. All these tests are available in the Supporting
Information. In this section, the validation of the whole
numerical procedure is done using a rising bubble as a test
case.
A bubble is initialized at the center of an axisymmetric

domain. The domain and the boundary conditions are the
same as those introduced in Figure 1, with L/d = 20, dh/d =
16, and Δp/L = ρcg, where g is the gravity acceleration (i.e.,
gravity acts along the negative z axis (see Figure 1) and,
consequently, the bubble rises due to its density difference with
the surrounding liquid). The bubble interface is initially clean,
that is, Γ̃(x,t = 0) = 0. The surfactant concentration is initially
uniform in the liquid C(x,t = 0) = C∞. The problem is
governed by the following dimensionless numbers: E, La, Da,
α, Pe, Pes, ρd/ρc, μd/μc, Eo, and Mo, where Eo = ((ρc − ρd)
gd2)/σ is the Eotvos number and Mo = ((ρc − ρd)gμc

4)/
(ρc

2σ3) is the Morton number. The parameters are fixed to E =
0.5, Da = 10, α = 20, Pe = 10, Pes = 100, m = 0.1, λ = 0.025, Eo
= 1, Mo = 0.1, and La is set to 0 or 1. The terminal bubble
velocity computed with JADIM is compared with values
computed by Tasoglu et al. (2008), who solved the same
problem using a finite difference/front tracking method.15 For
the chosen parameters, a clean buoyant bubble is spherical.40

The terminal values of the bubble Reynolds number, Reb =
ρcVbd/μc, obtained by Tasoglu et al. (2008) for a clean bubble
(La = 0) and a contaminated one (La = 1) are summarized in
Table 1 together with the values obtained using JADIM. As it
can be seen in Table 1, the values computed with JADIM are
in excellent agreement with those computed by Tasoglu et al.



(2008). The convergence rate of Reb with respect to the mesh
size for La = 1 was determined to be about 1.5.
Simulations were also performed varying Eo, Mo, and La.

The drag force acting on the bubble, Fd, has been computed
using the cylindrical coordinate system (r,z) as follows

F z r z p z r z z r z r z r z z2 ( ( , ( )) ( ( , ( )) ( , ( ))) ( )) ( ) d
z

z

d nt I c I nn I I I
r

f∫π τ τ= − − + ′

(28)

where zr and zf are the axial coordinates localizing the back and
the front of the bubble, respectively, rI(z) is the radial

coordinate localizing the gas−liquid interface, r r
zI

d
d

I′ = , τnt = (T·
n)·t is the tangent viscous stress, τnn = (T·n)·n is the normal
viscous stress, and pc is the periodic component of the pressure
inside the liquid (i.e., p p p Lz/c = + Δ ). To evaluate Fd, the
values of τnt and τnn are first calculated at the center of the
computational cells and then interpolated on the gas−liquid
interface.
The drag coefficient of the spherical bubble, based on the

terminal bubble velocity and its diameter, is then computed for
each simulation: Cd = Fd/(0.5ρcπ(d/2)

2Vb
2). In Figure 2, drag

coefficients computed with JADIM are compared with
correlations predicting Cd as a function of Reb for a clean
bubble41
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and for a rigid sphere42
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(30)

It can be observed in Figure 2 that varying La from 0 to 1
allows obtaining a bubble rising with a drag coefficient
characterizing a bubble with a clean interface (for La = 0) or
characterizing a rigid sphere (for La = 1).

■ RESULTS
In this section, the dynamics of a small bubble inside a
horizontal microchannel is studied. Initially, that is, at t = 0 s,
the bubble is at the center of the computational domain, as
sketched in Figure 1. The liquid surrounding the bubble
contains surfactants with an initially homogeneous concen
tration, C∞. The independency of the bubble terminal velocity
on the initial surfactant concentration on the bubble−liquid
interface, Γ0, has been verified. To illustrate this statement, the
instantaneous bubble velocity, Vb, is presented in Figure 3 as a

function of the time t, for different values of Γ0, as compared to
the equilibrium value La La/(1 )eqΓ = Γ +∞ . For Γ0 = 0, it can
be observed that the bubble first accelerates. Then, as
surfactants adsorb on the bubble−liquid interface, Vb begins
to decrease until it reaches its terminal value. When Γ0 is
increased, the bubble reaches its terminal velocity at an earlier
time. It is observed that this terminal velocity is not affected by
the value of Γ0. Therefore, in all of the numerical simulations
presented in this work, the initial concentration of surfactants
on the bubble−liquid interface is set to the equilibrium value:
Γ0 = Γeq. In this way, the effective simulation time is reduced.
The mass of surfactants is monitored on the bubble surface

as M t S t( ) d ( )
S t( )

∫= Γ̃ , following the method of Xu and Zhao

(2002). The simulations are stopped when the relative
variation of M(t) and of the bubble velocity, Vb, is less than
1%. Unless explicitly mentioned, all of the results presented in
this section relate to a stationary state of the studied system.
In the first part of this section, the dynamics of a small

spherical bubble, that is, Ca ≪ 1, inside a horizontal
microchannel is studied. The second part deals with the
shape and the flow field around a deformable bubble, in the
absence of surfactants. Finally, the combined effect of
surfactants and bubble deformability on the bubble dynamics
is analyzed.

Spherical Bubbles. Figure 4 presents the steady state
surface concentration field of the surfactants, Γ̃ (presented at
the vicinity of the bubble surface only), bulk concentration
field of the surfactants, C, and velocity streamlines in a
reference frame attached to the bubble mass center, for Re =
0.25, Ca = 10−2, d/dh = 0.75, La = 0 (Figure 4a), La = 0.1

Table 1. Comparison between the Values of the bubble
Terminal Reynolds Number, Reb, Obtained in This Study
and the Ones Obtained by Tasoglu et al. (2008)

La 0 1
Tasoglu et al. (2008) 0.241 0.164
present study 0.239 0.161

Figure 2. Drag coefficient, Cd, of a buoyant bubble as a function of its
Reynolds number (terminal value). Squares, pentagons, and triangles
are values of the drag coefficient of the bubble computed with JADIM
for values of the Eotvos number and Morton number equal to (Eo =
1; Mo = 0.1), (Eo = 1; Mo = 10−5), and (Eo = 0.1; Mo = 10−9),
respectively. Blue, black, and red symbols are values corresponding to
La = 0, La = 0.1, and La = 1, respectively. The red and blue solid lines
give values of the drag coefficient predicted by the correlations given
in eqs 30 and 29, respectively.

Figure 3. Vb as a function of the time for different values of the initial
concentration of surfactants on the gas−liquid interface: Γ0 = 0, Γ0 =
1/2Γeq, and Γ0 = Γeq, for Ca = 0.01, d/dh = 0.75, and Re = 0.25.



(Figure 4b), La = 1 (Figure 4c), and La = 10 (Figure 4d). The
bubble moves from the left to the right in a laboratory
reference frame. As expected, for Ca = 10−2 and for Re ≈ 1, the
bubble is spherical. As it can be observed in Figure 4, the
structure of the liquid flow in the microchannel appears to
differ significantly from the one observed when a bubble rise in
a liquid of infinite extend. More specifically, it is observed that
the flow structure generates a convergent stagnation point at
the front of the bubble (point A in Figure 5) and a divergent

stagnation point at the rear of the bubble (point B in Figure 5).
Moreover, the flow generates a convergent stagnation circle on
the back half of the bubble side (C in Figure 5) and a divergent
stagnation circle on the front half of the bubble side (D in
Figure 5). Consequently, on the surface, the surfactants
accumulate near the convergent point/circle and are depleted
near the divergent point/circle. This is clearly observed in
Figure 4.
The surfactants reduce the surface tension and, conse

quently, their inhomogeneous distribution on the bubble−
liquid interface induces surface tension gradients that are
expected to alter the fluid velocity along the interface. In Figure
6a−d, the dimensionless surfactant concentration on the
bubble surface, Γ̃/Γ∞, the dimensionless tangent shear stress
on the bubble surface, τntd/(Vbμc), the dimensionless
surfactant concentration inside the liquid adjacent to the
bubble surface, C/C∞, and the dimensionless gas−liquid
relative velocity on the bubble surface, Vs/Vb, where Vs =
(Vb − v·t) are plotted as functions of the axial coordinate, z, for

different values of La and with Re = 0.25, Ca = 0.01, and d/dh
= 0.75. Note that the origin of the axial coordinate, z = 0, is at
the back of the bubble. As described previously, the
recirculating flow in between bubbles causes surfactants to
accumulate near the convergent stagnation point/circle on the
bubble surface and to deplete near the divergent stagnation
point/circle. This is confirmed by Figure 6a. Notably, for La =
0.1, the adsorption flux of surfactants toward the bubble
surface is not sufficient to maintain surfactants around the
divergent stagnation circle on the front half of the bubble side
(point D in Figure 5) and, consequently, the bubble surface is
almost clean of surfactants near this divergent stagnation circle.
The tangent shear stress distribution on the bubble surface is
shown in Figure 6b. It can be observed that the shear stress
increases as La is increased. The shear stress is positive on the
side of the bubble and becomes negative at the back and at the
front of the bubble. At the front of the bubble, near the
convergent stagnation point on the bubble surface (point A in
Figure 5), surfactants accumulate. On the contrary, near the
divergent stagnation circle on the front half of the bubble
(point D in Figure 5), surfactants are depleted. This creates a
Marangoni stress directed toward the back of the bubble, as
sketched in Figure 5, leading to the negative values of τnt at the
front of the bubble for La > 0 (see Figure 6b). A Marangoni
stress directed toward the back of the bubble is also generated
between C and B, for La > 0 (see Figure 6b). On the other
hand, as shown in Figure 6b, on the side of the bubble, for La
> 0, a Marangoni stress induced in between the divergent
stagnation circle and the convergent one is directed toward the
front of the bubble, as sketched in Figure 5. It is observed in
Figure 6b that the tangent shear stress reaches a maximum on
the side of the bubble, where the gap between the bubble and
the channel wall is the smallest. For La = 0.1, as discussed
previously, the surfactant adsorption toward the interface is
small when compared with the advective flux of the surfactant
from the divergent stagnation circle to the convergent
stagnation one. As a consequence, the shear stress on the
bubble surface does not increase significantly on the front part
of the bubble when La is increased from 0 to 0.1. It is observed
in Figure 6b that the tangent shear stress, τnt, becomes
independent of La when La > 1. It should be noted that τntd/
(Vbμc) reaches its maximum value at locations on the bubble
surface where ∇Γ̃ is the highest. For instance, the shear stress
profile on the bubble surface presented in Figure 6b, for La =
0.1, exhibits a maximum at z ≈ 0.75 mm. At that location on
the bubble surface, Γ̃/Γ∞ exhibits an important gradient, as it
can be observed in Figure 6a, for La = 0.1. This can be

Figure 4. Contour plots of (top) the surfactant concentration field on the bubble surface, Γ̃, and (bottom) the bulk surfactant concentration field,
C. Velocity streamlines are drawn in a reference frame translating with the bubble. The bubble moves from the left to the right. (a) La = 0, (b) La =
0.1, (c) La = 1, and (d) La = 10.

Figure 5. Spherical bubble inside a microchannel. The bubble goes
from left to right. Red dots depict a divergent stagnation point/circle
on the bubble surface, where consequently the surface tension is high.
Green dots depict a convergent stagnation point/circle on the bubble
surface where the surface tension is low. Velocity vectors, in black, are
drawn in a reference frame attached to the bubble mass center. Red
arrows depict the direction of the Marangoni stress.



rationalized by writing the tangent shear stress balance at the
interface, neglecting the viscosity of the gas phase: τnt = ∇sσ·t,
where ∇sσ can be linked to the gradient of Γ̃ through eq 24. It
might be expected that the Marangoni stresses induced by the
interaction between the flow structure and surfactants tend to
immobilize (in a reference frame attached to the bubble) the
bubble surface for large values of La. This is characterized in
Figure 6d, where Vs/Vb is plotted against the axial coordinate,
z. When La = 0, the surface velocity is positive on the side of
the bubble and changes sign near the front and the back of the
bubble because of the recirculating flow. When La is increased
to 0.1, the fluid velocity is significantly reduced on the side of
the bubble. Moreover, Vs is also significantly modified on the
front/back of the bubble. For instance, Vs/Vb reaches almost
the value of 0 in between the convergent stagnation point and
the divergent stagnation circle on the front half of the bubble
side (between A and D in Figure 5): the Marangoni stress
induced in between the convergent stagnation point and the
divergent stagnation circle tends to immobilize the interface, in
this region, when La is increased from 0 to 0.1. As La is
increased to 1, Vs approaches 0 everywhere on the bubble
surface: the Marangoni stress created in between the
convergent stagnation circle (C in Figure 5) and the divergent
one (D in Figure 5) leads almost to the interface
immobilization.
The surfactants induce an immobilization of the bubble

surface (in a reference frame attached to the bubble) through
the mechanisms discussed in the previous paragraph. Thus, it
might be expected that the surfactants have a significant impact
on the velocity of the spherical bubble. An important
parameter in microfluidic bubbly flow is the ratio of the
bubble velocity, Vb, to the mean flow velocity, Jl. Mikaelian et
al. (2015) established correlations, valid for an isolated

spherical bubble (i.e., for Ca → 0), to calculate this ratio as
a function of d/dh, for two limiting situations:20 (i) They
imposed a stress free condition on the bubble surface to model
a situation without surfactants. They proposed eq 1 to
calculate Vb/Jl in this limiting situation. (ii) They imposed a
no slip condition at the bubble surface to model the influence
of surfactants. They proposed eq 2 to calculate Vb/Jl in this
situation. The ratio Vb/Jl is presented in Figure 7 as a function
of d/dh, for different values of La and for Ca = 0.01 and Re =
0.25. Equations 1 and 2 are represented in this figure as the
blue and red solid lines, respectively. Squares give values
calculated with JADIM for La = 0, 0.1, 1, and 10. It is observed
that the two limiting cases are well reproduced by our

Figure 6. (a) Dimensionless surfactant concentration on the bubble surface, Γ/Γ∞, (b) dimensionless shear stress tangent to the bubble surface,
τntd/(Vbμc), (c) dimensionless surfactant concentration inside the liquid adjacent to the bubble surface, C/C∞, and (d) dimensionless liquid
velocity tangent to the bubble surface, Vs/Vb, as functions of the axial coordinate, z, for different value of La; z = 0 is at the back of the bubble. The
other dimensionless numbers are fixed to Re = 0.25, Ca = 0.01, and d/dh = 0.75.

Figure 7. Ratio of the bubble velocity to the mean flow velocity, Vb/Jl,
as a function of the ratio of the bubble diameter to the channel
diameter, d/dh. Blue and red solid lines are the correlations
established numerically by Mikaelian et al. (2015) for a stress free
and an immobile interface, respectively. Squares give values obtained
with JADIM, for different values of La and for Re = 0.25 and Ca =
0.01.



simulations, for La = 0 and La = 1. An intermediate value of
Vb/Jl is obtained for La = 0.1. In line with the observations in
the previous paragraph, Vb/Jl becomes independent of La for
La > 1: the value of Vb/Jl that characterizes a bubble behaving
as a rigid sphere is obtained for La > 1. It is worth pointing out
that, as seen in the previous section, a spherical bubble rising in
a stagnant liquid of infinite extent containing surfactants
behaves also as a rigid sphere regarding its velocity when La ≥
1. The analysis of the velocity field for the different cases shows
that recirculations at the front and at the back of the bubble are
present for all of the cases presented in Figure 7, except for the
one with La = 0 and d/dh = 0.15. This is coherent with the
results of Mikaelian et al. (2015).

Deformable Bubble without Surfactant. In this
subsection, the bubble shape, the bubble drag coefficient, Cd,
and the ratio of the bubble velocity to the mean flow velocity,
Vb/Jl, are analyzed without surfactants. Accordingly, Ca is
varied between 0.01 and 1, with La = 0. The bubble shape is
characterized by plotting the (r,z) coordinates of the bubble
interface as well as by computing the curvature of its interface:
κ = −∇·(∇ϕ/∇ϕ). Results regarding the bubble shape are
presented in Figure 8a−c, for d/dh = 0.45, 0.6, and 0.75,
respectively. The red (Ca = 0.01 and Re = 0.25), blue (Ca =
0.1 and Re = 1), and green (Ca = 1 and Re = 1) symbols give
values of the (r,z) coordinates of the bubble interface. It is
observed that the shape of the bubble is nearly spherical for Ca

Figure 8. (first row) Radial position of the interface as a function of z. (second row) Normalized curvature, κd/2, as a function of z. (third row)
Dimensionless normal viscous stress on the bubble surface, τnnd/(Vbμc), as a function of z. (fourth row) Dimensionless liquid pressure on the
bubble surface, pcd/(Vbμc), as a function of z. The different columns correspond to (first column) d/dh = 0.45, (second column) d/dh = 0.6 and
(third column) d/dh = 0.75, respectively. Red dots: Ca = 0.01, blue dots: Ca = 0.1, green dots: Ca = 1. These results have been obtained for a clean
interface, that is, La = 0.



= 0.01 and Ca = 0.1, for all values of d/dh. However, when Ca
= 1, the bubble is elongated and takes a “bullet shape”. This
shape is further characterized in Figure 8d−f, where the
curvature, κ, of the gas−liquid interface is plotted as a function
of the axial coordinate, z. The curvature κ is normalized by the
curvature of a spherical bubble that has the same volume: 2/d.
When Ca = 0.01, the curvature of the bubble is constant and
equal to 2/d, regardless of the value of d/dh, as depicted by the
red dots in Figure 8d−f. When Ca = 0.1, κ is not constant
along the bubble interface. For example, the dimensionless
curvature profile shown in Figure 8f for Ca = 0.1 (Re = 1, d/dh
= 0.75) exhibits a value larger than one at z ≈ 0.5 mm (κd/2 ≈
1.5) and a value smaller than one at z ≈ 1.5 mm (κd/2 ≈
0.75). At the front of the bubble, κd/2 is also larger than one
and at the back, it is smaller than one. For Ca = 1 (Re = 1, d/dh
= 0.75, Figure 8f), the normalized curvature is reduced all
along the body of the bubble except near its front and its back.
The dimensionless normal viscous stress on the interface,

τnnd/(Vbμc), is plotted against the axial coordinate, z, in Figure
8g−i, for d/dh = 0.45, 0.6, and 0.75, respectively. Note that a
negative value of τnnd/(Vbμc) indicates a stress directed from
the liquid toward the bubble interface (i.e., “pushing” the
interface). On the contrary, a positive value of τnnd/(Vbμc)
indicates a normal stress directed from the interface toward the
liquid phase (i.e., “pulling” the interface). It is observed that
τnnd/(Vbμc) is below zero near the divergent stagnation circle
on the bubble surface on the front half of the bubble. On the
contrary, τnnd/(Vbμc) is higher than zero near the convergent
stagnation circle on the bubble surface, on the back half of the
bubble. Finally, in Figure 8j−l), the periodic component of the
dimensionless pressure in the liquid on the interface, pcd/
(Vbμc), is plotted as a function of z. It is observed that −pc and
τnn roughly follow the same trends, −pc being significantly
smaller than τnn for the cases reported here. The normal stress
balance at the bubble−liquid interface is written, for moderate
values of Re, neglecting the viscosity of the gas phase, in
dimensionless form, as

p p
Ca

1
d c nn

b
τ κ̅ − ̅ + ̅ ≈ ̅

(31)

where pd = pdd/(Vbμc) is the periodic component of the
dimensionless pressure in the gas on the interface, pc = pcd/
(Vbμc), τnn = τnnd/(Vbμc), κ = κd, and Cab = μcVb/σ0. Equation
31 shows that as pd is almost constant, an increase of pc or a
decrease of τnn leads to a decrease of κ. Reciprocally, a decrease
of pc or an increase of τnn leads to an increase of κ. This can be
observed by comparing Figure 8d,g, e,h, and f,i. The

recirculating flow in between bubbles generates points (or
circles) on the bubble surface where the normal viscous stress
is locally negative, near the divergent stagnation point (or
circle), or positive, near the convergent stagnation point (or
circle). Thus, eq 31 shows that as Cab (or similarly Ca) is
increased, the inhomogeneous distribution of the normal
viscous stress (and pressure) on the bubble surface, generated
by the recirculating flow, causes the curvature of the bubble
surface to decrease near the divergent stagnation point (or
circle) and to increase near the convergent stagnation point (or
circle). This leads to the elongation of the bubble as Ca is
increased.
Because of the recirculating flow in between bubbles, the

bubble elongates as Ca is increased in contrast to the case of a
bubble rising in a stagnant liquid of infinite extent where the
bubble is flattened. Thus, the drag coefficient of the bubble
based on its equivalent diameter and on the bubble liquid
relative velocity, Cd = 4Fd/(1/2(Vb − Jl)

2πd2) is expected to be
affected by the deformability of the bubble in a particular way.
The drag force acting on the bubble, Fd, is computed as
presented in the validation section. Cd is plotted in Figure 9a as
a function of Ca, for d/dh = 0.15, 0.45, 0.6, and 0.75,
respectively. Note that the values of the drag coefficient
computed with JADIM are in good agreement with the ones
deduced from calculations obtained by Rivero Rodriguez and
Scheid (2018). It is observed that, in general, the drag
coefficient of the bubble decreases as d/dh decreases. It is
observed that Cd is almost constant with respect to Ca when d/
dh < 0.45. However, for larger values of this ratio, Cd decreases
when Ca gets larger than 0.1. To understand this effect, the
radius of the projection of the bubble on a plane perpendicular
to the z axis, rp, is plotted against Ca in a small inset in Figure
9a. As the capillary number is increased from 0.1 to 1, rp
decreases from d/2 to less than 0.8d/2. As discussed in the
previous paragraph, the recirculating flow in between bubbles
causes the bubble to elongate for Ca ≈ 1. As the bubble
elongates, rp decreases leading to the reduction of the drag
force acting on the bubble. This partly explains why Cd
decreases when Ca is increased, as Cd is defined using the
equivalent diameter, d. An alternative drag coefficient can be
defined using πrp

2 as the reference surface: Cd* = Fd/(0.5(Vb −
Jl)

2πrp
2). This alternative drag coefficient is plotted as a

function of Ca in Figure 9b. It is observed that Cd and Cd*
exhibits the same kind of evolution with respect to Ca, though
Cd* is slightly less affected by Ca than Cd. This indicates that
the change in the distribution of the pressure and of the
normal viscous stress on the bubble surface induced when
increasing Ca (see Figure 8g−l)) is mainly responsible for the

Figure 9. (a) Drag coefficient, Cd = 4Fd/(0.5(Vb − Jl)
2πd2), as a function of Ca, for La = 0 and for different values of d/dh. (b) Drag coefficient

based on the effective projection area of the bubble on a plane perpendicular to the main flow direction, Cd* = Fd/(0.5(Vb − Jl)
2πrp

2), as a function
of Ca, for La = 0 and for different values of d/dh.



reduction of Cd. Notably, it is shown in the next section that
the convergent stagnation circle on the front half of the bubble
disappears when Ca is increased beyond Ca ≈ 0.5.
Cd is reduced as Ca is increased, especially for values of d/dh

> 0.6. Thus, the effect of Ca on Vb/Jl is expected to be
significant, especially for values of d/dh > 0.6. In Figure 10, Vb/

Jl is plotted as a function of d/dh, for Ca = 0.01, Ca = 0.1, Ca =
0.5, and Ca = 1. Vb/Jl decreases as d/dh increases when Ca =
0.01 and Ca = 0.1. However, when Ca = 0.5 or Ca = 1, it is
observed that Vb/Jl increases and takes a value larger than 2 as
d/dh is increased. Furthermore, at a constant value of d/dh,
increasing Ca leads to an increase of Vb/Jl. For instance, when
d/dh = 0.75, Vb/Jl increases from 1.6 to 2.2 when Ca is
increased from 10−2 to 1.
Deformable Bubble with Surfactants. In this sub

section, the combined effect of La and Ca on the bubble
dynamics is analyzed for d/dh = 0.75. The steady state
surfactant concentration on the surface, Γ̃, (presented at the
vicinity of the bubble surface only) and in the liquid, C, are
presented in Figure 11, for d/dh = 0.75, Re = 1, Ca = 0.5, (a)
La = 0, (b) La = 0.1, (c) La = 1, and (d) La = 10. It is
observed that the bubble is elongated and that recirculations
have disappeared when compared with the cases presented in
Figure 4. As a consequence, only two stagnation points remain
on the bubble surface, one at the front of the bubble and one at
the back. Surfactants are swept to the back of the bubble and
accumulate there, leading to a clean interface on the front half
of the bubble. Consequently, surfactants desorb from the

surface at the back of the bubble leading to their accumulation
in the liquid adjacent to the back of the bubble. As La is
increased from 0.1 to 1, more surfactants are adsorbed on the
bubble surface and, consequently, more surfactants accumulate
at the back of the bubble. This leads to a slight invagination of
the back of the bubble. When La = 10, it appears that the
invagination proceeds toward the front of the bubble and
finally leads to the bursting of the bubble. Because of the
change in the flow structure, the divergent stagnation circle on
the bubble surface, where the liquid pressure, pc, and the
normal viscous stresses, τnn, were contributing to increase the
drag coefficient of the bubble (see Figure 8), disappears. This
might explain the diminution of the drag coefficient Cd* when
Ca is increased (see Figure 9) and the consequent increase in
Vb/Jl.
The results presented in Figure 11 show that the

deformation of the bubble, when Ca = 0.5, has a strong
influence on the structure of the flow near the bubble, when
compared with a spherical bubble. This, in turn, has a
significant influence on the distribution of the surfactants on
the surface of the bubble. To give more insights into this, Γ̃/
Γ∞ is plotted as a function of the axial coordinate, z, with z = 0
at the back of the bubble, in the first column of Figure 12, for
Ca = 0.04 (first row), Ca = 0.1 (second row), and Ca = 0.5
(third row), for d/dh = 0.75 and for different values of La. For
Ca = 0.04, the bubble is almost spherical, and as mentioned
previously, it is observed that the surfactants accumulate near
the convergent stagnation point/circle on the bubble surface
and are depleted near the divergent stagnation point/circle.
When Ca is equal to 0.1, a similar distribution of the
surfactants on the surface of the bubble is observed, but with
steeper gradients. Finally, when Ca is equal to 0.5, it is
observed that the surfactants are totally swept to the back of
the bubble.
Increasing Ca induces a change in the flow field around the

bubble and a consequent change in the surfactant distribution
on the bubble surface. Thus, it might be expected that the
tangent shear stress distribution on the bubble surface, τntd/
(Vbμc), is also strongly affected by an increase of Ca. On the
second column of Figure 12, τntd/(Vbμc) is presented as a
function of the axial coordinate, z, for different values of Ca
and La. As Ca increases from 0.04 to 0.1, the surfactant
concentration decreases near the divergent stagnation circle on
the front part of the bubble side, causing a decrease of the
shear stress at that location, for La = 1 and La = 10. As Ca is
increased further, all of the surfactants accumulate at the back

Figure 10. Vb/Jl as a function of d/dh, for Ca = 0.01, Ca = 0.1, Ca =
0.5, and Ca = 1 depicted by squares, triangles, stars, and circles,
respectively. There is no surfactant in the system. The blue solid line
is the correlation established numerically by Mikaelian et al. (2015),
predicting the value of Vb/Jl for a bubble having a clean surface.

Figure 11. Contour plots of the surfactant concentration field, Γ̃, (upper part) and the bulk surfactant concentration field, C (lower part), for Ca =
0.5, d/dh = 0.75 and (a) La = 0, (b) La = 0.1, (c) La = 1, and (d) La = 10. Velocity streamlines are drawn in a reference frame translating with the
bubble velocity. The bubbles move from left to right. Note that the bubble sketched in (d) has burst and might not have reached its terminal shape.



of the bubble leading to a clean surface on the most part of the
bubble, except at the back.
The tangent shear stress distribution on the bubble surface is

expected to affect the interface velocity. On the third column
of Figure 12, Vs/Vb is presented as a function of z, for different
values of Ca and La. It is observed that, in general, increasing
La leads to the reduction of Vs/Vb. It is reduced at locations
where the shear stress on the bubble surface is high. For
example, the shear stress profile observed for Ca = 0.04 and La
= 0.1 (black dots in Figure 12b) exhibits a peak at z ≈ 0.5 mm,
where the concentration profile of surfactants exhibits an
important gradient (black dots in Figure 12a). The influence of
La on Vs/Vb is reduced for Ca = 0.5 (see Figure 12i). As
mentioned previously, as Ca is increased, surfactants are swept

to the back of the bubble and consequently have a smaller
influence on Vs/Vb.
The drag coefficient of the bubble, Cd = 4Fd/(0.5ρc(Vb −

Jl)
2πd2), is also expected to be less influenced by the presence

of surfactants when Ca is increased. The effect of Ca and La on
the drag coefficient of the bubble is analyzed in Figure 13a,
where Cd is plotted as a function of Ca for several values of La
and for d/dh = 0.75. It is observed that, in general, the drag
coefficient of the bubble increases with La. As it might have
been expected, when Ca is larger than approximately 0.5, the
drag coefficient of the bubble becomes almost independent of
La. As for Cd, Vb/Jl becomes also independent of La when Ca
is larger than 0.5, as it can be observed in Figure 13b.

Figure 12. (first column) Surfactant concentration on the surface of the bubble, Γ̃/Γ∞, (second column) viscous shear stress along the tangent to
the bubble surface, τntd/(Vbμc), and (third column) ratio of the liquid velocity tangent to the bubble surface to the bubble velocity, Vs/Vb. (first
line) Ca = 0.04, (second line) Ca = 0.1 and (third line) Ca = 0.5.

Figure 13. (a) Drag coefficient as a function of Ca for d/dh = 0.75 and different values of La. (b) Vb/Jl as a function of Ca for d/dh = 0.75 and
different values of La.



The bubble velocity and the drag coefficient becomes
independent of La as Ca reaches values close to unity, for d/dh
= 0.75. At this point, surfactants accumulate at the back of the
bubble and reduce locally the surface tension of the gas−liquid
interface. This causes the back of the bubble to deform, as
illustrated in Figure 11b. Increasing La further causes the back
of the bubble to invaginate. This can even cause the bubble to
burst, as presented in Figure 14. This unsteady bursting

phenomenon reported in Figure 14 was also observed in
previous experimental and numerical studies that considered
the effect of viscosity ratio (λ) on the shape and bursting
behavior of drops.43,44

In the previous section, eq 31 was used to discuss the change
in bubble shape with Ca. The same equation can be used to
discuss the effect of La on the bubble shape. As seen in the
previous paragraph, as Ca reaches values close to 0.5,
surfactants are swept to the back of the bubble and
consequently reduce locally the surface tension of the gas−
liquid interface. If eq 31 is evaluated at the back of a bubble (a
bubble such as the one in Figure 11a,b or c), with κ ≈ 2/rc,
where rc is the radius of curvature of the back of the bubble, an
expression of rc can obtained

r
d

p p Ca
2

( )c
d c nn b

0τ
=

̅ − ̅ + ̅
σ
σ (32)

In contrast to eq 31, the presence of the surfactant is
considered, and consequently, the effective surface tension of
the gas−liquid interface appears in eq 32. The periodic
component of the pressure inside the gas can be estimated as
pd = 4σ/d. In the dimensionless form, it gives pd = 4/(Cabσ0/
σ). Thus, eq 32 yields
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It should be noted that when Cab → 0, the bubble is
spherical and rc = d/2 is recovered from eq 33. At the back of
the bubble, −pc + τnn is negative (see Figure 8). Thus, as Cab
increases, the normal stresses at the back of the bubble cause rc
to increase, and consequently the back of the bubble flattens.
As it is increased further, rc might change sign if |(−pc + τnn)
Cabσ0/σ| > 4. This causes the back of the bubble to invaginate.
As it can be seen in eq 33, the same effect can be caused by
surfactants accumulating at the back of the bubble because the
presence of surfactants increases σ0/σ. Equation 33 also shows
that the increase of Cab and/or σ0/σ can lead to the bubble
bursting if rc approaches negative values close to zero. In
Figure 15, rc is plotted as a function of Ca, for σ/σ0 = 0 and 0.5.

In this figure, −pc + τnn is imposed to −3. −pc + τnn = −3
characterizes the normal viscous stresses at the back of a
bubble with d/dh = 0.75 and Ca = 0.01 and 0.1 (see Figure
8i,l). The blue and red vertical lines depict the critical value of
Ca from which the back of the bubble begins to invaginate. In
Figure 15, it is visible that increasing Ca causes the back of the
bubble to flatten and to invaginate. If there are surfactants in
the system, 0 < σ0/σ < 1. The case of σ/σ0 = 0.5 is presented in
Figure 15. In this case, for Ca → 1, rc approaches 0 (being
negative) indicating a bubble with a severe invagination on its
back. In this case, the bubble probably bursts.
As an example, a diagram presenting the different regimes

obtained in the simulations for d/dh = 0.75 is presented in
Figure 16. In this plot, three distinct regions can be identified,

corresponding to classical bubble motion with Vb/Jl < 2,
bubble with velocity larger than the maximum velocity in the
liquid, that is, Vb/Jl > 2, and unstable bubble, leading to burst.
This figure illustrates a transition between a bursting bubble
and a stable bubble (red solid line in Figure 16). As it can be
observed, this transition depends upon the bubble deform
ability (i.e., upon Ca), and surfactants (i.e., upon La). This
transition might also depend on other nondimensional
numbers characterizing the surfactants. However a complete
parametric study is beyond the scope of this paper.

■ CONCLUSION
We performed a numerical study to investigate the effect of
soluble surfactants and deformability on the dynamics of a
small bubble translating in a horizontal microchannel of
circular cross section. We use an LS method to capture the
gas−liquid interface. The capillary pressure jump and the

Figure 14. Contours of the bubble at different time for La = 10, d/dh
= 0.75, and Ca = 0.5.

Figure 15. rc as a function of Ca for different values of σ/σ0. The
dashed vertical lines depict vertical asymptotes.

Figure 16. Bubble stability diagram for d/dh = 0.75. Black, blue, and
red symbols represent a simulation where Vb/Jl < 2, Vb/Jl > 2, and the
bubble bursts, respectively.



Marangoni stress are computed using the CSF mode!. The 
transport of surfactants on the bubble surface is dealt in an 
Eulerian framework and is coupled to its transport in the 
liquid. 

ln line with previous studies, we observed that when the 
bubble is spherical, the liquid recirculates in between bubbles. 
As a consequence, surfactants accumulate on convergent 
stagnation point/ circle on the bubble surface and deplete on 
divergent stagnation point/circle. For a Langmuir number 
larger than 1, this causes the bubble interface to get almost 
immobilized in between convergent and divergent stagnation 
points/circles (in a reference frame attached to the bubble) 
because of Marangoni stresses induced by surface tension 
gradients; regarding its velocity relative to the liquid, the 
bubble behaves as a solid sphere when La > I. The ratio of the 
bubble velocity to the mean flow velocity decreases as the ratio 
of the bubble diameter to the tube diameter increases. 
Furthermore, when the bubble is spherical, it is shown that 
surfactants can increase the drag coefficient of the bubble by a 
factor of 2. 

When the bubble is allowed to deform, that is, when the 
capillary number is of order of unity, the curvature of its 
interface is reduced near the divergent stagnation circle on the 
front part of the bubble side, where the viscous stress normal 
to the bubble surface is high. This is due to the recirculating 
flow, which "hits" the bubble at this location, and locally 
increases this stress. Consequently, it reduces the curvature of 
the bubble interface. Therefore, the bubble elongates as Ca is 
increased. As the bubble elongates, it is shown that its drag 
coefficient decreases due to the modification of the flow 
structure around the bubble. Consequently, the ratio of its 
velocity to the mean liquid velocity, Vb/]1, increases and can be 
larger than 2. For d/dh = 0.75, if Ca becomes larger than 
approximately 0.5, recirculations in between bubbles disappear 
and surfactants are swept toward the back of the bubble. They 
have Jess influence on the drag coefficient of the bubble and on 
its velocity than for a spherical bubble. Increasing the amount 
of surfactant adsorbing to the bubble surface can eventually 
cause the back of the bubble to invaginate and possibly the 
bubble to burst 
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