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A Domain Decomposition Method for
a Geological Crack

O. Bodart!, A. Chorfi2, and J. Koko?

1 Introduction

The computational cost is a key issue in crack identification or propagation
problems. One of the solutions is to avoid re-meshing the domain when the
crack moves by using a fictitious domain method [6]. We consider a geologi-
cal crack in which the sides do not pull apart. To avoid re-meshing, we pro-
pose an approach combining the finite element method, the fictitious domain
method, and a domain decomposition approach. We first extend artificially
the crack to split the domain into two subdomains with a nonpenetration
condition (negative relative normal displacement) on the crack, a prescribed
homogeneous displacement jump condition (continuous displacement) on the
fictitious crack. We obtain a convex linearly constrained minimization prob-
lem with a quadratic cost function. We use a (primal-dual) interior points
method, see e.g.[3, sect 16.6],[7], for the numerical realization.

The paper is organized as follows. In Section 2 we present the model prob-
lem, followed by the domain decomposition in Section 3. In Section 4, we
describe the finite element discretization and the algebraic problem. Results
are presented in Section 5.

2 Model description

Let £2 be an open and bounded domain in R? with smooth boundary I =
I'p UT'y, where I'p and I'y are Dirichlet and Neumann parts (I'p NIy = ().
We denote by u the displacement fields and by f the density of the external
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forces. The Cauchy stress tensor o(u) and the strain tensor e¢(u) are given
by

o(u) = 2ue(u) + Me(u)lg:  and  e(u) = (Vu+ Vu')/2,
where X and p are the Lamé constants. The top boundary (I'y ground sur-

face) is subject to homogeneous Neumann boundary condition and, on I'p
homogeneous Dirichlet boundary conditions are assumed.

Q [o e

o

Fig. 1 Domain 2 with the crack S¢ and fictitious crack Sp

We assume that {2 contains a crack S¢ represented by a curve (cf. Fig-
ure 1), parametrized by an injective map. A nonpenetration condition is
prescribed on S¢. Denoting by SEC, S¢ the right and left sides of S¢ we can
set ut = Usi and u~ = = U the displacement fields on the right and
left sides of Sc. Then the nonpenetration condition is given by the negative
relative normal displacement, i.e., [u,] := (u™ —u~) - n < 0, assuming no
normal gap in the undeformed configuration.

The linear elastostatic model with crack is governed by the following sys-
tem of equations

—divo(u) = f in 2, (1)
u=0on Ip, o(u)-n=0on I'y. (2)
[u,] <0, on Sc. (3)

In the next section we extend the crack to split the domain into two
subdomains.
3 Domain Decomposition

We extend artificially the crack to split the domain into two subdmoains 2%
as shown in Figure 1. Let Sy be the fictitious crack. On Sy we prescribed the
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(displacement) continuity condition [u] := (u™ —u~) = 0 and the normal
derivative continuity condition [o(u)n] := (e(u™) —o(u™)) -n = 0.

Let us introduce the functions space V = {v € H'(£2); v =0on I'p}, and
the forms

a(u,v) = /Qa(u) re(v) de and  f(v)= | fudz.

n

Then the total potential energy is

J(w) = sa(v,v) - F(o). (4)

The elastostatic problem with extended crack can now be formulated as the
following constrained minimization problem

min J(u), (5)
[un,] <0 on Se, (6)
[u] =0 on Sy (7)

Since the functional (4) is strongly convex on V and constraints (6)-(7) are
linear, the constrained minimization problem (5)-(7) has a unique solution.

Remark 1. The stress continuity condition is no longer taken into acount in
the formulation (5)-(7). It will be ensure by the Lagrange multiplier associ-
ated with the displacement continuity condition (7).

With (5)-(7) we associate the Lagrangian functional £ defined on V x
L?(Sc) x L3(Sp)? by:

‘C('Ua NC7MO) =J(v) + (MC» [un])Sc + (o, [u])507 (8>

where uc € L%(Sc), o € L2(Sp)? are the Lagrange multipliers associated
with (6) and (7), respectively . Note that the the multiplier associated with
(7) must be non negative, i.e. uc > 0 on S. Since (5)-(7) is linear a con-
strained convex minimization problem, a saddle point of £ exists and (5)-(7)
is equivalent to the saddle point problem

Find (u, Ac, Ao) such that

E('U/,,U:C,/Jzo) S L('U/,)\C,Ao) S L:('U,)\C7>\0), V(U,/J,C7/,L0) (9)

Since £ is Gateaux differentiable on V x L?(S¢) x L?(Sp)?, the solution
of (9) is characterized by the saddle-point (Euler-Lagrange) equations of the
primal and dual problems as follows

Find (u, Ac, Ao) such that
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CI,(’LL,’U) + (/\C’ [v’rb])sc + (/\07 [v])So = f('U), Vv eV, (10)
Aclu,] =0, on Se, (11)
(ko [w])s, =0, Vo € L*(S))?, (12)

where (.,.)s, and (.,.)s, are L%-scalar product on S. and Sy, respectively.
The equality (11) ( i.e. the complementarity condition) is true almost every-
where, and if Ac > 0 then [u,] = 0, and if [u,] < 0 (non contact), then
Ae = 0.

4 Finite element discretization and the algebraic
problem

4.1 Finite element discretization

The saddle-point equations are suitable for a fictitious domain approach, i.e.
the crack mesh is defined independently of the domain mesh, see e.g.,[6].
We use a fictitious domain method inspired by the extended finite element
method (XFEM) in which basis functions are cut across the crack, e.g. [5].

We assume that the domain {2 has a polygonal shape such that it can
be entirely triangulated. Let T;, be a triangulation of {2.We define the finite
elements space

th{vaCO(Q);vMTePk(T) VT € Tp;vp,=0onI'} CV,

Here, Py (T) is the space of the polynomials of degree < k on the mesh T
We define on S = S¢ U Sy a finite elements space

A = {\" € C(S); Ayr € Pu(I) VI € Tp,} € L*(S9),

This approach is similar to XFEM [4], except that the standard basis func-
tions near the crack are not enriched by singular functions but only multiplied
by Heaviside functions :

H(x) =

1if r € 2*F (computational domain)
0 otherwise.

For element K containing the crack, the stiffness term [, o(¢;) : e(¢;) is
replaced by [, o(H(¢;)) : (H(;)).
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4.2 Algebraic problem and algorithm

Assuming that u = [ut u™]" € R?" is the unknown vector of nodal values
of the displacement fields on (2;,. Let us define the following matrices and
vectors:

A the stiffness matrix (2n x 2n symmetric positive definite), A = diag(A™, A™).
f, the external forces (vector of R?"), f = [fT f~]T

B¢, the relative normal displacement matrix at the contact nodes Bou :=

(ut —u™) n

e B, the displacement jump matrix across Sp, Bou := (ut —u™).

We define the scalar products
A e =ATMep and (A, p)ar, = AT Mops,

where Mc and M are the mass matrices on S andSy, respectively.
With the above notations, the algebraic Lagrangian of the problem is

1
L(u,Ac, Ao) = 5vTAv v+ (Ao, Bov)ae + (Ao, Bov)as,

for which the saddle point (KKT) equation are
Find (u, Ac, Ao) such that:

Vol(WAc Ao) =0 (13)
V)\Cﬁ(u, Ao, )\0) <0, AXc>0, Ac- V)\c[:(u, Ao, A) =0 (14)
Va L(u, Ao, o) =0,  (15)

where (-) stands for element-wise (or Hadamard) multiplication. Note that
in (13), the primal problem, the unknowns u* are uncoupled if the Lagrange
multipliers Ac, Ag) are known. Then a primal-dual algorithm is suitable for
solving (13)-(15). To apply an primal-dual interior point method, we set
z = -V, L(u, A, Ag), such that (13)-(15) becomes

Find (u,z, Ac, Ag), with z > 0 and A¢ > 0, such that

Vul(u,Ac, Ag) =0 (16)
VacL(u, Ac, Ao) +2 =0, (17)
V. L(u, Ac, Ao) = 0. (18)
Ac-z=0 (19)

Since A is positive definite, (16)-(19) are necessary and sufficient conditions.
Then we have to solve a nonlinear system of the form
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F(u,z,Ac,A0) =0, z>0, Ac>0. (20)

Let us introduce the vector e = (1,...,1)" and define the complementarity
measure 1 = A5z/m, where m is the dimension of z. We then replace (20)
by the following perturbed KKT conditions

F(u,z,Ac, X)) = (07,07,07 7pe™) 7, (21)
that is
Au=f - BlAc — By Ao, (22)
Beu+z=0, (23)
Bou =0, (24)
Ac -z = Tpe, (25)

where (7, 1) > 0. Solutions of (22)-(25) for all positive values of 7 and p define
a curve C(T,u), called the central path, which is the trajectory that leads
to the solution of the quadratic problem as 7p tends to zero. The primal-
dual interior point algorithm for solving the saddle point system (13)-(15)
consists of applying the damped Newton method to (22)-(25). The damped
parameter, 7 and p are adjusted iteratively to ensure fast convergence (see
e.g., [3, sect 16.6],[7]). Solving (21) with primal-dual interior point method
consists of solving a primal-dual linear system equivalent to the optimality
conditions for an equality-constrained convex quadratic program. Applying
a Uzawa conjugate gradient method to the (linearized) optimality conditions
leads to solving primal linear systems of the form (22) which breaks down
naturally into + sub-systems.

5 Numerical results

We have implemented the method described in the previous section in MAT-
LAB (R2016b) on a Linux workstation equipped with a quad-core Intel Xeon
E5 with 3.00GHz clock frequency and 32GB RAM. We use the mesh genera-
tion package KMG2D [1], and the fast FEM assembling functions package KPDE
[2]. The test problem used is designed to illustrate the numerical behavior of
the algorithm more than to model an actual geological crack.

We consider {2 = (0, 10) x (0, 5) with the boundary partition

I'p = (0, 10) x {0} U{1} x (0, 5)U {0} x (0, 5) (26)
Iy = (0, 10) x {1}. (27)

The crack is given by
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Se={(z,1.25(x = 3) |z € (3, 5.4)}, So={(z,1.25(x—3) |z € (54, T)}.

The mesh sample is shown in Figure 2. The material constants are E = 9x 106

0 L 1
0 2 4 6 8 10

Fig. 2 Mesh sample of {2 with real crack and fictitious crack

(Young’s modulus) and v = 0.3 (Poisson’s ratio).The applied force to the
domain is the gravity with a value density of 1500.

We use the couple P2/P1 for the discretization: continuous P2 triangular
element for (2;,, continuous P1 segment for the crack. The choice of the finite
element pair P2/P1 is made to ensure the inf-sup condition . We first consider
a uniform discretization of {2 consisting of 561 nodes and 256 triangles. The
interior point algorithm stops after 11 iterations. The deformed configuration
is shown in Figure 3 and reveals the presence of a crack.

To study the behavior of our algorithm, the initial mesh is uniformly re-
fined to produce meshes with 2145, 8385, 33153 and 131841 nodes. The per-
formances of the algorithm is shown in Table 1. One can observe that the
number of iterations required for convergence is virtually independent of the
mesh size.

A

Fig. 3 Mesh sample of {2 with real crack and fictitious crack (magnification=20)
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Nodes/Triangles |[561/256|2145/1024(8385/4096|33153/16384(131841/65536
Iterations 11 12 15 15 14
CPU Times (Sec.)|| 0.21 0.47 2.37 17.64 191.92

Table 1 Number of iterations and CPU times (in Sec.) for the interior point algorithm

Conclusion

We have studied a fictitious domain method for a geological crack based on
fictitious domain and XFEM. Numerical experiments show that the number
of iterations is virtually independent of the mesh size. Further work is under
way to accelerate the method using preconditioning techniques inspired by

[7]. Stabilization techniques, as in [5], are also under study.
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