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Introduction

Bubble formation, growth and detachment in liquids including dissolved gases when the ambient pressure decreases is a very important process in diverse scientific fields, e.g. in cavitating tur bines and pumps [START_REF] Payvar | Mass transfer controlled bubble growth during rapid decompression of a fluid[END_REF]; in carbonated drinks [START_REF] Barker | The control of bubble size in carbonated beverages[END_REF], in liquid waste treatment by dissolved air flotation [START_REF] Malley | Concepts for dissolved-air flotation treatment of drinking waters[END_REF]. In the past, liquid degassing focused mainly on the mechanisms of nucleation rather than bubble dynamics, e.g. see [START_REF] Jones | The cycle of bubble production from a gas cavity in a supersaturated solution[END_REF]. Therefore, tests were conducted at low temperatures where the role of liquid vapor pressure is negligible. In addition, most of those experiments strived to avoid thermal gradients in the system. However, even at moderate tem peratures the presence of temperature gradients is inevitable due to appreciable liquid evaporation at the gas/liquid interface. A relevant case with particular technological significance is that of a liquid which depressurizes in the presence of dissolved non condensable gases close to its saturation temperature. Such experiments are complicated to investigate under terrestrial con ditions because gravity yields natural convection currents and makes the bubbles to distort from their spherical shape and depart when they are still small. A microgravity environment would circumvent these effects and would further allow considerably large bubbles to be examined where the capacity of optical di agnostics is higher.

Pool boiling experiments in presence of non condensable gas have been performed in the SOURCE experimental setup which has flown in the sounding rocket Maser 11 attaining microgravity conditions for several minutes. The SOURCE experimental set up consists of a small cylindrical reservoir of 60 mm diameter and 271 mm long partly filled with a liquid refrigerant HFE7000 pres surized by gaseous nitrogen. The experiment has been described in detail in [START_REF] Fuhrmann | Description of the sounding rocket experiment SOURCE[END_REF]. At the tank bottom, a heated plate of 1 cm 2 is located to study nucleate boiling regimes in microgravity (see Fig. 2). This plate is equipped with a thermocouple and a flux meter (uncer tainty ±80 W/m 2 ) to measure the wall heat transfer. Before the launch of the rocket, the reservoir is overheated and pressurized with Nitrogen at a pressure of 3 bar. The sequence of the experiment is described in Fig. 1: after take off (time t 0s) the rocket accelerates during the ascent, at t 50s the microgravity period starts, from t 65s to t 88s, the tank is filled with the refrigerant HFE7000 at 25 C, from t 88s to t 190s, the free surface stabilizes, the refrig erant evaporates in the wall vicinity, then the concentration of the HFE7000 vapour in the gas phase increases close to the tank wall. The non uniformity of HFE7000 vapour concentration in the gas phase along the interface leads to a strong Marangoni convection. At t 190s, the tank pressure is reduced from P 3.35 bare1.82 bar to initiate nucleate boiling. From t 200s to t 263s, the small plate is heated and nucleate boiling takes plate in subcooled condition. The liquid tempera ture is smaller than saturation temperature. At t 263s, the tank pressure is reduced from 1.93 bar to 1.23 bar. From t 320se380s, heat transfer and bubble size evolution in saturated boiling condition is investigated. The results obtained in subcooled and saturated boiling conditions have been re ported in [START_REF] Kannengieser | Pool boiling with non condensable gas in microgravity: results of a sounding rocket experiment[END_REF].

Pictures of the different steps of the experiments are shown in Fig. 2.

In the present paper, we focus on investigating the depressur ization phase between t 263s and 324s, which is a period lying between the sub cooled and the saturated boiling phases. During this phase, the wall heat flux is kept constant and equal to 1.36 W/ cm 2 and the wall temperature T 0 is equal to 51 C. In this phase of the experiment, a bubble remaining on the heated plate after the end of the subcooled boiling period continues to grow. This is a result of different contributions such as volume expansion due to depressurization, desorption of dissolved non condensable gas, rise of vapour pressure. The evolution of the radius of the large bubble during the depressurization is measured by image pro cessing. At t 263s, the bubble radius is equal to R o 4.18 mm. While the pressure decreases by a factor of 1.57, the bubble radius increases by a factor of 3.05.

The temperature of the gas inside the bubble is also measured at different locations (Fig. 3). An array of 5 thermocouples is placed above the heated plate. Thermocouple T 14, T 16 and T 17 are located 1.59, 4.27, 8.69 mm above the heated wall, respectively. The liquid bulk temperature T L measured above the bubble and the saturation temperature at the tank pressure T sat are also plotted in Fig. 3. Temperature measurements are quite noisy but although absolute values are within thermocouple uncertainty (±0.1 C) the observed fluctuations (sensitivity) are real and reflect the dynamic nature of the observed phenomena. In particular, thermocouple T 16 shows a marginal increasing trend in temperature evolution. A temperature rise of 1 C during the decompression period is recorded by ther mocouple T 17 but the measurement noise prevents to recognize the exact time evolution of this rise. Finally, the thermocouple T 14 undergoes a temperature increase of 3 C with most of it occurring sharply at t 305s which appears to be the moment at which the thermocouple pierces the bubble. The thermocouples T 14, T 16 and T 17 are located inside the large bubble for a significant part of the depressurization. Then a gradient of temperature inside the gas phase can be evaluated at a value around 2 K/cm. T 17 measures an average temperature of 33.8 C, which corresponds to a partial pressure of HFE7000 vapour P v 0.96 bar, whereas T 14 which measures an average temperature of 35.8 C, corresponding to P v 1.03 bar. These temperatures are almost unchanged during the end of the depressurization after t 300s.

A direct modeling approach is extremely difficult since the problem is a combination of degassing and evaporation [START_REF] Faghri | Transport phenomena in multiphase systems[END_REF][START_REF] Esmaeeli | Computation of explosive boiling in microgravity[END_REF]. The plate in contact with the bubble is heated and this creates a tem perature distribution in the liquid. As the system pressure de creases it is possible that the temperature of the solid in contact with the bubble gets close or even exceeds the boiling temperature of the liquid. However, the average temperature of the bubble re mains colder than the one of its base and this average temperature governs bubble growth. In any case, all the complexities associated with microlayer evaporation may be present. The information given by the measured temperatures in the liquid is limited since the temperature profile in the liquid can be very complex and the connection between the fixed in space thermocouples and the actual average bubble temperature is rather weak.

In addition to the effort needed to deal with the heat transfer problem, the mass transfer equations for the dissolved gas in the liquid domain must be solved. In particular, handling of Marangoni motion for a growing bubble requires a big computational effort [START_REF] Subramanian | The motion of bubbles and drops in reduced gravity[END_REF]. So detailed modeling of the process requires state of the art elab orate computational tools and it is out of the scope of the present work. The alternative approach followed here is to build step by step simplified models incorporating basic aspects of the process and compare to the experimental curve in order to assess the phenomena determining the bubble growth. In this respect, the first step is to develop an isothermal 1 D bubble growth model for which an approximate analytical solution can be derived (i.e. assuming as bubble temperature the time average value of ther mocouples measurements). The second step is to extend the analytical solution in order to account for the 2 D nature of the liquid domain (due to existence of the hot plate) and for a steady linear temperature profile in liquid. The above scenarios yield re sults that can not explain the experimental curve so a time varia tion of the average bubble temperature is considered, next. A numerical technique for the corresponding non isothermal 1 D bubble growth problem is developed. Finally, an inverse problem of computing the average bubble temperature evolution corre sponding to the experimental growth curve is set up and solved.

Formulation of 1-D radial symmetric model for isothermal bubble growth

The mathematical model which describes the depressurization stage of bubble growth in the present experiment refers to the growth of a pre existing gas bubble inside a volatile liquid during the reduction of the external (with respect to the bubble) pressure of the system. The pressure time function is given as P ex (t) where t denotes time. According to experimental temperature measure ments, the temperature in the bubble and in the liquid close to the bubble does not vary radically in space and time so at a first approximation it can be considered constant. The temperature (relative) uniformity (despite the localized heating from the hot plate at the base of the bubble) can be ascribed to Marangoni motion (leading to convection and mixing) imposed by the surface of the bubble. The effect of the existence of the hot plate is ignored at a first approximation assuming a spherical 1 D geometry for bubble growth. The formulation of the mathematical problem for bubble growth in a volatile liquid, i.e. of appreciable vapour pres sure, undergoing a pressure variation follows:

If R(t) is the bubble radius and r the radial coordinate, the radial velocity u in the liquid around the bubble results from the conti nuity equation as u R 2 r 2 dR dt [START_REF] Scriven | On the dynamics of phase growth[END_REF]. Bubble dynamics is described from the well known RayleighePlesset equation [START_REF] Plesset | Bubble dynamics and cevitation[END_REF] which for the time scale of the present problem degenerates to the simple pressure balance:

P g þ P v P ex þ 2s R (1) 
where P g is the gas pressure in the bubble, P v is the pressure of the vapour in the bubble (equal to vapour pressure) and s is the surface tension of the liquid. Although for newly generated bubbles the surface tension term is always important, it can be easily verified that it is small and it can be safely ignored for pre existing bubbles with size higher than 100 mm which are of interest in the present work.

The mass conservation equation for the gas dissolved in the liquid includes accumulation, convection and diffusion terms and can be written as [START_REF] Divinis | Bubbles growing in supersaturated solutions at reduced gravity[END_REF]:

vc vt þ u vc vr D v 2 c vr 2 þ 2 r vc vr ! ( 2 
)
where c is the molar concentration of the gas in the liquid phase and D is the gas molecular diffusivity in the liquid. The global mass balance of the gas in the bubble (where instantaneous perfect mixing between the gas and the vapour occurs) is [START_REF] Patel | Bubble growth in a viscous Newtonian liquid[END_REF]:

dr g R 3 dt 3R 2 D vc vr r R (3) 
where r g is the molar gas density in the bubble. The above equation states that the accumulation of gas in the bubble equals to the amount of gas that enters the bubble by mass transfer from the liquid. In its derivation, the relations for the volume and the surface area of the bubble have been used. The gas density is related to the pressure of the gas through the ideal gas law r g P g /R g T where R g is the universal gas constant and T is the temperature. The solubility of the gas in the liquid c eq can be found from the following version of the Henry law [START_REF] Fogg | Solubility of gases in liquids: a critical evaluation of gas liquid systems in theory and practice[END_REF]:

c eq P g H r f (4) 
where the Henry constant H has pressure units such as the ratio P g / H to be the equilibrium molar fraction of the gas in the liquid, and r f is the liquid molar density. The initial and boundary condition of the problem is that the dissolved gas concentration is the saturation concentration at the initial external pressure P o P ex (t 0) and the initial bubble radius is R o . It is assumed that the mass transfer rate of gas towards the free surface of the liquid in the experimental container is small and so is incapable of reducing considerably the dissolved gas concentration in the bulk of the liquid. It is noted that the above model considers implicitly interfacial evaporation (through inclusion of vapor pressure contribution). The only assumption is that evaporation is fast compared to gas diffusion which is clearly valid considering the small diffusion coefficient in the liquid and the heat availability in the system.

From the physical point of view, as the external pressure drops the gas pressure in the bubble also drops and so also does the gas solubility in the liquid according to Equation ( 4). This means that the liquid phase is oversaturated by dissolved gas which therefore starts to diffuse towards the bubble. In parallel, the gas already existing in the bubble expands in order to follow the external pressure reduction. The gas composition in the bubble changes because P v does not follow the external pressure variation but it is constant. The instantaneous molar fraction of vapor is P v /P ex (t).

Approximate analytical solution of the 1-D problem of isothermal bubble growth

The above system of equations comprises a closed problem which must be solved for the evolution of R. The problem of instantaneous decompression (step pressure reduction) leads to an autonomous problem for which an analytical solution exists (the so called self similar solution) for growth from zero initial radius [START_REF] Scriven | On the dynamics of phase growth[END_REF][START_REF] Cable | Diffusion-controlled growth of multi-component gas bubbles[END_REF]. In the present case where the pressure reduction is a function of time a numerical solution is necessary. The problem includes a partial differential equation with a free boundary and its solution is not trivial. The usual approach is the boundary immo bilization which leads to the appearance of new highly convective terms in the transformed equation requiring special techniques for their resolution [START_REF] Arefmanesh | An accurate numerical solution for mass diffusion induced bubble growth in viscous liquids containing limited dissolved gas[END_REF][START_REF] Prousevitch | Dynamics of diffusive bubble growth in magmas[END_REF]. Here a different approach will be followed as a first step to solve approximately the problem based on the existing exact solutions. The key parameter of the mass transfer dominated bubble growth problem is the so called Foaming num ber, F [START_REF] Lastochkin | Bubble growth in variable diffusion coefficient liquid[END_REF], which is a measure of the growth velocity of the bubble. For the present problem, F is time dependent through the pressure variation and is given as 

As long as r g is constant and can go out of the derivative in Equation ( 3) the bubble growth problem can be solved analytically even for a non constant F number. In the limit F << 1 diffusion dominates over convection and the concentration profile is given from the steady state diffusion equation [START_REF] Vrentas | Equations for predicting growth or dissolution rates of spherical particles[END_REF]. In the other limit of convection domination, F >> 1, a thin concentration boundary layer is developed around the bubble and the problem can be solved by assuming low order polynomial concentration profiles [START_REF] Rosner | Effects of interface kinetics, capillarity and solute diffusion on bubble growth rates in highly supersaturated liquids[END_REF]. The two limiting cases are unified by using a generalized Churchill interpolation scheme [START_REF] Churchill | A general expression for the correlation of rates of transfer and other phenomena[END_REF] with criterion the satisfactory approach to the exact self similarity solution for constant F [START_REF] Divinis | Bubble dynamics during degassing of dissolved gas saturated solutions at microgravity conditions[END_REF].

In the present case the situation is more complex since r g varies with time through pressure and it should stay in the derivative in Equation (3). Then, Equation (3) can be written as

r g dR 3 dt þ R 3 dr g dt 3R 2 D vc vr r R 0 dR 2 dt þ 2R 2 3 dr g r g dt 2DR r g vc vr r R (6) 
The right hand side of the final equation which represents the contribution of mass transfer on bubble growth is approximated by the term derived in [START_REF] Divinis | Bubble dynamics during degassing of dissolved gas saturated solutions at microgravity conditions[END_REF] for the case of constant r g . In addition, r g in the second term is written in terms of pressure using the ideal gas law and the pressure balance. The final equation takes the form:

dR 2 dt þ 2 3 R 2 d lnðP ex P v Þ dt " ð2DFÞ 
0:8 þ 12 p DF 2 
0:8 # 1:25 [START_REF] Faghri | Transport phenomena in multiphase systems[END_REF] where arbitrary pressure units can be used in the logarithm without altering the results. The first term in the brackets in the right stands for the diffusion dominated regime and the second term for the convection dominated regime, respectively. The above differential equation is linear with respect to R 2 so it can be solved analytically to give the final result:

This equation is an approximate analytical solution to a complicated mathematical problem requiring specialized numeri cal techniques, and it is constructed by patching known asymptotic solutions. Let us examine this equation in detail. In the absence of mass transfer the equation reduces to the exact result that the bubble radius is inversely proportional to the gas partial pressure at the 1/3 power. In the case of constant pressure it reduces to the mass transfer problem solution proposed in [START_REF] Divinis | Bubble dynamics during degassing of dissolved gas saturated solutions at microgravity conditions[END_REF] for the entire F range. An additional case in which the above solution is exact is the case of F<<1 (including pressure variation). This happens because the gas expansion due to pressure profile does not interfere with the mass transfer process being always in pseudo steady state. On the contrary, an error is expected in case of F>>1 (convection domination) because the corresponding term has been derived accounting only the mass transfer growth velocity.

Having developed the mathematical model of the process let's examine now what is the expected behaviour of a bubble during the particular experiment considered here. The uniform tempera ture of the bubble is assumed to be 34.5 C based on the measured temperatures in the bubble. The physical parameters of the system N 2 HFE7000 at this temperature are employed. The experimental system pressure P ex and the Foaming number F are shown versus time in Fig. 4. The driving force for mass transfer is small at the beginning because the bulk concentration of gas in the liquid is equal to the equilibrium one. As the pressure is reduced the situ ation changes and F increases up to 1.5. It is noted that in the present problem F is in the transition region between diffusion and convection so the complete theory for the transition region is necessary.

The evolution of the ratio of the instantaneous bubble radius to the initial bubble radius for several values of the initial radius is shown in Fig. 5. As the bubble radius increases its specific surface (surface per unit volume) decreases so the contribution of mass transfer to bubble growth decreases. The growth curve for the case of no mass transfer (pure gas expansion) being independent from R o is also shown. At short time the small driving force leads to a small mass transfer contribution to growth for all initial bubble sizes. As time elapses the driving force for growth increases and the mass transfer contribution increases with time and decreases with the initial bubble radius, being practically zero for R o > 3 mm. This 

P ex P v 2=3 þ 1 
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asymptotic solutions is extended to the 2 D case. The direct effect of Marangoni motion (which is considered implicitly through the assumed temperature profile) on the mass transfer procedure is ignored (radial motion is considered more important than tangential). In the 2 D case the gas density and gas composition are non uniform in the bubble and this is taken into account in the derivation of the growth equations. The temperature and vapour molar fraction distributions in the bubble are given by the solution of the Laplace equation with the following boundary condition on the bubble surface:

x v P v (T o ax)/P ex for vapour molar fraction

T g T o ax for gas temperature [START_REF] Scriven | On the dynamics of phase growth[END_REF] The Laplace equation in spherical geometry with the above boundary conditions must be solved to find the intra bubble tem perature and vapour molar fraction distributions. Then the average gas density can be computed from the following integral over the bubble volume (V b is the bubble volume).

r gave 1 V b Z V b ð1 x v Þ P ex R g T g dV (11) 
The above procedure is very cumbersome including the solution of two elliptic partial differential equations and the computation of an integral in two dimensions. An alternative much simpler approximate procedure is followed. Taking into account the fact that the spatial density variation in the bubble is expected to be small due to small temperature variation, the following approxi mation can be used: [START_REF] Divinis | Bubbles growing in supersaturated solutions at reduced gravity[END_REF] where x vave and gave are the average bubble vapour fraction and temperature respectively. Furthermore it can be shown that for harmonic functions (i.e. functions obeying the Laplace equation) volume averages are equal to surface averages (see [START_REF] Kostoglou | Approximate solution for a nonisothermal gas bubble growth over a spherical heating element[END_REF]). Thus x vave and T ave can be found by simply integrating the corresponding quantities (Equations ( 9),( 10)) over the surface of the bubble avoiding the solution of the Laplace equation. These integrations after some algebra and transformation of integration variables (z (x R)/R) result in:

r gave 1 V b Z V b ð1 x v Þ P ex R g T g dVzð1 x vave Þ P ex R g T gave
T gave T o aR (13) x vave 1 2P ex Z 1 À1 P v ðT o aRð1 zÞÞdz (14)
Substituting Equations ( 13) And ( 14) in ( 12) the following rela tion for the average gas density results in:

r gave 2 6 41 1 2P ex Z 1 À1 P v ðT o aRð1 zÞÞdz 3 7 5 P ex R g ðT o aRÞ (15) 
The next assumption is that during the growth of the bubble, mass transfer at each position of the surface occurs at the same rate with that of a bubble undergoing axisymmetric growth at the local conditions. These conditions include the gas solubility and diffu sivity (through their temperature dependence) and the local growth velocity. The geometry of the growth (sphere attached to the wall) leads to a distribution of the growth velocity with the azimuthal angle from zero at the wall side to 2 dR/dt at the liquid side. The correction with respect to local growth velocity is taken into account by multiplying with a correction coefficient the high foaming number component of the bubble growth term for axisymmetric growth derived in the previous section. Another correction is needed for the pure diffusion component of the growth rate. This correction is needed to take into account the in fluence of the wall presence on the solution of the corresponding diffusion equation. From the solution of the corresponding Laplace equation for the plane sphere geometry a correction factor d 0.693 was found [START_REF] Buehl | Bubble growth by dissolution: influence of contact angle[END_REF]. Following the same procedure used for the derivation of the growth equation in the 1 D case and taking an integral over the bubble surface for the mass transfer term leads to the following equation The Foaming number is also position dependent in this case and it can be computed as F c eq ðtÞ c o

r g P ex ðtÞð1 x vaveo Þ r g ! r f HðT o að1 þ zÞRÞ (17) 
It is noted that the units of r g in Equation ( 16) do not influence the results and x vaveo is the initial average vapour molar fraction in the bubble. The Equation ( 17) can be integrated in closed form to give:

dR 2 dt þ 2 3 R 2 d ln r gave dt Z 1 À1 DðT o að1 þ zÞRÞ " ð2dFÞ 
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1=2 [START_REF] Lastochkin | Bubble growth in variable diffusion coefficient liquid[END_REF] where T gaveo is the initial average bubble temperature equal to T o aR o . The evolution of the bubble radius can be easily computed numerically by using the trapezoidal rule for both the integration levels in Equation [START_REF] Lastochkin | Bubble growth in variable diffusion coefficient liquid[END_REF]. The trapezoidal rule is also used for the computation of average gas density at each time step from Equation [START_REF] Cable | Diffusion-controlled growth of multi-component gas bubbles[END_REF]. As it has been already shown, for the present experimental conditions the effect of mass transfer on bubble growth is negligible for R o > 2 mm (gas expansion limit). Let's examine now, how a non uniform bubble temperature may influence bubble growth in this limit. Ignoring mass transfer, the bubble radius evolution equation takes the form: 

An extensive mathematical procedure including Taylor expan sion around T o for the vapor pressure relation, integration of the resulting integrals and a linear expansion of the resulting relation with respect to the growth relation at constant temperature T o results in:

R R o R R o T To h 1 C f i (20) 
where the correction factor accounting for the temperature non uniformity is given as:

C f aP 0 v ðT o Þ R P ex P v ðT o Þ R o P o P v ðT o Þ þ a T o ðR R o Þ (21) 
The prime denotes differentiation of the function with respect to its argument (i.e. P 0 v ðTÞ dPv dT ). The reduction of growth rate with the reduction of bubble temperature as the bubble grows has two contributions: reduction of vapor pressure which means more space for the gas and smaller growth rate (first term in Equation ( 21)) and increase of gas density (second term in Equation ( 21)). The first contribution is the dominant one. A representative value of temperature non uniformity (temperature gradient) in the present experimental conditions is at about 2 K/cm so this order of magnitude for a is considered here. The correction factor for a 1 Κ/cm and several values of R o for the described experiment is shown in Fig. 8. Unlike the growth rate for uniform temperature the correction factor now depends on the initial radius R o . According to Equation [START_REF] Churchill | A general expression for the correlation of rates of transfer and other phenomena[END_REF], C f is proportional to a so the correction factor for other values of a can be found by a simple multiplication of the values shown in Fig. 9. The correction is in any case less than 2%. This means that it can be made considerable for a larger than 3 K/ cm. Nevertheless it must be kept in mind that the above analysis was made having the wall temperature as reference which is a worst case scenario. If another temperature such as the initial average bubble temperature or a representative mean bubble temperature during the bubble growth is chosen for reference (as it was done in the 1 D model where a representative experimental temperature was considered) the correction factor would be one order of magnitude smaller.

For the general case in which mass transfer is important, the complete theory (Equation ( 18)) must be employed. It is noticed that small bubbles, for which mass transfer is important, undergo a very small temperature reduction due to their small size. On the other hand, for larger bubbles where a considerable temperature decrease can be met, the contribution of mass transfer to the growth rate is negligible. The evolution of the ratio R/R o for bubbles with small initial size is shown in Fig. 9. In the plot, the corre sponding curves computed for the 1 D model are also shown. The existence of the temperature distribution has no influence at these results even for values of a much larger than those considered representative of the experiment examined here. The 2 D model shows appreciably slower bubble growth due, mainly, to the factor d used for the conduction term and, secondary, to the radial velocity distribution for the convection term. So, although the temperature distribution in the bubble can be safely ignored, the 2 D model is more correct (slower growth) for a bubble growing on the wall than the 1 D model which corresponds to a bubble growing in the bulk liquid (faster growth). curve is starting with a high initial P v in order to achieve the initial high growth ratio, followed by its gradual decrease in order to avoid the explosive growth as external pressure decreases. An acceptable approximation of the experimental growth curve is achieved (see curves 1 and 2) by assuming P v 1.25 bar for the first 30 s and then a linear in time reduction from 1.25 to 0.95 during the next 30 s. This profile was found by a trial and error procedure. An inverse transport phenomena problem can be set up in order to search for the optimum interfacial temperature, i.e., P v , profile but it is a major task [START_REF] Ozisik | inverse heat transfer, fundamentals and applications[END_REF] and it is outside of the scope of the present work. Finally, curve 3 shows the growth curve for the chosen profile of P v in curve 2 but ignoring mass transfer. It is clear that according to the present scenario mass transfer contribution to bubble growth is important. It is noted that the value 1.25 bar found for vapor pressure corre sponds to a temperature somewhat larger of 40 C which is larger than the measured temperatures but it is still much less than the hot plate temperature rendering the assumed average bubble evolution scenario a plausible one. The dissolved nitrogen dimensionless concentration profiles outside the bubble at three time values for the cases of P v 1.1 bar and of variable P v are shown in Figs. 11 and12, respectively. These profiles have been computed by solving numerically the Equations ( 26) and ( 27) considering several temporal profiles of vapor pres sure. The left most lower c/c o values in each curve correspond to the bubble/liquid interface and c/c o 1 corresponds to the far bulk locations which are unaffected by the growing bubble. The steep ness and different location of the profiles confirm the necessity of the specialized numerical solution techniques such the one devel oped here. The nitrogen concentration at the bubble/liquid inter face decreases with time for constant P v as it is shown in Fig. 11 and would lead to an explosive growth at large times. The corre sponding interfacial concentrations in case of variable P v (Fig. 12) initially decreases (from t 20 s to t 40 s) and then increases (from t 40 s to t 60 s) leading to a growth curve similar to the experimental one. Considering P v (t) (which corresponds to T ave (t)) as an undetermined function is the only way to explain the experimentally observed growth curve.

Conclusions

A systematic step by step attempt to explain the experimentally observed bubble growth on a heated plate during decompression in the absence of gravity is presented here. Several approximate analytical solutions for 1 D and 2 D bubble growth problems and a specialized numerical technique for the 1 D problem have been developed. The assumption of steady temperature profile (uniform temperature or a linear temperature profile similar to the experi mental one) renders the explanation of the experimental growth profile impossible. An inverse bubble growth problem is set up: Finding the temperature evolution (equivalent to vapor pressure evolution) compatible to the experimental growth curve. It is shown that adopting such an evolution and handling it as fitting variable constitutes the only way to reconstruct and understand the experimental bubble growth curve. Appendix A. Vapour pressure-Temperature relation for HFE7000

The vapor pressure P v of HFE7000 is given (in atm) as function of temperature T (in o C) as P v 7.4,10 À4 T 2 0.0197T þ 0.79

The above equation can be used to give boiling temperature T sat as function of external pressure P ex by replacing T with T sat and P v with P ex . The relation between P v (P ex ) and T (T sat ) is shown graphically in Fig. 13. 
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