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Independently, VIV and galloping have both received considerable attention. The former, in
the context of slender bodies of circular cross section, has been actively researched, leading to
multiple review articles [7–9]. The primary characteristic relevant to the current study is the
definition of regimes of fluid–structure interaction, referred to as branches [10,11], that occur
over U∗ ranges. Beginning with low flow velocity, the first branch of VIV is the initial branch,
where the amplitude of oscillation increases with U∗ and the oscillation is modulated due to the
influence of both the body’s natural frequency and the Strouhal frequency (the vortex shedding
frequency of a stationary cylinder). Second is the upper branch, characterized by oscillations of
large amplitude at a frequency around the body’s natural frequency, which appear to be unstable
and chaotic [12–14]. Third is the lower branch, consisting of periodic and stable oscillations at
amplitudes around 0.6D (with D the cylinder diameter) and a frequency around the natural
frequency of the body. The vortex shedding and body oscillation are synchronized at the same
frequency. Finally, the synchronization is lost and a desynchronized regime takes over, consisting
of small oscillations at a fluctuating frequency around the Strouhal frequency.

The FIV phenomenon of galloping has also received attention, investigations focusing on
canonical configurations of a square cross section cylinder oriented with a flat face normal to
the flow. While Den Hartog [15] first proposed a criterion for the onset of galloping of ice-covered
cables, Parkinson & Smith [16] developed a very successful quasi-steady theory to predict the
amplitude response of a square cylinder undergoing galloping. The theory is especially successful
for relatively heavy bodies, typically when surrounded by air, where the galloping oscillation
frequency is much lower than the vortex shedding frequency.

Less attention has been paid to FIV of a square cylinder with variation of angle of attack.
Our recent paper [2] experimentally investigated the influence of the angle of attack of a square
cylinder with lowmass-damping ratio on the body’s FIV response, mapping out the flow regimes
as a function of α and U∗. A new, previously unreported, higher branch (HB) of amplitude
responsewas observed over a range of angles of attack, 10◦ < α < 22.5◦, where the body oscillation
amplitudes are considerably higher than those seen in the upper branch associated with VIV,
but with an oscillation frequency locked onto approximately half of the Strouhal frequency.
A numerical study by Zhao et al. [17], which allowed motion in both the cross-stream and
streamwise directions, saw a similar high-amplitude response regime. A recent experimental
study by Zhao et al. [6] refined and expanded our work [2], investigating representative angles
of attack where the vibrations were dominated by galloping (α = 0◦), by VIV (α = 45◦), and an
intermediate region where the HB has been observed (α = 20◦). This study investigates the same
parameter range as [6], though, while the latter characterized the dynamics and wake vorticity
production in the regimes across this α–U∗ range, this study examines the boundary regions
between regimes and those featuring intermittent behaviour in oscillations using wavelet and
recurrence plots.

The following section details the experimental method. Section 3 presents the obtained
experimental results and the dynamic responses of a freely vibrating square cylinder at α = 0◦,
45◦ and 20◦. Lastly, conclusions of this study are given in §4.

2. Experimental method

The experiments were conducted in the free-surface recirculating water channel of the Fluids
Laboratory for Aeronautical and Industrial Research (FLAIR), Monash University. More details
of this water channel facility and the experimental set-up can be found in [6].

The experimental set-up is shown in figure 2. The rigid square cylinder model used in this
study was made from aluminium square cross section tubing with a side width of 24.6mm
and an immersed length of L = 620mm, giving an aspect ratio range of 17.8≤ AR = L/H ≤ 25.2
across the α range. The displaced mass of water yields a minimum achievable mass ratio of
m∗ = 2.64. Details of the air bearing system and measurement acquisitions can be found in [2]. An
end conditioning platform was used to promote parallel vortex shedding. The platform height
ensured that the cylinder was outside the boundary layer of the channel floor and provided a
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Figure 3. The normalized amplitude response and the logarithmic-scale frequency power spectral density (PSD) contours as
a function of the reduced velocity for α = 0◦. Note that the frequency PSD contours here are constructed by stacking the
frequency PSD based on short-time Fourier transforms (STFT) at each U∗ [6]. The 1 : 1, 1 : 3 and 1 : 5 synchronization regimes are
highlighted with blue shading in (a), and their boundaries are illustrated by the vertical dashed lines in (b). The dotted-dashed
slope line represents the Strouhal number St � 0.131 (measured in the fixed cylinder case). (Online version in colour.)

The location of the other synchronization regimes can also be understood by considering the
behaviour of the body’s oscillation frequency and the vortex shedding frequency with increasing
U∗. Figure 3b shows that over the entire range of U∗ tested, the body’s primary oscillation
frequency f ∗

y remains essentially constant. Only in the synchronization regimes does it vary
noticeably, and even then only by a small amount. Figure 3 shows the synchronization regimes
(1 : 1 regime over 5.8≤ U∗ ≤ 6.2, 1 : 3 regime over 11.2≤ U∗ ≤ 15.4, and 1 : 5 regime over 21.5≤
U∗ ≤ 22.5) occurring at equally spaced increments U∗ = 6, U∗ = 14 and U∗ = 22 during which
nonlinear synchronization causes the body’s oscillation and the vortex shedding to shift from
their natural values and synchronize at the values reported in figure 3.

To demonstrate the temporal evolution of the frequency content for the body vibration
across these synchronization regimes, figures 4 and 5 show time series of the normalized body
displacement along with the frequency energy contours based on CWT at various U∗ values. At
U∗ = 4.0, where the body oscillations are non-periodic, the vibration frequency is dominated by
the Strouhal frequency but with some unstable behaviour over time. As the reduced velocity
is increased to U∗ = 5.0, the body vibration appears to be more periodic, with the vibration
frequency modulated by the Strouhal frequency and the natural frequency of the system. At U∗ =
6.0, where the 1 : 1 synchronization is observed, the cylinder vibration frequency appears to be
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Figure 6. The amplitude and frequency responses as a function of U∗ for α = 45◦. Five regimes (I–V) are identified within
the VIV lock-in region. In (b), the dotted-dashed slope line represents the Strouhal number St � 0.176. Note that the frequency

PSD contours here are constructed based on STFT analysis [6]. (Online version in colour.)

attack (here 45◦), where C̄y is the mean transverse lift coefficient. This does occur for α = 0◦, but
it does not hold for α = 45◦. However, the α = 45◦ case, like any bluff body that causes alternate
vortex shedding, is susceptible to VIV, and this phenomenon dominates the FIV response of this
case.

Figure 6 shows the variation of the amplitude of oscillation as a function of U∗, as well as the
variation of the frequency content of the time–displacement series. Note that five regimes (I–V)
were identified within the VIV lock region by Zhao et al. [6], based on an overview examination
of the fluid force coefficients and the corresponding phases, and the wake mode.

It shows that the response type is quite varied, with large-amplitude oscillations for 3< U∗ <

7.5 (the region designated as the upper branch by Nemes et al. [2]) consisting of five regimes, the
boundaries of which are marked by the dashed vertical lines on figure 6. The characteristics of
each of these regimes, as well as the initial branch and synchronization regions, are highlighted
below, in order of increasing U∗.

Summarizing the regimes, for U∗ < 3, the flow is in the initial branch as for a canonical
cylinder case. The oscillations are small, comprising Strouhal and natural frequencies, resulting
in a modulated response seen in the wavelet analysis in figure 7 for U∗ = 2.6.

Between U∗ = 3 and 4.4, the flow follows the upper branch behaviour of a circular cylinder, and
the first of a series of synchronized regimes, where the vortex shedding and the body oscillation
occur at the same frequency. In this first regime (I), vortex shedding occurs in the 2S mode [2,6],
similar to the classic Kármán vortex street. The amplitude of oscillation in this regime is almost







the Strouhal frequency for the fixed body; however, the spectra are broadband, indicating that the
flow is not strictly periodic. The amplitude of oscillation is only a weak negative function of U∗,
as shown in figure 6. For higher U∗, there is an evident desynchronization in the time series with
frequency components varying over a broadband region.

(c) Sub-harmonic VIV response atα = 20◦
As demonstrated by Nemes et al. [2], while the case at α = 0◦ is dominated by galloping response,
and the case at α = 45◦ is dominated by VIV response, there exists a transition between the two
FIV response phenomena with variation of the angle of attack. The FIV response regime map in
the U∗–α parameter space presented in [2] shows a new response regime labelled the ‘higher’
branch, as it is characterized by highly periodic oscillations with amplitudes larger than those
present in the upper branch (UB). Later, the study of [6], by examining the representative angle
of attack α = 20◦, provided further details of the vibration dynamics (i.e. the structural vibration
response and the fluid forcing) and revealed that a new 2(2S) wake mode was associated with a
sub-harmonic synchronization in the HB. This section presents a follow-up analysis using CWT
to gain a proper understanding of the temporal behaviour of the frequency response in various
response regimes for the case of α = 20◦. Also, a recurrence analysis is given to shed light on
dynamical states of the structural vibration.

Figure 9 shows the amplitude and frequency responses as a function of U∗ for the α = 20◦ case.
As can be seen, five response regimes are identifiable: an initial branch (IB), a UB, a HB, and two
desynchronization regions. Similar to the response typical of VIV, an initial branch is encountered
for low reduced velocities (i.e. U∗ < 4.2), where the body’s oscillation is characterized by low
amplitudes with the oscillation frequency modulated by the Strouhal frequency and fnw. The UB
and HB regimes, where the body oscillations are highly periodic, occur over the reduced velocity
ranges 4.4≤ U∗ ≤ 6.4 and 7.9≤ U∗ ≤ 9.4, which are highlighted with blue shading. The UB regime
is associated with a 1 : 1 synchronization with a 2S vortex shedding mode consisting of two single
opposite-signed vortices shed per body oscillation cycle, while the HB regime is associated with
a sub-harmonic synchronization (or designated by 1 : 2 synchronization hereby) with 2(2S) vortex
shedding mode consisting of two cycles of two single opposite-signed vortices shed per body
oscillation cycle (see [6]). Interestingly, the HB regime is bounded by two intermittency regions
(IR-I and IR-II highlighted with grey shading) in transition to the desynchronization regions
(DR-I and DR-II) at lower and higher reduced velocities. It should be noted that DR-I occurs
unexpectedly over the range of 6.4< U∗ < 7.4 immediately after the UB regime, which is distinctly
different from the VIV response of the cases of α = 45◦ and a circular cylinder. On the other hand,
DR-II at high reduced velocities (i.e. U∗ > 10.3) appears to be similar to that seen in the case of α =
45◦, where the body vibration become desynchronizedwith the vortex shedding and the vibration
frequency exhibits broadband noise around a dominant component slightly below the Strouhal
frequency.

To examine the temporal behaviour of the body vibration in the response regimes, figure 10
shows time series of the normalized body displacement and its frequency content based on CWT
at various reduced velocities. At U∗ = 3.1 from the IB regime, where the body vibration frequency
is modulated generally by the Strouhal frequency and fnw, the frequency content appears to be
unstable over time, resulting in disordered body oscillations, which is different from the cases
of α = 45◦ and a circular cylinder. At a higher reduced velocity U∗ = 5.1 in the UB regime, the
frequency content is clearly stable over time, with the dominant component close to f ∗

y = 1,
resulting in highly periodic body oscillations. Further, at U∗ = 7.8 from the IR-I region, while
highly periodic large-amplitude (HB) body oscillationswith two harmonic frequency components
(i.e. the first and second harmonics) occur for a long time period, desynchronized oscillations with
much lower amplitudes are also intermittently encountered. When the HB regime is reached
at U∗ = 8.0, the harmonic components are consistently stable over time. The further higher
reduced velocity case of U∗ = 10.1 sees intermittent switching behaviour, where highly periodic
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Figure9. Theamplitude response and the logarithmic-scale frequencyPSD contours as a functionof the reducedvelocity for the
case ofα = 20◦. The 1 : 1 and 1 : 2 synchronization regimes are highlighted with blue shading in (a). Two intermittency regions
(IR-I and IR-II) are highlighted with grey shading. In (b), the vertical dashed lines illustrate the boundaries of the regimes. The
dotted-dashed line represents the Strouhal number St � 0.176. Note that the frequency PSD contours here are constructed

based on STFT analysis [6]. (Online version in colour.)

oscillations are interrupted by oscillations of disorder, which is indicative of a transition to the
desynchronization regime at high reduced velocity.

To further demonstrate how the dynamical state of the body vibration behaves across the
regimes of interest from the UB regime to the IR-II region, figure 11 presents the corresponding
recurrence plots (RPs) based on the body displacement signal for the selected representative U∗
values. Recurrence plots were first introduced by Eckmann et al. [18] to visually analyse recurring
patterns in time series of dynamical systems. As then, they have been employed to identify chaos
in nonlinear dynamical systems in a large variety of scientific areas, from physics, to finance and
economics, and to biological systems. The theory and construction method of RPs used for the
present study can be found in [20]. As illustrated in figure 11a, for the case of U∗ = 5.1 from the UB
regime, where the body vibration is highly periodic, the RP is characterized by diagonal oriented
periodic chequerboard structures. These structures are symmetric about the main (45◦) diagonal
(also known as the line of identity (LOI)). According to [20], the equally spaced diagonal lines
parallel to the LOI are indicative of highly periodic recurrent dynamics with a single dominant
frequency, noting that the horizontal distance between two consecutive diagonal lines depicts the
vibration period. For the U∗ = 7.8 from the IR-I region (figure 11b), periodic recurring patterns
are present for 300< τ < 315; however, the diagonal lines become slightly curvy, indicating
that the evolution of the dynamical states is similar but at different rates (e.g. with multiple
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Figure 11. Recurrence plots (lower) of the time series of the normalized body displacement (upper) for the case of α = 20◦

showing different dynamical states in different response regimes: (a) periodic state at U∗ = 5.1 (UB), (b) periodic and transient
chaotic states at U∗ = 7.8 (IR-I), (c) periodic state at U∗ = 8.0 (HB) and (d) periodic and transient chaotic states at U∗ = 10.1

(IR-II). (Online version in colour.)

around τ = 20). The above RPs show that there exist transient chaos and abrupt changes in the
intermittency region IR-I and IR-II, which are consistent with the analysis using CWT.

4. Conclusion

This paper presents a CWT-based analysis of time series of the FIV of a square cross section
cylinder at three representative angles of attack, α = 0◦, 45◦ and 20◦. These are associated with
different mechanisms of fluid–structure interaction. The use of the CWT technique provides
an insight into the temporal evolution of the frequency content, and reveals the intermittency



behaviour and transitions of the FIV response regimes for the three α cases. For the α = 0◦
case that exhibits a classic galloping response, highly periodic body oscillations and stable
dynamics were encountered in the 1 : 1, 1 : 3 and 1 : 5 synchronization regions over the U∗ range
investigated. At the boundary of these regions the time series exhibits intermittent switching of
the syncrhonization. For the α = 45◦ case, which exhibited a VIV-dominated response, the CWT
analysis reveals intermittent mode competition in the body oscillation time trace throughout
the synchronization region at the branch boundary values. Finally, for the α = 20◦ case of
asymmetric orientation, intermittent vibration and competition appeared in the initial branch
(U∗ < 4.2). As U∗ was increased to the upper branch regime (over 4.4≤ U∗ ≤ 6.4) associated with
a 1 : 1 synchronization, highly periodic body vibration was observed with stable dynamics over
time. Stable dynamics was also found in the high branch associated with a 1 : 2 sub-harmonic
synchronization. Outside the HB regime, the periodic body oscillations contain intermittency,
IR-I and IR-II, and a transition to two subsequent desynchronization regions. Complementary
recurrence plots show that periodic states are interrupted by chaotic bursts in the IR-I and IR-II
regions.
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