
HAL Id: hal-02094154
https://hal.science/hal-02094154v1

Submitted on 5 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Bernays-Schönfinkel-Ramsey Class of Separation
Logic on Arbitrary Domains

Mnacho Echenim, Radu Iosif, Nicolas Peltier

To cite this version:
Mnacho Echenim, Radu Iosif, Nicolas Peltier. The Bernays-Schönfinkel-Ramsey Class of Separation
Logic on Arbitrary Domains. Foundations of Software Science and Computation Structures (FOS-
SACS) - 22nd International Conference, 2019, Prague, Czech Republic. pp.242-259, �10.1007/978-3-
030-17127-8_14�. �hal-02094154�

https://hal.science/hal-02094154v1
https://hal.archives-ouvertes.fr

The Bernays-Schönfinkel-Ramsey Class of Separation
Logic on Arbitrary Domains

Mnacho Echenim1, Radu Iosif2 and Nicolas Peltier1

1 Univ. Grenoble Alpes, CNRS, LIG, F-38000 Grenoble France
2 Univ. Grenoble Alpes, CNRS, VERIMAG, F-38000 Grenoble France

Abstract. This paper investigates the satisfiability problem for Separation Logic
with k record fields, with unrestricted nesting of separating conjunctions and im-
plications, for prenex formulæ with quantifier prefix ∃∗∀∗. In analogy with first-
order logic, we call this fragment Bernays-Schönfinkel-Ramsey Separation Logic
[BSR(SLk)]. In contrast to existing work in Separation Logic, in which the uni-
verse of possible locations is assumed to be infinite, both finite and infinite uni-
verses are considered. We show that, unlike in first-order logic, the (in)finite sat-
isfiability problem is undecidable for BSR(SLk). Then we define two non-trivial
subsets thereof, that are decidable for finite and infinite satisfiability respectively,
by controlling the occurrences of universally quantified variables within the scope
of separating implications, as well as the polarity of the occurrences of the lat-
ter. Beside the theoretical interest, our work has natural applications in program
verification, for checking that constraints on the shape of a data-structure are pre-
served by a sequence of transformations.

1 Introduction

Separation Logic [10, 14], or SL, is a logical framework used in program verification
to describe properties of the dynamically allocated memory, such as topologies of data
structures (lists, trees), (un)reachability between pointers, etc. In a nutshell, given an
integer k ≥ 1, the logic SLk is obtained from the first-order theory of a finite partial
function h : U ⇀Uk called a heap, by adding two substructural connectives:(i) the sep-
arating conjunction φ1 ∗φ2, that asserts a split of the heap into disjoint heaps satisfying
φ1 and φ2 respectively, and (ii) the separating implication or magic wand φ1−∗φ2, stat-
ing that each extension of the heap by a heap satisfying φ1 must satisfy φ2. Intuitively,
U is the universe of possible of memory locations (cells) and k is the number of record
fields in each memory cell.

The separating connectives ∗ and −∗ allow concise definitions of program seman-
tics, via weakest precondition calculi [10] and easy-to-write specifications of recursive
linked data structures (e.g. singly- and doubly-linked lists, trees with linked leaves and
parent pointers, etc.), when higher-order inductive definitions are added [14]. Investigat-
ing the decidability and complexity of the satisfiability problem for fragments of SL is
of theoretical and practical interest. In this paper, we consider prenex SL formulæ with
prefix ∃∗∀∗. In analogy with first-order logic with equality and uninterpreted predicates
[12], we call this fragment Bernays-Schönfinkel-Ramsey SL [BSR(SLk)].

As far as we are aware, all existing work on SL assumes that the universe (set of
available locations) is countably infinite. This assumption is not necessarily realistic in
practice since the available memory is usually finite, although the bound depends on
the hardware and is not known in advance. The finite universe hypothesis is especially
useful when dealing with bounded memory issues, for instance checking that the exe-
cution of a program satisfies its postcondition, provided that there are sufficiently many
available memory cells. In this paper we consider both the finite and infinite satisfia-
bility problems. We show that both problems are undecidable for BSR(SLk) (unlike in
first-order logic) and that they become PSPACE-complete under some additional re-
strictions, related to the occurrences of the magic wand and universal variables:
1. The infinite satisfiability problem is PSPACE-complete if the positive occurrences

of −∗ (i.e., the occurrences of −∗ that are in the scope of an even number of nega-
tions) contain no universal variables.

2. The finite satisfiability problem is PSPACE-complete if there is no positive occur-
rence of −∗ (i.e., −∗ only occurs in the scope of an odd number of negations).

Reasoning on finite domains is more difficult than on infinite ones, due to possibility of
asserting cardinality constraints on unallocated cells, which explains that the latter con-
dition is more restrictive than the former one. Actually, the finite satisfiability problem is
undecidable even if there is only one positive occurrence of a−∗ with no variable within
the scope of −∗. These results establish sharp decidability frontiers within BSR(SLk).

Undecidability is shown by reduction from BSR first-order formulæ with two mo-
nadic function symbols. To establish the decidability results, we first show that every
quantifier-free SL formula can be transformed into an equivalent boolean combination
of formulæ of some specific patterns, called test formulæ. This result is interesting in
itself, since it provides a precise and intuitive characterization of the expressive power of
SL: it shows that separating connectives can be confined to a small set of test formulæ.
Afterward, we show that such test formulæ can be transformed into first-order formulæ.
If the above conditions (1) or (2) are satisfied, then the obtained first-order formulæ
are in the BSR class, which ensures decidability. The PSPACE upper-bound relies on
a careful analysis of the maximal size of the test formulæ. The analysis reveals that,
although the boolean combination of test formulæ is of exponential size, its components
(e.g., the conjunctions in its dnf) are of polynomial size and can be enumerated in
polynomial space. For space reasons, full details and proofs are given in a technical
report [8].
Applications. Besides theoretical interest, our work has natural applications in program
verification. Indeed, purely universal SL formulæ are useful to express pre- or post-
conditions asserting “local” constraints on the shape of the data structures manipulated
by a program. Consider the atomic proposition x 7→ (y1, . . . ,yk) which states that the
value of the heap at x is the tuple (y1, . . . ,yk) and there is no value, other than x, in the
domain of h. With this in mind, the following formula describes a well-formed doubly-
linked list:

∀x1,x2,x3,x4,x5 . x1 7→ (x2,x3)∗ x2 7→ (x4,x5)∗>⇒ x5 ≈ x1∧¬x3 ≈ x4 (1)

Such constraints could also be expressed by using inductively defined predicates, unfor-
tunately checking satisfiability of SL formulæ, even of very simple fragments with no

occurrence of−∗ in the presence of user-defined inductive predicates is undecidable, un-
less some rather restrictive conditions are fulfilled [9]. In contrast, checking entailment
between two universal formulæ boils down to checking the satisfiability of a BSR(SLk)
formula, which can be done thanks to the decidability results in our paper.

The separating implication (magic wand) seldom occurs in such shape constraints.
However, it is useful to describe the dynamic transformations of the data structures,
as in the following Hoare-style axiom, giving the weakest precondition of ∀u . ψ with
respect to redirecting the i-th record field of x to z [10]:

{x 7→ (y1, . . . ,yk)∗ [x 7→ (y1, . . . ,yi−1,z,yi+1, . . . ,yk)−∗∀u . ψ]} x.i := z {∀u . ψ}

It is easy to check that the precondition is equivalent to the formula ∀u . x 7→ (y1, . . . ,yk)
∗ [x 7→ (y1, . . . ,yi−1,z,yi+1, . . . ,yk)−∗ψ] because, although hoisting universal quantifiers
outside of the separating conjunction is unsound in general, this is possible here due to
the special form of the left-hand side x 7→ (y1, . . . ,yi−1,z, . . . ,yk) which unambiguously
defines a single heap cell. Therefore, checking that ∀u . ψ is an invariant of the program
statement x.i := z amounts to checking that the formula ∀u . ψ∧∃u .¬[x 7→ (y1, . . . ,yk)∗
(x 7→ (y1, . . . ,yi−1,z, . . . ,yk)−∗ψ)] is unsatisfiable. Because the magic wand occurs
negated, this formula falls into a decidable class defined in the present paper, for both
finite and infinite satisfiability. The complete formalization of this deductive program
verification technique and the characterization of the class of programs for which it is
applicable is outside the scope of the paper and is left for future work.
Related Work. In contrast to first-order logic for which the decision problem has been
thoroughly investigated [1], only a few results are known for SL. For instance, the
problem is undecidable in general and PSPACE-complete for quantifier-free formulæ
[4]. For k = 1, the problem is also undecidable, but it is PSPACE-complete if in addition
there is only one quantified variable [6] and decidable but nonelementary if there is no
magic wand [2]. In particular, we have also studied the prenex form of SL1 [7] and found
out that it is decidable and nonelementary, whereas BSR(SL1) is PSPACE-complete. In
contrast, in this paper we show that undecidability occurs for BSR(SLk), for k ≥ 2.

Expressive completeness results exist for quantifier-free SL1 [11, 2] and for SL1 with
one and two quantified variables [5, 6]. There, the existence of equivalent boolean com-
binations of test formulæ is shown implicitly, using a finite enumeration of equivalence
classes of models, instead of an effective transformation. Instead, here we present an
explicit equivalence-preserving transformation of quantifier-free SLk into boolean com-
binations of test formulæ, and translate the latter into first-order logic. Further, we ex-
tend the expressive completeness result to finite universes, with additional test formulæ
asserting cardinality constraints on unallocated cells.

Another translation of quantifier-free SLk into first-order logic with equality has
been described in [3]. There, the small model property of quantifier-free SLk [4] is used
to bound the number of first-order variables to be considered and the separating connec-
tives are interpreted as first-order quantifiers. The result is an equisatisfiable first-order
formula. This translation scheme cannot be, however, directly applied to BSR(SLk),
which does not have a small model property, being moreover undecidable. Theory-
parameterized versions of BSR(SLk) have been shown to be undecidable, e.g. when
integer linear arithmetic is used to reason about locations, and claimed to be PSPACE-
complete for countably infinite and finite unbounded location sorts, with no relation

other than equality [13]. In the present paper, we show that this claim is wrong, and
draw a precise chart of decidability for both infinite and finite satisfiability of BSR(SLk).

2 Preliminaries

Basic Definitions. Let Z∞ =Z∪{∞} and N∞ =N∪{∞}, where for each n∈Z we have
n+∞ = ∞ and n < ∞. For a countable set S we denote by ||S|| ∈ N∞ the cardinality of
S. Let Var be a countable set of variables, denoted as x,y,z and U be a sort. Vectors
of variables are denoted by x, y, etc. A function symbol f has #(f) ≥ 0 arguments of
sort U and a sort σ(f), which is either the boolean sort Bool or U . If #(f) = 0, we call
f a constant. We use ⊥ and > for the boolean constants false and true, respectively.
First-order (FO) terms t and formulæ ϕ are defined by the following grammar:

t := x | f (t, . . . , t︸ ︷︷ ︸
#(f)

) ϕ := ⊥ | > | t ≈ t | p(t, . . . , t︸ ︷︷ ︸
#(p)

) | ϕ∧ϕ | ¬ϕ | ∃x . ϕ

where x ∈ Var, f and p are function symbols, σ(f) = U and σ(p) = Bool. We write
ϕ1 ∨ϕ2 for ¬(¬ϕ1 ∧¬ϕ2), ϕ1 → ϕ2 for ¬ϕ1 ∨ϕ2, ϕ1 ↔ ϕ2 for ϕ1 → ϕ2 ∧ϕ2 → ϕ1
and ∀x . ϕ for ¬∃x . ¬ϕ. The size of a formula ϕ, denoted as size(ϕ), is the number of
symbols needed to write it down. Let var(ϕ) be the set of variables that occur free in ϕ,
i.e. not in the scope of a quantifier. A sentence ϕ is a formula where var(ϕ) = /0.

First-order formulæ are interpreted over FO-structures (called structures, when no
confusion arises) S = (U,s, i), where U is a countable set, called the universe, the ele-
ments of which are called locations, s : Var⇀ U is a mapping of variables to locations,
called a store and i interprets each function symbol f by a function f i : U#(f)→ U, if
σ(f) =U and f i : U#(f)→ {⊥i,>i} if σ(f) = Bool. A structure (U,s, i) is finite when
||U|| ∈N and infinite otherwise. We write S |= ϕ iff ϕ is true when interpreted in S . This
relation is defined recursively on the structure of ϕ, as usual. When S |= ϕ, we say that
S is a model of ϕ. A formula is [finitely] satisfiable when it has a [finite] model. We
write ϕ1 ≡ ϕ2 when (U,s, i) |= ϕ1⇔ (U,s, i) |= ϕ2, for every structure (U,s, i).

The Bernays-Schönfinkel-Ramsey fragment of FO, denoted by BSR(FO), is the set
of sentences ∃x1 . . .∃xn∀y1 . . .∀ym . ϕ, where ϕ is a quantifier-free formula in which all
function symbols f of arity #(f)> 0 have sort σ(f) = Bool.
Separation Logic. Let k be a strictly positive integer. The logic SLk is the set of formulæ
generated by the grammar:

ϕ := ⊥ | > | emp | x≈ y | x 7→ (y1, . . . ,yk) | ϕ∧ϕ | ¬ϕ | ϕ∗ϕ | ϕ−∗ϕ | ∃x . ϕ

where x,y,y1, . . . ,yk ∈ Var. The connectives ∗ and −∗ are respectively called the sep-
arating conjunction and separating implication (magic wand). We write ϕ1 (ϕ2 for
¬(ϕ1−∗¬ϕ2) ((is called septraction). The size and set of free variables of an SLk

formula ϕ are defined as for first-order formulæ.
Given an SLk formula φ and a subformula ψ of φ, we say that ψ occurs at polarity

p ∈ {−1,0,1} iff one of the following holds: (i) φ = ψ and p = 1, (ii) φ = ¬φ1 and ψ

occurs at polarity −p in φ1, (iii) φ = φ1 ∧ φ2 or φ = φ1 ∗ φ2, and ψ occurs at polarity
p in φi, for some i = 1,2, or (iv) φ = φ1−∗ φ2 and either ψ is a subformula of φ1 and

p = 0, or ψ occurs at polarity p in φ2. A polarity of 1,0 or −1 is also referred to as
positive, neutral or negative, respectively. Note that our notion of polarity is slightly
different than usual, because the antecedent of a separating implication is of neutral
polarity while the antecedent of an implication is usually of negative polarity. This is
meant to strengthen upcoming decidability results, see Remark 2.

SLk formulæ are interpreted over SL-structures I = (U,s,h), where U and s are as
before and h : U⇀fin U

k is a finite partial mapping of locations to k-tuples of locations,
called a heap. As before, a structure (U,s,h) is finite when ||U|| ∈ N and infinite other-
wise. We denote by dom(h) the domain of the heap h and by ||h|| ∈ N the cardinality
of dom(h). Two heaps h1 and h2 are disjoint iff dom(h1)∩dom(h2) = /0, in which case
h1] h2 denotes their union. A heap h′ is an extension of h by h′′ iff h′ = h] h′′. The
relation (U,s,h) |= ϕ is defined inductively, as follows:

(U,s,h) |= emp ⇔ h= /0

(U,s,h) |= x 7→ (y1, . . . ,yk)⇔ h= {〈s(x),(s(y1), . . . ,s(yk))〉}
(U,s,h) |= ϕ1 ∗ϕ2 ⇔ there exist disjoint heaps h1,h2 such that h = h1]h2

and (U,s,hi) |= ϕi, for i = 1,2
(U,s,h) |= ϕ1−∗ϕ2 ⇔ for all heaps h′ disjoint from h such that (U,s,h′) |= ϕ1

we have (U,s,h]h′) |= ϕ2

The semantics of equality, boolean and first-order connectives is the usual one. Satisfi-
ability, entailment and equivalence are defined for SLk as for FO formulæ.

The Bernays-Schönfinkel-Ramsey fragment of SLk, denoted by BSR(SLk), is the set
of sentences ∃x1 . . .∃xn∀y1 . . .∀ym . φ, where φ is a quantifier-free SLk formula. Since
there is no function symbol of arity greater than zero in SLk, there is no restriction, other
than the form of the quantifier prefix defining BSR(SLk).

3 Test formulæ for SLk

We define a small set of SLk patterns of formulæ, possibly parameterized by a posi-
tive integer, called test formulæ. These patterns capture properties related to allocation,
points-to relations in the heap and cardinality constraints.

Definition 1. The following patterns are called test formulæ:

x ↪→ y def
= x 7→ y∗> |U | ≥ n def

= >(|h| ≥ n, n ∈ N
alloc(x) def

= x 7→ (x, . . . ,x)︸ ︷︷ ︸
k times

−∗⊥ |h| ≥ |U |−n def
= |h| ≥ n+1−∗⊥,n ∈ N

x≈ y |h| ≥ n def
=

 |h| ≥ n−1∗¬emp, if n > 0
>, if n = 0
⊥, if n = ∞

where x,y ∈ Var, y ∈ Vark and n ∈ N∞ is a positive integer or ∞.

The semantics of test formulæ is very natural: x ↪→ y means that x points to vector
y, alloc(x) means that x is allocated, and the arithmetic expressions are interpreted as
usual, where |h| and |U | respectively denote the number of allocated cells and the num-
ber of locations (possibly ∞). Formally:

Proposition 1. Given an SL-structure (U,s,h), the following equivalences hold, for all
variables x,y1, . . . ,yk ∈ Var and integers n ∈ N:

(U,s,h) |= x ↪→ y⇔ h(s(x)) = s(y) (U,s,h) |= |h| ≥ |U |−n⇔ ||h|| ≥ ||U||−n
(U,s,h) |= |U | ≥ n⇔ ||U|| ≥ n (U,s,h) |= |h| ≥ n⇔ ||h|| ≥ n
(U,s,h) |= alloc(x)⇔ s(x) ∈ dom(h)

Not all atoms of SLk are test formulæ, for instance x 7→ y and emp are not test formulæ.
However, by Proposition 1, we have the equivalences x 7→ y ≡ x ↪→ y∧¬|h| ≥ 2 and
emp ≡ ¬|h| ≥ 1. Note that, for any n ∈ N, the test formulæ |U | ≥ n and |h| ≥ |U |− n
are trivially true and false respectively, if the universe is infinite. We write t < u for
¬(t ≥ u).

We need to introduce a few notations useful to describe upcoming transformations
in a concise and precise way. A literal is a test formula or its negation. Unless stated
otherwise, we view a conjunction T of literals as a set3 and we use the same symbol to
denote both a set and the formula obtained by conjoining the elements of the set. The
equivalence relation x≈T y is defined as T |= x≈ y and we write x 6≈T y for T |=¬x≈ y.
Observe that x 6≈T y is not the complement of x ≈T y. For a set X of variables, |X |T is
the number of equivalence classes of ≈T in X .

Definition 2. A variable x is allocated in an SL-structure I iff I |= alloc(x). For a set of
variables X ⊆ Var, let alloc(X)

def
=

∧
x∈X alloc(x) and nalloc(X)

def
=

∧
x∈X ¬alloc(x). For

a set T of literals, let:

av(T) def
=

{
x ∈ Var | x≈T x′, T ∩{alloc(x′),x′ ↪→ y | y ∈ Vark} 6= /0

}
nv(T) def

= {x ∈ Var | x≈T x′, ¬alloc(x′) ∈ T}
fpX (T)

def
= T ∩{alloc(x),¬alloc(x),x ↪→ y,¬x ↪→ y | x ∈ X ,y ∈ Vark}

We let #a(T)
def
= |av(T)|T be the number of equivalence classes of ≈T containing vari-

ables allocated in every model of T and #n(X ,T) def
= |X ∩nv(T)|T be the number of

equivalence classes of ≈T containing variables from X that are not allocated in any
model of T . We also let fpa(T)

def
= fpav(T)(T).

Intuitively, av(T) [nv(T)] is the set of variables that must be [are never] allocated in
every [any] model of T , and fpX (T) is the footprint of T relative to the set X ⊆ Var, i.e.
the set of formulæ describing allocation and points-to relations over variables from X .
For example, if T = {x≈ z,alloc(x),¬alloc(y),¬z ↪→ y}, then av(T) = {x,z}, nv(T) =
{y}, fpa(T) = {alloc(x),¬z ↪→ y} and fpnv(T)(T) = {¬alloc(y)}.

3.1 From Test formulæ to FO

The introduction of test formulæ (Definition 1) is motivated by the reduction of the
(in)finite satisfiability problem for quantified boolean combinations thereof to the same
problem for FO. The reduction is devised in such a way that the obtained formula is in

3 The empty set is thus considered to be true.

the BSR class, if possible. Given a quantified boolean combination of test formulæ φ,
the FO formula τ(φ) is defined by induction on the structure of φ:

τ(|h| ≥ n) def
= an τ(|U | ≥ n) def

= bn

τ(|h| ≥ |U |−n) def
= ¬cn+1 τ(¬φ1)

def
= ¬τ(φ1)

τ(x ↪→ y) def
= p(x,y1, . . . ,yk) τ(alloc(x)) def

= ∃y1 . . .∃yk . p(x,y1, . . . ,yk)

τ(φ1∧φ2)
def
= τ(φ1)∧ τ(φ2) τ(∃x . φ1)

def
= ∃x . τ(φ1)

τ(x≈ y) def
= x≈ y

where p is a (k+1)-ary function symbol of sort Bool and an,bn and cn are constants of
sort Bool, for all n ∈ N. These function symbols are related by the following axioms,
where un,vn and wn are constants of sort U , for all n > 0:

P : ∀x∀y∀y′ . p(x,y)∧p(x,y′)→
∧k

i=1 yi ≈ y′i

A0 : a0 An :
{
∃y . an→ an−1∧p(un,y)∧

∧n−1
i=1 ¬ui ≈ un

∧ ∀x∀y . ¬an∧p(x,y)→
∨n−1

i=1 x≈ ui

}
B0 : b0 Bn :

{
bn→ bn−1∧

∧n−1
i=1 ¬vi ≈ vn

∧ ∀x . ¬bn→
∨n−1

i=1 x≈ vi

}
C0 : c0 Cn : ∀y . cn→ cn−1∧¬p(wn,y)∧

∧n−1
i=1 ¬wn ≈wi

Intuitively, p encodes the heap and an (resp. bn) is true iff there are at least n cells in
the domain of the heap (resp. in the universe), namely u1, . . . ,un (resp. v1, . . . ,vn). If cn
is true, then there are at least n locations w1, . . . ,wn outside of the domain of the heap
(free), but the converse does not hold. The Cn axioms do not state the equivalence of cn
with the existence of at least n free locations, because such an equivalence cannot be ex-
pressed in BSR(FO)4. As a consequence, the transformation preserves sat-equivalence
only if the formulæ |h| ≥ |U |−n occur only at negative polarity (see Lemma 1, Point 2).
If the domain is infinite then this problem does not arise since the formulæ |h| ≥ |U |−n
are always false.

Definition 3. For a quantified boolean combination of test formulæ φ, we let N (φ) be
the maximum integer n occurring in a test formula θ of the form |h| ≥ n, |U | ≥ n, or
|h| ≥ |U |−n from φ and define A(φ)

def
= {P}∪{Ai}

N (φ)
i=0 ∪{Bi}

N (φ)
i=0 ∪{Ci}

N (φ)+1
i=0 as the

set of axioms related to φ.

The relationship between φ and τ(φ) is stated below.

Lemma 1. Let φ be a quantified boolean combination of test formulæ. The following
hold, for any universe U and any store s:
1. if (U,s,h) |= φ, for a heap h, then (U,s, i) |= τ(φ)∧A(φ), for an interpretation i;
2. if each test formula |h| ≥ |U |−n in φ occurs at a negative polarity and (U,s, i) |=

τ(φ)∧A(φ) for an interpretation i such that ||pi|| ∈N, then (U,s,h) |= φ, for a heap
h.

4 The converse of Cn: ∀x . (¬cn∧∀y . ¬p(x,y))→
∨n−1

i=1 x≈wi is not in BSR(FO).

The translation of alloc(x) introduces existential quantifiers depending on x. For in-
stance, ∀x . alloc(x) is translated as ∀x∃y1 . . .∃yk . p(x,y1, . . . ,yk), which lies outside
of the BSR(FO) fragment. Because upcoming decidability results (Thm. 2) require that
τ(φ) be in BSR(FO), we end this section by delimiting a fragment of SLk whose trans-
lation falls into BSR(FO).

Lemma 2. Given an SLk formula ϕ = ∀z1 . . .∀zm . φ, where φ is a boolean combination
of test formulæ containing no positive occurrence of alloc(zi) for any i ∈ [1,m], τ(ϕ)
is equivalent (up to transformation into prenex form) to a BSR(FO) formula with the
same constants and free variables as τ(ϕ).

Intuitively, if a formula alloc(x) occurs negatively then the quantifiers ∃y1 . . . ∃yk added
when translating alloc(x) can be transformed into universal ones by transformation into
nnf, and if x is not universal then they may be shifted at the root of the formula since
y1, . . . ,yk depend only on x. In both cases, the quantifier prefix ∃∗∀∗ is preserved.

4 From Quantifier-Free SLk to Test formulæ

This section states the expressive completeness result of the paper, namely that any
quantifier-free SLk formula is equivalent, on both finite and infinite models, to a boolean
combination of test formulæ. Starting from a quantifier-free SLk formula ϕ, we define a
set µ(ϕ) of conjunctions of test formulæ and their negations, called minterms, such that
ϕ≡

∨
M∈µ(ϕ) M. Although the number of minterms in µ(ϕ) is exponential in the size of

ϕ, checking the membership of a given minterm M in µ(ϕ) can be done in PSPACE.
Together with the translation of minterms into FO (§3.1), this fact is used to prove
PSPACE membership of the two decidable fragments of BSR(SLk), defined next (§5.2).

4.1 Minterms

A minterm M is a set (conjunction) of literals containing: exactly one literal |h| ≥minM
and one literal |h| < maxM , where minM ∈ N∪ {|U |−n | n ∈ N} and maxM ∈ N∞ ∪
{|U |−n | n ∈ N}, and at most one literal of the form |U | ≥ n, respectively |U |< n.

A minterm may be viewed as an abstract description of a heap. The conditions are
for technical convenience only and are not restrictive. For instance, tautological test
formulæ of the form |h| ≥ 0 and/or |h|< ∞ may be added if needed so that the first con-
dition holds. If M contains two literals t ≥ n1 and t ≥ n2 with n1 < n2 and t ∈ {|h|, |U |}
then t ≥ n1 is redundant and can be removed – and similarly if M contains literals
|h| ≥ |U | − n1 and |h| ≥ |U | − n2. Heterogeneous constraints are merged by perform-
ing a case split on the value of |U |. For example, if M contains both |h| ≥ |U |− 4 and
|h| ≥ 1, then the first condition prevails if |U | ≥ 5 yielding the equivalence disjunction:
|h| ≥ 1∧ |U |< 5∨ |h| ≥ |U |−4∧ |U | ≥ 5. Thus, in the following, we assume that any
conjunction of literals can be transformed into a disjunction of minterms [8].

Definition 4. Given a minterm M, we define the sets:

Me def
= M∩{x≈ y,¬x≈ y | x,y ∈ Var} Ma def

= M∩{alloc(x),¬alloc(x) | x ∈ Var}
Mu def

= M∩{|U | ≥ n, |U |< n | n ∈ N} Mp def
= M∩{x ↪→ y,¬x ↪→ y | x,y ∈ Vark+1}

Thus, M =Me∪Mu∪Ma∪Mp∪{|h| ≥minM, |h|< maxM}, for each minterm M. Given
a set of variables X ⊆Var, a minterm M is (1) E-complete for X iff for all x,y∈X exactly
one of x≈ y∈M, ¬x≈ y∈M holds, and (2) A-complete for X iff for each x∈ X exactly
one of alloc(x) ∈M, ¬alloc(x) ∈M holds.

For a literal `, we denote by ` its complement, i.e. θ
def
= ¬θ and ¬θ

def
= θ, where θ is

a test formula. Let M be the minterm obtained from M by replacing each literal with its
complement. The complement closure of M is cc(M)

def
= M∪M. Two tuples y,y′ ∈ Vark

are M-distinct if yi 6≈M y′i, for some i ∈ [1,k]. Given a minterm M that is E-complete for
var(M), its points-to closure is pc(M)

def
=⊥ if there exist literals x ↪→ y,x′ ↪→ y′ ∈M such

that x ≈M x′ and y, y′ are M-distinct, and pc(M)
def
= M, otherwise. Intuitively, pc(M) is

⊥ iff M contradicts the fact that the heap is a partial function5. The domain closure of
M is dc(M)

def
= ⊥ if either minM = n1 and maxM = n2 for some n1,n2 ∈ Z such that

n1 ≥ n2, or minM = |U |−n1 and maxM = |U |−n2, where n2 ≥ n1; and otherwise:

dc(M)
def
= M∪

{
|U | ≥

⌈
k
√

maxx∈av(M)(δx(M)+1)
⌉}

∪{|U | ≥ n1 +n2 +1 |minM = n1,maxM = |U |−n2,n1,n2 ∈ N}
∪{|U |< n1 +n2 |minM = |U |−n1,maxM = n2,n1,n2 ∈ N}

where δx(M) is the number of pairwise M-distinct tuples y for which there exists ¬x′ ↪→
y ∈ M such that x ≈M x′. Intuitively, dc(M) asserts that minM < maxM and that the
domain contains enough elements to allocate all cells. Essentially, given a structure
(U,s,h), if h(x) is known to be defined and distinct from n pairwise distinct vectors
of locations v1, . . . ,vn, then necessarily at least n+ 1 vectors must exist. Since there
are ||U||k vectors of length k, we must have ||U||k ≥ n+ 1, hence ||U|| ≥ k

√
n+1. For

instance, if M = {¬x ↪→ yi,alloc(x),yi 6≈ y j | i, j ∈ [1,n], i 6= j}, then it is clear that M is
unsatisfiable if there are less than n locations, since x cannot be allocated in this case.

Definition 5. A minterm M is footprint-consistent6 if for all x,x′ ∈Var and y,y′ ∈Vark,
such that x ≈M x′ and yi ≈M y′i for all i ∈ [1,k], we have (1) if alloc(x) ∈ M then
¬alloc(x′) 6∈M, and (2) if x ↪→ y ∈M then ¬alloc(x′),¬x′ ↪→ y′ 6∈M.

We are now ready to define a boolean combination of test formulæ that is equivalent
to M1∗M2, where M1 and M2 are minterms satisfying a number of additional conditions.
Let npto(M1,M2)

def
= (M1 ∩M2)∩{¬x ↪→ y | x 6∈ av(M1∪M2),y ∈ Vark} be the set of

negative points-to literals common to M1 and M2, involving left-hand side variables not
allocated in either M1 or M2.

5 Note that we do not assert the equality y≈ y′, instead we only check that it is not falsified. This
is sufficient for our purpose because in the following we always assume that the considered
minterms are E-complete.

6 Footprint-consistency is a necessary, yet not sufficient, condition for satisfiability of minterms.
For example, the minterm M = {x ↪→ y,x′ ↪→ y′,¬y≈ y′, |h|< 2} is at the same time footprint-
consistent and unsatisfiable.

Lemma 3. Let M1, M2 be two footprint-consistent minterms that are and E-complete
for var(M1∪M2), with cc(Mp

1) = cc(Mp
2). Then M1 ∗M2 ≡ elim∗(M1,M2), where

elim∗(M1,M2)
def
= Me

1∧Me
2∧dc(M1)

u∧dc(M2)
u∧ (2)∧

x∈av(M1), y∈av(M2)

¬x≈ y∧ fpa(M1)∧ fpa(M2)∧ (3)

nalloc(nv(M1)∩nv(M2))∧npto(M1,M2)∧ (4)
|h| ≥minM1 +minM2 ∧ |h|< maxM1 +maxM2 −1 (5)
∧ η12∧η21 (6)

and ηi j
def
=

∧
Y⊆nv(M j)\av(Mi) alloc(Y)→

(
|h| ≥ #a(Mi)+ |Y |Mi

+minM j

∧ #a(Mi)+ |Y |Mi
< maxMi

)
.

Intuitively, if M1 and M2 hold separately, then all heap-independent literals from M1∪
M2 must be satisfied (2), the variables allocated in M1 and M2 must be pairwise distinct
and their footprints, relative to the allocated variables, jointly asserted (3). Moreover,
unallocated variables on both sides must not be allocated and common negative points-
to literals must be asserted (4). Since the heap satisfying elim∗(M1,M2) is the disjoint
union of the heaps for M1 and M2, its bounds are the sum of the bounds on both sides
(5) and, moreover, the variables that M2 never allocates [nv(M2)] may occur allocated
in the heap of M1 and viceversa, thus the constraints η12 and η21, respectively (6).

Next, we show a similar result for the separating implication. For technical con-
venience, we translate the septraction M1 (M2, instead of M1−∗M2, as an equiva-
lent boolean combination of test formulæ. This is without loss of generality, because
M1−∗M2 ≡¬(M1(¬M2). Unlike with the case of the separating conjuction (Lemma
3), here the definition of the boolean combination of test formulæ depends on whether
the universe is finite or infinite.

If the complement of some literal ` ∈ fpa(M1) belongs to M2 then no extension by
a heap that satisfies ` may satisfy `. Therefore, as an additional simplifying assump-
tion, we suppose that fpa(M1)∩M2 = /0, so that M1(M2 is not trivially unsatisfiable.
We write φ ≡fin ψ [φ ≡inf ψ] if φ has the same truth value as ψ in all finite [infinite]
structures.

Lemma 4. Let M1 and M2 be footprint-consistent minterms that are E-complete for
var(M1∪M2), such that: M1 is A-complete for var(M1∪M2), Ma

2 ∪Mp
2 ⊆ cc(Ma

1 ∪Mp
1)

and fpa(M1)∩M2 = /0.
Then, M1(M2 ≡fin elimfin

((M1,M2) and M1(M2 ≡inf eliminf
((M1,M2), where:

elim†
((M1,M2)

def
= pc(M1)

e∧Me
2∧dc(M1)

u∧dc(M2)
u∧ (7)

nalloc(av(M1))∧ fpnv(M1)
(M2)∧ (8)

|h| ≥minM2 −maxM1 +1∧|h|< maxM2 −minM1 (9)

∧ λ
† (10)

with λfin def
=

∧
Y⊆var(M1∪M2)

nalloc(Y)→
(
|h|< |U |−minM1 −#n(Y,M1)+1
∧ |U | ≥minM2 +#n(Y,M1)

)
, λinf def

=

>.

A heap satisfies M1(M2 iff it has an extension, by a disjoint heap satisfying M1, that
satisfies M2. Thus, elim†

((M1,M2) must entail the heap-independent literals of both M1

and M2 (7). Next, no variable allocated by M1 must be allocated by elim†
((M1,M2),

otherwise no extension by a heap satisfying M1 is possible and, moreover, the footprint
of M2 relative to the unallocated variables of M1 must be asserted (8). The heap’s cardi-
nality constraints depend on the bounds of M1 and M2 (9) and, if Y is a set of variables
not allocated in the heap, these variables can be allocated in the extension (10). Actu-
ally, this is where the finite universe assumption first comes into play. If the universe is
infinite, then there are enough locations outside the heap to be assigned to Y . However,
if the universe is finite, then it is necessary to ensure that there are at least #n(Y,M1)
free locations to be assigned to Y (10).

4.2 Translating Quantifier-free SLk into Minterms

We prove next that each quantifier-free SLk formula is equivalent to a finite disjunction
of minterms:

Lemma 5. Given a quantifier-free SLk formula φ, there exist two sets of minterms
µfin(φ) and µinf (φ) such that the following equivalences hold: (1) φ ≡fin ∨

M∈µfin(φ) M,
and (2) φ≡inf ∨

M∈µinf (φ) M.

The formal definition of µfin(φ) and µinf (φ) is given in [8] and omitted for the sake
of conciseness and readability. Intuitively, these sets are defined by induction on the
structure of the formula. For base cases, the following equivalences are used:

x 7→ y ≡ x ↪→ y∧|h| ≈ 1 emp ≡ |h| ≈ 0 x≈ y ≡ x≈ y∧|h| ≥ 0∧|h|< ∞

For formulæ ¬ψ1 or ψ1 ∧ψ2, the transformation is first applied recursively on ψ1 and
ψ2, then the obtained formula is transformed into dnf. For formulæ ψ1 ∗ψ2 or ψ1(ψ2,
the transformation is applied on ψ1 and ψ2, then the following equivalences are used to
shift ∗ and(innermost in the formula:

(φ1∨φ2)∗φ ≡ (φ1 ∗φ)∨ (φ2 ∗φ) (φ1∨φ2)(φ ≡ (φ1(φ)∨ (φ2(φ)
φ∗ (φ1∨φ2) ≡ (φ∗φ1)∨ (φ∗φ2) φ((φ1∨φ2) ≡ (φ(φ1)∨ (φ(φ2)

Afterwards, the operands of ∗ and(are minterms, and the result is obtained using the
equivalences in Lemmas 3 and 4, respectively (up to a transformation into dnf). The
only difficulty is that these lemmas impose some additional conditions on the minterms
(e.g., being E-complete, or A-complete). However, the conditions are easy to enforce
by case splitting, as illustrated by the following example:

Example 1. Consider the formula x 7→ x(y 7→ y. It is easy to check that µ†(x 7→ x) =
{M1}, for † ∈ {fin, inf}, where M1 = x ↪→ x∧ |h| ≥ 1∧ |h|< 2 and µ†(y 7→ y) = {M2},
where M2 = y ↪→ y∧ |h| ≥ 1∧ |h| < 2. To apply Lemma 4, we need to ensure that
M1 and M2 are E-complete, which may be done by adding either x≈ y or x 6≈ y to each
minterm. We also have to ensure that M1 is A-complete, thus for z∈{x,y}, we add either
alloc(z) or¬alloc(z) to M1. Finally, we must have Ma

2∪Mp
2 ⊆ cc(Ma

1 ∪Mp
1), thus we add

either y ↪→ y or ¬y ↪→ y to M1. After removing redundancies, we get (among others) the
minterms: M′1 = x ↪→ x∧|h| ≥ 1∧|h|< 2∧x≈ y and M′2 = y ↪→ y∧|h| ≥ 1∧|h|< 2∧x≈
y. Afterwards we compute elimfin

((M′1,M
′
2) = x≈ y∧¬alloc(x)∧|h| ≥ 0∧|h|< 1. �

As explained in Section 3.1, boolean combinations of minterms can only be trans-
formed into sat-equivalent BSR(FO) formulæ if there is no positive occurrence of test
formulæ |h| ≥ |U |− n or alloc(x) (see the conditions in Lemmas 1 (2) and 2). Conse-
quently, we relate the polarity of these formulæ in some minterm M ∈ µfin(φ)∪ µinf (φ)
with that of a separating implication within φ. The analysis depends on whether the
universe is finite or infinite.

Lemma 6. For any quantifier-free SLk formula φ, the following properties hold:
1. For all M ∈ µinf (φ), we have M∩{|h| ≥ |U |−n, |h|< |U |−n | n ∈ N}= /0.
2. If |h| ≥ |U | − n ∈ M [|h| < |U | − n ∈ M] for some minterm M ∈ µfin(φ), then a

formula ψ1−∗ψ2 occurs at a positive [negative] polarity in φ.
3. If alloc(x) ∈ M [¬alloc(x) ∈ M] for some minterm M ∈ µinf (φ), then a formula

ψ1−∗ψ2, such that x ∈ var(ψ1)∪ var(ψ2), occurs at a positive [negative] polarity
in φ.

4. If M ∩ {alloc(x),¬alloc(x) | x ∈ Var} 6= /0 for some minterm M ∈ µfin(φ), then a
formula ψ1 −∗ψ2, such that x ∈ var(ψ1)∪ var(ψ2), occurs in φ at some polar-
ity p ∈ {−1,1}. Moreover, alloc(x) occurs at a polarity −p, only if alloc(x) is in
the scope of a λfin subformula (10) of a formula elimfin

((M1,M2) used to compute∨
M∈µfin(φ) M.

Given a quantifier-free SLk formula φ, the number of minterms occurring in µfin(φ)
[µinf (φ)] is exponential in the size of φ, in the worst case. Therefore, an optimal decision
procedure cannot generate and store these sets explicitly, but rather must enumerate
minterms lazily. We show that (i) the size of the minterms in µfin(φ)∪µinf (φ) is bounded
by a polynomial in the size of φ, and that (ii) the problem “given a minterm M, does M
occur in µfin(φ) [resp. in µinf (φ)]?” is in PSPACE. To this aim, we define a measure on a
quantifier-free formula φ, which bounds the size of the minterms in the sets µfin(φ) and
µinf (φ), inductively on the structure of the formulæ:

M (x≈ y) def
= 0 M (⊥) def

= 0
M (emp)

def
= 1 M (x 7→ y) def

= 2
M (¬φ1)

def
= M (φ1) M (φ1∧φ2)

def
= max(M (φ1),M (φ2))

M (φ1 ∗φ2)
def
= ∑

2
i=1(M (φi)+ ||var(φi)||) M (φ1−∗φ2)

def
= ∑

2
i=1(M (φi)+ ||var(φi)||)

Definition 6. A minterm M is M -bounded by a formula φ, if for each literal ` ∈ M,
the following hold: (i) M (`) ≤M (φ) if ` ∈ {|h| ≥minMi , |h|< maxMi} (ii) M (`) ≤
2M (φ)+1, if ` ∈ {|U | ≥ n, |U |< n | n ∈ N}.

The following lemma provides the desired result:

Lemma 7. Given a quantifier-free SLk formula φ, each minterm M ∈ µfin(φ)∪µinf (φ) is
M -bounded by φ.

The proof goes by a careful analysis of the test formulæ introduced in Lemmas 3 and 4
or created by minterm transformations (see [8] for details). Since M (φ) is polynomially
bounded by size(φ), this entails that it is possible to check whether M ∈ µfin(φ) [resp.
µinf (φ)] using space bounded also by a polynomial in size(φ).

Lemma 8. Given a minterm M and an SLk formula φ, the problems of checking whether
M ∈ µfin(φ) and M ∈ µinf (φ) are in PSPACE.

Remark 1. Observe that the formulæ elim∗(M1,M2) and elimfin
((M1,M2) in Lemmas 3

and 4 are of exponential size, because Y ranges over sets of variables. However these
formulæ do not need to be constructed explicitly. To check that M ∈ µfin(φ) or M ∈
µinf (φ), we only have to guess such sets Y . See [8] for details.

5 Bernays-Schönfinkel-Ramsey SLk

This section gives the results concerning decidability of the (in)finite satisfiability prob-
lems within the BSR(SLk) fragment. BSR(SLk) is the set of sentences ∀y1 . . .∀ym . φ,
where φ is a quantifier-free SLk formula, with var(φ) = {x1 , . . . , xn , y1 , . . . , ym}, where
the existentially quantified variables x1, . . . ,xn are left free. First, we show that, con-
trary to BSR(FO), the satisfiability of BSR(SLk) is undecidable for k ≥ 2. Second, we
carve two nontrivial fragments of BSR(SLk), for which the infinite and finite satisfi-
ability problems are both PSPACE-complete. These fragments are defined based on
restrictions of (i) polarities of the occurrences of the separating implication, and (ii) oc-
currences of universally quantified variables in the scope of separating implications.
These results draw a rather precise chart of decidability within the BSR(SLk) fragment.
For k = 1, the satisfiability problem of BSR(SL1) is in PSPACE [7] (it is undecidable
for arbitrary SL1 formulæ [2] and decidable but nonelementary for prenex formulæ [7]).

5.1 Undecidability of BSR(SLk)

Theorem 1. The finite and infinite satisfiability problems are both undecidable for
BSR(SLk).

We provide a brief sketch of the proof, see [8] for details. We consider the finite satisfi-
ability problem of the [∀,(0),(2)]= fragment of FO, which consists of sentences of the
form ∀x . φ(x), where φ is a quantifier-free boolean combination of atomic propositions
t1 ≈ t2, and t1, t2 are terms built using two function symbols f and g, of arity one, the
variable x and constant c. It is known (see e.g. [1, Theorem 4.1.8]) that finite satisfiabil-
ity is undecidable for [∀,(0),(2)]=. We reduce this problem to BSR(SLk) satisfiability.
The idea is to encode the value of f and g into the heap, in such a way that every element
x points to (f (x),g(x)). Given a sentence ϕ = ∀x . φ(x) in [∀,(0),(2)]=, we proceed by
first flattening each term in φ consisting of nested applications of f and g. The result is
an equivalent sentence ϕflat = ∀x1 . . .∀xn . φflat, in which the only terms are xi, c, f (xi),
g(xi), f (c) and g(c), for i∈ [1,n]. For example, the formula ∀x . f (g(x))≈ c is flattened
into ∀x1∀x2 . g(x1) 6≈ x2∨ f (x2)≈ c. We define the following BSR(SL2) sentences ϕ

†
sl,

for † ∈ {fin, inf}:

α
†∧ xc ↪→ (yc,zc)∧∀x1 . . .∀xn∀y1 . . .∀yn∀z1 . . .∀zn .

n∧
i=1

(xi ↪→ (yi,zi)→ φsl) (11)

with αfin def
= ∀x . alloc(x) or αfin def

= |h| ≥ |U |−0, αinf def
= ∀x∀y∀z . x ↪→ (y,z)→ alloc(y)∧

alloc(z) and φsl is obtained from φflat by replacing each occurrence of c by xc, each term
f (c) [g(c)] by yc [zc] and each term f (xi) [g(xi)] by yi [zi]. Intuitively, αfin asserts that
the heap is a total function, and αinf states that every referenced cell is allocated7. It
is easy to check that ϕ and ϕsl are equisatisfiable. The undecidability result still holds
for finite satisfiability if a single occurrence of −∗ is allowed, in a (ground) formula
|h| ≥ |U |−0 (see the definition of αfin above).

5.2 Two Decidable Fragments of BSR(SLk)

The reductions (11) use either positive occurences of alloc(x), where x is universally
quantified, or test formulæ |h| ≥ |U | − n. We obtain decidable subsets of BSR(SLk)
by eliminating the positive occurrences of both (i) alloc(x), with x universally quan-
tified, and (ii) |h| ≥ |U | − n, from µ†(φ), where † ∈ {fin, inf} and ∀y1 . . .∀ym . φ is
any BSR(SLk) formula. Note that µinf (φ) contains no formulæ of the form |h| ≥ |U |−n,
which explains why slightly less restrictive conditions are needed for infinite structures.

Definition 7. Given an integer k ≥ 1, we define:
1. BSRinf (SLk) as the set of sentences ∀y1 . . .∀ym . φ such that for all i ∈ [1,m] and

all formulæ ψ1−∗ψ2 occurring at polarity 1 in φ, we have yi 6∈ var(ψ1)∪var(ψ2),
2. BSRfin(SLk) as the set of sentences ∀y1 . . .∀ym . φ such that no formula ψ1−∗ψ2

occurs at polarity 1 in φ.

Note that BSRfin(SLk)(BSRinf (SLk)(BSR(SLk), for any k ≥ 1.

Remark 2. Because the polarity of the antecedent of a −∗ is neutral, Definition 7 im-
poses no constraint on the occurrences of separating implications at the left of a −∗8.

The decidability result of this paper is stated below:

Theorem 2. For any integer k ≥ 1 not depending on the input, the infinite satisfiability
problem for BSRinf (SLk) and the finite satisfiability problem for BSRfin(SLk) are both
PSPACE-complete.

We provide a brief sketch of the proof (all details are available in [8]). In both cases,
PSPACE-hardness is an immediate consequence of the fact that the quantifier-free frag-
ment of SLk, without the separating implication, but with the separating conjunction
and negation, is PSPACE-hard [4]. For PSPACE-membership, consider a formula ϕ

in BSRinf (SLk), and its equivalent disjunction of minterms ϕ′ (of exponential size).
Lemma 8 gives us an upper bound on the size of test formulæ in ϕ′, hence on the
number of constant symbols occurring in τ(ϕ′). This, in turns, gives a bound on the
cardinality of the model of τ(ϕ′). We may thus guess such an interpretation, and check

7 Note that the two definitions of αfin are equivalent. The formula αfin is unsatisfiable on infinite
universes, which explains why the definitions of αfin and αinf differ.

8 The idea is that if a formula alloc(x) or |h| ≥ |U |−n occurs in the antecedent of a −∗, then it
will be eliminated by the transformation in Lemma 4. In contrast, such test formulæ will not
be eliminated if they occur in the subsequent of a −∗.

that it is indeed a model of τ(ϕ′) by enumerating all the minterms in ϕ′ (this is feasible
in polynomial space thanks to Lemma 8) and translating them on-the-fly into first-order
formulæ. The only subtle point is that the model obtained in this way is finite, whereas
our aim is to test that the obtained formula has a infinite model. This difficulty can be
overcome by adding an axiom ensuring that the domain contains more unallocated el-
ements than the total number of constant symbols and variables in the formula. This is
sufficient to prove that the obtained model – although finite – can be extended into an
infinite model, obtained by creating infinitely many copies of these elements.

The proof for BSRfin(SLk) is similar, but far more involved. The problem is that, if
the universe is finite, then alloc(x) test formulæ may occur at a positive polarity, even if
every φ1−∗φ2 subformula occurs at a negative polarity, due to the positive occurrences
of alloc(x) within λfin (10) in the definition of elimfin

((M1,M2). As previously discussed,
positive occurrences of alloc(x) hinder the translation into BSR(FO), because of the ex-
istential quantifiers that may occur in the scope of a universal quantifier. The solution is
to distinguish a class of finite structures (U,s,h), the so-called α-controlled structures,
for some α ∈ N, for which there are locations `1, . . . , `α, such that every location ` ∈ U
is either `i or points to a tuple from the set {`1, . . . , `α, `}. For such structures, the for-
mulæ alloc(x) can be eliminated in a straightforward way because they are equivalent
to

∧
α
i=1(x ≈ `i→ alloc(`i)). If the structure is not α-controlled, then we can show that

there exist sufficiently many unallocated cells, so that all the cardinality constraints of
the form |h| ≤ |U |−n or |U | ≥ n are always satisfied. This ensures that the truth value of
the positive occurrences of alloc(x) are irrelevant, because they only occur in formulæ
λfin that are always true if all test formulæ |h| ≤ |U | − n or |U | ≥ n are true (see the
definition of λfin in Lemma 4).

6 Conclusions and Future Work

We have studied the decidability problem for SL formulæ with quantifier prefix in the
language ∃∗∀∗, denoted as BSR(SLk). Although the fragment was found to be undecid-
able, we identified two non-trivial subfragments for which the infinite and finite satis-
fiability are PSPACE-complete. These fragments are defined by restricting the use of
universally quantified variables within the scope of separating implications at positive
polarity. The universal quantifiers and separating conjunctions are useful to express lo-
cal constraints on the shape of the data-structure, whereas the separating implications al-
low one to express dynamic transformations of these data-structures. As a consequence,
separating implications usually occur negatively in the formulæ tested for satisfiability,
and the decidable classes found in this work are of great practical interest. Future work
involves formalizing and implementing an invariant checking algorithm based on the
above ideas, and using the techniques for proving decidability (namely the translation
of quantifier-free SL(k) formulæ into boolean combinations of test formulæ) to solve
other logical problems, such as frame inference, abduction and possibly interpolation.

Acknowledgments The authors wish to acknowledge the contributions of Stéphane
Demri and Étienne Lozes to the insightful discussions during the early stages of this
work.

References

1. E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspectives in
Mathematical Logic. Springer, 1997.

2. R. Brochenin, S. Demri, and E. Lozes. On the almighty wand. Information and Computation,
211:106 – 137, 2012.

3. C. Calcagno, P. Gardner, and M. Hague. From separation logic to first-order logic. In Foun-
dations of Software Science and Computational Structures, pages 395–409, Berlin, Heidel-
berg, 2005. Springer Berlin Heidelberg.

4. C. Calcagno, H. Yang, and P. W. O’Hearn. Computability and complexity results for a
spatial assertion language for data structures. In FST TCS 2001: Foundations of Software
Technology and Theoretical Computer Science, pages 108–119, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

5. S. Demri and M. Deters. Expressive completeness of separation logic with two variables and
no separating conjunction. In T. A. Henzinger and D. Miller, editors, Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-
Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14,
Vienna, Austria, July 14 - 18, 2014, pages 37:1–37:10. ACM, 2014.

6. S. Demri, D. Galmiche, D. Larchey-Wendling, and D. Méry. Separation logic with one
quantified variable. Theory Comput. Syst., 61(2):371–461, 2017.

7. M. Echenim, R. Iosif, and N. Peltier. The complexity of prenex separation logic with one
selector. CoRR, abs/1804.03556, 2018.

8. M. Echenim, R. Iosif, and N. Peltier. On the Expressive Completeness of Bernays-
Schoenfinkel-Ramsey Separation Logic. ArXiv e-prints, 2018.

9. R. Iosif, A. Rogalewicz, and J. Simacek. The tree width of separation logic with recursive
definitions. In Proc. of CADE-24, volume 7898 of LNCS, 2013.

10. S. S. Ishtiaq and P. W. O’Hearn. Bi as an assertion language for mutable data structures. In
ACM SIGPLAN Notices, volume 36, pages 14–26, 2001.

11. É. Lozes. Expressivité des logiques spatiales. Thèse de doctorat, Laboratoire de
l’Informatique du Parallélisme, ENS Lyon, France, Nov. 2004.

12. F. P. Ramsey. On a problem of formal logic. Classic Papers in Combinatorics, pages 1–24,
1987.

13. A. Reynolds, R. Iosif, and C. Serban. Reasoning in the bernays-schönfinkel-ramsey fragment
of separation logic. In A. Bouajjani and D. Monniaux, editors, Verification, Model Checking,
and Abstract Interpretation, pages 462–482, Cham, 2017. Springer International Publishing.

14. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings
of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS ’02, pages 55–74.
IEEE Computer Society, 2002.

