Radiation Vulnerability of Fiber Bragg Gratings in Harsh Environments
Adriana Morana, Sylvain Girard, Emmanuel Marin, Claude Marcandella, Serena Rizzolo, Jocelyn Périsse, Jean Reynald Macé, Abdelillah Taouri, Aziz Boukenter, Marco Cannas, et al.

To cite this version:

HAL Id: hal-02093965
https://hal.science/hal-02093965
Submitted on 9 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of some Toulouse researchers and makes it freely available over the web where possible.

This is an author's version published in: https://oatao.univ-toulouse.fr/22911

Official URL: https://doi.org/10.1109/JLT.2014.2364526

To cite this version:

Any correspondence concerning this service should be sent to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr
Radiation Vulnerability of Fiber Bragg Gratings in Harsh Environments

Adriana Morana, Sylvain Girard, Senior Member, IEEE, Emmanuel Marin, Claude Marcandella, Serena Rizzolo, Jocelyn Périsset, Jean-Reynald Macé, Abdelillah Taouri, Aziz Boukenter, Marco Cannas, and Youcef Ouerdane

Abstract—The difficulties encountered in the implementation of a temperature or strain sensor based on fiber Bragg grating (FBG) in a harsh radiative environment are introduced. We present the choices made to select both a radiation-resistant fiber in terms of transmission and also the grating inscription conditions necessary to write radiation tolerant FBGs in such fibers with a femtosecond laser. The radiation response of these gratings was also studied under radiation at dose up to 1 MGy. The comparison between Ge-free and Ge-doped fibers was highlighted.

Index Terms—Fiber, fiber Bragg grating, radiation, radiation-induced attenuation (RIA), silica.

I. INTRODUCTION

The nuclear industry in the last decades showed an increasing interest in the sensing technology based on optical fibers. Among all the optical fiber sensors (OFSs), fiber Bragg gratings (FBGs) were the most investigated under radiation [1]; indeed, the increase of attenuation induced by ionizing radiation limits the intensity-based OFSs in harsh environments, favoring sensors whose information is encoded in wavelength measurements. The FBG sensing is based on the dependence of the Bragg wavelength (λ_B) position on external parameters, as temperature, strain and pressure [2]:

$$\lambda_B = 2 \cdot n_{\text{eff}} \cdot \Lambda$$ (1)

where n_{eff} is the effective refractive index of the fundamental mode and Λ is the grating period. Radiation influences the grating response in different ways. Firstly, ionizing radiation produces point defects whose absorption bands increase the optical fiber transmission losses. Even if the information on the sensing parameter is not encoded on the peak intensity, the radiation-induced attenuation (RIA) degrades the grating performance by decreasing the signal-to-noise ratio and, in some cases, losses can be so high to make it impossible to measure and detect the grating peak [3]. An easy way to reduce the total losses consists of splicing small pieces of photosensitive fibers, where the gratings can be easily written with UV based-techniques, to more radiation-resistant fibers, as suggested by Niay et al. [4]. Otherwise, gratings have to be written directly into radiation-resistant fibers with a F-doped silica or pure-silica core [5]. These fiber types are not as photosensitive as germanosilicate ones to classical UV lasers, as cw or pulsed in the nanosecond domain. Indeed, Albert et al. [6] showed that with an ArF$^+$ laser at 193 nm it is possible to write FBGs with a modulation amplitude of about 10^{-5} in a pure silica core fiber (total fluence of about 18 kJ/cm2) and with a modulation of one order of magnitude higher in a Ge-doped core fiber with a total fluence lower by a factor of 5. For this reason, a more efficient technique for the FBG inscription in Ge-free fibers was developed using the femtosecond UV or IR lasers [7].

Secondly, radiation-induced defects and density variations lead to changes in the grating period and in the refractive indices of the different grating zones, that entail changes both in the effective index and in the index modulation amplitude. Consequently, radiation induces a shift of the peak wavelength (hereafter named Bragg wavelength shift, BWS) and a reduction of the peak amplitude. The first gives rise to an error on the measurement of the sensing parameter; the second leads to a reduction of the signal-to-noise ratio. The behavior of the BWS as a function of the dose is strongly dependent on fiber composition, grating inscription conditions and pre-irradiation treatments [1], so it is necessary to test as more gratings as possible to determine the best grating for the aimed application.

Since the recent discovery to write gratings with femtosecond IR laser, very few works [8] were dedicated to study the radiation sensitivity of these fs-FBGs. In spite of all the previous studies, research is still very active on this field, under the need to find radiation-resistant gratings working as strain or temperature sensors and to explain the different behaviors of the radiation-induced peak shift.

In this work, we extend our preliminary discussion [9] concerning the radiation effects induced on the transmission of different fiber types and on the Bragg peak of gratings written in these fibers by femtosecond radiation at 800 nm. Moreover, we evidence the main difference between the gratings written by UV laser or femtosecond IR radiation, not only comparing the radiation-induced shift but also investigating the defects generated during the grating inscription with confocal spectroscopy.
We investigated three different types of single-mode fibers (SMF): the first is characterized by a Ge-doped core, the second one by a F-doping both in the core and in the cladding and the third fiber has a core in pure silica and a F-doped cladding (hereafter indicated as PSC fiber). All the fibers have cladding and core size diameters of 125 μm and 8–9 μm respectively.

FBGs were written in all the fiber types by an ultra-fast Ti:sapphire laser emitting pulses at 800 nm with duration of 50 fs and repetition rate of 1 kHz, through two different phase-masks. To irradiate the whole core, the focusing lens can be translated perpendicularly to the direction of light propagation at a frequency ranging between 10 mHz and 10 Hz. Moreover, in the Ge-doped fiber that is naturally photosensitive to UV light, a grating was written by using a frequency doubled cw argon-ion laser (Coherent), emitting at 244 nm (maximum power of 250 mW). Thanks to the high laser power, the grating was realized directly, without moving the fiber, by using a beam expander. However, a H₂-loading (during a week at RT and 130 bars) was performed on the Ge-doped fiber before inscription, to increase its photosensitivity, and an annealing (at 80 °C for 7 h) was necessary after the grating inscription, to remove the remaining hydrogen. In contrast with this, the fs-FBGs were neither H₂-loaded nor thermally treated after inscription. The optical fibers were mechanically stripped of the coating for the inscription and the gratings, 1 cm long, were not recoated. The transmission spectra of the gratings used in the experiment are shown in Fig. 1; the inscription conditions and the parameters of the gratings are reported in Table I.

The peak position was determined by fitting about 170 pm range of the transmission spectrum near the main dip with a third order polynomial approximation, to account for a possible peak asymmetry. The full width at half maximum (FWHM) of the Bragg peak was calculated as the distance between two points on the two sides of the central wavelength at which the amplitude is half of the maximum peak value expressed in dB.

Two different sources, Brigitte 60Co facility in SCK•CEN (Mol, Belgium) and 10 keV X-ray Aracor machine at the CEA (Arpajon, France), were used to investigate the radiation response of our samples. The energy deposition mechanisms at these two energies are well known [10] and previous works using various spectroscopic techniques confirmed that both sources lead to the same defect generation mechanisms in silica-based optical fibers. Then, radiation-effects on fiber transmission and Bragg grating were studied with these two different irradiation sources because of their characteristics and accessibilities. The γ-source allows us to irradiate long length of fibers, with a dose-rate lower than 8 Gy(SiO₂)/s and a temperature (lower than 60 °C) not adjustable, but not to realize on-line tests. These, instead, can be performed on only 2 cm long fibers with the X-source, at higher dose-rate (up to 50 Gy(SiO₂)/s) decreasing the experiment time. To study the RIA, 30 m length of each fiber type was γ-irradiated up to total dose of 10 MGy. Permanent radiation induced damages were characterized at room temperature (RT) some months after irradiation, by performing loss measurements at 1550 nm with an optical time domain reflectometer (OTDR FTB-74000E from Exfo) [11]. To determine the origin of this attenuation, spectral measurements were realized by the cut-back method. Transmission spectra were recorded with two white light sources, a spectrometer QE65000 from Ocean Optics for the visible range, between 400 and 700 nm, and an OSA from Yokogawa for the IR range, between 1200 and 1600 nm.

To investigate the radiation sensitivity of the gratings, X-ray irradiations were performed at RT (around 25 °C) with dose-rate of 50 Gy/s and accumulated dose of 1 MGy. Contrary to the γ-system, the irradiation setup is also provided by a high-performance Temtronic thermo-chuck to well control the temperature. During irradiation, four gratings were fixed stress-free on the heating plate of the irradiation system and their transmission spectra were recorded, as shown in Fig. 2, in parallel by using a tunable laser Tunicis Plus source from NetTest and the CT400 high performance optical tester from Yenista Optics. The wavelength resolution was fixed to 1 or 2 pm, for gratings
written in the F-doped and PSC fibers or in the Ge-doped fibers, respectively.

The temperature changes, to which the gratings were subjected, were monitored by two thermocouples fixed on the same heating plate on both sides of the gratings at a distance of about 1 mm. Indeed, during the irradiation a temperature increase (lower than 4 °C) was recorded; so, to isolate only the radiation-induced BWS, the temperature-induced contribution was taken into account, once the temperature sensitivity was known. This coefficient was determined by varying temperature from 20 °C to 40 °C just before irradiation. The temperature sensitivity is ∼10 pm/°C for both gratings written in the Ge-doped fiber, independently of the laser wavelength, and ∼15 pm/°C for those performed in the Ge-free fibers.

The grating photo-inscription effects were studied via confocal micro-photoluminescence (PL) and micro-Raman measurements by using a LabRam Aramis (Jobin-Yvon) spectrometer, equipped with a He-Cd ion laser probe emitting at 3.82 eV (325 nm), a x40 objective and microtranslation stages. The corresponding spatial resolution was about 5 μm.

III. RESULTS

A. Gamma-RIA

Fig. 3 reports the RIA values recorded some months after irradiation with the OTDR at 1550 nm. This permanent attenuation increases with increasing dose for all the fibers. For the Ge-doped fiber the RIA dependence on the dose is described by a power law [12], whereas for the Ge-free fibers a clear saturating behavior is observed. The inset of Fig. 3 shows the attenuation spectrum recorded with the cut-back technique in the F-doped SMF irradiated at 5.5 MGy dose. Despite the spectra missing part, due to the range of the two detectors, the RIA curve consists of three contributions: an UV-tail, at least an absorption band around 600 nm and an IR-absorption which increases with increasing wavelength.

B. X-Rays Induced Changes in the Bragg Peak

Fig. 4 shows the radiation-induced BWS of the gratings listed above.

The results obtained for the FBG written with UV light in the Ge-doped fiber (UV-Ge-FBG) are consistent with those reported in literature [1]: the Bragg peak red-shifts with an initial fast increase followed by a slower tendency to saturate. The peak shift should saturate at a dose higher than 1 MGy, around a value slightly larger than 150 pm. For the three fs-FBGs, instead, the general effect is a peak blue-shift. However, an initial red-shift is observed for the gratings written in the PSC and Ge-doped fibers up to the dose of about 23 and 56 kGy, respectively, at which the inversion of the shift direction occurs. The BWS towards the blue does not show a saturating behavior up to 1 MGy dose; moreover, the slope of the blue shift is larger for the Ge-doped FBG than for the Ge-free FBGs, by a factor ∼2 (~0.05 pm/kGy against -0.03 pm/kGy for the F-doped core fiber and -0.02 pm/kGy for the PSC fiber). At the accumulated dose of 1 MGy, the BWS is about 10 pm for the grating written in the PSC fiber, 24 pm in the Ge-doped fiber and 32 pm in the F-doped fiber.

The radiation-induced changes of the peak amplitude are within 0.2 dB, which corresponds to only 1% of the initial value. Whereas a clear trend cannot be observed for the UV-grating, the fs-FBGs’ amplitude initially increases and then starts decreasing at different values of the accumulated dose with respect to the BWS. The variation of the peak FWHM is always lower than 10 pm, within 3% of its initial value. As an example, Fig. 5 reports the changes observed on the grating written in the F-doped fiber. This FBG does not show a direction inversion for the BWS but it does for the peak amplitude and width, which have similar behavior.

C. Laser Effects During the Grating Inscription

Spatial distribution of defects induced by the writing laser light was studied over the transverse fiber section, thanks to the confocal micro-luminescence setup.

Typical PL spectra emitted from the core center of the pristine Ge-doped SMF and the UV-Ge-FBG are reported in the inset of Fig. 6 under an excitation probe laser source at 325 nm. These results highlight the effects of UV laser photo-inscription on the Ge doped fiber. The PL band peaked at 400 nm is associated with germanium lone pair centers (GLPC) [13]; whereas
Fig. 5. Radiation-induced changes for the fs-FBG written in the F-doped fiber: (a) the Bragg wavelength decreases with dose; (b) the peak FWHM (continuous black line) and amplitude (dotted red line) initially increase and then decrease.

Fig. 6. Normalized map of the PL intensity around 650 nm in the UV-Ge-FBG. The inset shows the PL spectrum emitted under excitation at 325 nm from the center of the pristine Ge-doped fiber (dotted line) and the UV-Ge-FBG (continuous line). The small dashed red circle represents the core zone (∼9 μm diameter) and the large dashed black circle represents the cladding. The band around 650 nm is related to nonbridging hole oxygen centers (NBOHC) [14] linked to both Ge and Si atoms. As shown in this figure, the UV irradiation generates NBOHCs, whose concentration increases, and reduces the GLPCs reservoir concentration. Similar results have been already obtained on X-irradiated Ge-doped fibers [15] involving possible photo-induced processes for the conversion mechanisms of the Ge-related defects. Fig. 6 depicts the intensity distribution of the 650 nm PL over the Ge-doped fiber transverse cross section and shows that the NBOHCs induced during the grating writing are concentrated mainly in a symmetrical area around the core.

Concerning the defects created during the FBG inscription with femtosecond IR-radiation, we report the results obtained on the fs-F-FBG; in such a way we avoid to study defects peculiar to the Ge-doping. As shown in Fig. 7, the main PL induced by the IR laser (under excitation at 325 nm) is located around 650 nm, associated with NBOHCs. In contrast with the UV writing, the distribution of the IR laser induced centers is not symmetrical, as shown in Fig. 7: the defects are concentrated in the core and even in an area along the laser direction.

Fig. 7. Normalized map of the PL intensity around 650 nm in the fs-F-FBG. The inset shows the PL spectrum emitted from the center of the fs-F-FBG under excitation at 325 nm. The small dashed red circle represents the core zone (∼9 μm diameter) and the large dashed black circle represents the cladding.

IR laser causes also structural changes. To observe them, we consider the fiber diameter indicated in Fig. 7 with the black straight line. The inset of Fig. 8 shows the intensity of the 650 nm PL band along this diameter. As it is evident from the high value of the PL intensity, the point “b” has been irradiated, whereas the other point at the same distance from the core, indicated with “a”, has not. Since the dopant concentration is identical in the two points, they should be characterized by the same Raman spectrum. Instead, despite the low signal-to-noise ratio of the spectra, Fig. 8 highlights an increase of the band around 605 cm\(^{-1}\), known as D\(_2\) band and assigned to the oxygen-breathing mode associated with three-membered SiO\(_4\) rings [16]. This is an evidence of the structural changes induced by fs IR-radiation.

Fig. 8. Raman spectra recorded in two points at the same distance from the core center along the fiber diameter reported in black in the previous figure. The point b (grey curve) has been irradiated by the IR laser, whereas the point a (black curve) has not, as it can be observed by the values of the PL intensity at 650 nm PL along the diameter, reported in the inset.

IV. DISCUSSION

In the first part of this work we demonstrated that it is advantageous to write gratings in the IR spectral range, since the IR-RIA is lower than that induced in the UV-Visible spectral range by at least one order of magnitude, as shown in the inset.
of Fig. 3. The same figure highlights that the 1550 nm RIA in
the Ge-doped fiber is higher than in the Ge-free one. Among
the analyzed samples, the most radiation-resistant is the F-doped
fiber, whose RIA saturates around 70 dB/km at the γ-dose of
10 MGy.

Unlike most of the absorption bands in the UV-visible region
of the spectrum, the origin of the IR-RIA is not clear yet; only
very few studies deal with this IR band. Chernov [17] attributed
to self-trapped holes a NIR-band peaked at a wavelength longer
than 1500 nm. Since we record only the tail of an IR band,
we cannot determine the spectral parameters of this absorption
band to confirm its attribution. Moreover, from the shape of the
absorption around 600 nm we cannot affirm the presence of
another band peaked at 660 nm and associated to the same
defects [18].

The RIA limits the OFS performance; indeed, even if the
FBG-based sensor allows only localized measurements, more
gratings can be written in series inside a same fiber to deter-
mine the sensing parameter in different points along the fiber
length, e.g. about ten gratings could be written along 100 m long
fiber for civil nuclear applications. Concerning the gratings, the
important condition that must be verified is not to overlap the
spectral ranges in which the peak of each FBG can vary, for
example the peaks’ positions must be spaced few nm, if the
gratings are temperature sensors working from RT to 100 °C.
The fiber, instead, must be characterized by a reduced RIA value
to allow the signal transmission along the whole fiber length and
then the monitoring of all the gratings written in the same sam-
ple. As an example, we take into account a 100 m long fiber
inside which ten gratings are written at a space distance of 10 m
from each other and an acquisition system with an optical bud-
gest of 10 dB. At an irradiation dose of 10 MGy, the signal will
be attenuated at the fiber end by 24 dB for the Ge-doped fiber,
which means that it will propagate for less than half distance,
i.e. 41 m, and therefore only the first four gratings will be tested.
For the F-doped fiber, instead, the signal attenuation along the
whole fiber length will be around 7 dB and all the sensors could
be checked at the total dose of 10 MGy.

Secondly, we performed the irradiation tests on gratings and
pointed out that fs-FBGs are less sensitive to radiation than clas-
cial UV-gratings. The main cause is the H2-loading of the fiber
before the grating inscription with UV light; nevertheless, it is
necessary to make the fiber more photosensitive. The increase
of the radiation-sensitivity with the hydrogenation has been al-
ready observed [19] and associated with the radiolytic rupture
of OH-bonds [20].

Even if the BWS induced in the UV-FBG is higher than in
the fs-gratings, it shows a saturating behavior, whereas the
peak shift of the fs-FBGs does not seem to saturate up to 1 MGy
accumulated dose. The main radiation effect on the peak of these
gratings is a blue-shift. A comparable behavior was observed by
Henschel et al. on similar fs-FBGs [8]: the BWS induced at the
accumulated dose of 1 MGy is between −10 pm and +15 pm,
lower than in our case. Apart the inscription conditions, one of
the main causes of this difference is probably related with the
different irradiation conditions: we used a higher dose-rate than
in the experiment performed by Henschel et al. in their paper,
50 Gy/s against 2 Gy/s. For the classical UV-FBGs, Fernandez
et al. have inferred that the higher dose-rate, the bigger the
radiation-induced BWS [21]. Assuming the same behavior for
the fs-FBGs, the higher dose-rate should be the cause of the
larger BWS here reported. Moreover, we have to note another
important difference between our fs-gratings and those reported
in literature: ours did not withstand any thermal treatments after
inscription. The effect of a pre-irradiation thermal treatment on
the radiation-response is not clear yet and it depends on several
parameters, as those of the inscription and of the treatment itself.
By comparing the radiation-induced BWS of our gratings with
those of Henschel et al. [8], it is likely that the annealing changes
the dose and BWS values at which the shift direction occurs,
and it could also reduce the BWS.

To try to understand the differences of both used inscrip-
tion techniques, thanks to the confocal micro-luminescence, we
studied the defects induced in the fiber by the grating inscription
process. Independently of the writing laser source, the induced
defects are mainly concentrated in the core region, indeed dur-
ing the grating inscription the laser is focused into the fiber core.
The light focalization that is simple for UV lasers becomes more
complicated for the fs-gratings, because of the critical alignment
between laser and fiber. This operation is realized by connecting
one fiber end to a spectrometer working in the visible spectral
domain to record online the emitted spectra with PL bands of
defects induced by the IR-radiation inside the fiber and optimiz-
ing the interaction between incoming laser and fiber. During this
procedure, the laser power is fixed at a lower value than during
the inscription in order to avoid possible structural modifications
of the fiber.

Figs. 6 and 7 showed the differences: the UV light generates
defects only in a symmetrical area around the fiber core zone,
whereas the defects produced by the fs IR-radiation are present
in the fiber core and in an area along the laser direction. This
asymmetry has been already observed for the fs-FBGs by Troy et
al. [22]. Nevertheless, we took advantages of this asymmetry
study the structural changes induced by the fs laser, by easily
comparing two small regions of the fiber (area of 5 μm × 5 μm)
at the same distance from the core center but whose one was
irradiated and the other was not. This lets us highlight the D2
band increase induced by the fs IR-laser. Several research groups
studied the effects induced by femtosecond IR laser in silica [23]
and demonstrated that they are consistent with a densification
process; indeed the main induced changes in the Raman spectra
are the shift to higher frequencies and the width decrease for the
main 440 cm−1 band and the intensity increase for the D2 band.
No result has been presented in literature, to our knowledge,
about the effects of the fs IR-radiation on fibers. In our case, a
radiation influence on the D2 band is clearly observed in Fig. 8;
but, because of the low signal-to-noise ratio, it is not possible to
know if the radiation causes other small changes, as a shift of
the main band, confirming the hypothesis of densification, or if
the D2 band increase is the only one and it is due to an increase
of the stress inside the fiber. However, what is important to
note is that structural modifications of the glass or stress redis-
tribution can be induced during the fs-FBG writing and they
could be crucial to determine the influence of radiation or ther-
mal treatment on the grating response. For example, whereas a
pre-irradiation thermal treatment increases the radiation sensi-
tivity of the UV-gratings by restoring precursors, as observed by Gusarov et al. [20], a different temperature effect on the radiation-resistance could be obtained for the fs-gratings, depending on its effects on the structure or stress distribution. For this reason, a study of the radiation resistance of the fs-FBGs as a function of the temperature of a pre-irradiation annealing has been recently realized by our research group [24].

Based on the above discussion, the research on radiation-resistant gratings is still of interest: very low values of the radiation-resistance could be obtained for the fs-gratings, de-