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Material slow and fast light in a zero-dispersion configuration

We study the propagation of light pulses in an absorbing medium when the frequency of their carrier coincides with a zero of the refractive index dispersion. Although slow light and, a fortiori, fast light are not expected in such conditions, we show that both can be obtained by selecting particular phase-components of the transmitted field. Analytical expressions of the resulting signals are obtained by a procedure of periodic continuation of the incident pulse and a proof of principle of the predicted phenomena is performed by means of a very simple electrical network, the transfer function of which mimics that of the medium. -0.5 0.0 0.5 Phase (radians) 4 2 0 -2 -4 Detuning (units of γ) 1.0 0.5 0.0 Amplitude Transmission -4 -2 0 2 4

I. INTRODUCTION

The one-dimensional propagation of coherent light pulses with a slowly varying envelope through a linear medium is usually analyzed by means of the group velocity [START_REF] Boyd | Slow and Fast light[END_REF]. At the optical frequency ω it reads v g (ω) = c/ [n(ω) + ω (dn/dω)] where c is the light velocity in vacuum, n(ω) is the refractive index and its derivative dn/dω is the refractive index dispersion. When the group velocity and the medium transmission are both constant over the whole pulse spectrum, the envelope travels undistorted at the velocity v g (ω c ) = c/ [n(ω c ) + ω c (dn/dω c )] where ω c is the pulse carrier frequency and dn/dω c is a short-hand notation of dn/dω for ω = ω c . When the above-mentioned double condition is not fulfilled, group velocity dispersion and transmission variation over the pulse spectrum result in a pulse reshaping.

The refractive index dispersion dn/dω c can take very large positive or negative values when the carrier frequency ω c of the pulses is equal or close to the frequency ω 0 of a narrow and well-marked dip or peak of the medium transmission. When dn/dω c > 0 (normal dispersion), the group velocity is then very small compared to the phase velocity c/ [n(ω c )] (slow light regime) while it becomes very large or even negative (fast last regime) when dn/dω c < 0 (anomalous dispersion). The principle of causality implies that the two regimes can be obtained with a same medium, depending on the probe frequency ω c [START_REF] Bolda | Two theorems for the group velocity in dispersive media[END_REF]. We examine in the present article what occurs when ω c is such that dn/dω c = 0 (zero-dispersion configuration). Neither slow light nor fast light are expected in this case. We will however show that both can be observed by post-selecting particular phase components of the transmitted field, in analogy with the experiments involving post-selection of the field polarization [START_REF] Solli | Demonstration of Superluminal Effects in an Absorptionless, Nonreflective System[END_REF][START_REF] Brunner | Direct Measurement of Superluminal Group Velocity and Signal Velocity in an Optical Fiber[END_REF][START_REF] Bianucci | Observation of simultaneous fast and slow light[END_REF][START_REF] Macke | Simultaneous slow and fast light involving the Faraday effect[END_REF]. We specifically consider the reference case of a medium with a narrow absorption line. Convincing demonstrations of slow light [START_REF] Grischkowsky | Adiabatic following and slow optical pulse propagation in rubidium vapor[END_REF][START_REF] Siddons | A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect[END_REF] and fast light [START_REF] Chu | Linear pulse propagation in an absorbing medium[END_REF][START_REF] Ségard | Observation of negative velocity pulse propagation[END_REF][START_REF] Tanaka | Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapour[END_REF][START_REF] Keaveney | Maximal refraction and superluminal propagation in a gaseous nanolayer[END_REF][START_REF] Jennewein | Propagation of light through small clouds of cold interacting atoms[END_REF] have been performed with this system. The arrangement of our paper is as follows. In Section II, we give the transfer functions for the electric field and for its relevant phase components. The * Electronic address: bernard.segard@univ-lille.fr envelopes of the corresponding transmitted pulses are determined in Section III and we give in Section IV a proof of principle of the predicted phenomena by means of a very simple electrical network. We conclude in Section V by summarizing our main results.

II. TRANSFER FUNCTIONS OF THE MEDIUM

Slow or fast light effects can be directly evidenced by comparing the pulse transmitted by the medium (probe) to that which would be transmitted in vacuum (reference). The transfer functions linking the Fourier transforms of the corresponding fields to that of the incident field read, respectively, exp [-iñ(ω)ωℓ/c] and exp [-iωℓ/c], where ñ(ω) is the complex refractive index of the medium and ℓ its thickness [START_REF] Papoulis | The Fourier integral and its applications[END_REF]. In the time domain, the reference field is simply delayed by the luminal transit time ℓ/c and this naturally leads to use times retarded by ℓ/c to describe the transmitted fields. In this retarded time picture the transfer function for the probe becomes

H(ω) = exp{-i[ñ(ω) -1]ωℓ/c} (1)
and the reference field is equal to the incident field in real time.

For the sake of simplicity, we consider a dilute medium with a Lorentzian absorption line of half width at half maximum γ very small compared to the resonance frequency ω 0 (narrow resonance limit). Under these conditions, the complex susceptibility χ(ω) of the medium is such that |χ(ω)| ≪ 1 ∀ω and, in SI units, the complex refractivity n(ω) -1 is reduced to

n(ω) -1 = 1 + χ(ω) -1 ≈ χ(ω)/2 (2) 
In addition, the susceptibility is only significant when |ω ± ω 0 | ≪ ω 0 . For ω > 0, the classical Lorentz model [START_REF] Boyd | Slow and Fast light[END_REF][START_REF] May | Optique[END_REF] and the semi-classical model of two-levels atoms [START_REF] Allen | Optical resonance and two-level atoms[END_REF][START_REF] Boyd | Nonlinear Optics[END_REF] both lead to a relation of the form

χ(ω) ≈ γ ′ ω 0 -ω + iγ (3) 
Detuning (units of γ) with 0 < γ ′ ≪ γ. Eqs. [START_REF] Boyd | Slow and Fast light[END_REF][START_REF] Bolda | Two theorems for the group velocity in dispersive media[END_REF][START_REF] Solli | Demonstration of Superluminal Effects in an Absorptionless, Nonreflective System[END_REF] finally yield

H(ω) = exp - αℓ 1 + i(ω -ω 0 )/γ . ( 4 
)
where α = ω 0 γ ′ /(2γc) naturally appears as the medium absorption coefficient on resonance for the amplitude. By denoting Φ(ω) the phase of H(ω), the group advance (the opposite of the group delay) is given by the relation a g (ω c ) = dΦ/dω | ω=ωc [START_REF] Papoulis | The Fourier integral and its applications[END_REF] and Eq.4 yields

a g (ω c ) = αℓ γ 1 -∆ 2 /γ 2 (1 + ∆ 2 /γ 2 ) 2 (5) 
where ∆ = (ω c -ω 0 ) is the detuning of the pulse carrier frequency from resonance. The group advance attains its maximum a g (ω 0 ) = αℓ/γ for ∆ = 0, is positive (fast light regime) when |∆| < γ and negative (slow light regime) when |∆| > γ . It cancels when ∆ = ±γ. We will consider in the following the case where ∆ = γ . Quite similar results are obtained when ∆ = -γ. Figure 1 shows the amplitude transmission |H(ω)| and phase Φ(ω) as functions of the detuning ω -ω 0 in the reference case αℓ = π/2. The vertical dash-dotted line indicates the carrier frequency ω c = ω 0 + γ considered in the following.

The transfer function H ∆ (Ω) for the pulse envelope is derived from Eq.( 4) by passing in a frame rotating at the frequency ω c [START_REF] Allen | Optical resonance and two-level atoms[END_REF]. We get

H ∆ (Ω) = exp - αℓ 1 + i (Ω + ∆) /γ (6) 
where Ω = ω -ω c with |Ω| ≪ ω c . On exact resonance (∆ = 0), H 0 (Ω) = H * 0 (-Ω), where the asterisk indicates complex conjugate. The corresponding impulse response h 0 (t), inverse Fourier transform of H 0 (Ω) [START_REF] Papoulis | The Fourier integral and its applications[END_REF], is then real [START_REF] Crisp | Propagation of Small-Area Pulses of Coherent Light through a Resonant Medium[END_REF][START_REF] Macke | On-resonance material fast light[END_REF]. If the envelope x(t) of the incident pulse is real (unchirped pulse) as assumed in the following, the envelope y(t) of the transmitted pulse will be also real or, otherwise said, probe and reference fields will be in phase. In addition the relation H 0 (Ω) = H * 0 (-Ω) implies that the amplitude transmission |H 0 (Ω)|and the phase Φ 0 (Ω) of H 0 (Ω) are, respectively, even and odd functions of Ω. As discussed in [START_REF] Macke | On-resonance material fast light[END_REF], the group advance a g0 = (dΦ 0 /dΩ)| Ω=0 = αℓ/γ can then be identified to the advance of the center-of-gravity (COG) of y(t) over that of x(t) while H 0 (0) = e -αℓ is the ratio of the two envelopes areas [START_REF] Macke | On-resonance material fast light[END_REF]. These results hold whatever the pulse distortion is.

In the zero-dispersion configuration (∆ = γ), H γ (Ω) = H * γ (-Ω) and the impulse response h γ (t) is complex. The envelope y(t) of the transmitted pulse is also complex. Its real part y I (t) and imaginary part y Q (t) are then the envelopes of the components of the probe field, respectively, in phase (I) and in quadrature (Q) with the reference field. The impulse responses h I,Q (t) linking the envelopes y I,Q (t) of these two components to that of the reference pulse read:

h I (t) = Re[h γ (t)] = 1 2 h γ (t) + h * γ (t) (7) 
h Q (t) = Im[h γ (t)] = 1 2i h γ (t) -h * γ (t) (8) 
Coming back in the frequency domain, we get the corresponding transfer functions

H I (Ω) = 1 2 H γ (Ω) + H * γ (-Ω) (9) 
H Q (Ω) = 1 2i H γ (Ω) -H * γ (-Ω) (10) 
These transfer functions are closely related to those encountered in Ref. [START_REF] Macke | Simultaneous slow and fast light involving the Faraday effect[END_REF] where the post-selection was made on the field polarization. As H 0 (Ω) in the resonant case, Ω) and the modulus |H I,Q (Ω)| and phase Φ I,Q (Ω) are, respectively, even and odd functions of Ω. As made in the resonant case, we derive from Eqs. [START_REF] Macke | Simultaneous slow and fast light involving the Faraday effect[END_REF][START_REF] Chu | Linear pulse propagation in an absorbing medium[END_REF][START_REF] Ségard | Observation of negative velocity pulse propagation[END_REF] the advance a gI,gQ of the COG of y I,Q (t) over that of x(t) and the ratio |H I,Q (0)| of its algebraic area over that of x(t) . We get

H I,Q (Ω) = H * I,Q (-
γa gI = αℓ 2 tan αℓ 2 (11) 
H I (0) = cos αℓ 2 exp - αℓ 2 ( 12 
)
γa gQ = - αℓ 2 cot αℓ 2 (13) 
H Q (0) = sin αℓ 2 exp - αℓ 2 . ( 14 
)
The most significant results are obtained when H I (Ω) and H Q (Ω) are both minimum-phase-shift functions.

This requires that all the zeroes of their continuation in the complex plane have a positive imaginary part [START_REF] Papoulis | The Fourier integral and its applications[END_REF]. It is easily shown that this condition is met when αℓ < π.

It then results from Eqs. [START_REF] Tanaka | Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapour[END_REF][START_REF] Jennewein | Propagation of light through small clouds of cold interacting atoms[END_REF] that the COG of y I (t) is advanced (fast light regime) while that of y Q (t) is delayed (slow light regime). We additionally remark that the transmissions |H I (Ω)| and |H Q (Ω)| are, respectively, minimal and maximal for Ω = 0. previous points in the reference case αℓ = π/2 already considered in Fig. 1. We are then in the remarkable situation where a gQ = -a gI and H I (0) = H Q (0). This means that the COG of y I (t) and y Q (t) are shifted by the same amount in absolute value and that their algebraic area are equal.

A special attention will be paid in the following on fast light which suffers from the most severe restrictions. Eq.( 11) might lead to expect advances as large as wanted could be obtained for αℓ → π. It is worth remarking that this equation only gives the advance of the pulse COG and that the corresponding transmission H I (0) cancels. Anyway, obtaining large absolute advances is not an aim per se and the challenge in fast light experiments is to attain ratios of the advances over the pulse duration as large as possible with moderate distortion. The practical limitations to these fractional advances are examined in the following section.

III. ENVELOPES OF THE INCIDENT AND TRANSMITTED PULSES

We consider an incident pulse of carrier frequency ω c = ω 0 + γ and of envelope

x(t) = cos 2 πt 2τ Π t 2τ (15) 
where Π(u) designates the rectangle function equal to 1 for -1/2 < u < 1/2 and 0 elsewhere. This pulse is very close to the Gaussian pulse usually considered in the literature. It has a full width at half maximum τ (taken as time unit in the following) and a strictly finite overall duration 2τ . We exploit this point by continuing the envelope x(t) at every time by the periodic signal

x(t) = cos 2 πt 2τ = 1 + cos (πt/τ ) 2 (16) 
x(t) contains only three frequencies, namely 0 and ±Ω 1 with Ω 1 = π/τ . As shows Fig. 3, the signals ỹI,Q (t) obtained by substituting x(t) to x(t) reproduce very well the main features of the exact envelopes y I,Q (t) obtained by fast Fourier transform (FFT). We get:

ỹI,Q (t) = 1 2 {H I,Q (0) + |H I,Q (Ω 1 )| cos [Ω 1 t + Φ I,Q (Ω 1 )]} (17) y I,Q (t) has a maximum of amplitude A I,Q = [H I,Q (0) + |H I,Q (Ω 1 )|] /2 in advance over that of the ref- erence pulse by a I,Q = Φ I,Q (Ω 1 )/Ω 1 . The corresponding fractional advances read a I,Q /τ = Φ I,Q (Ω 1 )/(Ω 1 τ ) = Φ I,Q (Ω 1 )/π. ( 18 
)
The advances a I,Q of the maximum have the same sign that the corresponding group advances a gI,gQ (a I > 0 , a Q < 0 ). Since H I (0) < |H I (Ω 1 )|, the amplitude A I of the advanced signal is larger than its asymptotic value

H I (0) when Ω 1 /γ → 0 (γτ → ∞), the opposite occurring for the amplitude A Q of the delayed signal [A Q < H Q (0)].
Equation ( 17) also enables us to determine the full duration at half maximum τ I and τ Q of both signals. They read

τ I,Q = 2τ π arccos |H I,Q (Ω 1 )| -H I,Q (0) 2 |H I,Q (Ω 1 )| (19) 
with τ I < τ (pulse narrowing) and τ Q > τ (pulse broadening). All these results are consistent with those expected for systems having a dip or a peak of transmission.

In agreement with relativistic causality, both phase components start at the same time -τ that the incident pulse in our retarded time picture (Fig. 3). As soon as it has a significant amplitude, the component y Q (t) is simply broadened and the (negative) advance a Q of its maximum is generally close to the group advance a gQ . The behaviour of the in-phase component y I (t) is richer. The pulse distortion of y I (t) is manifested in a narrowing (as already mentioned) and, moreover, in the appearance of a secondary lobe [START_REF] Macke | On-resonance material fast light[END_REF]. The latter is also well reproduced by the periodic model (Fig. 3). Quite generally, its maximum occurs at t = [π -Φ I (Ω 1 )] /Ω 1 and its relative amplitude compared to that of the main lobe reads

D = |H I (Ω 1 )| -H I (0) |H I (Ω 1 )| + H I (0) (20) 
When it is small compared to unity, D constitutes a good indicator of the pulse distortion. The corresponding duration τ I and peak-amplitude A I of y I (t) given by the periodic model read:

τ I = 2τ π arccos D 1 + D (21) 
A I = H I (0) 1 -D (22) 
The envelopes shown Fig. 3a and Fig. 3b have been obtained, respectively, for αℓ = π/2 (reference case) and for αℓ = 3π/4. In both cases, the pulse duration τ has been chosen such that D = 20%. As illustrated Fig. 4, the distortion of the corresponding intensity profiles (currently considered in optics) is quite moderate and the fractional advances are √ 2 times larger than those of the envelopes. We note in particular that the advanced intensity profiles compare favourably with those observed in the reference experiments involving a gain-doublet medium [START_REF] Stenner | The speed of light in a 'fast ligh' optical medium[END_REF].

For a given distortion, relativistic causality imposes severe limitations to the fractional advance a I /τ of y I (t). As for every fast light system, the larger is the dynamics of the system transmission, the larger is the fractional advance [START_REF] Macke | Optimal superluminal systems[END_REF]. In the present case, the transmission dynamics [maximum over minimum of |H I (Ω)|] is reduced to 1/H I (0). Eq.( 22) thus involves that the amplitude A I and the fractional delay a I /τ evolve in opposite directions as functions of the optical thickness αℓ. Figure 5 shows the results obtained for D = 20 % in a broad domain of variation of αℓ. In the reference case αℓ = π/2 (conditions of Fig. 3a), we get a I /τ ≈ 17% and A I ≈ 0.40 while a I /τ ≈ 22% and A I ≈ 0.15 when αℓ = 3π/4 (conditions of Fig. 3b). In the latter case, sufficient amplitude is conciliated with a fractional advance which is not far below its asymptotic value (≈ 27%, see below). For the sake of completeness, we give Fig. 6 the results obtained in the conditions of Fig. 5 for the delayed envelope y Q (t). The variations of its amplitude A Q are moderate, while the fractional delay -a Q /τ continuously decreases to 0 when αℓ → π. We additionally mention that, correlatively, the pulse duration τ Q (the ratio a Q /a gQ ) regularly decreases (increases) to τ ( to 1).

When αℓ → π, the pulse duration required to obtain a fixed distortion D becomes very long. Denoting ε = (π -αℓ)/π, we get at the leading order in ε

Ω 1 γ = π γτ = βǫ (23) 
where

β = 2 √ D/ (1 -D).
Putting this value in the transfer functions H I,Q (Ω 1 ), we get, always at the leading order in ε, the following asymptotic expressions of the pulse advances and amplitudes

a I τ = 1 π arctan(β) (24) 
a gI τ = β π (25) 
A I = πe -π/2 4 1 + 1 + β 2 ε (26) a Q τ = a gQ τ = - βπǫ 2 4 ( 27 
)
A Q ≈ e -π/2 (28) 
Eqs. [START_REF] Rupprecht | Lineare Netzwerke mit negativer Gruppenlaufzeit[END_REF][START_REF] Mitchell | Causality and Negative Group Delays in a Simple Bandpass Amplifier[END_REF] shows that, strictly speaking, a I → a gI only when D ≪ 1 but the fractional advance a I /τ is then very small. As for each fast light system, significant fractional advances are paid by some distortion. The previous results are quite consistent with those shown Figs. [START_REF] Bianucci | Observation of simultaneous fast and slow light[END_REF][START_REF] Macke | Simultaneous slow and fast light involving the Faraday effect[END_REF] for D = 20 %, that is β = √ 5/2. For αℓ → π, we get in particular a I /τ → 27%, A I → 0, a Q /τ → 0, and 

A Q → e -π/2 ≈ 0.21. V in (t) V out (t) C L,r R { z z { { {

IV. EXPERIMENTS WITH AN ELECTRICAL NETWORK

In the optical experiments, the information on the phase shift induced by the medium can be obtained by means of a frequency change translating both reference and probe fields in the radiofrequency domain [START_REF] Chen | Beat-note interferometer for direct phase measurement of photonic information[END_REF][START_REF] Lee | Phase measurement of fast light pulse in electromagnetically induced absorption[END_REF]. The experiments are greatly simplified by working directly in this domain. As back as 1961, Rupprecht [START_REF] Rupprecht | Lineare Netzwerke mit negativer Gruppenlaufzeit[END_REF] evidenced significant advances of the envelope of the pulse transmitted by a radiofrequency network with negative group delay (NGD). More recent demonstrations of advanced pulse-envelope can be found in [START_REF] Mitchell | Causality and Negative Group Delays in a Simple Bandpass Amplifier[END_REF][START_REF] Cao | Negative Group Delay and Pulse Compression in Superluminal Pulse Propagation[END_REF][START_REF] Siddiqui | Time-Domain Measurement of Negative Group Delay in Negative-Refractive-Index Transmission-Line Metamaterials[END_REF][START_REF] Ravelo | Methodology of elementary negative group delay active topologies identification[END_REF][START_REF] Ravelo | Similitude between the NGD function and filter gain behaviours[END_REF]. However, as far as we know, the idea of phase post-selection to evidence NGD effects is absent in all these experiments.

Figure 7 shows the very simple four port network employed in our experiments. As the absorbing medium, it is purely passive. In the narrow resonance limit, the transfer function relating the Fourier transform of the output signal V out (t) to that of the input signal V in (t) reads

H(ω) = η + i (ω -ω 0 ) /γ 1 η + i (ω -ω 0 ) /γ (29) 
where η = r/(r + R) (0 < η < 1), ω 0 = 1/ √ LC and γ = r(R + r)/(2L) with γ ≪ ω 0 . The general relation a g (ω c ) = dΦ/dω | ω=ωc giving the group advance yields

a g (ω c ) = [(1/η) -η] 1 -∆ 2 /γ 2 γ [1 + ∆ 2 /(ηγ) 2 ] [1 + (η∆) 2 /γ 2 ] (30) 
where ∆ = ω c -ω 0 is the detuning of the pulse carrier frequency from resonance. As for the absorbing medium, the group advance is positive when |∆| < γ, is negative when |∆| > γ, cancels when |∆| = γ and is maximum on resonance where it takes the simple form a g (ω 0 ) = [(1/η) -η] /γ. The experimental transmission and phase obtained for η = 0.226, ω 0 /2π = 274.9 kHz and γ/2π = 8.53 kHz are shown Fig. 8. They are in excellent agreement with those derived from Eq.( 29). Note, however, that the values of η, ω 0 and γ somewhat differ from those given below Eq.( 29) which are obtained by considering ideal components without including the selfresonant behaviour of the capacitor and inductor [START_REF] Siddiqui | Time-Domain Measurement of Negative Group Delay in Negative-Refractive-Index Transmission-Line Metamaterials[END_REF].

In the time-resolved experiments, we use a waveform generator (Agilent 33500B) delivering both the sinewave signal of frequency ω c and the modulation signal. It is used in the burst mode (single-shot experiment). The signals V in (t) and V out (t) are sent on two channels of a numerical oscilloscope (Keysight InfiniiVision DSOX4024A) and both are acquired on 16000 points with a 10 bit vertical resolution. Figure 9 gives an example of signals obtained in the resonant case (ω c = ω 0 ) with the parameters of Fig. 8. As expected, the maximum of V out (t) is significantly in advance over that of V in (t) but the two signals are in phase. On the other hand, Fig. 10, obtained in the zero-dispersion configuration ( ω c = ω 0 + γ), confirms that the advance is then negligible but that the two signals are not in phase.

The transfer functions H γ (Ω), H I (Ω) and H Q (Ω) for the envelopes in the zero-dispersion configuration (∆ = γ) are derived from H(ω) as those of the absorbing medium. For the electrical network H γ (Ω) reads

H γ (Ω) = η + i + iΩ/γ 1/η + i + iΩ/γ . ( 31 
)
As in the absorbing medium case, the transfer functions H I (Ω) and H Q (Ω) are deduced from H γ (Ω) by Eqs. [START_REF] Chu | Linear pulse propagation in an absorbing medium[END_REF][START_REF] Ségard | Observation of negative velocity pulse propagation[END_REF]. They yield in particular

H I (0) = 2η 2 1 + η 2
(32) 

γa gI = 1 -η 2 2 2η (1 + η 2 ) (33) H Q (0) = η(1 -η 2 ) 1 + η 2 (34) 
γa gQ = - 2η (1 + η 2 ) ( 35 
)
For a given distortion D ≪ 1, the upper limit of the fractional advance a I /τ is again approached when H I (0) → 0, that is when the pulse amplitude A I → 0. By calculations quite similar to those leading to Eqs.(23-28), we retrieve the upper limit a I /τ = (arctan β) /π (27% for D = 20%) obtained in the absorbing medium case.

The post-selection of the in-phase and quadrature com- ponents of the output signal V out (t) is experimentally performed as follows. The data collected by the numerical oscilloscope are treated by computer. In a first step, we generate a continuous sinewave, the frequency and phase of which coincide with those of the input signal V in (t). This continuous sinewave is next multiplied by the output signal V out (t) to deliver the envelope y I (t) of the in-phase component (I), the harmonic at 2ω c and the high frequency noise being eliminated by a finite impulse response (F.I.R.) filter. The used low pass filter (IGOR software Blackman 367) insures a rejection better than 70 dB for ω/(2π) > 200 kHz. The envelope y Q (t) of the quadrature component is similarly derived by using a continuous sinewave in quadrature with that used to obtain y I (t) . Figure 11 shows the envelopes y I (t) and y Q (t) experimentally observed in the zero-dispersion configuration (∆ = γ) in two representative cases. As it was made to obtain Fig. 10 also as Figs. [START_REF] Solli | Demonstration of Superluminal Effects in an Absorptionless, Nonreflective System[END_REF][START_REF] Brunner | Direct Measurement of Superluminal Group Velocity and Signal Velocity in an Optical Fiber[END_REF][START_REF] Bianucci | Observation of simultaneous fast and slow light[END_REF][START_REF] Macke | Simultaneous slow and fast light involving the Faraday effect[END_REF] for the absorbing medium, the durations τ of the incident pulse are chosen such that D = 20 % for the I-component. The envelopes shown Fig. 11a are observed in the conditions of Fig. 10. They are quite comparable to those obtained theoretically with an absorbing medium of optical thickness αℓ = 3π/4 (see Fig. 3b). In particular, the advance a I is significantly larger than the delay -a Q . On another hand, the amplitudes of the two components are such that A Q /A I ≈ 1.7 and this explains why no secondary lobe is visible Fig. 10 in the overall envelope y(t) = y 2 I (t) + y 2 Q (t). As a second example, Fig. 11b shows the envelopes experimentally observed when η = 0.45 and γ/(2π) = 7.45 kHz. In this case |a I /a Q | and A Q /A I are both close to unity and the envelopes are now comparable to those obtained in the case αℓ = π/2 taken as reference for the absorbing medium (see Fig. 3a). In case a) as in case b), the observed envelopes are in very good agreement with the envelopes derived by FFT by using the transfer function H γ (Ω) given Eq.(31). In addition, the advances, amplitudes and pulse durations are exactly determined by the periodic model with, in particular, τ I = 0.89 τ and A I = 1.25 H I (0) as predicted by Eqs. [START_REF] Macke | Optimal superluminal systems[END_REF][START_REF] Chen | Beat-note interferometer for direct phase measurement of photonic information[END_REF].

V. CONCLUSION

The dilute medium with a narrow absorption line is a reference system for the observation of fast and slow light. Fast light is obtained when the carrier frequency of the incident pulse coincides or is close to resonance while slow light is observed when this frequency lies in the line wings. There are thus two intermediate carrier frequencies for which the group velocity equals that of the light in vacuum. Paradoxically enough, we have shown that, in such a case, fast and slow light can be simultaneously observed. This is achieved by post-selecting particular phase components of the transmitted field. Fast light is obtained by selecting the component in phase with that of a pulse travelling the same distance in vacuum while slow light is observed on the quadrature component. The general properties of fast and slow light are retrieved with this arrangement. A particular attention is paid to fast light to which the relativistic causality imposes the most severe constraints. As usual, evidencing significant fast light effects with moderate distortion requires large transmission dynamics of the medium and long incident pulses. Finally the theoretical results obtained in optics with an absorbing medium are experimentally reproduced by using a passive electrical network running in the radiofrequency range. We expect that our work will stimulate direct demonstrations in optics or microwave. In this purpose, we emphasize that the phase post-selection procedure introduced in the present article can be applied to different frequency configurations and systems.
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 1 Figure 1: Modulus (on the left) and phase (on the right) of the field transfer function vs. the optical detuning (ω -ω0) for αℓ = π/2. The vertical dash-dotted line indicates the detuning (ωc -ω0) = γ of the pulse carrier considered in the article.
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 22 Figure2: Same as Fig.1for the envelope transfer functions vs. the frequency Ω. The blue (red) line refers to the in-phase component I (the quadrature component Q). Note that, for the considered optical thickness, the group advances agI and agQ (slope of the corresponding phase at Ω = 0) have the same modulus but opposite sign.
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 3 Figure 3: Normalized envelopes yI (t) (solid blue line) and yQ(t) (solid red line) vs. retarded time expressed in units of the incident pulse duration τ = π/Ω1. The dashed lines (same colours) are the solutions obtained by periodically continuing the incident pulse. The envelope of the pulse transmitted in vacuum (reference pulse) is given for comparison (dotted black line). In real time all the envelopes should be shifted to the right by the luminal transit time ℓ/c. Parameters: αℓ (Ω1/γ) = π/2 (1.17) for a) and 3π/4 (0.345) for b).
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 45 Figure 4: Same as Fig.3 for the intensity profiles y 2 I (t) and y 2 Q (t).
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 6 Figure6: Same as Fig.5for the fractional delay -aQ/τ (solid red line, left scale) and amplitude AQ (dashed red line, right scale) of the maximum of yQ(t).

Figure 7 :

 7 Figure 7: Electrical network used in our experiments. r designates the resistance rL of the inductor plus an eventual additional resistance ra. Indicative values of the parameters: L = 2.17 mH , C = 153 pF , quality factor of the inductor Q = O(100) at ω = 1/ √ LC, and ra = 0 or 33 Ω, R = 1008 Ω or 365 Ω .

Figure 8 :

 8 Figure 8: Transmission in dB (on the left) and phase (on the right) of the signal transfer function vs ω/2π for ra = 0 and R = 1008 Ω (solid line) and corresponding theoretical results for η = 0.226 , ω0/2π = 274.9 kHz and γ/2π = 8.53 kHz (dashed line). The vertical dash-dotted line indicates the zerodispersion frequency ω0 + γ .
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 910 Figure 9: Normalized output signal Vout(t) (blue line) vs. time expressed in units of the incident pulse duration τ . This signal is obtained in the resonant case (ωc = ω0). The input signal Vin(t) (black line) is given for reference. Parameters as in Fig.8 and τ = 295µs (γτ = 15.8). The advance of the maximum of Vout(t) over that of Vin(t) is a = 0.221 τ (corresponding group advance ag = 0.266 τ ) while its relative amplitude is A = 0.052. Inset: comparison of the two signals in the vicinity of t = 0 showing that they are in phase.

Figure 11 :

 11 Figure 11: Two examples of envelopes yI (t) (solid blue line) and yQ(t) (solid red line) experimentally obtained in the zerodispersion configuration. The envelope x(t) of the input signal (dotted black line) is given for reference. (a) is obtained in the conditions of Fig.10, viz. τ = 110 µs, η = 0.226 and γ/(2π) = 8.53 kHz. We get in this case aI = 0.24 τ , AI = 0.12 for the in-phase component and aQ = -0.074 τ , AQ = 0.20 for the quadrature component. (b) is obtained for τ = 76 µs by using a circuit with resistances R = 365 Ω and ra = 33 Ω leading to η = 0.45 and γ/(2π) = 7.45 kHz. We have in this case aI = 0.20 τ , aQ = -0.24 τ and AI /AQ = 1.37.
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