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Université de Lille, CNRS, UMR 8523, Physique des Lasers, Atomes et Molécules, F-59000 Lille, France

(Dated: September 8, 2020)

We study the propagation of light pulses in an absorbing medium when the frequency of their
carrier coincides with a zero of the refractive index dispersion. Although slow light and, a fortiori,
fast light are not expected in such conditions, we show that both can be obtained by selecting
particular phase-components of the transmitted field. Analytical expressions of the resulting signals
are obtained by a procedure of periodic continuation of the incident pulse and a proof of principle
of the predicted phenomena is performed by means of a very simple electrical network, the transfer
function of which mimics that of the medium.

I. INTRODUCTION

The one-dimensional propagation of coherent light
pulses with a slowly varying envelope through a linear

medium is usually analyzed by means of the group ve-
locity [1]. At the optical frequency ω it reads vg (ω) =
c/ [n(ω) + ω (dn/dω)] where c is the light velocity in vac-
uum, n(ω) is the refractive index and its derivative dn/dω
is the refractive index dispersion. When the group veloc-
ity and the medium transmission are both constant over
the whole pulse spectrum, the envelope travels undis-
torted at the velocity vg (ωc) = c/ [n(ωc) + ωc (dn/dωc)]
where ωc is the pulse carrier frequency and dn/dωc is a
short-hand notation of dn/dω for ω = ωc . When the
above-mentioned double condition is not fulfilled, group
velocity dispersion and transmission variation over the
pulse spectrum result in a pulse reshaping.

The refractive index dispersion dn/dωc can take very
large positive or negative values when the carrier fre-
quency ωc of the pulses is equal or close to the fre-
quency ω0 of a narrow and well-marked dip or peak of the
medium transmission. When dn/dωc > 0 (normal disper-
sion), the group velocity is then very small compared to
the phase velocity c/ [n(ωc)] (slow light regime) while it
becomes very large or even negative (fast last regime)
when dn/dωc < 0 (anomalous dispersion). The principle
of causality implies that the two regimes can be obtained
with a same medium, depending on the probe frequency
ωc [2]. We examine in the present article what occurs
when ωc is such that dn/dωc = 0 (zero-dispersion config-
uration). Neither slow light nor fast light are expected
in this case. We will however show that both can be ob-
served by post-selecting particular phase components of
the transmitted field, in analogy with the experiments in-
volving post-selection of the field polarization [3–6]. We
specifically consider the reference case of a medium with
a narrow absorption line. Convincing demonstrations of
slow light [7, 8] and fast light [9–13] have been performed
with this system. The arrangement of our paper is as fol-
lows. In Section II, we give the transfer functions for the
electric field and for its relevant phase components. The
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envelopes of the corresponding transmitted pulses are de-
termined in Section III and we give in Section IV a proof
of principle of the predicted phenomena by means of a
very simple electrical network. We conclude in Section V
by summarizing our main results.

II. TRANSFER FUNCTIONS OF THE MEDIUM

Slow or fast light effects can be directly evidenced
by comparing the pulse transmitted by the medium
(probe) to that which would be transmitted in vacuum
(reference). The transfer functions linking the Fourier
transforms of the corresponding fields to that of the
incident field read, respectively, exp [−iñ(ω)ωℓ/c] and
exp [−iωℓ/c], where ñ(ω) is the complex refractive in-
dex of the medium and ℓ its thickness [14]. In the time
domain, the reference field is simply delayed by the lumi-
nal transit time ℓ/c and this naturally leads to use times
retarded by ℓ/c to describe the transmitted fields. In this
retarded time picture the transfer function for the probe
becomes

H(ω) = exp{−i[ñ(ω)− 1]ωℓ/c} (1)

and the reference field is equal to the incident field in real
time.

For the sake of simplicity, we consider a dilute medium
with a Lorentzian absorption line of half width at half
maximum γ very small compared to the resonance fre-
quency ω0 (narrow resonance limit). Under these condi-
tions, the complex susceptibility χ(ω) of the medium is
such that |χ(ω)| ≪ 1 ∀ω and, in SI units, the complex
refractivity ñ(ω)− 1 is reduced to

ñ(ω)− 1 =
√
1 + χ(ω)− 1 ≈ χ(ω)/2 (2)

In addition, the susceptibility is only significant when
|ω ± ω0| ≪ ω0. For ω > 0, the classical Lorentz model
[1, 15] and the semi-classical model of two-levels atoms
[16, 17] both lead to a relation of the form

χ(ω) ≈ γ′

ω0 − ω + iγ
(3)
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Figure 1: Modulus (on the left) and phase (on the right) of
the field transfer function vs. the optical detuning (ω − ω0)
for αℓ = π/2. The vertical dash-dotted line indicates the
detuning (ωc − ω0) = γ of the pulse carrier considered in the
article.

with 0 < γ′ ≪ γ. Eqs. (1, 2, 3) finally yield

H(ω) = exp

[
− αℓ

1 + i(ω − ω0)/γ

]
. (4)

where α = ω0γ
′/(2γc) naturally appears as the medium

absorption coefficient on resonance for the amplitude. By
denoting Φ(ω) the phase of H(ω), the group advance
(the opposite of the group delay) is given by the relation
ag(ωc) = dΦ/dω |ω=ωc

[14] and Eq.4 yields

ag(ωc) =

(
αℓ

γ

)[
1−∆2/γ2

(1 + ∆2/γ2)2

]
(5)

where ∆ = (ωc − ω0) is the detuning of the pulse carrier
frequency from resonance. The group advance attains its
maximum ag(ω0) = αℓ/γ for ∆ = 0, is positive (fast light
regime) when |∆| < γ and negative (slow light regime)
when |∆| > γ . It cancels when ∆ = ±γ. We will
consider in the following the case where ∆ = γ . Quite
similar results are obtained when ∆ = −γ. Figure 1
shows the amplitude transmission |H(ω)| and phase Φ(ω)
as functions of the detuning ω − ω0 in the reference case
αℓ = π/2. The vertical dash-dotted line indicates the
carrier frequency ωc = ω0+γ considered in the following.

The transfer function H∆(Ω) for the pulse envelope is
derived from Eq.(4) by passing in a frame rotating at the
frequency ωc[16]. We get

H∆(Ω) = exp

[
− αℓ

1 + i (Ω +∆) /γ

]
(6)

where Ω = ω − ωc with |Ω| ≪ ωc. On exact resonance
(∆ = 0), H0 (Ω) = H∗

0 (−Ω), where the asterisk indicates
complex conjugate. The corresponding impulse response
h0(t), inverse Fourier transform of H0 (Ω) [14], is then
real [18, 19]. If the envelope x(t) of the incident pulse
is real (unchirped pulse) as assumed in the following,
the envelope y(t) of the transmitted pulse will be also
real or, otherwise said, probe and reference fields will be

in phase. In addition the relation H0 (Ω) = H∗

0 (−Ω)
implies that the amplitude transmission |H0 (Ω)|and the
phase Φ0(Ω) of H0 (Ω) are, respectively, even and odd
functions of Ω. As discussed in [19], the group advance
ag0 = (dΦ0/dΩ)|Ω=0 = αℓ/γ can then be identified to
the advance of the center-of-gravity (COG) of y(t) over
that of x(t) while H0(0) = e−αℓ is the ratio of the two en-
velopes areas [19]. These results hold whatever the pulse
distortion is.

In the zero-dispersion configuration (∆ = γ), Hγ (Ω) 6=
H∗

γ (−Ω) and the impulse response hγ(t) is complex. The
envelope y(t) of the transmitted pulse is also complex.
Its real part yI(t) and imaginary part yQ(t) are then the
envelopes of the components of the probe field, respec-
tively, in phase (I) and in quadrature (Q) with the ref-
erence field. The impulse responses hI,Q(t) linking the
envelopes yI,Q(t) of these two components to that of the
reference pulse read:

hI(t) = Re[hγ(t)] =
1

2

[
hγ(t) + h∗

γ(t)
]

(7)

hQ(t) = Im[hγ(t)] =
1

2i

[
hγ(t)− h∗

γ(t)
]

(8)

Coming back in the frequency domain, we get the corre-
sponding transfer functions

HI (Ω) =
1

2

[
Hγ (Ω) +H∗

γ (−Ω)
]

(9)

HQ (Ω) =
1

2i

[
Hγ (Ω)−H∗

γ (−Ω)
]

(10)

These transfer functions are closely related to those en-
countered in Ref.[6] where the post-selection was made
on the field polarization. As H0 (Ω) in the resonant case,
HI,Q (Ω) = H∗

I,Q (−Ω) and the modulus |HI,Q (Ω)| and
phase ΦI,Q(Ω) are, respectively, even and odd functions
of Ω. As made in the resonant case, we derive from
Eqs.(6,9, 10) the advance agI,gQ of the COG of yI,Q(t)
over that of x(t) and the ratio |HI,Q(0)| of its algebraic
area over that of x(t) . We get

γagI =
αℓ

2
tan

(
αℓ

2

)
(11)

HI(0) = cos

(
αℓ

2

)
exp

(
−αℓ

2

)
(12)

γagQ = −αℓ

2
cot

(
αℓ

2

)
(13)

HQ(0) = sin

(
αℓ

2

)
exp

(
−αℓ

2

)
. (14)

The most significant results are obtained when HI (Ω)
and HQ (Ω) are both minimum-phase-shift functions.
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This requires that all the zeroes of their continuation in
the complex plane have a positive imaginary part [14]. It
is easily shown that this condition is met when αℓ < π.
It then results from Eqs.(11, 13) that the COG of yI(t)
is advanced (fast light regime) while that of yQ(t) is de-
layed (slow light regime). We additionally remark that
the transmissions |HI(Ω)| and |HQ(Ω)| are, respectively,
minimal and maximal for Ω = 0. Figure 2 illustrates the
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Figure 2: Same as Fig.1 for the envelope transfer functions
vs. the frequency Ω. The blue (red) line refers to the in-phase
component I (the quadrature component Q). Note that, for
the considered optical thickness, the group advances agI and
agQ (slope of the corresponding phase at Ω = 0) have the
same modulus but opposite sign.

previous points in the reference case αℓ = π/2 already
considered in Fig.1. We are then in the remarkable situa-
tion where agQ = −agI and HI(0) = HQ(0). This means
that the COG of yI(t) and yQ(t) are shifted by the same
amount in absolute value and that their algebraic area
are equal.

A special attention will be paid in the following on
fast light which suffers from the most severe restrictions.
Eq.(11) might lead to expect that advances as large as
wanted could be obtained for αℓ → π. It is worth re-
marking that this equation only gives the advance of
the pulse COG and that the corresponding transmis-
sion HI(0) cancels. Anyway, obtaining large absolute
advances is not an aim per se and the challenge in fast
light experiments is to attain ratios of the advances over
the pulse duration as large as possible with moderate
distortion. The practical limitations to these fractional
advances are examined in the following section.

III. ENVELOPES OF THE INCIDENT AND

TRANSMITTED PULSES

We consider an incident pulse of carrier frequency ωc =
ω0 + γ and of envelope

x(t) = cos2
(
πt

2τ

)
Π

(
t

2τ

)
(15)

where Π(u) designates the rectangle function equal to
1 for −1/2 < u < 1/2 and 0 elsewhere. This pulse is
very close to the Gaussian pulse usually considered in

the literature. It has a full width at half maximum τ
(taken as time unit in the following) and a strictly finite
overall duration 2τ . We exploit this point by continuing
the envelope x(t) at every time by the periodic signal

x̃(t) = cos2
(
πt

2τ

)
=

1 + cos (πt/τ)

2
(16)

x̃(t) contains only three frequencies, namely 0 and ±Ω1

with Ω1 = π/τ . As shows Fig.3, the signals ỹI,Q(t) ob-
tained by substituting x̃(t) to x(t) reproduce very well
the main features of the exact envelopes yI,Q(t) obtained
by fast Fourier transform (FFT). We get:

ỹI,Q(t) =
1

2
{HI,Q(0) + |HI,Q(Ω1)| cos [Ω1t+ΦI,Q(Ω1)]}

(17)
yI,Q(t) has a maximum of amplitude AI,Q =
[HI,Q(0) + |HI,Q(Ω1)|] /2 in advance over that of the ref-
erence pulse by aI,Q = ΦI,Q(Ω1)/Ω1. The corresponding
fractional advances read

aI,Q/τ = ΦI,Q(Ω1)/(Ω1τ) = ΦI,Q(Ω1)/π. (18)

The advances aI,Q of the maximum have the same sign
that the corresponding group advances agI,gQ (aI > 0 ,
aQ < 0 ). Since HI(0) < |HI(Ω1)|, the amplitude AI

of the advanced signal is larger than its asymptotic value
HI(0) when Ω1/γ → 0 (γτ → ∞), the opposite occurring
for the amplitude AQ of the delayed signal [AQ < HQ(0)].
Equation (17) also enables us to determine the full dura-
tion at half maximum τI and τQ of both signals. They
read

τI,Q =

(
2τ

π

)
arccos

[ |HI,Q(Ω1)| −HI,Q(0)

2 |HI,Q(Ω1)|

]
(19)

with τI < τ (pulse narrowing) and τQ > τ (pulse broad-
ening). All these results are consistent with those ex-
pected for systems having a dip or a peak of transmis-
sion.

In agreement with relativistic causality, both phase
components start at the same time −τ that the incident
pulse in our retarded time picture (Fig.3). As soon as
it has a significant amplitude, the component yQ(t) is
simply broadened and the (negative) advance aQ of its
maximum is generally close to the group advance agQ.
The behaviour of the in-phase component yI(t) is richer.
The pulse distortion of yI(t) is manifested in a narrowing
(as already mentioned) and, moreover, in the appearance
of a secondary lobe [19]. The latter is also well repro-
duced by the periodic model (Fig.3). Quite generally, its
maximum occurs at t = [π − ΦI(Ω1)] /Ω1 and its relative
amplitude compared to that of the main lobe reads

D =
|HI(Ω1)| −HI(0)

|HI(Ω1)|+HI(0)
(20)

When it is small compared to unity, D constitutes a good
indicator of the pulse distortion. The corresponding du-
ration τI and peak-amplitude AI of yI(t) given by the
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Figure 3: Normalized envelopes yI(t) (solid blue line) and
yQ(t) (solid red line) vs. retarded time expressed in units of
the incident pulse duration τ = π/Ω1. The dashed lines (same
colours) are the solutions obtained by periodically continuing
the incident pulse. The envelope of the pulse transmitted
in vacuum (reference pulse) is given for comparison (dotted
black line). In real time all the envelopes should be shifted
to the right by the luminal transit time ℓ/c. Parameters: αℓ
(Ω1/γ) = π/2 (1.17) for a) and 3π/4 (0.345) for b).

periodic model read:

τI =
2τ

π
arccos

[
D

1 +D

]
(21)

AI =
HI(0)

1−D
(22)

The envelopes shown Fig.3a and Fig.3b have been ob-
tained, respectively, for αℓ = π/2 (reference case) and for
αℓ = 3π/4. In both cases, the pulse duration τ has been
chosen such that D = 20%. As illustrated Fig.4, the dis-
tortion of the corresponding intensity profiles (currently
considered in optics) is quite moderate and the fractional
advances are

√
2 times larger than those of the envelopes.

We note in particular that the advanced intensity profiles
compare favourably with those observed in the reference
experiments involving a gain-doublet medium [20].

For a given distortion, relativistic causality imposes se-
vere limitations to the fractional advance aI/τ of yI(t).
As for every fast light system, the larger is the dynamics
of the system transmission, the larger is the fractional
advance [21]. In the present case, the transmission dy-
namics [maximum over minimum of |HI(Ω)|] is reduced
to 1/HI(0). Eq.(22) thus involves that the amplitude AI
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Figure 5: Fractional advance aI/τ (solid blue line, left scale)
and amplitude AI (dashed blue line, right scale) of the max-
imum of yI(t) vs. the optical thickness αℓ for D = 20%.

and the fractional delay aI/τ evolve in opposite direc-
tions as functions of the optical thickness αℓ. Figure 5
shows the results obtained for D = 20% in a broad do-
main of variation of αℓ. In the reference case αℓ = π/2
(conditions of Fig.3a), we get aI/τ ≈ 17% and AI ≈ 0.40
while aI/τ ≈ 22% and AI ≈ 0.15 when αℓ = 3π/4 (con-
ditions of Fig.3b). In the latter case, sufficient amplitude
is conciliated with a fractional advance which is not far
below its asymptotic value (≈ 27%, see below). For the
sake of completeness, we give Fig.6 the results obtained
in the conditions of Fig.5 for the delayed envelope yQ(t).
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Figure 6: Same as Fig.5 for the fractional delay −aQ/τ (solid
red line, left scale) and amplitude AQ (dashed red line, right
scale) of the maximum of yQ(t).

The variations of its amplitude AQ are moderate, while
the fractional delay −aQ/τ continuously decreases to 0
when αℓ → π. We additionally mention that, correla-
tively, the pulse duration τQ (the ratio aQ/agQ) regularly
decreases (increases) to τ ( to 1).

When αℓ → π, the pulse duration required to obtain
a fixed distortion D becomes very long. Denoting ε =
(π − αℓ)/π, we get at the leading order in ε

Ω1

γ
=

π

γτ
= βǫ (23)

where β = 2
√
D/ (1−D). Putting this value in the

transfer functions HI,Q(Ω1), we get, always at the lead-
ing order in ε, the following asymptotic expressions of
the pulse advances and amplitudes

aI
τ

=
1

π
arctan(β) (24)

agI
τ

=
β

π
(25)

AI =
πe−π/2

4

(
1 +

√
1 + β2

)
ε (26)

aQ
τ

=
agQ
τ

= −βπǫ2

4
(27)

AQ ≈ e−π/2 (28)

Eqs.(24, 25) shows that, strictly speaking, aI → agI only
when D ≪ 1 but the fractional advance aI/τ is then very
small. As for each fast light system, significant fractional
advances are paid by some distortion. The previous re-
sults are quite consistent with those shown Figs.(5, 6)
for D = 20%, that is β =

√
5/2. For αℓ → π, we get

in particular aI/τ → 27%, AI → 0, aQ/τ → 0, and
AQ → e−π/2 ≈ 0.21.

Vin(t) Vout(t) 

C 

 L,r 

R 

�

�

�

� �

�

Figure 7: Electrical network used in our experiments. r des-
ignates the resistance rL of the inductor plus an eventual ad-
ditional resistance ra. Indicative values of the parameters:
L = 2.17mH , C = 153 pF , quality factor of the inductor
Q = O(100) at ω = 1/

√

LC, and ra = 0 or 33Ω, R = 1008 Ω
or 365Ω .

IV. EXPERIMENTS WITH AN ELECTRICAL

NETWORK

In the optical experiments, the information on the
phase shift induced by the medium can be obtained by
means of a frequency change translating both reference
and probe fields in the radiofrequency domain [22, 23].
The experiments are greatly simplified by working di-
rectly in this domain. As back as 1961, Rupprecht [24] ev-
idenced significant advances of the envelope of the pulse
transmitted by a radiofrequency network with negative
group delay (NGD). More recent demonstrations of ad-
vanced pulse-envelope can be found in [25–29]. However,
as far as we know, the idea of phase post-selection to
evidence NGD effects is absent in all these experiments.

Figure 7 shows the very simple four port network em-
ployed in our experiments. As the absorbing medium,
it is purely passive. In the narrow resonance limit, the
transfer function relating the Fourier transform of the
output signal Vout(t) to that of the input signal Vin(t)
reads

H(ω) =
η + i (ω − ω0) /γ
1

η + i (ω − ω0) /γ
(29)

where η =
√
r/(r +R) (0 < η < 1), ω0 = 1/

√
LC and

γ =
√
r(R + r)/(2L) with γ ≪ ω0. The general relation

ag(ωc) = dΦ/dω |ω=ωc
giving the group advance yields

ag(ωc) =
[(1/η)− η]

(
1−∆2/γ2

)

γ [1 + ∆2/(ηγ)2] [1 + (η∆)2/γ2]
(30)

where ∆ = ωc − ω0 is the detuning of the pulse car-
rier frequency from resonance. As for the absorbing
medium, the group advance is positive when |∆| < γ,
is negative when |∆| > γ, cancels when |∆| = γ and is
maximum on resonance where it takes the simple form
ag(ω0) = [(1/η)− η] /γ. The experimental transmission
and phase obtained for η = 0.226, ω0/2π = 274.9 kHz
and γ/2π = 8.53 kHz are shown Fig.8. They are in ex-
cellent agreement with those derived from Eq.(29). Note,
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Figure 8: Transmission in dB (on the left) and phase (on the
right) of the signal transfer function vs ω/2π for ra = 0 and
R = 1008Ω (solid line) and corresponding theoretical results
for η = 0.226 , ω0/2π = 274.9 kHz and γ/2π = 8.53 kHz
(dashed line). The vertical dash-dotted line indicates the zero-
dispersion frequency ω0 + γ .

however, that the values of η, ω0 and γ somewhat differ
from those given below Eq.(29) which are obtained by
considering ideal components without including the self-
resonant behaviour of the capacitor and inductor [27].

In the time-resolved experiments, we use a wave-
form generator (Agilent 33500B) delivering both the
sinewave signal of frequency ωc and the modulation sig-
nal. It is used in the burst mode (single-shot experi-
ment). The signals Vin(t) and Vout(t) are sent on two
channels of a numerical oscilloscope (Keysight InfiniiVi-
sion DSOX4024A) and both are acquired on 16000 points
with a 10 bit vertical resolution. Figure 9 gives an ex-
ample of signals obtained in the resonant case (ωc = ω0)
with the parameters of Fig.8. As expected, the maxi-
mum of Vout(t) is significantly in advance over that of
Vin(t) but the two signals are in phase. On the other
hand, Fig.10, obtained in the zero-dispersion configura-
tion ( ωc = ω0 + γ), confirms that the advance is then
negligible but that the two signals are not in phase.

The transfer functions Hγ(Ω), HI(Ω) and HQ(Ω) for
the envelopes in the zero-dispersion configuration (∆ =
γ) are derived from H(ω) as those of the absorbing
medium. For the electrical network Hγ(Ω) reads

Hγ(Ω) =
η + i+ iΩ/γ

1/η + i+ iΩ/γ
. (31)

As in the absorbing medium case, the transfer func-
tions HI(Ω) and HQ(Ω) are deduced from Hγ(Ω) by
Eqs.(9,10). They yield in particular

HI(0) =
2η2

1 + η2
(32)

γagI =

(
1− η2

)2

2η (1 + η2)
(33)

HQ(0) =
η(1− η2)

1 + η2
(34)
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Figure 9: Normalized output signal Vout(t) (blue line) vs.
time expressed in units of the incident pulse duration τ . This
signal is obtained in the resonant case (ωc = ω0). The input
signal Vin(t) (black line) is given for reference. Parameters
as in Fig.8 and τ = 295µs (γτ = 15.8). The advance of
the maximum of Vout(t) over that of Vin(t) is a = 0.221 τ
(corresponding group advance ag = 0.266 τ ) while its relative
amplitude is A = 0.052. Inset: comparison of the two signals
in the vicinity of t = 0 showing that they are in phase.
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Figure 10: Same as Fig.9 in the zero-dispersion configuration
( ωc = ω0 + γ). The output signal has a phase differing from
that of the input signal and the advance a of its maximum
is negligible. The pulse duration τ = 110µs has been chosen
to facilitate the comparison with the results obtained in the
absorbing medium for D = 20%. It leads to A = 0.224.

γagQ = − 2η

(1 + η2)
(35)

For a given distortion D ≪ 1, the upper limit of the frac-
tional advance aI/τ is again approached when HI(0) →
0, that is when the pulse amplitude AI → 0. By calcu-
lations quite similar to those leading to Eqs.(23-28), we
retrieve the upper limit aI/τ = (arctanβ) /π (27% for
D = 20%) obtained in the absorbing medium case.

The post-selection of the in-phase and quadrature com-
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Figure 11: Two examples of envelopes yI(t) (solid blue line)
and yQ(t) (solid red line) experimentally obtained in the zero-
dispersion configuration. The envelope x(t) of the input signal
(dotted black line) is given for reference. (a) is obtained in the
conditions of Fig.10, viz. τ = 110µs, η = 0.226 and γ/(2π) =
8.53 kHz. We get in this case aI = 0.24 τ , AI = 0.12 for the
in-phase component and aQ = −0.074 τ , AQ = 0.20 for the
quadrature component. (b) is obtained for τ = 76µs by using
a circuit with resistances R = 365Ω and ra = 33Ω leading
to η = 0.45 and γ/(2π) = 7.45 kHz. We have in this case
aI = 0.20 τ , aQ = −0.24 τ and AI/AQ = 1.37.

ponents of the output signal Vout(t) is experimentally
performed as follows. The data collected by the numeri-
cal oscilloscope are treated by computer. In a first step,
we generate a continuous sinewave, the frequency and
phase of which coincide with those of the input signal
Vin(t). This continuous sinewave is next multiplied by
the output signal Vout(t) to deliver the envelope yI(t) of
the in-phase component (I), the harmonic at 2ωc and the
high frequency noise being eliminated by a finite impulse
response (F.I.R.) filter. The used low pass filter (IGOR
software Blackman 367) insures a rejection better than
70 dB for ω/(2π) > 200 kHz. The envelope yQ(t) of
the quadrature component is similarly derived by using
a continuous sinewave in quadrature with that used to
obtain yI(t) .

Figure 11 shows the envelopes yI(t) and yQ(t) ex-
perimentally observed in the zero-dispersion configura-
tion (∆ = γ) in two representative cases. As it was
made to obtain Fig.10 also as Figs.(3-6) for the absorb-
ing medium, the durations τ of the incident pulse are
chosen such that D = 20% for the I-component. The
envelopes shown Fig.11a are observed in the conditions
of Fig.10. They are quite comparable to those obtained

theoretically with an absorbing medium of optical thick-
ness αℓ = 3π/4 (see Fig.3b). In particular, the advance
aI is significantly larger than the delay −aQ. On an-
other hand, the amplitudes of the two components are
such that AQ/AI ≈ 1.7 and this explains why no sec-
ondary lobe is visible Fig.10 in the overall envelope y(t) =√
y2I (t) + y2Q(t). As a second example, Fig.11b shows the

envelopes experimentally observed when η = 0.45 and
γ/(2π) = 7.45 kHz. In this case |aI/aQ| and AQ/AI

are both close to unity and the envelopes are now com-
parable to those obtained in the case αℓ = π/2 taken
as reference for the absorbing medium (see Fig.3a). In
case a) as in case b), the observed envelopes are in very
good agreement with the envelopes derived by FFT by
using the transfer function Hγ(Ω) given Eq.(31). In ad-
dition, the advances, amplitudes and pulse durations are
exactly determined by the periodic model with, in par-
ticular, τI = 0.89 τ and AI = 1.25HI(0) as predicted by
Eqs.(21,22).

V. CONCLUSION

The dilute medium with a narrow absorption line is
a reference system for the observation of fast and slow
light. Fast light is obtained when the carrier frequency of
the incident pulse coincides or is close to resonance while
slow light is observed when this frequency lies in the line
wings. There are thus two intermediate carrier frequen-
cies for which the group velocity equals that of the light
in vacuum. Paradoxically enough, we have shown that,
in such a case, fast and slow light can be simultaneously
observed. This is achieved by post-selecting particular
phase components of the transmitted field. Fast light
is obtained by selecting the component in phase with
that of a pulse travelling the same distance in vacuum
while slow light is observed on the quadrature compo-
nent. The general properties of fast and slow light are
retrieved with this arrangement. A particular attention
is paid to fast light to which the relativistic causality im-
poses the most severe constraints. As usual, evidencing
significant fast light effects with moderate distortion re-
quires large transmission dynamics of the medium and
long incident pulses. Finally the theoretical results ob-
tained in optics with an absorbing medium are experi-
mentally reproduced by using a passive electrical network
running in the radiofrequency range. We expect that our
work will stimulate direct demonstrations in optics or mi-
crowave. In this purpose, we emphasize that the phase
post-selection procedure introduced in the present article
can be applied to different frequency configurations and
systems.

Funding: Contrat de Plan Etat-RÃ c©gion (CPER),
Photonics and Society Project (P4s) ; Agence Nationale
de Recherche (ANR), LABEX CEMPI Project (ANR-11-
LABX-0007).

Disclosures:The authors declare no conflicts of in-



8

terest.

[1] R.W. Boyd and D.J. Gauthier, "Slow and Fast light”,
Prog. Opt. 43, Ch. 6 (2002).

[2] E.L. Bolda, R.Y. Chiao, and J. Garrison, “Two theorems
for the group velocity in dispersive media”, Phys. Rev. A
48, 3890-3894 (1993).

[3] D.R. Solli, C.F. McCormik, C. Ropers, J.J. Morehead,
R.Y. Chiao, and J.M. Hickmann, “Demonstration of Su-
perluminal Effects in an Absorptionless, Nonreflective
System”, Phys. Rev. Lett. 91, 143906 (2003).

[4] N. Brunner, V. Scarani, M. Wegmüller, M. Legré, and
N. Gisin, “Direct Measurement of Superluminal Group
Velocity and Signal Velocity in an Optical Fiber”, Phys.
Rev. Lett. 93, 203902 (2004).

[5] P. Bianucci, C.R. Fitz, J.W. Robertson, G. S. Shvets,
and C.K. Shi, “Observation of simultaneous fast and slow
light”, Phys. Rev. A 77, 053816 (2008).

[6] B. Macke and B. Ségard, “Simultaneous slow and fast
light involving the Faraday effect”, Phys. Rev. A 94,
043801 (2016).

[7] D. Grischkowsky, “Adiabatic following and slow optical
pulse propagation in rubidium vapor”, Phys. Rev. A 7,
2096-2102 (1973).

[8] P. Siddons, N.C. Bell, Y. Cai, C.S. Adams, and I.G.
Hughes, “A gigahertz-bandwidth atomic probe based on
the slow-light Faraday effect”, Nature Photonics 3, 225-
229 (2009).

[9] S. Chu and S. Wong, “Linear pulse propagation in an
absorbing medium”, Phys. Rev. Lett. 48, 738-741 (1982).

[10] B. Ségard and B. Macke, “Observation of negative veloc-
ity pulse propagation”, Phys. Lett. 109A, 213-216 (1985).

[11] H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama,
T. Kohmoto, M. Kunitomo, and Y. Fukuda, “Propaga-
tion of optical pulses in a resonantly absorbing medium:
Observation of negative velocity in Rb vapour”, Phys.
Rev. A 68, 053801 (2003).

[12] J. Keaveney, I.G. Hughes, A. Sargsyan, and C.S. Adams,
“Maximal refraction and superluminal propagation in a
gaseous nanolayer”, Phys. Rev. Lett. 109, 233001 (2012).

[13] S Jennewein, Y.R.P. Sortais, J.F. Greffet, and A.
Browaeys, “Propagation of light through small clouds of
cold interacting atoms”, Phys. Rev. A 94, 053828 (2016).

[14] A. Papoulis, The Fourier integral and its applications

(Mc Graw Hill, New York, 1987). As in this textbook,
we use the sign conventions of the linear system theory
which differ from those currently considered in optics.

The final results obviously do not depend on the used
convention.

[15] M. May and A.M. Cazabat, Optique (Dunod, Paris 1996).
[16] L. Allen and J.H. Eberly, Optical resonance and two-level

atoms (Dover, New York 1987).
[17] R.W. Boyd, Nonlinear Optics (Academic, San Diego

1992).
[18] M.D. Crisp, “Propagation of Small-Area Pulses of Coher-

ent Light through a Resonant Medium”, Phys. Rev. A 1,
1604-1611 (1970).

[19] B. Macke and B. Ségard, "On-resonance material fast
light”, Phys. Rev. A 97, 063830 (2018).

[20] M.D. Stenner, D.J. Gauthier, and M. Neifeld, "The speed
of light in a ’fast ligh’ optical medium", Nature (London)
425, 695-698 (2003).

[21] B. Macke, B. Ségard, and F. Wielonsky, "Optimal super-
luminal systems", Phys. Rev. E 72, 035601(R) (2005).

[22] Y.F. Chen, Y.C. Liu, Z.H. Tsai, S.H. Wang, and I.A. Yu,
“Beat-note interferometer for direct phase measurement
of photonic information”, Phys. Rev. A 72, 033812 (2005).

[23] Y.S. Lee, H.J. Lee, and H.S. Moon, “Phase measurement
of fast light pulse in electromagnetically induced absorp-
tion”, Opt. Express 21, 22464-22470 (2013).

[24] W. Rupprecht, Lineare Netzwerke mit negativer Grup-

penlaufzeit, Dissertation. (Technische Hochschule Karl-
sruhe, 1961).

[25] M. W. Mitchell and R. Y. Chiao, “Causality and Negative
Group Delays in a Simple Bandpass Amplifier”, Am. J.
Phys 66, 14-19 (1998).

[26] H. Cao, A. Dogariu, and L.J. Wang, “Negative Group De-
lay and Pulse Compression in Superluminal Pulse Prop-
agation”, IEEE J. Sel. Top. Quantum Electron. 9, 52-58
(2003).

[27] O. F. Siddiqui, S. J. Erickson, G. V. Eleftheriades, and
M. Mojahedi, “Time-Domain Measurement of Negative
Group Delay in Negative-Refractive-Index Transmission-
Line Metamaterials”, IEEE Trans. Microw. Theory
Techn. 52, 1449-1454 (2004).

[28] B. Ravelo, “Methodology of elementary negative group
delay active topologies identification”, IET Circuits De-
vices Syst. (CDS) 7, 105-113 (2013).

[29] B. Ravelo, “Similitude between the NGD function and fil-
ter gain behaviours”, Int. J. Circ. Theor. Appl. 42, 1016-
1032 (2014).


