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We study the propagation of light pulses in an absorbing medium when the frequency of their
carrier coincides with a zero of the refractive index dispersion. Although slow light and, a fortiori,
fast light are not expected in such conditions, we show that both can be obtained by selecting
particular phase-components of the transmitted field. Analytical expressions of the resulting signals
are obtained by a procedure of periodic continuation of the incident pulse and a proof of principle
of the predicted phenomena is performed by means of a very simple electrical network, the transfer
function of which mimics that of the medium.

I. INTRODUCTION

The one-dimensional propagation of coherent light
pulses with a slowly varying envelope through a lin-
ear medium is usually analyzed by means of the group
velocity [1–4]. The latter generally reads vg (ωc) =
c/ [n(ωc) + ωc (dn/dωc)] where ωc, c, n and dn/dωc re-
spectively designate the carrier frequency of the pulses
[5], the light velocity in vacuum, the medium refractive
index and its derivative at ωc (the refractive index dis-
persion). The dispersion can take very large values when
the carrier frequency ωc of the pulses is equal or close
to the frequency ω0 of a narrow and well-marked reso-
nance of the medium. When dn/dωc > 0 (normal dis-
persion), the group velocity is then very small compared
to the phase velocity c/ [n(ωc)] (slow light regime) while
it becomes very large or even negative (fast last regime)
when dn/dωc < 0 (anomalous dispersion). The princi-
ple of causality implies that the two regimes can be ob-
tained with a same medium, depending on the detuning
∆ = (ωc − ω0) [6]. We examine in the present article
what occurs when the detuning is such that dn/dωc = 0
(zero-dispersion configuration). Neither slow light nor
fast light are expected in this case. We will however
show that both can be observed by post-selecting partic-
ular phase components of the transmitted field, in anal-
ogy with the experiments involving post-selection of the
field polarization [7–10]. We specifically consider the ref-
erence case of a medium with a narrow absorption line.
Convincing demonstrations of slow light [11, 12] and fast
light [13–17] have been performed with this system. The
arrangement of our paper is as follows. In Section II, we
give the transfer functions for the electric field and for
its relevant phase components. The envelopes of the cor-
responding transmitted pulses are determined in Section
III and we give in Section IV a proof of principle of the
predicted phenomena by means of a very simple electri-
cal network. We conclude in Section V by summarizing
our main results.

∗Electronic address: bernard.segard@univ-lille.fr

II. TRANSFER FUNCTIONS OF THE MEDIUM

For the sake of simplicity, we consider a dilute medium
(n ≈ 1) of thickness ℓ with a Lorentzian absorption line
of half width at half maximum γ ≪ ω0. Denoting α
the medium absorption coefficient on resonance for the

amplitude (α ≪ ω0/c), the transfer function relating the
Fourier transform of the transmitted field to that of the
incident field [18] then takes the simple form

H(ω) = exp

[

− αℓ

1 + i(ω − ω0)/γ

]

(1)

Notice that this result is obtained by using for the trans-
mitted pulse a time retarded by the luminal transit time

ℓ/c (retarded time picture). This enables one to directly
evidence possible fast or slow light effects. Denoting
Φ(ω) the phase of H(ω), the group advance (the op-
posite of the group delay) is given by the relation [18]
ag(ωc) = dΦ/dω |ω=ωc

and reads

ag(ωc) =

(

αℓ

γ

)

[

1−∆2/γ2

(1 + ∆2/γ2)
2

]

(2)

where ∆ = (ωc − ω0) is the detuning of the pulse carrier
frequency from resonance. The group advance attains its
maximum ag(ω0) = αℓ/γ for ∆ = 0, is positive (fast light
regime) when |∆| < γ and negative (slow light regime)
when |∆| > γ . It cancels when ∆ = ±γ. We will
consider in the following the case where ∆ = γ . Quite
similar results are obtained when ∆ = −γ. Figure 1
shows the amplitude transmission |H(ω)| and phase Φ(ω)
as functions of the detuning ω − ω0 in the reference case
αℓ = π/2. The vertical dash-dotted line indicates the
carrier frequency ωc = ω0+γ considered in the following.

The use of the group velocity concept requires that the
pulse envelope is slowly varying at the scale of 1/ωc. In a
frame rotating at ωc, the transfer function for the pulse
envelopes resulting from Eq.(1) reads [5] :

H∆(Ω) = exp

[

− αℓ

1 + i (Ω +∆) /γ

]

(3)

where Ω ≪ ωc. On exact resonance (∆ = 0), H0 (Ω) =
H∗

0 (−Ω), the asterisk indicating complex conjugate. The
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Figure 1: Modulus (on the left) and phase (on the right) of
the field transfer function vs. the optical detuning (ω − ω0)
for αℓ = π/2. The vertical dash-dotted line indicates the
detuning (ωc − ω0) = γ of the pulse carrier considered in the
article.

corresponding impulse response, inverse Fourier trans-
form of H0 (Ω) [18], is then real [19, 20]. If the envelope
x(t) of the incident pulse is real (unchirped pulse) as as-
sumed in the following, the envelope y(t) of the transmit-
ted pulse will be also real or, otherwise said, the trans-
mitted field will be in phase with the incident one [21].
An experimental evidence of this point is reported in [22].
The group advance can then be identified to the advance
of the center-of-gravity of y(t) over that of x(t) while
H0(0) is the ratio of the two envelopes areas [20]. These
results hold whatever the pulse distortion is.

The situation is not so simple when ∆ 6= 0. The en-
velope y(t) of the transmitted pulse is then complex.
Its real and imaginary parts are then the envelopes of
the components of the transmitted field, respectively,
in phase (I) and in quadrature (Q) with the incident
field. In the zero-dispersion configuration considered in
the present article, the transfer functions relating the en-
velopes yI,Q of these two components to that of the inci-
dent pulse read:

HI (Ω) =
1

2

[

Hγ (Ω) +H∗

γ (−Ω)
]

(4)

HQ (Ω) =
1

2i

[

Hγ (Ω)−H∗

γ (−Ω)
]

(5)

These transfer functions are closely related to those en-
countered in Ref. [10] where the post-selection was
made on the field polarization. As H0 (Ω) in the res-
onant case, they are such that HI,Q (Ω) = H∗

I,Q (−Ω)

and the envelopes yI,Q(t) of the (I,Q) components are
obviously real. Figure 2 shows the corresponding am-
plitude transmissions |HI,Q(ω)| and phases ΦI,Q(ω) in
the reference case αℓ = π/2. Quite generally the I-
transmission (the Q-transmission) is minimal (maximal)
at Ω = 0 where HI = e−θ cos θ and HQ = e−θ sin θ with
θ = αℓ/2. The group advances agI,gQ = dΦI,Q/dΩ |Ω=0

read agI = (θ tan θ) /γ > 0 (fast light regime) and
agQ = − (θ cot θ) /γ < 0 (slow light regime) [21]. The

reference case considered in Figs.(1,2) thus refers to the
particular situation where HI (0) = HQ (0) = e−θ/

√
2,

agI = θ/γ and agQ = −agI .
The previous values of agI,gQ might lead to expect that

advances as large as wanted could be obtained. As in
the resonant case [20], these advances are only those of
the center-of-gravity of the envelopes. Anyway, obtain-
ing large absolute advances is not an aim per se and the
challenge in slow and fast light experiments is to attain
ratios of the advances over the pulse duration as large
as possible with moderate distortion. The practical lim-
itations to these fractional advances are examined in the
following section.
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Figure 2: Same as Fig.1 for the envelope transfer functions
vs. the frequency Ω. The blue (red) line refers to the in-phase
component I (the quadrature component Q). Note that, for
the considered optical thickness, the group advances agI and
agQ (slope of the corresponding phase at Ω = 0) have the
same modulus but opposite sign.

III. ENVELOPES OF THE INCIDENT AND

TRANSMITTED FIELDS

We consider an incident pulse of carrier frequency ωc =
ω0 + γ and of envelope

x(t) = cos2
(

πt

2τ

)

Π

(

t

2τ

)

(6)

where Π(u) designates the rectangle function equal to
1 for −1/2 < u < 1/2 and 0 elsewhere. This pulse is
very close to the Gaussian pulse usually considered in
the literature. It has a full width at half maximum τ
(taken as time unit in the following) and a strictly finite
overall duration 2τ . We exploit this point by continuing
the envelope x(t) at every time by the periodic signal

x̃(t) = cos2
(

πt

2τ

)

=
1 + cos (πt/τ)

2
(7)

x̃(t) contains only three frequencies, namely 0 and ±Ω1

with Ω1 = π/τ . As shows Fig.3, the signals ỹI,Q(t) ob-
tained by substituting x̃(t) to x(t) reproduce very well
the main features of the exact envelopes yI,Q(t) obtained
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by fast Fourier transform (FFT). We get:

ỹI,Q(t) =
1

2
{HI,Q(0) + |HI,Q(Ω1)| cos [Ω1t+ΦI,Q(Ω1)]}

(8)
yI,Q(t) has a maximum AI,Q = [HI,Q(0) + |HI,Q(Ω1)|] /2
in advance over that of the incident pulse by aI,Q =
ΦI,Q(Ω1)/Ω1. The corresponding fractional advances
read

aI,Q/τ = ΦI,Q(Ω1)/(Ω1τ) = ΦI,Q(Ω1)/π (9)

. The advances aI,Q of the maximum have the same sign
that the corresponding group advances agI,gQ (aI > 0 ,
aQ < 0 ). Since HI(0) < |HI(Ω1)|, the amplitude AI

of the advanced signal is larger than its asymptotic value
HI(0) when Ω1/γ → 0 (γτ → ∞), the opposite occurring
for the amplitude AQ of the delayed signal [AQ < HQ(0)].
Equation (8) also enables us to determine the full dura-
tion at half maximum τI and τQ of both signals. They
read

τI,Q =

(

2τ

π

)

arccos

[ |HI,Q(Ω1)| −HI,Q(0)

2 |HI,Q(Ω1)|

]

(10)

with τI < τ (pulse narrowing) and τQ > τ (pulse broad-
ening). All these results are consistent with those ex-
pected for systems having a dip or a peak of transmis-
sion.

In agreement with relativistic causality, both phase
components start at the same time −τ that the incident
pulse (see Fig.3). As soon as it has a significant ampli-
tude, the component yQ(t) is simply broadened and the
(negative) advance aQ of its maximum is generally close
to the group advance agQ. The behaviour of the in-phase
component yI(t) is less simple. At the first order in αℓ
the fractional advance aI/τ = ΦI(Ω1)/τ reads

aI
τ

=

(

αℓ

π

)(

Ω3
1/γ

3

4 + Ω4
1
/γ4

)

(11)

It attains its maximum when Ω1 = 121/4γ ≈ 1.86γ
(γτ = 121/4π ≈ 1.69 ). We then get an advance
aI = (3/4)3/4αℓτ/(2π) ≈ 0.13αℓτ larger than the group
advance agI = θ2/γ, that is agI = 121/4(αℓ)2τ/(4π) ≈
0.148(αℓ)2τ . It should be however noticed that both ad-
vances are then extremely small. When αℓ increases,
Ω1 ≈ 1.86γ (γτ ≈ 1.69 ) continues to maximize the frac-
tional advance aI/τ of the maximum for moderate thick-
ness, say αℓ < 1.5. For αℓ > 0.74, aI < agI as usual.
Figure 3a shows the envelopes yI(t) and yQ(t) obtained
in the frontier case where aI = agI . The pulse distor-
tion of yI(t) is manifested in a narrowing (as above men-
tioned) and, moreover, in the appearance of a significant
secondary lobe [20]. The latter is also well reproduced
by the periodic model. Quite generally, its maximum oc-
curs at t = [π − Φ (Ω1)] /Ω1 and its relative amplitude
compared to that of the main lobe reads

D =
|HI(Ω1)| −HI(0)

|HI(Ω1)|+HI(0)
(12)
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Figure 3: Normalized envelopes yI(t) (solid blue line) and
yQ(t) (solid red line) vs. time expressed in units of the inci-
dent pulse duration τ . The dashed lines (same colours) are
the solutions obtained by periodically continuing the incident
pulse. The envelope of the incident pulse (dotted black line)
is given for comparison. Parameters: αℓ, Ω1/γ (γτ ) = a)
0.74, 1.86 (1.69); b) 1.18, 1.86 (1.69); c) π/2, 1.17 (2.68); d)
3π/4, 0.345 (9.11).

D is a good indicator of the pulse distortion. It equals
10% in the conditions of Fig.3a and raises to 20% when
αℓ ≈ 1.18 (Fig.3b). For αℓ > 1.18, maximizing the ad-
vance leads to large pulse distortions, D tending to 100%
when αℓ → π. We limit in the following D to the rea-
sonable value 20% attained in the previous case (4% for
the corresponding intensity profile). The duration τI and
the amplitude AI of yI(t) then read:

τI =

(

2τ

π

)

arccos

(

D

1 +D

)

= 0.893 τ (13)

AI =
HI(0)

(1−D)
= 1.25HI(0) (14)
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Figure 4: Fractional advance aI/τ (solid blue line, left scale)
and amplitude AI (dashed blue line, right scale) of the max-
imum of yI(t) vs. the optical thickness αℓ for D = 20%.

For a given distortion, relativistic causality imposes se-
vere limitations to the fractional advance aI/τ of yI(t).
As for every fast light system, the larger is the dynam-
ics of the system transmission, the larger is the frac-
tional advance [23]. In the present case, the transmis-
sion dynamics [maximum over minimum of |HI(Ω)|] is
reduced to 1/HI(0). Eq.(14) thus involves that aI/τ and
AI as functions of the optical thickness αℓ evolve in op-
posite directions. Figure 4 shows the results obtained
for D = 20% when αℓ varies from 1.18 (conditions of
Fig.3b) to 31π/32. In the reference case αℓ = π/2 (con-
ditions of Fig.3c), we get aI/τ ≈ 0.166 and AI ≈ 0.403
while aI/τ ≈ 0.215 and AI ≈ 0.147 when αℓ = 3π/4
(conditions of Fig.3d). In the latter case, a sufficient am-
plitude is conciliated with a fractional advance which is
not far below its asymptotic value and comparable to or
even larger than those actually observed in optics [13, 15–
17, 22]. For the sake of completeness, we give Fig.5 the
results obtained in the conditions of Fig.4 for the delayed
envelope yQ(t). The variations of its amplitude AQ are
moderate, while the fractional delay −aQ/τ continuously
decreases from 0.47 for αℓ = 1.18 to 0 when αℓ → π. We
additionally mention that, correlatively, the pulse dura-
tion τQ (the ratio aQ/agQ) regularly decreases (increases)
from 1.18τ to τ (from 0.90 to 1).

When αℓ = π (1− ε) with ε ≪ 1, it is possible to ob-
tain explicit analytical expressions of the pulse duration
τ leading to a given value of D and of the resulting values
of aI/τ , AI , aQ/τ and AQ. At the second order in ε, we
get

Ω1

γ
=

π

γτ
= βǫ

(

1 +
ε

2

)

(15)

where β = 2
√
D/ (1−D). That yields:

aI
τ

≈ 1

π
arctan

{

β
[

1−
(

1 + β2
) ε

2

]}

(16)
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Figure 5: Same as Fig.4 for the fractional delay −aQ/τ (solid
red line, left scale) and amplitude AQ (dashed red line, right
scale) of the maximum of yQ(t).

AI ≈ πe−π/2

4

(

1 +
√

1 + β2

)

ε
(

1 +
πε

2

)

(17)

aQ
τ

≈ −βπǫ2

4
(18)

AQ ≈ e−π/2
(

1 +
πε

4

)

(19)

For D = 20%, β =
√
5/2. We then get for αℓ = π (ε = 0)

the following asymptotic values of the fractional advances
and amplitudes, respectively, aI/τ = 0.268, aQ/τ = 0,
AI = 0 and AQ = e−π/2 ≈ 0.208. For 3π/4 < αℓ <
π (ε ≤ 1/4 ), Eqs.(16-19) yield values of advances and
amplitudes equal to the exact ones within a few percent.

We finally remark that the fact that vg (ωc) = c does

not imply that the envelope |y(t)| =
√

y2I (t) + y2Q(t) of

the total field is not advanced or delayed. This is only
true in the limit where Ω1/γ = π/(γτ) is small enough.
When Ω1/γ ≪ 1 , a calculation involving a expansion
of HI (Ω1) and HQ (Ω1) at the third order in Ω1/γ,
yields the following fractional advance for the maximum
of |y(t)| :

a

τ
=

(

αℓ

4π

)(

1− αℓ

4

)(

Ω1

γ

)3

=

(

1− αℓ

4

)

αℓπ2

4γ3τ3

(20)
Note that this fractional advance is very small compared
to that of yI(t) which appears at the first order in Ω1/γ.
In the conditions of Fig.3d, e.g., a/τ ≈ 3× 10−3 whereas
aI/τ ≈ 0.215 (a/aI ≈ 1.4× 10−2) .

IV. EXPERIMENTS WITH AN ELECTRICAL

NETWORK

In the fast light experiments reported in [22], the deter-
mination of an eventual phase difference between trans-
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Figure 6: Electrical network used in our experiments. r des-
ignates the resistance rL of the inductor plus an eventual ad-
ditional resistance ra. Indicative values of the parameters:
L = 2.17mH , C = 153 pF , quality factor of the inductor
Q = O(100) at ω = 1/

√

LC, and ra = 0 or 33Ω, R = 1008 Ω
or 365Ω .

mitted and incident fields is performed by means of fre-
quency changes transposing the signals in the radiofre-
quency domain. On another hand, the phenomenon cor-
responding to fast light can be directly observed in the ra-
diofrequency range by means of electrical networks with
negative group delay (NGD). As back as 1961, Rupprecht
[24] succeeded in evidencing significant advance of the en-
velope of the pulse transmitted by such a network over
that of the incident pulse. See also [25]. After some
lethargy, the NGD circuits have known a recent renewal
of interest both in electronics and in optics. For explicit
demonstrations of advanced pulse-envelope, see, e.g., [26–
30].

We have used in our experiments the very simple four
port network shown Fig.6. As the absorbing medium,
it is purely passive. The transfer function relating the
Fourier transform of the output signal Vout(t) to that of
the input signal Vin(t) reads

H(ω) =
η + i (ω − ω0) /γ
1

η + i (ω − ω0) /γ
(21)

where η =
√

r/(r +R) (0 < η < 1), ω0 = 1/
√
LC and

γ =
√

r(R + r)/(2L) with γ ≪ ω0 (narrow resonance
limit). The general relation ag(ωc) = dΦ/dω |ω=ωc

giving
the group advance yields

ag(ωc) =
[(1/η)− η]

(

1−∆2/γ2
)

γ [1 + ∆2/(ηγ)2] [1 + (η∆)2/γ2]
(22)

where ∆ = ωc − ω0 is the detuning of the pulse car-
rier frequency from resonance. As for the absorbing
medium, the group advance is positive when |∆| < γ,
is negative when |∆| > γ, cancels when |∆| = γ and is
maximum on resonance where it takes the simple form
ag(ω0) = [(1/η)− η] /γ. The experimental transmission
and phase obtained for η = 0.226, ω0/2π = 274.9 kHz
and γ/2π = 8.53 kHz are shown Fig.7. They are in ex-
cellent agreement with those derived from Eq.(21). Note,
however, that the values of η, ω0 and γ somewhat differ
from those given below Eq.(21) which are obtained by
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Figure 7: Transmission in dB (on the left) and phase (on the
right) of the signal transfer function vs ω/2π for ra = 0 and
R = 1008Ω (solid line) and corresponding theoretical results
for η = 0.226 , ω0/2π = 274.9 kHz and γ/2π = 8.53 kHz
(dashed line). The vertical dash-dotted line indicates the zero-
dispersion frequency ω0 + γ .

considering ideal components without including the self-
resonant behaviour of the capacitor and inductor [28].

In the time-resolved experiments, we use a wave-
form generator (Agilent 33500B) delivering both the
sinewave signal of frequency ωc and the modulation sig-
nal. It is used in the burst mode (single-shot experi-
ment). The signals Vin(t) and Vout(t) are sent on two
channels of a numerical oscilloscope (Keysight InfiniiVi-
sion DSOX4024A) and both are acquired on 16000 points
with a 10 bit vertical resolution. Figure 8 gives an ex-
ample of signals obtained in the resonant case (ωc = ω0)
with the parameters of Fig.7. As expected, the maxi-
mum of Vout(t) is significantly in advance over that of
Vin(t) but the two signals are in phase [22, 25]. On the
other hand, Fig.9, obtained in the zero-dispersion config-
uration ( ωc = ω0+γ), confirms that the advance is then
negligible but that the two signals are not in phase.

The transfer functions Hγ(Ω), HI(Ω) and HQ(Ω) for
the envelopes in the zero-dispersion configuration (∆ =
γ) are derived from H(ω) as those of the absorbing
medium. For the electrical network Hγ(Ω) reads

Hγ(Ω) =
η + i+ iΩ/γ

1/η + i+ iΩ/γ
. (23)

The transfer functions HI(Ω) and HQ(Ω) are deduced
from Hγ(Ω) by Eqs.(4,5). For the sake of completeness,
we give below their values at Ω = 0 and the corresponding
group advances:

HI(0) =
2η2

1 + η2
(24)

γagI =

(

1− η2
)2

2η (1 + η2)
(25)

HQ(0) =
η(1 − η2)

1 + η2
(26)
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Figure 8: Normalized output signal Vout(t) (blue line) vs.
time expressed in units of the incident pulse duration τ . This
signal is obtained in the resonant case (ωc = ω0). The input
signal Vin(t) (black line) is given for reference. Parameters
as in Fig.7 and τ = 295 µs (γτ = 15.8). The advance of
the maximum of Vout(t) over that of Vin(t) is a = 0.221 τ
(corresponding group advance ag = 0.266 τ ) while its relative
amplitude is A = 0.052. Inset: comparison of the two signals
in the vicinity of t = 0 showing that they are in phase.

-1

0

1

N
o
rm

a
liz

e
d
 S

ig
n
a
ls

10-1

 Time (in units of pulse duration)

-1

0

1

-0.1 0 0.1

Figure 9: Same as Fig.8 in the zero-dispersion configuration
( ωc = ω0 + γ). The output signal has a phase differing from
that of the input signal and the advance a of its maximum
is negligible. The pulse duration τ = 110 µs has been chosen
to facilitate the comparison with the results obtained in the
absorbing medium for D = 20%. It leads to A = 0.224.

γagQ = − 2η

(1 + η2)
(27)

The post-selection of the in-phase and quadrature com-
ponents of the output signal Vout(t) is experimentally
performed as follows. The data collected by the numeri-
cal oscilloscope are treated by computer. In a first step,
we generate a continuous sinewave, the frequency and
phase of which coincide with those of the input signal
Vin(t). This continuous sinewave is next multiplied by

1
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Figure 10: Two examples of envelopes yI(t) (solid blue line)
and yQ(t) (solid red line) experimentally obtained in the zero-
dispersion configuration. The envelope x(t) of the input signal
(dotted black line) is given for reference. (a) is obtained in the
conditions of Fig.9, viz. τ = 110 µs, η = 0.226 and γ/(2π) =
8.53 kHz. We get in this case aI = 0.243 τ , AI = 0.121 for the
in-phase component and aQ = −0.074 τ , AQ = 0.201 for the
quadrature component. (b) is obtained for τ = 76µs by using
a circuit with resistances R = 365Ω and ra = 33Ω leading
to η = 0.450 and γ/(2π) = 7.45 kHz. We have in this case
aI = 0.200 τ , aQ = −0.242 τ and AI/AQ = 1.37.

the output signal Vout(t) to deliver the envelope yI(t) of
the in-phase component (I), the harmonic at 2ωc and the
high frequency noise being eliminated by a finite impulse
response (F.I.R.) filter. The used low pass filter (IGOR
software Blackman 367) insures a rejection better than
70 dB for ω/(2π) > 200 kHz. The envelope yQ(t) of
the quadrature component is similarly derived by using
a continuous sinewave in quadrature with that used to
obtain yI(t) .

Figure 10 shows the envelopes yI(t) and yQ(t) ex-
perimentally observed in the zero-dispersion configura-
tion (∆ = γ) in two representative cases. As it was
made to obtain Fig.9 also as Figs.(3-5) for the absorb-
ing medium, the durations τ of the incident pulse are
chosen such that D = 20% for the I-component. The
envelopes shown Fig.10a are observed in the conditions
of Fig.9. The envelopes are quite comparable to those
obtained theoretically with an absorbing medium of op-
tical thickness αℓ = 3π/4 (see Fig.3d). In particu-
lar, the advance aI is significantly larger than the de-
lay −aQ. On another hand, the amplitudes of the two
components are such that AQ/AI ≈ 1.7 and this ex-
plains why no secondary lobe is visible Fig.9 in the over-



7

all envelope y(t) =
√

y2I (t) + y2Q(t). As a second exam-

ple, Fig.10b shows the envelopes experimentally observed
when η = 0.450 and γ/(2π) = 7.45 kHz. In this case
|aI/aQ| and AQ/AI are both close to unity and the en-
velopes are now comparable to those obtained in the case
αℓ = π/2 taken as reference for the absorbing medium
(see Fig.3c). In case a) as in case b), the observed en-
velopes are in very good agreement with the envelopes de-
rived by FFT by using the transfer function Hγ(Ω) given
Eq.(23). In addition, the advances, amplitudes and pulse
durations are exactly determined by the periodic model
with, in particular,τI = 0.893 τ and AI = 1.25HI(0) as
predicted by Eqs.(13,14).

V. CONCLUSION

The dilute medium with a narrow absorption line is
a reference system for the observation of fast and slow
light. Fast light is obtained when the carrier frequency of
the incident pulse coincides or is close to resonance while
slow light is observed when this frequency lies in the line
wings. There are thus two intermediate carrier frequen-
cies for which the group velocity equals that of the light
in vacuum. Paradoxically enough, we have shown that,
in such a case, fast and slow light can be simultaneously
observed. This is achieved by post-selecting particular
phase components of the transmitted field. Fast light
is obtained by selecting the component in phase with

that of a pulse travelling the same distance in vacuum
while slow light is observed on the quadrature compo-
nent. The general properties of fast and slow light are
retrieved with this arrangement. A particular attention
is paid to fast light to which the relativistic causality im-
poses the most severe constraints. As usual, evidencing
significant fast light effects with moderate distortion re-
quires large transmission dynamics of the medium and
long incident pulses. Finally the theoretical results ob-
tained in optics with an absorbing medium are experi-
mentally reproduced by using a passive electrical network
running in the radiofrequency range. We expect that our
work will stimulate direct demonstrations in optics or mi-
crowave. In this purpose, we emphasize that the phase
post-selection procedure introduced in the present article
can be applied to different frequency configurations and
systems.
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