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Abstract

Interface models have been developed over the past 10 years for simulating various scales of composite debonding
effects, such as decohesion between matrix and fibers and delamination in laminates, formulated with and without rate
dependencies.

We give several examples of how sudden “solution jumps” can occur in rate-independent models like the Tvergaard
depending on the geometry, interface behavior, and finite element discretization. This kind of instability disappears for
the often-used viscous models, but the result is a high rate dependency that deviate from experimental trends.

A new kind of viscous regularization is proposed here, which applies to the Tvergaard debonding model or modified
ones, and has a limited rate dependency. A few simple examples are given, including the delamination of a double
cantilever beam, to show the capabilities of the technique proposed.

Keywords: Interface; Debonding; Delamination; Numerical modeling; Regularization techniques

1. Introduction

Interface damage mechanics (IDM) is a numerical tool, developed quite recently as part of continuum
damage mechanics (CDM), with capabilities intermediate between CDM and fracture mechanics (FM).
IDM - which stems independently from the works of Needleman (1987), Tvergaard (1990a,b), Allix (1987),
Allix and Ladeveze (1989, 1992), Lemaitre (1992), and Frémond (1985, 1987) — is used to model the growth
of a crack (or a debonding zone) at the interface between different components of the material. Compared
with FM, which is based on numerical tools, it can generally be said that IDM models have three ad-
vantages: (i) smoothing the stress singularities at the crack tip, (ii) the continuity of the solutions in both

space and time, and (iii) the easy adaptability with other non-linearities (plasticity, material damage, and so
forth).
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IDM applications are mainly on two scales:

(1) Macroscale: This is where the strength of a laminated structure may be drastically reduced by the
impact of an external solid or even under normal loading conditions in the proximity of geometrical defects
(hole, reinforcement, or other). This delamination growth problem is a difficult one to solve in the
framework of fracture mechanics, especially when we have other major non-linearities to consider, such as
large displacements, damage, and/or plasticity in one or more layers and contact and friction in the dela-
minated area itself. Several works (Ousset and Roudolff, 1997) have shown the importance of contact and
friction in delamination growth. One way of handling it would be to consider the intermediate layer be-
tween the plies as an individual component with its own constitutive equations. This was done by Allix
(1987) and Allix and Ladeveze (1989, 1992) in the framework of a continuum damage mechanics approach,
and by Lo and Allen (1994) using interface debonding models. Other approaches, based on Frémond’s
work (1987), use debonding models as a way of “‘regularizing” an FM analysis (Point and Sacco, 1996).
Also, still on the macroscale, there is the possibility of modeling the adhesion and gluing.

(2) Microscale: This is the level of interaction between fiber and matrix. The role of these interfaces and
interphases is clearly recognized. This is particularly evident in ceramic matrix composites, where the
compromise between strength and ductility (i.e., dissipated energy) is essentially governed by the non-linear
response of the interfaces, including progressive debonding and friction. Much research has been done in
this area, developing comprehensive analytical approaches (among many others, see Budiansky et al.
(1986), Marshall and Oliver (1987), Mc Cartney (1989), Hutchinson and Jensen (1990), Nairn (1992), and
Evans and Zok (1994)). However, the limitations of the analytical models have also been demonstrated by
finite element studies (Leroy et al., 1995; Guichet, 1998), so that there is still the need for more sophisticated
interface debonding models and the associated numerical simulations.

The aim of the present paper is to review some of the numerical difficulties with interface debonding
models, and to discuss various ways of overcoming these difficulties. After a brief review of a few of these
models, and showing how they can be used for an ““interphase material” (Section 2), we use a few examples
(Section 3) to show how “‘solution jumps” may take place. (These solution jumps are discontinuities in the
numerical solutions.) In Section 2, we study a number of viscous regularization processes that are used
(explicitly or implicitly) in IDM models. But since the considerable rate dependency, resulting from these
regularizations, should be reduced as much as possible, we propose (Section 5) a new viscous regularization
technique that can be used with Tvergaard-type IDM models to curb this rate dependency. This modified
model was used in the general-purpose ZéBuLoN 7 finite element code (Burlet and Cailletaud, 1986), and
its capability is illustrated in a simple but significant structural example (Section 5.3).

2. Interface debonding models
2.1. General features

Interface damage mechanics models are used to describe the relationships between tractions (cohesion
forces per unit area) and displacements across the interface during the debonding process. We denote the
normal and tangential components of the traction vectors at the interface by 7,, T, respectively, and

Uy = [un] = u} —u; u= ] = u) —u; (1)

n n’

are the corresponding displacement differences across the interface. Positive u, corresponds to increasing
interface separation. We adopt the form of a cohesive model initially used by Needleman (1987) and
generalized by Tvergaard (1990a) and Lissenden and Herakovich (1995), where the initial (elastic) cohesive
response is gradually degraded using a decohesion indicator d as damage parameter. In the same way as in
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CDM, we set this indicator initially at d = 0 for the interface in perfect cohesion, and at d = 1 for the
completely de-bonded state.

In the Tvergaard model, the decohesion parameter, called 4, is given directly as the maximum value of the
displacement norm, so that

d = dmax = maxy/ (vy)” +12, (2)
<t

where v, = u,/d, and v, = u,/J, are normalized displacements, and ¢, and d, are the normal and tangential
displacements at complete separation for pure normal and pure tangential modes respectively (we assume
that the tangential mode is isotropic). In relation (2), the Mc Cauley bracket ( ) indicates specifically that a
negative normal displacement plays no role in the decohesion (but is actually limited to very small values in
the model).

In interface damage models, we can consider the non-linear relations between tractions and displace-
ments (for positive u,) to be of the form

T, = EF(d) v, (3)

I = GF(d) Vi, (4)
where F(d) is a monotonically decreasing function of d, and E and G are the initial stiffnesses of the in-
terface. In Tvergaard’s version F(d) is defined as F(d) = (1 — d)?, and d as the maximum value encountered
for the norm 2 of the displacement. This means that for purely normal separation, the maximum tensile
stress iS omax = 4E/27 (tmax = 4G/27 for pure tangential separation, and v, = 0). Fig. 1 illustrates sche-
matically the response under the two conditions.

In compressive mode (negative v, and 7,), the Tvergaard model describes the sliding processes (via
Coulomb friction) after complete separation, as indicated in Fig. 1. Variants have been proposed by
Chaboche et al., (1997a,b) to obtain a monotonic response in the debonding process without increasing the
stiffness after complete decohesion, which is one disadvantage in the initial version (as illustrated in Fig. 1).
The friction properties in the model are now included throughout the whole debonding phase, with the
tangential displacement decomposed into elastic and plastic components. (The equations for this modified

A Normal A Tangentiel
T, T
u =0 u, <0
S
&
u, #0 0‘139 u >0
2N, > N
/ s N /./
:I \.'\' :I: \\
i! \ i!
’ \"\, ’ \\
4 N\, [ \,
‘\n\ .‘\~.
0 L ou/s > 0 >
n’ “n 1 111/ 61
decohesion behaviour (CDM) ) fracture > decohesion behaviour (CDM) ) Coulomb's friction >

limited negative u,

Fig. 1. The behavior of Tvergaard’s interface debonding model: (a) under normal loading and (b) under tangential loading.
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model are recalled in Appendix A). For u, > 0, it is once again exactly like the Tvergaard model, so these
aspects will not be discussed further here.

A number of slightly different interface debonding models have been proposed in the literature.

In the Allix and Ladeveze approach (Allix, 1987; Allix and Ladeveze, 1992), these models are deduced
directly from the CDM models used for the bulk damage. Appendix B reviews the main lines of the for-
mulation. Using the above notation, the decohesion effect is a linear function, F(d) = 1 — d. The damage
process is written somewhat differently using the thermodynamic force associated with the damage variable.
In the special case of the normal separation, which is sufficient for the purpose of comparing the models,
this reduces to a linear relationship between damage and displacement, possibly with the introduction of a
threshold vy = uy/d, so that

V=1

(5)

The model developed by Cangémi et al. (1995) uses strict inequalities (penetration is strictly prevented),
following Frémond’s approach (1985, 1987). The main lines of the model are given in Appendix B. Con-
trary to the Tvergaard model, this one uses a damage threshold. For tensile-like loading below the
threshold (u, > 0), it returns an elastic response. Above the threshold, debonding takes place and the elastic
stiffness is gradually reduced. The main differences are the rate-dependency of the damage process (dis-
cussed below in Section 4) and the exponential character of the traction/displacement response, as illus-
trated in Fig. 25.

The rate-independent versions of each of the three models can be adjusted either by considering the
maximum stress or energy dissipated before complete separation or the initial stiffness or displacement at
complete separation. To do this, only two of these parameters have to be adjusted, since the others are
involved only approximately, as shown in Appendix B. The corresponding comparisons are given in Fig. 25.

_I_V().

2.2. Interface as interphase model limit

There is a problem of theory when developing interface models. They may be used either to describe the
behavior of an interphase material of given thickness, or the separation between two parts of a solid, like a
crack with no thickness (i.e. the limiting case with a zero thickness). This problem has been addressed
directly a number of times in the past, e.g. by Suquet (1987) and Michel et al. (1994), but it is in any case a
problem underlying many mathematical models.

Starting with the elastic, plastic and damage constitutive equations for an “interphase”, written in terms of
bulk strain, stress, and damage, it is easy to formulate the corresponding “interface” constitutive equations.

Assuming that the thickness / is small and that the strains throughout this thickness are uniform, we
have (Suquet, 1987)

1
s= (e, (©)
in which n is the unit normal to the interface. Assuming that the strain and elastic—plastic partitioning is
small, we can also say that

1, . 1
te =1 (u® ®@n),, =7 (v’ ®@n),. (7)
Let us postulate that the elastic behavior of the interphase is
¢ =C(d) : ¢, (8)

where C is a fourth-rank tensor that depends on the interphase damage d, which is also assumed to be
constant throughout the thickness here. We now have the tensile loads at the boundary between the “in-
terphase” and the matrix (resp. fiber) with
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1

T:o’-n:zn-C(d):(u‘*®n)s 9)
that can be expressed (Michel et al., 1994) as

T =K(d) -, K(d) :%n-C(d) ‘n. (10)
By comparison with Egs. (3) and (4), we immediately obtain (in the 2D case):

K= 5 F(d) = Com(@). Ku=5F(@) =G, K =0, (11)

We now simplify the analysis by postulating the simplest scalar dependency for the interphase damage:
C(d) = F(d)C". (12)

With this, Eq. (11) will then degenerate into

On Ot
E= chnnm G= chtnt' (13)
If we want to achieve a finite stiffness (£ and G) for the interface model (with the corresponding maxi-
mum for finite tensile loads 7, ., T, ) and if we further consider that the interface is of zero thickness, i.e.

the limit as 4~ — 0, we have to assume that the compliance for the corresponding “interphase” elastic
behavior is singular with linear dependency on the thickness

C’ = rC. (14)

Although this assumption is used sometimes in certain applications, it does not seem to be realistic for
the continuum properties of the material. So, we would rather adopt one of the following possibilities:

(1) The interphase to be modeled really is of given finite thickness. This way, the interface model is found
by integrating through the thickness, and its constitutive law is not intrinsic, but rather depends on the
thickness, as in Eq. (13). This is true in many applications for composite systems, where the matrix is
separated from the fiber by one or more interphase materials. This is also true for delamination problems in
laminates, where a thickness of pure matrix can be identified between two adjacent plies.

(2) The other possibility is to consider that the interface is not a given interphase thickness, but rather
describes the decohesion in terms of crack growth. In this case, the interface model should not be thought of
in terms of the limit problem as before (though an analogy is still possible), but it can be postulated in-
dependently of any bulk interphase properties in which case the interface debonding model is now viewed
as a “‘spatial regularization” of the fracture mechanics model. This is part of the approach proposed by
Frémond (1985), and can also be found in the regularization methods used by Point and Sacco (1996), for
example. From the Tvergaard interface model, for instance, we can construct its corresponding fracture
mechanics counterpart by decreasing the displacement at complete separation ¢, indefinitely, but main-
taining a constant fracture energy (G;, = (1/12)Ed,, Gn, = (1/12)Gd,). If the separation is normal, for
instance, we again have E = 12 Gy, /J,, but with 6, — 0 now (J, is no longer the interface thickness, but the
displacement at separation). Fig. 2 illustrates this analysis with the case of (elastic) fracture mechanics at the
limit involving infinite stress and zero opening, i.e. the conditions of a sharp crack tip. The area under each
curve in Fig. 2(b) represents the same fracture energy. It should be remembered that the displacement is
zero only at the crack tip but that the opening and therefore the displacement is non-zero for any points
that are already separated.

Let us also point out the transition between the interphase plasticity and the interface slip property (just
the tangential plastic displacement «!) in the modified model of Appendix A. For the interphase plasticity,
we have to adopt the Drucker—Prager yield criterion (which depends linearly on the hydrostatic stress) and
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Fig. 2. (a) The correspondence between a “volumic interphase’ of thickness /# and an “interface” and (b) the interface model as a
regularization of fracture mechanics singularity.

assume that the change in volume is negligible (non-associative flow rule), in which case, due to the con-
finement of the small interphase thickness between more rigid materials, it is consistent to assume that the
normal plastic strain is zero, i.e. & =0, so that we now have u{ = 0.

3. “Solution jump” problem

Problems arise when we try to simulate the deterioration processes and their corresponding softening
effects in the structural components. In the normal CDM framework, where damage is described as a bulk
state variable (3D formulation), the “localization” (mesh dependency), non-uniqueness, and bifurcations
will degrade the simulation of these processes as they lead into the local failure (crack initiation and growth
through a complete local deterioration of the material strength and stiffness). Over the past 10 years, a great
deal of research has been done to solve such problems, by way of localization limiters or using the concepts
of generalized continuum mechanics (Bazant and Pijaudier-Cabot, 1988; Belytschko and Lasry, 1988;
Saanouni et al., 1989; Benallal, 1991; Bigoni and Hueckel, 1991; de Borst, 1991; Murakami et al., 1993).

The localization problem is not present in the present context of interface damage mechanics, because
the interface is already a localized model. Moreover, this bifurcation point is special: it induces a loss of
stability, because the second-order work is zero (Bazant and Cedolin, 1991), but the uniqueness is not lost.
The simple example below shows how this instability occurs in the rate-independent formulation, and
induces a response discontinuity that we call a “solution jump”. The example also illustrates the “snap-
back” character of instability.

3.1. Simple uniaxial example

Let us assume the simplest 2D structure. This will consist of an interface element loaded normally
through an elastic plate element of given geometry and stiffness. Fig. 3(a) illustrates the example in terms of
both the finite element geometry and of its behavior in series. The same example also holds for pure shear
conditions (Monerie et al., 1998). Let us consider the total displacement control at the position BB'. Ob-
viously, the total displacement U is the sum of the interface separation displacement u and the elongation of
elastic adjacent part AA'B'B
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Fig. 3. The simple uniaxial configuration that demonstrates the possibility for “solution jumps’: (a) the interface and plate elements in
series and (b) the local interface response, loaded via the global displacement control U.

L
U= —T 15
ut g T, (15)
where T is the stress applied at the end BB', E;, Young’s modulus and L, the length of the elastic part
AA'B'B.
In the interface, behavior is described through a Tvergaard debonding model, we have
u\ u
T = EF(—) v 16
where u is assumed for convenience to vary between 0 (initial condition) and ¢ at complete separation and
with F(0) =1, F(1) = 0. In the local coordinates (7, u), Fig. 3(b) shows the local (interface) response
together with the straight lines corresponding to the global displacement control, given by Eq. (15). Ob-
viously, when the control U is increased, after the maximum of the local response (16), either of two sit-
uations may occur, depending on the stiffness £k = E/L of the adjacent elastic structural part:

1. The stiffness k is large enough to maintain the possible intersection between the straight line (15) and the
local response (16), in which case the response is always stable.

2. The stiffness is less than the maximum tangent stiffness (negative slope) in the local interface. In this sit-
uation, as control U increases, we obviously expect to find a jump in the solution (from u, to u, in the
figure 3(b), from 7, to T = 0 in terms of the load).

With the Tvergaard model, the maximum slope of the softening curve is at u = 24/3, with a value

—FE/30. In that case, the two situations above can be written respectively as

E 1E E l1E .

TO > ggestable, fo<§3~>‘]ump.
This “solution jump” entrains no loss of uniqueness, because instantaneous failure is obviously the exact
solution of the present elementary mechanical problem. Moreover, if we consider the global control
problem, we do have the snap-back situation: no increase in global displacement is possible if the local
response is followed continuously. The global system will jump directly from « to b, though following
the local behavior would require a reduction of the global displacement. In other words, when the local

\
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behavior begins to soften (negative slope), the elastic energy stored in the surrounding material is released
rapidly by the interface as its damage increases, and can be sufficient to break it instantaneously.

It will be shown in the following that this simple example becomes generic for the above numerical
instabilities in a number of situations. Let us note a recent development of this example (Delaplace et al.,
1998), where the elementary behavior is decomposed in terms of a hierarchy of discrete microelements.
However, it confirms the unstable character of the global response.

3.2. Examples of interface debonding simulations

In a previous paper (Chaboche et al., 1997a,b), the Tvergaard interface model was used to describe the
interface crack growth (mode II) along a fiber bridging a matrix crack in a unidirectional axisymmetric
composite cell, loaded in axial tension. The cited study will not be reviewed here, but the aspects related to
solution jumps will.

In the rate-independent solution (Tvergaard model), the interface debonding begins at the intersection of
the matrix crack and fiber interface (there is, in fact, an elastic singularity). Fig. 4 illustrates the variation of
the shear stress distribution along the fiber interface as the global elongation of the composite cell gradually
increases. The shear stress is initially maximum at the matrix crack tip (left of the figure, steps 1-5), and
then decreases gradually there, as the maximum position moves to the right. Before reaching zero at the
crack tip (complete local separation at the first interface node), there is a sudden jump on the right (between
steps 8 and 9) with instantaneous failure at several nodes. The remainder is stable, with a continuous
growth of the interface damage to the right of the figure (the end of the composite cell).

Conversely, it is worth noting that an analogous rate-dependent interphase model would deliver similar
shear stress distributions, but with no solution jump (compare Fig. 4(a) and (b)). In that case, the two
damage models were both adjusted for the same rate domain as in the rate-independent solution (Chaboche
et al., 1997a).

The solution jump for the rate-independent model was also observed for the delamination simulation in
a double cantilever beam, at least at the onset of crack growth initiation. It might be mentioned that the
“solution jump” is also related to the mesh size (as will be discussed below). Tvergaard himself showed this
dependency in a few numerical examples, without discussing them at length (Tvergaard, 1990b). Certain

(a) (b)

500 T T T T 500 T T T

Orz (MPa) Grz (MPa)

I I I L
0 50 100 150 200 250 0 50 100 150 200 250

Fig. 4. The shear stress fields at the interface between fiber and matrix during the “pull-out” from a perpendicular matrix crack: (a) the
rate independent Tvergaard interface model and (b) the rate dependent CDM interphase model.
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workers who have used this and other similar models (Lo and Allen, 1994; Lissenden and Herakovich,
1995; Lissenden, 1996) make no mention of this problem, though it probably did exist (depending on the
mesh size or the integration procedure).

It is worth noting that the situation in which the solution jump will arise is not an easy one to control
numerically. Roughly speaking, this is because two solutions exist at the same time, and this can disturb the
performance of Newton-like implicit schemes. If we refine the time step (by constant stepping or automatic
time stepping), we make the problem harder rather than solving it, as the numerical scheme comes closer to
running into this jump situation. Increasing the time step, on the other hand, will deliver a solution with a
jump, but we can never be sure if the solution beyond the jump is actually valid, especially when several
interface nodes are broken simultancously.

3.3. Mesh dependency

The simple generic example of Section 3.1 has demonstrated the possibility of a solution jump in a very
academic situation. For a given interface (given values of E and J) there exist a size L of the adjacent
structure (of modulus Ej) below which the solution jump does not occur. Conversely, for a given structure
(or mesh size), and a given initial stiffness of the interface, there is a displacement 6 at complete separation,
above which the solution jumps no longer occur. In practice, however, we cannot choose any large values
for ¢ that would lead to unrealistic values of the interface toughness.

The bending example treated here is designed to generalize these results for a structure used in simulating
a micro-indentation experiment (another such generalization is proposed in Monerie et al. (1998)), in which
the debonding of the fiber—matrix interface occurs in mode II. It is also intended to show that, given certain
interface characteristics, the “solution jump” can be eliminated by refining the mesh of the adjacent
structure sufficiently.

We consider a beam subjected to pure bending (at least to start with). The beam is in two parts, sep-
arated by an interface (Fig. 5). The right part is a 1 x 1 mm? square plate (plane strain). It is meshed with
square finite elements (eight nodes). It is assumed elastic and isotropic, with £, = 70.000 MPa and v = 0.2.
The left part is assumed rigid. The interface model between the two parts is modeled with £ = G = 675
MPa (6, = 100 MPa) and 6, = 6, = 1 pum. The axial displacement is controlled as linear at the right end
and increases linearly in time. The problem is treated in small displacements. Successive mesh refinements
have been studied, from 3 x 3 elements to 40 x 40.

Under these conditions, the interface begins to deteriorate in pure mode I, on the upper side of the beam.
Fig. 6 shows the local stress—displacement curves of the upper interface node (we should point out that the
local interface properties are not reproduced exactly, because the stress values are obtained by extrapo-
lating the Gauss point values in the first element).

However, the “solution jump” after the peak is clearly observed for the larger mesh sizes. We note that a
second or a third peak can occur before the complete failure, due to the deterioration of the next nodes.
More interesting yet is the disappearance of the solution jump for smaller mesh sizes and the correct
convergence (20 x 2040 x 40).

The upper side of the beam is initially under a near-uniform tensile axial stress (along the x axis) that is
analogous to the case of the simplest uniaxial example of Section 3.1. However, for finer meshes, the elastic
energy present in the region of this upper side is redistributed sufficiently when the first interface node
soften (see the shear stress field in Fig. 5).

Due to this redistribution, which is allowable for sufficiently fine meshes, the solution jump no longer
exists. Fig. 7 shows the local interface displacement (at the upper node) just before and just after the so-
lution jump, as a function of the first element local stiffness £y /% (% is the size of the element). These values
are below and above 2/3, which is the theoretical position for the largest negative tangential modulus of the
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-33 MPa 0, 26 MPa

Fig. 5. The shear stress field after the sudden crack growth (jump) in the bending example. The right part is modeled by 20 x 20 square
elements. The left part is rigid, shear stress lines correspond to 2 MPa intervals, between —33 MPa (upper region) and +26 MPa (lower
region).
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Fig. 6. Local stress-interface displacement at the upper node for various mesh sizes from 3 x 3 to 40 x 40.

interface (for larger numbers of elements, there seems to be no way of distinguishing between the normal
loading increment and a solution jump).
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Fig. 7. Local interface displacement just before and just after the solution jump, as a function of the first element local stiffness E/h
(h = size of the element).

On the basis of this example, we can make the following remarks:

e This structure is very simple, as it is the simplest one that can be found beyond the elementary uniaxial
case.

e Although the initial uniformity of the stress field runs along the upper side, the elastic energy will be re-
distributed well as long as the mesh is fine enough and, if it is, there is no longer any solution jump.

e This confirms that the jump problem is mesh dependent and that, for a given set of interface material
parameters (E and J), it can be eliminated by using mesh refinements near the interface.

3.4. Possible methods to overcome the jump problem

From the various examples treated, we may consider several procedures in order to eliminate the jump or
to control the solution:

1. As we have just shown, we can refine the mesh in the region of interest. This has already been shown in
Tvergaard’s simulations (1990b). However, for realistic interface parameters, i.e. low values for o, the
mesh sizes have to be extremely small, which is not acceptable for computational efficiency.

2. Special control procedures could be developed to detect the proximity of a solution jump, without re-
course to Newton’s method, to prepare for this jump, and then to set it explicitly for the loading instant
just after the jump. Such a procedure might be efficient, but it would be too complicated for general-pur-
pose use in a finite element code.

3. We “control” the solution locally. Once we have detected the node that will “jump’ next, replace the
external control (from the external displacement or load) to the local interface displacement. It will force
the local solution to follow the local interface response curve, inducing a “snap-back’ of the global one.
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The whole sequence of states will then be intermediate fictitious equilibrium states holding to the stable
constitutive equations, but not to the global controlled loading. At the end, when the control returns to
its set value, we check both the equilibrium, the boundary conditions, and the constitutive properties.

4. Perform a dynamic analysis instead of a quasi-static one. In this case, the elastic energy, when suddenly
released, can be transformed into kinetic energy of certain parts.

5. Use a “non-local” formulation for the interface model, coupling the deterioration state of one point
(node) with the one of neighboring interface points. As is true for the non-local damage solution (Bazant
and Pijaudier-Cabot, 1988; Saanouni et al., 1989; Murakami et al, 1993; Baaser and Gross, 1998) in the
volume damage growth, a non-local formulation like this could smoothen the solution and reduce or
eliminate the jump. This is not addressed in the present article, though.

6. Use viscous regularization techniques to delay the sudden release of energy, and recover the continuity of
the solution at each point in time. As in the previous case, it then modifies the constitutive equations of
the interface itself. These techniques will be discussed in the following two sections.

4. Analysis of several viscous regularizations

The principle of this was given by Duvaut and Lions (1972) in the framework of plasticity/viscoplasticity.
The rate-independent solution (or inviscid solution), in fact the yield surface equation, is used to build up a
viscous potential that yields the same solution for infinitely low rate conditions. We will be looking here at
three such kinds of regularization processes as they apply in the CDM framework, especially for interface
modeling.

The Allix and Ladeveze (1989) method uses the rate-independent formulation through the relation that
does exist between the damage parameter and its associated thermodynamic force y. In other theories, this
relation is used to define the surface within the y space where the damage is not growing. In the simple case
of one single variable, this relation is expressed:

d=ow() ifd<l, d =1 otherwise, (17)

where y is defined by y; = max,.,).. The material function w is often taken to be bi-linear in the dis-
placement:

0= () ) 9

This equation appears when considering the simple case with only one displacement component, which is
sufficient here (assuming the normal case) as long as y = (1/2) Eu?/u,. y. and u. are values of y and u at
complete separation and y, respectively, u, their values at the onset of the initial damage growth. The
viscous regularization is obtained through a delay effect (Ladeveze, 1992, 1995; Allix and Ladeveze, 1996),
with Eq. (17) replaced by

d=~[1 - exp(—a{w(y) —d))] (19)

Q=

if d < 1, otherwise d = 0. There is a certain delay defined by a characteristic time a/n. Examples of the
regularization capabilities of this technique have been presented by Ladeveze (1995). The rate dependency
of this model is quite low in the low rate region. However, in the higher rate domain, it is very high, as can
be seen in the simulations of Appendix C, and in the figure, that relates the maximum traction to the rate i,
for a given value of n/a.
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Cangémi et al. (1995) use an interface debonding model constructed in a thermodynamic context
that relates the damage rate to the difference between the damage thermodynamic force and a threshold
energy w

dz%(y—w>:%<c(l—d)u2—w>. (20)
In this model also, the rate dependency is very high, at least in the high-rate regime, far from the inviscid
solution which is given by equality ¢(1 — d)u* = w and Eq. (C.5). Appendix C shows a few simulations for
constant rates . In the high-rate region, far from the inviscid solution, we can neglect the threshold w and
the corresponding closed form solution shows a 1/3 power dependency between the rate & and Ty« (Eq.
(C.14) in, Appendix C), as shown in Fig. 8.
With a creep damage equation, Chaboche et al. (1997a) have simulated interphase behavior, as shown in
Section 3.2. The corresponding interface model can be written as

T:E(l—d)%, (1)
LTV _S
d:r—()(Z) (1—d), (22)

where Eq. (22) obeys Rabotnov’s creep damage equation. As shown in Appendix C, this model can be
integrated in closed form for a given constant-rate displacement control u# = ut. Then, the condition for the
maximum traction is given by Eq. (C.19) from the solution of 07 /0u = 0. In the application by Chaboche
et al. (1997a), we have used the particular parameter choice s = r = 2, so that Eq. (C.19) reduces to Eq.
(C.20). It shows exactly the same rate dependency as the previous model in the high-rate process. The
corresponding prediction is a straight line in Fig. 8.

6000 - !

4000 | g / o
,
,

Alllix S
Ladeveze

2000

1000 -

800

600 - Cangemi

%
/
400 s ‘\
/
/

CDM creep
equation

200 | | | |
10° 1 10 100 um /s

Fig. 8. Relation between the maximum traction and the controlled local displacement rate for three viscous interface models. Dotted
lines represent approximate asymptotic solutions.
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Fig. 9. Schematics of the acceptable subspaces for the traction/displacement solution in the three viscous interface models: (a) Allix—
Ladeveze, (b) Cangémi et al. and (c¢) CDM creep equation.

As expected, the three models above contain a great rate dependency, at least in the high-rate process, as
shown by Fig. 8. Compared to the rate independent case, where the local interface response is given by a
unique tensile-displacement curve, these models exhibit a very large subspace for acceptable solutions (on
the T-u plane). Fig. 9 schematically illustrates this property for the three models. In the two first cases, the
subspace of acceptable solutions, represented by the gray area, lies between the inviscid solution (rate-
independent solution) and the undamaged elastic line. In the third case, the whole subspace below the initial
elastic line is acceptable.

Obviously, such a property has a highly regularizing effect, and the problem of “‘solution jumps” will
never be encountered using these interface models. However, they do correspond to a very different be-
havior of the material, compared with the rate independent case. In practice, the energy dissipated by the
viscosity can at times be much larger than that corresponding to the pure decohesion energy. Then, the
identification of the interface models from fracture toughness values requires at least a careful examination
of the corresponding rate problem (and in fact numerical simulations in some structural cases). Moreover,
even if the energy dissipation is correctly identified for a given rate domain, the models will definitely show
a significant rate dependency, of the order of what was analyzed above, for the local models as well as for a
structural application. Such behavior can be very far from the effects actually observed, especially for brittle
materials like ceramic matrix composites, even if certain rate dependency or creep effects have been indi-
cated (Cangémi, 1997). This is why we search for a regularization technique that minimizes the rate de-
pendency, as discussed in the following section.

5. Development of regularization with limited rate dependency

The above rate-dependent models can be modified by changing the parameters. For example, in the
second and third cases, we can introduce other values for the parameters in order to reduce the (1/3)
exponent that applies to the rate in Egs. (C.14) and (C.20). However, this does not change the fact that the
upper limit of the subspace for acceptable solutions in the 7-u space is given by the undamaged elastic line.
Fig. 9 shows this acceptability domain for the three viscous models considered in Section 4, as the region
between the inviscid solution and the undamaged elastic response.

Because the “solution jumps’ are induced by the negative slope in the softening part, we are looking for
regularization processes in which the acceptable subspace for solutions would be defined by the inviscid
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Fig. 10. Schematics of the acceptable subspaces for the traction/displacement solution in the Tvergaard model regularized with a
limited rate dependency: (a) the homothetical rule and (b) the logarithmic rule.

solution (lower limit) when & — 0, and the line 7' = T;,,x for the upper limit as # — oo. Fig. 10(a) illustrates
the property we are looking for. This is expected to regularize the jump problem completely, but while
introducing the minimum amount of viscous dissipation at the same time.

Two versions are evaluated below, each based on the rate-independent version of the Tvergaard model.
We denote for convenience 4, the norm of the normalized displacement

=)+ (5 g

The value of A corresponding to the maximum tension 7 = ||T|| :E\/(Tn/E)2 +(T;/G)* in the rate-
independent model is denoted A*. In Tvergaard’s model, we have " = 1/3. We call /; the value of 4 at
complete separation, i.e. when d = 1. We assume that 1 is dependent upon the displacement rate norm A.
The debonding model is still written with Egs. (3) and (4), but we may limit ourselves to a scalar expression
because

IT|| = EF(d) (v +v2)"” = EF (d)/, (24)

5.1. Homothetical approach

We define the response for a given (controlled) constant rate 4. The model is not modified before the
peak: we have the rate-independent response. After the peak in the softening process, the first idea is to
construct a homothetical response for each rate . Fig. 11 shows the proposed relations by which the rate
dependent softening response is obtained from the rate independent one by homothety centered on x = A*
and of ratio (1 — 1%)/(Ag — 4%)

1-X

X:;u +m(ﬂ»*i), (25)

T=E(l—-d)’)\=E(—-x)\x (26)

By combining these two relations, we can define d as a function of A for a constant rate A (then a constant
Az). We obtain
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Fig. 11. Schematics of the homothetical rule for the regularization with a limited rate dependency.

(=)= 2) . i
dl—w\/l—i (= 1) 5 (27)

It can be verified that for Az = 1, we again have d = / and, if A = A", we have d = 1*. Moreover 1 = /; leads
to d = 1. We now assume the damage variation to obey the damage rate equation obtained by the direct
derivation of Eq. (27) for a constant . Finally, we write

d=/J wheni< i =1/3,

1—0 20— )2+ (e — D(Ag + A4 - (28)

d= /. when 2> 1"
Gn=20" 22\ 1= 0+ e -2

Let us note that d = 1 for 2 = 2* = 1/3, which checks the continuity of the rate. '
The same damage rate equation is then used in the general case under constant or varying 4. The

function Az(4) can be defined freely, provided /z(0) = 1. In the simulations, we chose the simple form
in(7) =142 (29)

by which the whole subspace can be defined as acceptable (4 > x the rate independent solution, 7 < Tjpax).
Saturation of Az to a value 4, would lead to a more limited rate dependency, see Fig. 12, constructed with

AR(Z) = Joo + (1 = J0) exp(—aﬂl/(zx—l)). (30)

Fig. 12 shows the responses for constant rates i between 10~ and 4000 pm/s. The upper curve is the
saturated one, corresponding to an infinite rate.

The choice of « value must be guided by the desirability to affect significantly or not the overall behavior
in terms of the effect of loading rate. As shown by examples treated in Section 6, a low value for o allows the
viscous effect to take place only at the instant of the jump, when A increases to attain very high values. Then,
for low values of ¢, the additional energy dissipation (by viscous regularization) will be at its minimum (for
a given geometry and a given discretization).
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Fig. 12. Tvergaard’s model regularized with the homothetical rule (Egs. (27) and (30)). £ = 3000 MPa, 6 = 0.2 um, /A, =20 um,
«=0.1s, (—):&=1073,0.1, 1, 10, 100, 4000 pm/s, (- - -): it = 0.4, 4, 40 pum/s.

5.2. Logarithmic evolution

Instead of using Eqs. (25) and (26), here we assume a simpler and direct one-to-one relation between 4
and d, still for a given rate A, that maintains the continuity and the rate continuity for 1 = 1"

d=J fori<i, (31)

1
d=1 +B In[l+ p(2—2")] for 1> A"
Here, f is considered to be dependent on the rate J. We also assume the damage rate equation by the
derivation (for constant A)
d=4 for i<k, (32)
d= é =e P for > iF
1+ p(A=27)

The value of / at complete separation, i.e., for d = 1, can be obtained from Eq. (31)
1 1*
Ix =0 +5 [ef ) —1]. (33)

For the Tvergaard model, if § varies between 0 and .. = 7, the parameter Az varies between 1 and
s = 15.4. We may assume, for instance

_ ﬁoo
P=vp (34)

and the curve T — 1 only slightly overpasses the value 7}, of the rate-independent solution, even in the
large rate domain (7. is overpassed by a factor 1.25 for . = 7). The present choice leads to the allowable
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Fig. 13. Tvergaard’s model regularized with the logarithmic rule (Egs. (31) and (34)). E = 3000 MPa, 6 = 0.2 um, . =7, 2 =25, (—):
i=1073,0.1, 1, 10, 100, 4000 pm/s, (- - -): &t = 0.4, 4, 40 pm/s.

subspace indicated in Fig. 10(b). Fig. 13 shows the local responses for the same displacement rates as in Fig.
12 (the upper curve also corresponds to the infinite rate).

5.3. Some remarks

(1) Let us note the thermodynamic admissibility of the modification: the independent internal state
variable is d. Its thermodynamic affinity, not expressed here, is unchanged by the viscous regularization and
is always positive (Chaboche et al., 1997b). Clearly, with the rate equations developed above, we still have
d > 0, so that the irreversible dissipation associated with the decohesion process remains positive.

(2) The two proposed modifications are similar. The first one leads to a more complicated expression (28)
for the damage rate. However, using Eq. (29), it allows the regularization for any rate, even very large. The
second one is simpler but overpasses slightly the minimum viscous energy requirement and cannot eliminate
jump problems for very high rates, at least in the elementary uniaxial example. In practice, when used in
numerical simulations, with spatial redistributions, they deliver similar results, the additional energy dis-
sipated by viscosity being essentially the minimum required in order to smooth the jump.

6. Applications and convergence tests

In order to check the capabilities of the regularization method, we designed several numerical tests of
different natures. First, the uniaxial problem with only one element that stores the energy before the rapid
decohesion, second, a DCB example, and third, the initiation and growth of decohesion at the fiber/matrix
interface in a unidirectional composite submitted to a transverse tensile loading. In all regularized solutions
we used the “homothetical form™ of Section 6.3, with relation (29).
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6.1. Uniaxial “‘jump problem” simulations

We consider the simplest structure studied in Section 3.1 (Fig. 3a), where the upper elastic element stores
elastic energy before its sudden release when the debounding takes place at the interface element. We
compare the regularization properties of the LMT model and the model proposed in Section 5.1 (the
homothetical rule), using the linear dependency (29) between the displacement rate 4 and the displacement
at complete separation Jz. The numerical responses of the two models are adjusted to each other at the
lowest rate considered, U = 0.01 mms~', with a compromise between equal maximum tensions, similar
dissipated energies, and similar displacements at the time of complete separation. Fig. 14 shows this ad-
justment for the lowest rate. The model parameters are £ = 1800 MPa, 6 = 0.1 um and o = 11.5 s for the
Tvergaard regularized model (with Egs. (28) and (29)), and E = 600 MPa, 6 = 0.1 um and a = 1 for the
LMT model (the value « = 11.5 s is due to the adjustment of the dissipated energy to the one dissipated by
LMT model at the lowest rate). Let us note that for the rate-independent solutions, the two models will
have a “solution jump” as long as the stiffness set for the adjacent elastic element is k = Ey/L = 0.1 (N
m~'). With the two models, the solution jump is suppressed for every control rate U. For the lowest ones,
we observe that the additional (viscous) energy dissipated is exactly the energy difference between elastic
energy stored in the adjacent part before the solution jump (in the rate independent case) and the energy
dissipated by decohesion. In fact, when the jump situation occurs, the rate /4 increases dramatically, which
increases the value of Az(1) as well, then the corresponding strength, in such a manner to always respect the
solution continuity.

For larger control rates U, Fig. 15 illustrates the different responses in the two models, in terms of the
total energy dissipated before failure. For high rate conditions, the rate dependency appears as linear in our
model but quadratic with the Allix-Ladeveze model, which can be easily understood from the local
properties of the interface models.

300

————  Regularized Tvergaard Model N
;| T Allix-Ladeveze Model

I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Interface displacement u (1 m)

Fig. 14. Application of two regularized models to the simple “two elements” structure of Fig. 2: (—) proposed regularization of the
Tvergaard model. (- - -) Allix-Ladeveze model.
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Controlled displacement rate ( um/s)

Fig. 15. Energy dissipated before complete separation as a function of the controlled displacement rate U: (— o —) proposed
regularization of the Tvergaard model. (- + -) Allix-Ladeveze model.

6.2. Example of a double cantilever beam

The second example, more similar to a “real” structural application, is the delamination growth in a
DCB component. Its length is 20 and its total thickness 4 mm. Two regular meshes have been selected, one
with quadratic rectangular elements, 0.250 x 0.200 mm?, shown in Fig. 16, the second with 0.125 x 0.100
mm?. The upper and lower parts are considered to be elastic isotropic (E; = 400 GPa, v = 0.19) and the
interface is defined by £ = G = 2000 MPa, 6, = §, = 0.001 for the Tvergaard model. The loading is con-
trolled with the displacement of the corner nodes, at a constant rate U = 0.003 mms~'. The solutions with
this rate independent model are given by the broken lines in Fig. 17. It is worth noting that a sudden load
drop takes place at the beginning of the non-linear behavior, when damage becomes significant at the first
interface node, corresponding to the crack initiation. Other subsequent jumps can be observed, more or less
regularly spaced, corresponding to the discrete mesh. The finer mesh clearly shows the first jump at initi-
ation, followed by a practically continuous response. Let us note the difference in the initial elastic stiffness
of the load—displacement response, due to the mesh dependency.

On the other hand, the viscous regularization proposed in Section 5.1 comes out in Fig. 17 as continuous
lines, using a = 0.5 s in Eq. (29), chosen more or less arbitrarily. This means that the load varies contin-

Fig. 16. The mesh for the Double Cantilever Beam (0.250 x 0.200 mm?). Numbers indicate interface node positions for Fig. 19.
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Fig. 17. Comparison of the force—displacement responses, with Tvergaard’s rate independent model and the regularized one, on the
DCB with a controlled displacement U = 0.003 mms~'. Left: 0.250 x 0.200 mm? mesh size, right: 0.125 x 0.100 mm? mesh size.

uously, with no jump. As the same set of parameters is used for the rate-independent part in Fig. 17, we
obviously observe a greater dissipated energy in the viscous case. A better comparison could have been
obtained by readjusting the parameters E and ¢ in the second case. Fig. 18 shows the comparison of the two
regularized solutions, eliminating the initial elastic stiffness difference between the two meshes (a multi-
plication of the coarse mesh displacement solution by a constant factor). Further study is necessary in order
to quantify the effect of the viscous regularization more precisely in terms of material parameters, structural
applications, and loading rate effects.

Moreover, Fig. 19 gives the evolution of the local normal traction at the interface for points taken for
every two elements in the mesh of Fig. 16. Point 1 corresponds to the first interface node. We clearly

300

N _— 0.125 mm

250 oo N T 0.25 mm Normalized ]

0 L 1 1 1
0 0.005 0.01 0.015 0.02 0.025

Displacement (mm)

Fig. 18. DCB responses with the two regularized solutions, when normalizing the coarse mesh initial elastic stiffness by the fine mesh
stiffness.
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Fig. 19. Local evolutions of the normal interface traction on eleven interface nodes of the DCB (coarse mesh).
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Fig. 20. DCB responses with the regularized model for various controlled displacement rates (coarse mesh).

observe a local compression state ahead of the “equivalent crack tip” after the first decohesion, then
traction takes place, followed by progressive decohesion, softening and complete separation (zero traction),
with perfectly continuous evolutions, thanks to the regularization.

Fig. 20 shows the DCB response for various controlled displacement rates, applied on the coarse mesh.
The parameter o for the regularized model (Eq. (29)) is taken as 0.01 s. In every case, responses are con-
tinuous, but with the lower rate (0.33 x 10~2 mms~'), the load drops very rapidly, like in the rate inde-
pendent simulation. As the rate increases, the load increases slightly (only 15% for a rate factor of 100) and
the total dissipated energy varies by a factor of about 2.5.
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Fig. 21. Coarse and fine meshes of the unit cell for a 30% fiber volume fraction on a UD composite system.

6.3. Debounding at the fiberlmatrix interface

A test example has been designed that corresponds to the debounding at the fiber/matrix interface in a
unidirectional composite system. A square unit cell is treated, in the framework of periodic homogenization
method (Feyel, 1998). The two meshes used are given in Fig. 21 for a 30% fiber volume fraction. The coarse
mesh has 299 nodes, 412 quadratic elements and 24 interface elements. The corresponding numbers for the
fine mesh are respectively 1044, 1460, 80. Fiber and matrix are elastic isotropic with the following values:
E; =75 GPa, v =0.3, E,, =400 GPa, v,, = 0.19. The interface elements are treated with Tvergaard’s
model, using £ = G = 2025 MPa, 6, = 6; = 1 um. The regularization parameter o« of Eq. (29) is taken as
0.01 s, that corresponds to a very low value: it will affect the overall rate dependency only for very high
loading rates.

The unit cell is submitted to a pure uniaxial tensile loading, under a strain control. In the periodic
homogenization technique, we control the overall strain E|;, and compute the average stress X|; over the
unit cell. The overall stress—strain responses are given on Figs. 22-24. As expected there is a solution jump
for the rate independent model as seen on Fig. 22 (in only one time step). This discontinuity takes place
even for the very fine mesh. This result is very different than the one observed for the pure bending example
of Section 3.3. In the present case, reducing the mesh size does not eliminate the solution jump.

In Fig. 23, we compare the rate independent simulation and the regularized one, for the coarse mesh: the
two responses are very similar, except the continuous solution in the second (intermediate time steps, clearly
shown with crosses) when the sudden debonding occurs. Fig. 24 compares the responses obtained with the
regularized model for three overall strain rates 1, 10 and 100 s~!. The rate effect is really very limited for the
overall response, thanks to the low o value. After the first sudden stress drop, secondary drops take place
when the debonded zone progresses along the fiber/matrix interface.

7. Conclusion
Some interface debonding models have been briefly recalled, that have the capability of describing the
progressive loss of adhesion. Special attention has been focused on the numerical instability problems

induced by the possibility of solution jumps in the rate independent models. The main results are as follows:

e The “solution jump” can arise for every rate independent debonding model, depending on the material
parameters in regards of the analyzed structure.
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Fig. 22. Overall uniaxial stress—strain response of the UD composite system for the two meshes and the rate independent interface

debonding model (fiber and matrix are purely elastic).
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Fig. 23. Comparison of the rate independent and regularized solutions for the transverse traction on the UD composite system (coarse

mesh).
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Fig. 24. Overall responses for the transverse traction on the UD composite system with the rate independent version and several overall
rates with the regularized version.

o Itisrelated to the elastic energy stored in the surrounding of the damaging interface element. It is a mesh
dependent effect.

e Some interface models are written in a viscous format that eliminates the possibility of solution jumps
but induces a great loading rate dependency in the structural analysis.

e A better compromise can be found using a viscous regularization with a limited rate dependency. This is
sufficient to eliminate any solution jump but with a much lower rate effect.

The models have been implemented in a finite element code, both in their rate independent and viscous
versions. The example of a DCB delamination analysis has demonstrated the capability of the new modified
model. Further work is needed in order to assess the rate dependency in various structural examples, in
comparison with experimental data, especially on ceramic matrix composites. The model will be applied to
true situations involving push-in, push-out, pull-out micro-mechanical tests and transverse loadings on
unidirectional composites.

At this level, a question is still open: what is the status of the energy released? In the case of an in-
stantaneous ‘“‘solution jump’, as in the simple example of Section 3.1, a “fictitious energy’” part under the
tension-displacement curve (in the local framework) was not really dissipated. On the other hand, with the
viscous regularization proposed, even if it is limited to a minimum, an additional viscous energy is dissi-
pated, and this must be taken into account when identifying with the fracture energy obtained from ex-
periments. Some additional results are given by Monerie et al. (1998) concerning the rate dependency of
these different viscous models into a structural application where fiber/matrix interface loading combines
shear and normal pressure.

The present paper considered numerical aspects only. In terms of experimental trends, several situations
could be expected

e For delamination in laminate composite structures, for instance in tests like the DCB, the initiation stage
often takes place suddenly with a significant and quasi-instantaneous load drop. In such cases the pro-
posed regularization technique would introduce a non-realistic additional dissipated energy. For that
reason, other techniques are under study among those mentioned in Section 3.4.
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e Contrarily, the delamination growth is most often a continuous process and the proposed method could
be useful in that context, in order to overcome the unrealistic and mesh dependent secondary load jumps.

e In the context of fiber-matrix interfacial debonding in composites, the two situations can be observed
experimentally at the onset of debonding: either a sudden load drop or a continuous response (with
or without a load decrease), depending on the elastic energy stored in the surrounding before initiation.
In such cases, the regularization method should also be considered as a good tool.

Appendix A. Modified Tvergaard model

The Tvergaard model has been modified by Chaboche et al. (1997a,b) in order to smoothen the strength
transition, under normal compression/tangential loading, when the complete separation takes place and
Coulomb’s friction begins to play role. This modified model is briefly recalled, for the general 3D version, in
its rate independent format. It can be written in a thermodynamic framework, which is not considered here.

We use the displacement differences across the interface denoted u,, u, where u is the tangential dis-
placement vector of components (u, up), and the corresponding normalized displacements v, = u,/d,, v of
components v, = u;/d, v, = up/ . For the sake of simplicity, we assume identical material characteristics
in the two tangential directions, which means J, = é; and G, = G, = G.

The model introduces a tangential inelastic slip, obeying Coulomb’s friction, as soon as gradual damage
begins. This effect is modeled by way of a tangential “plastic” displacement parameter v? = uP/J,. With
these notations, the normal and tangential tensile forces at the interface express

Ty = [EF(d)H (vy) + KH( — vy)] Vn, (A.1)

T=G(v—v), (A2)

where E and G are the initial normal and tangential stiffnesses, and K is the compressive stiffness (with an
arbitrarily high value that limits penetration). H is the Heaviside function and F'(d) is the damage function
that affects the stiffness. The two irreversible processes are described, through the Coulomb criterion

% V| — (—uT,) <0 (A.3)

-k

and a rate independent damage rule
g= A, V) —d<0, (A.4)

where A represents a given scalar function of the present displacements and d is the scalar damage variable,
in fact the maximum value attained by 4. The key equation in the model corresponds to the choice of the
function 4 (arguments are given in Chaboche et al. (1997b))

1/2
v #K< Vp)n 2
G n

b

A= (m) + (A.5)

where n is the present unit direction of sliding. n expresses by combining Egs. (A.2) and (A.3)

bl

There are several situations, depending on the instantaneous loading conditions (assumed here under
displacement control). They are illustrated by Fig. 25:
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Fig. 25. Schematic behavior of the ONERA version of Tvergaard’s model under tangential loading.

e With a normal tension (v, > 0), the fact that 7, > 0 from Eq. (A.1) and the need for Eq. (A.3) induces
automatically

T = GF(d)v (A7)

and the model reduces exactly to Tvergaard’s one (Fig. 1).

e With a normal compression and “elastic unloading” (v, <0 and f < 0 and g < 0), we have constant v?
and d and the response is given by Egs. (A.1) and (A.2). Let us note the tangential elastic response that
uses the initial stiffness G.

e With a normal compression, “slip condition” but “no damage growth” (v, <0 and f = 0 and g < 0), we
use Egs. (A.1)—-(A.3). The evolution of v? is given via Coulomb’s friction rule (vg = O)

T-X GF(d)

op £ p
Vw=¢ T=X|’ X v (A.8)

1—-F(d) "’
where ¢ is given by the consistency condition / = 0. Fig. 25 illustrates the corresponding “linear kine-
matic hardening”, whose slope is depending on the previously developed damage.

e With a normal compression and simultaneous ““slip and damage growth”, we use Egs. (A.4) and (A.5) to
define the damage evolution. Let us note that damage without slip is not allowed in compression with the
present model.

Appendix B. Other interface debounding models
B.1. The model of Allix and Ladevéze

The version presented here is taken from the recent paper by Allix and Ladeveze (1996). It is written in
a standard thermodynamic framework using a state potential that involves the stresses. Moreover, this
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potential is assumed to depend on three damage variables d,, d,, d, associated with the tensile and tan-
gential directions, respectively. Using the same notation as above, we obtain the displacements—tensile
relations

T, Ty

— 7 Uy = ———, B.la—c
K(1—d) "7 Ko(1 — dby) ( )

TR T4,

_1{<Tn>+<—Tn>], Uy

where K, K, K}, are the corresponding interface stiffnesses. The damage evolution is constructed from the
thermodynamic forces associated to the damage components, respectively

1 (1) 1 )
n — A = Kn Vn)
2K, (1 —dy) 2 (vn)
I SRS R
Z = K., B.2
YAk —ay 2" (B.2)
1 T2 1 )
== == Kpu
Pk - 200
and from an equivalent damage energy release rate
o o a1 l/a
Y = sup [y + (300" + ()] (B.3)

<t

Then, the damage evolution is restricted to have d, = d; = di, = d during the whole history, obeying the
criterion (Ladeveze, 1992)

de)<jz:£§. (B.4)

In Egs. (B.2) and (B.3), 7, 7, @ and Yy, Y, are material parameters. In particular, y,, and y, make it
possible to satisfy mode II and mode I1I decohesion independently, and « describes the shape of the fracture
mechanics failure loci. A somewhat more complex expression for w(Y), not retained here, was used in Allix
and Ladeveze (1996). Moreover, possibilities for inelastic effects due to friction are also present in the
model.

Let us point out a few differences with the modified Tvergaard model presented in Appendix A:

e from Eq. (B.la), we observe the same stiffness K, for normal tension and normal compression, which
may induce larger penetrations,

e the damage criterion is slightly different, due to the separation of the three different modes in Eq. (B.3)
and to the additional degree of freedom given by exponent o,

e a damage threshold, given by Y, has been implemented,

o the effect of damage on the elastic behavior is given by a linear function (1 — d) instead of the quadratic
function F(d) = (1 —d)* in Tvergaard’s model.

The last difference is for the use of a delay effect in the damage evolution rule. It consists in replacing Eq.
(B.4) by the following:

d:gﬂ—em(—ﬂww)—@ﬂ. (B.5)

The inviscid solution, for an infinitely low rate, reconstructs (B.4). The delay effect is defined by the
characteristic time a/x. With this model, a maximum damage rate is given by #5/a.
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B.2. Model of Cangémi et al. (1995)

This model combines strict inequalities that describe the unilateral contact/Coulomb’s friction condition
with an equation for the decohesion process. It was formulated within a quasi-standard thermodynamic
framework (Cangémi, 1997) that will not be discussed here. We use the same notation as in Appendix A.
Instead of Eq. (A.1) above, we have, for normal behaviour, through Signorini’s equations

T —cenF(d)u, <0, uy, =0, [Th — cn F(d) uy]uy = 0. (B.6a—)

The first difference with the modified Tvergaard model (Appendix A) is that the non-penetration con-
dition is satisfied strictly. For the tangential behavior, we have Coulomb’s condition in the following form:

S =T —cF (|| — Ty — ca F(d)uy| <0, (B.7)

where the interface stiffnesses ¢, and ¢; could be equal in practice. The second difference is the purely in-
elastic tangential behavior (u = uP), so that the model works as a rigid-plastic model for the tangential
components (with a similar kinematic hardening as before).
The third difference is given by the decohesion growth equation itself, with F(d) = (1 — d)
-1
d =5 (1= d)(cary + ci[|u]]*) = w). (B.8)
In that equation, there appears a threshold w, under which no damage takes place. Moreover, Eq. (B.8) has
a clear viscous character (b coefficient of viscosity), which leads to the rate dependency in Section 4.

2,

Appendix C. Elementary solutions and comparisons

For comparison purposes, we explicit the models in their simplest uniaxial form (scalar) and give, when
possible, closed form solutions for the monotonic loading case. In other cases, the solutions are obtained
numerically.

C.1. Rate-independent limit case

The Tvergaard model immediately becomes

u\ u u\2u
T;l%(g)ng(l—S>5. (C.1)
T and u being, respectively, the positive traction and the corresponding displacement across the interface,
while E and § are the two parameters. In the model by Allix and Ladeveze, we have y = (1/2)Ku? and, from
Eq. (B.4) we find

d:mm:@_wﬂ (C.2)

Ue — Uy

where uy and u, are, respectively, the displacement at the onset of damage growth and the value at complete
separation. The traction displacement relation then expresses

T:Kﬂ—wu:KP—Q;ﬂqm (C.3)
Ue. — Uy

For the model by Cangémi et al. (1995), we need to establish the inviscid solution for an infinitely slow
increasing displacement (i — 0). In that case, Eq. (B.8) gives ¢(l —d)u?> =w and with the notation
oy = cuy = /we, we find (from the equality in Eq. (B.6a) and for u > u)
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T:c(l—d)zuzw?zu3:ao<l)3. (C4)

Uo
Then, the traction—displacement relation expresses

T=cu if u<u,

-3 C.5
T:a()(l) if u > uy. (€3)

Up

We note in that case, the infinite displacement for complete separation (7 — 0).

The three models can be adjusted to each other approximately. In Fig. 26, we have considered the same
maximum tension and the same fracture energy (fracture energy can be calculated analytically by the in-
tegrals under the tension—displacement curves). We find, respectively (¢ = up/u. in the Allix-Ladeveze
model),

4 1 Ku,
Tmax =—E=- = = ’ .
7 iT_¢ 69 = Vwe (C.6)
1 1, )
Go=7ES=—Ku (1+E+&) =w, (C.7)
12 6 ¢
so that by identifying the other two models to Tvergaard’s, gives for their material constants
27 6 16
Allix-L ¢ = Ku.=—(1-&8E .
ix-Ladeveze u, R U, 27( E)E, (C.8)
Cangémi et al =—F} —ﬁE/é (C.9)
g YT T3 '

In the applications in Figs. 26 and 27, we have taken the following values: £ = 3000 MPa, 6 = 0.2 um;
¢=0,u. =0.169 pm, Ku, = 1778 MPa; w = 50 J/m?, ¢ = 3950 N/m?>.

T (MPa)

400

300

200

100

G0 005 01 015 02 025 03 035 04

Fig. 26. Adjusted responses of the three rate independent versions: (—): Tvergaard model, (- - -): Allix-Ladeveze model, (- - -): Cangémi
et al. model.
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Fig. 27. The responses of the Allix-Ladevéze model for various rates of controlled displacement: (—): i = 1073, 0.1, 1, 10 pm/s and
(--): =04, 4 pm/s.

C.2. Rate dependent case

We consider the tension—displacement responses under controlled displacement at constant rate: u = ur.
In the two models given in Appendix B, the solution cannot be extracted in closed form. Figs. 27 and 28
show responses obtained numerically, with a simple step by step implicit scheme. The model parameters

1000
T (MPa)
800
7 - N
4 \\
600 | \
\
- \
N \
N \
400 f R N
\ \ \
\ \ \
\ \ \
i \ \ \
200 \ \ N
Q \ Mo
X A ~ QU (pm)
~ - ~ -~
0 1 1 =
0 0.1 0.2 0.3 04 0.5 0.6

Fig. 28. The responses of the model by Cangémi et al. for various rates of controlled displacement: (—): i = 1074, 0.01, 0.1, 1, 10 pm/s
and (---): 4 =0.04, 0.4, 4 pm/s.
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have been indicated above for their rate independent part. In addition, we selected a = 1, 5 = 10~ s~! and

b =10 MPams. Above the inviscid solution, we observe a high rate dependency in both models, both for
the maximum tension and for the displacement at complete separation. Fig. 8 in Section 4, plots the
maximum traction as a function of the applied displacement rate.

Nevertheless, some asymptotic expressions may appear. In the Allix-Ladeveze model, if we assume the
very high-rate situation, we saturate d to its limit value #/a, so that we can replace d in Eq. (C.3) by
d = nu/ai. The condition d7/du = 0 (with a constant #) leads to the approximate expression for the
maximum tension.

1 a.
Tnax & i K 0 i (C.10)
The corresponding line is plotted in Fig. 8. For the Cangémi model, in the high rate domain, we can
neglect the threshold w. The damage rate equation (B.8) then expresses

d:%(l—d)uz (C.11)
and can be integrated analytically for a constant rate u:
c u

d=1- - . C.12
eXp( 3b i ) (C.12)

Reported in the tension—displacement relation (B.6a), we find

2c u’

T=c(l—d)’u= - ). C.13
c )V u cuexp< 3bi¢> ( )

We can determine the position and the value for the maximum tension by solving d7'/du = 0. We find

b' 1/3
T = c( . ) (C.14)

2ce

showing a 1/3 power dependency (instead of the one for the Allix-Ladeveze delay model). Fig. 8 indicates
the corresponding line and compares it with the numerical solution.

A third model has been studied with a viscous regularization. It corresponds to a coupling between
elastic behavior and a creep equation that is most often used for metals. The equations were recalled in
Section 4.

, d:iG)r(l—d)S. (C.15)

T=E(l-d) -
0

SYIRN

Eq. (C.15b) can be integrated analytically for a given displacement u = @it (constant rate). We find

r+1 r L)
N L) w_|_rtl (AN wu
(1—d) =1 (u,) ’ 5 s—r+l(E> ) 1 ' (C.16)
so that the traction expresses
pi1] VD)
u u

The solution of d7/du = 0 is
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u s—r4+ 1\
S (2T - 18
u, ( s+2 ) (C.18)

and after replacing in Eq. (C.17), we obtain the maximum traction as a function of the displacement rate

1/(r+1)

. 5 r1 s+2/(r+1)(s—r+1) é r/(r+1) T()l (C 19)
e s+ 2 E 0 ' '

In the application by Chaboche et al. (1997a), we have set s = r = 2, so that Eq. (C.19) reduces to

1/3

9 AN [ 1yi
Tmax —E(E E) T . (CZO)

The corresponding line is shown in Fig. 8 with £ = 3000 MPa, 4 = 130 MPa, § = 0,2 um, 7, = 10°s. Let us
note the same rate dependency, in the high rate regime, as the one for the model by Cangémi et al. (1995).
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