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Abstract: Eukaryotic genomes comprise a large proportion of repeated sequences, an important
fraction of which are transposable elements (TEs). TEs are mobile elements that have a significant
impact on genome evolution and on gene functioning. Although some TE insertions could provide
adaptive advantages to species, transposition is a highly mutagenic event that has to be tightly
controlled to ensure its viability. Genomes have evolved sophisticated mechanisms to control TE
activity, the most important being epigenetic silencing. However, the epigenetic control of TEs can
also affect genes located nearby that can become epigenetically regulated. It has been proposed
that the combination of TE mobilization and the induced changes in the epigenetic landscape could
allow a rapid phenotypic adaptation to global environmental changes. In this review, we argue the
crucial need to take into account the repeated part of genomes when studying the global impact of
epigenetic modifications on an organism. We emphasize more particularly why it is important to
carefully consider TEs and what bioinformatic tools can be used to do so.

Keywords: transposable element; epigenomics; bioinformatic tools

1. Introduction

Eukaryotic genomes are much more than an array of protein-coding genes, which usually
account for a small fraction of the genome space. For example, they represent only a very small
fraction of the human genome (<2% of the genome), whereas repeated sequences represent more than
half of it [1]. The proportion of genes is slightly larger in some organisms with a smaller genome
size, such as Drosophila in which the protein-coding genes represent about 13% of the genome [2].
Historically, the non-coding part of genomes was first thought to be non-functional [3]. It is however
now known to represent a mixture of repetitive DNA and non-functional sequences interspersed with
non-coding RNA genes and regions that are important for transcriptional and post-transcriptional
regulation [4,5]. Transposable elements (TEs), which are mobile genetic elements, account for
a large part of repeated DNA and are highly diverse in structure, mechanisms of transposition,
and repetitiveness in the genome. They are classified according to various features such as their
intermediate of transposition (RNA or DNA) and their structural domains (enzymatic domains,
regulatory sequences, non-coding repeats, etc.) or their insertion sites. On this basis, several efforts
have been made to identify the main types of TEs in a comprehensive manner allowing to determine
different hierarchical levels of classification going from the classes to the superfamilies (see, e.g., [6,7]).
Globally, two main classes have been described: Class I comprises the retrotransposons, which contain
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the LTR (Long Terminal Repeat)-retrotransposons (endogenous retrovirus-like mobile elements) and
the non-LTR retrotransposons grouping the LINE and SINE elements (standing for Long and Short
Interspersed Nuclear Elements respectively); and Class II comprises the DNA transposons. Below the
level of superfamilies, TEs are classified into families, based on sequence similarities. According to the
age of a TE family and the location of its insertions, the copies may be either active and full length or
degraded and transposition defective, and therefore, different copies inside a given TE family may
have different degree of sequence similarity. This implies that, in some organisms, several almost
identical TE copies may be present in different regions of the genome, which represents a technical
barrier for the assembly of complete genomes. Moreover, the number and size of TE families are
very variable according to the organisms, as well as the number of active families (i.e., families with
current transposition capacity). For example, in the human genome where TEs make up 45% of the
genome, which represent millions of copies [3], the most widely represented types of TEs correspond
to non-LTR retrotransposons from two different subtypes (16.9% of LINEs and 10.6% of SINEs) in
which only three active families are identified while the remaining ones correspond to old and more
or less degraded sequences [4,8]. On the contrary, in D. melanogaster, TEs represent 15–20% of the
genome corresponding to several thousands of copies but with a large variety of different families
(~100 families especially corresponding to LTR-retrotransposons and non-LTR retrotransposons),
among which the majority is still active [9,10]. TEs have a significant impact on genome evolution and
on gene regulation [11,12]. Several examples have indeed shown that a large proportion of them have
been recruited to provide regulatory elements allowing to generate regulatory (see for reviews [13–15]).
TEs have also played a role in the evolution of sexual chromosomes as it has been demonstrated in
different plants and animals [16–21]. However, despite the role played by TEs in the evolution of
complex genomes, transposition is still a highly mutagenic event. Genomes have therefore evolved
sophisticated mechanisms to control their activity, among which epigenetic modifications play an
important role [22]. TEs are actually the main target of epigenetic mechanisms and they concentrate
most epigenetic repressor marks in the genomes [22].

In addition to their role in the control of TEs, epigenetic modifications explain part of the
variation of gene expression observed inside and between organisms. In particular, changes in gene
regulation may play a role in the adaptation of organisms. For example, significant genome-wide DNA
methylation differences were observed between two populations of a freshwater snail living in different
habitats, suggesting that the environmentally induced epigenetic divergence was responsible for the
expression of adaptive shell shape variations [23]. In human, various environmental exposures affect
the epigenome and are particularly important during early fertilization and embryonic development,
some of which could lead to reproductive diseases (reviewed in [24]). Thus, epigenetic modifications
can be viewed as important factors to explain part of the adaptation of organisms to changing
environments by providing, in particular, phenotypic plasticity.

In parallel, several cases of adaptation due to some TE insertions have been described, such
as the role of LTR retrotransposon and DNA transposon insertions in insecticide resistance of D.
melanogaster [25,26] or in adaptation to high latitudes in soybean [27]. Since TEs are the providers of
significant adaptive responses of the organisms to particular environmental challenges and since both
TEs and epigenetic mechanisms are linked, it has been proposed that combination of TEs and epigenetic
mechanisms could allow a rapid phenotypic adaptation to global environmental changes [28,29].
The fact that some TEs are sensitive to environmental biotic and abiotic factors that can mediate their
mobilization and that epigenetic modifications are also sensitive to the environment suggest that both
can work together [28].

In this review, we want to underline the crucial importance of taking into account the repeated
portion of genomes when studying the global impact of epigenetic modifications on an organism.
However, TEs and other repeated content of genomes are often neglected when it comes to epigenomic
analyses or are, at best, only partially acknowledged [30,31]. We emphasize more particularly why it
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is important to carefully consider TEs by providing biological examples of the importance of TEs in
epigenomic studies and several examples of bioinformatic resources that can be used to do so.

2. Examples of the Importance of TEs in Epigenomic Analyses (à Mettre Avant)

2.1. In Drosophila and Other Diptera

For decades, Drosophila melanogaster has been a model to investigate various questions in biology
and genetics. In particular, numerous works have thoroughly described its TE content, which has been
estimated to represent around 15–20% of its entire genome [9,10] but only 5% when considering only
the euchromatin part [32–34]. The availability of its genome sequence allowed showing that its TEs
were mainly composed of active and newly transposed copies [9,34,35]. A first comparative approach
of D. melanogaster with close relatives showed that, in D. yakuba, D. simulans and D. sechellia, TE copies
are rather old and degraded [36]. Moreover, the global proportion of TEs in Drosophila genomes is
highly variable. In particular, some species display a TE content largely higher than what is observed in
D. melanogaster, for example D. ananassae (24.93% of repeats) and D. suzukii (30.80% of repeats) [32,37].
Such a variation in TE content may be the reflection of variation in epigenetic regulation at work
in these related species. In other more distantly related Diptera, for which more than one hundred
genomes have been sequenced to date [38], the amount of TEs may also be very variable and sometimes
much larger than what is observed in D. melanogaster, generally associated with larger genome sizes.
This is the case for example for the southern house mosquito Culex quinquefasciatus (genome size of
579 Mbp) [39], the mosquito Aedes aegypti (genome size of 1.38 Gbp) [40], and the tiger mosquito A.
albopictus (genome size of 1.97 Gbp) [41]. These species, respectively, harbor 29%, 47% and 33.58%
of TEs. However, the question of the TE activity in these species remain speculative since very few
studies have tried to estimate what fraction of these TEs are actually transposing. Indeed, most studies
focus on D. melanogaster [42–45]. Recently, some information has been provided for its sister species, D.
simulans, showing that TE expression is variable among natural strains and that it is associated to the
amount of piwi-interacting RNAs (piRNAs) [46].

Contrary to other organisms, epigenetic regulation in Diptera is mainly due to histone tail
modifications and small RNAs, e.g., piRNAs, since the DNA methylation has been shown to be
almost completely absent [47,48]. The chromatin conformation around genes has been shown to be
influenced by the presence of TEs. In particular, euchromatic TEs can be silenced by heterochromatin
formation mediated by piRNAs, such heterochromatin being able to spread to neighboring genes
in Drosophila [49]. In this example, piRNA sequences directed against a DNA transposon behave
as cis-acting targets for heterochromatin assembly, more specifically, the heterochromatic states of
genes depend on the number and distance of nearby TEs and on the possibility for TEs to be the
target of piRNAs [50]. These effects could be particularly important in the case of stress response.
For example, a single insertion of a DNA transposon is associated with the up-regulation of two
genes having a role in the resistance to oxidative stress [51]. This insertion is enriched in several
histone modifications in stress condition when compared to the normal condition, which is consistent
with the pattern of expression changes of the neighboring genes [52]. More generally, in the case
of organism aging, epigenetically silenced TEs have been shown to become activated as cellular
defense and surveillance mechanisms fail with age in Drosophila [53]. Indeed, transcripts of many
heterochromatic genes and TEs were found to increase with age in flies, which was repressed when
flies were submitted to a diet known to extend life span. Moreover, changing the expression of genes
known to affect heterochromatin structure alleviated age-related expression increases of TEs. The effect
of TEs in association with epigenetic modifications may also be implicated in the genome evolution at
larger scale. The distribution of TEs in the genomes may be highly variable, with a huge proportion
found on the Y chromosome of D. melanogaster, which contrasts with the few protein coding genes.
However, this chromosome has been shown to be associated with natural phenotypic variations.
One of the hypotheses to explain this action is the heterochromatin sink model, which suggests that
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variation in the heterochromatin blocks on this chromosome can be used as a sink for transcription
factors or chromatin regulators, allowing for example to indirectly influence epigenetic landscapes
between sexes [54–57]. TEs seem also to play a role in the formation of the Y chromosome itself and
more particularly in its degeneration, as has been shown in D. miranda [18].

2.2. In Mammalian Genomes

In mammals, TEs represent millions of insertions but only few families are actually active and
generating new insertions [8]. In normal mammalian cells, TEs are usually methylated, therefore
transcriptionally silenced, which may avoid any deleterious effects. In some abnormal cells where
DNA methylation is abolished, TEs can be mobilized, resulting in a potential impact on the genome
stability [58,59]. In human glial tumors, a particular brain cancer, analysis of Alu element methylation
level allowed determining that their level of methylation decreased when compared to a normal tissue
and is more pronounced in aggressive tumors compared to nonaggressive primary tumors [60].
Furthermore, using bisulfite sequencing approach, the CpG sites with methylation loss during
progression of pediatric intracranial ependymomas allowed generating methylation profiles for
thousands of Alu elements and their flanking sequences. When compared, the methylation profiles
between normal and tumor tissues showed an unchanged methylation status of a majority of CpG sites
adjacent to or within Alu elements. Thus, by their study, the authors proposed that the methylation
status of specific Alu elements could serve as prognostic factors for some brain cancers. Another study
analyzed Alu element methylation profiles in colon cancer and normal tissue [61]. It allowed showing
that normal cells display a low proportion of unmethylated Alu elements that increases up to 10-fold in
cancer cells. Interestingly, in normal tissues, hypomethylated Alu elements are located near functionally
GC rich regions and display other epigenetic features consistent with an impact on genome regulation.
In cancer cells, when considering different regions of the genome according to the high or low rates
of Alu element hypomethylation, it was possible to identify genomic compartments with differential
genetic, epigenetic, and transcriptomic features, associated with higher chromosomal instability.

The DNA methylation is also known to be particularly important in embryonic development
of mammals. The analysis of human preimplantation embryos allowed showing that the genome is
globally demethylated. However, variations exist concerning TEs. Young LINEs and SINEs present
a lower demethylation level than older ones, indicating that early embryos retain methylation for
younger and thus more active TEs, probably to prevent too many deleterious effects due to their
potential mobilization [62]. Recently however, it has been shown that the gradual loss of DNA
methylation that occurs in embryonic stem cells of mouse is associated with a global reactivation of
TEs but that another mechanism then compensates DNA demethylation to prevent TE mobilization
through a redistribution of repressive histone modifications [63]. In another work, loss of DNA
methylation in embryonic stem cells allowed the identification of an endosiRNA-based mechanism
involved in the suppression of TE transcripts, suggesting that this mechanism could be an “immediate”
response to global methylation erasure, which would then be followed by a “long-term” repressive
chromatin response [64].

These different examples show that the study of epigenetic regulation of TEs is important to better
understand what is happening during the evolution of some diseases but also during the development.

2.3. In Plants

Plants are sessile organisms and this makes the need to adapt to a changing environment
particularly striking for them. The ability to respond to environmental stimuli depends on the capacity
to regulate transcription in a precise way. Transcriptional regulation is the result of the concerted
action of transcription factors but also of epigenetic changes of DNA and chromatin.

The importance of epigenetic regulation in plants was recognized even before the molecular basis
of epigenetics was established. Indeed, several epigenetically-related phenomena, such as imprinting
and paramutation were described in plants more than 50 years ago [65,66]. At the same time, and also
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working on plants, Barbara McClintock proposed the existence of mobile elements and described them
as controller elements able to rearrange and regulate the genome [67–69]. Since then, the study on plants
has contributed important concepts to the epigenetics field and has shown that epigenetic regulation
of plants shares many principles with that of animals, but also presents some particularities [70].
In plants, DNA methylation not only occurs in cytosines located in a symmetric context (CG or CHG),
but also happens in asymmetric contexts (CHH), which requires de novo methylation after each DNA
replication round [71]. De novo methylation in plants requires the RNA dependent DNA methylation
(RdDM) pathway where siRNAs of 24 nt guide the methylation of specific targets [72]. These 24 nt
siRNAs are the most abundant type of small RNAs in plants. In addition to DNA polymerases POL
1–3, plants have two additional DNA-dependent RNA polymerases, POL IV and POL V, which are
essential for RdDM. Pol IV generates RNAs corresponding to TEs and repetitive regions that are
processed into 24 nt siRNAs and target complementary chromatin-bound RNAs produced by Pol V,
which directs de novo methylation of these regions [72]. Most 24 nt siRNAs and POL V recognized
regions correspond to TEs.

Plants are the main source of food for humans, and consequently humans have strongly modified
plants through breeding since the Neolithic times to obtain new plant varieties better suited for human
needs. Both genetic and epigenetic variability underlay the phenotypic variability that is the basis for
crop breeding [73]. Several epialleles conferring new traits important for crop breeding have been
described, including epialleles conferring non-ripening tomatoes, producing rice varieties resistant to
fungal pathogens, or controlling sex in melon [73].

TEs are the major target of epigenetic silencing, and their distribution in the genome closely
parallels that of DNA methylation and repressive chromatin modifications. Silencing of TEs is highly
efficient in plants and most TEs are only active in situations in which silencing is blocked (e.g.,
in mutant backgrounds) or alleviated (e.g., under stress) [74–78]. The relationship of stress and TE
activation in plants was already proposed by McClintock [67–69], and over the years many examples
have accumulated of plant TEs activated by stress [79]. In some cases, an analysis of the TE’s promoter
has allowed to identify stress-related cis-regulatory motifs [80,81]. The combination of the presence of
stress-responsive elements in the promoters of plant TEs and the alleviation of their silencing in stress
situations probably explains why stress seems to be the major activator of plant TEs.

The activation or the silencing of a TE can influence the expression of the genes located
nearby. In the case of LTR retrotransposons, which contain promoter sequences within the two
LTRs, an insertion close to a gene can place it under the control of the element’s 3′ LTR. This is,
for example, what happens in blood oranges, where the 3′ LTR of a retrotransposon inserted upstream
of a MYB transcription factor of the anthocyanin pathway confers cold-stress associated activation to
this gene [82]. Other types of TEs, such as Miniature Inverted-repeat Transposable Elements (MITEs),
also contain transcription factor binding sites, and it has been proposed that their movement could
allow rewiring new genes into transcriptional networks during evolution [83]. However, in addition
to the potential effect of TE promoters on genes located nearby, TEs can influence the expression of
neighboring genes through epigenetic mechanisms. Indeed, as already said, TEs are the main target of
epigenetic silencing, and the deposition of repressing epigenetic marks on TEs can affect the expression
of genes located nearby. Actually, most plant epialleles described so far are linked to the polymorphic
presence of TEs [22,84]. A classic example is the methylation of a SINE element insertion close to
the FLOWERING WAGENINGEN (FWA)-locus in Arabidopsis that results in the imprinting of this
locus [85].

In the last few years, many examples of TEs influencing the expression of genes located nearby
in plants have been reported and it has become clear that the epigenetic regulation of TEs greatly
contributes to plant phenotypic diversity and adaptation [86]. Interestingly, although most TEs do not
show a strict target specificity for integration, some families seem frequently present close to genes,
and, in particular, to genes controlling environmental responses [87], and it has very recently been
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shown that Copia retrotransposons seem to target those genes for integration guided by the presence in
their promoters of the histone variant H2A.Z [88].

As a summary, TEs are strongly repressed by epigenetic silencing in plants, but this repression
is alleviated in some stress circumstances allowing them to move, which makes them stress sensors.
As these elements seem to frequently insert close to genes, influencing their expression, they can rewire
new genes to the stress-related transcription networks. This potential to alter plant gene responses
to stress, and therefore their capacity to adapt to new environments, makes TEs a promising tool for
generating phenotypic diversity, and strategies to transiently inhibit TE control are now been proposed
as crop improvement strategies [89].

2.4. The Case of Schistosoma, a Non-Model Organism

Schistosoma is a parasitic flatworm and causative agent of schistosomiasis, a disease that affects
over 200 million people worldwide. The parasite has a complex life cycle involving two consecutive
obligate hosts (a poikilotherm snail and a homeotherm mammal) and two transitions between these
hosts as free-swimming larvae (miracidia and cercariae). The parasite’s sex is determined by the
presence of sex chromosomes, ZZ for males and ZW for females. With the availability of the assembled
draft genome [90] and the production of a massive parallel sequencing, the “repeatome” of Schistosoma
mansoni was assembled, consisting of 5420 sequences and estimated to represent 47% of the genome,
of which 20% corresponds to TEs while the rest encompasses short repeats and microsatelites [91].
The most abundant TE classes were Class I (~66% corresponding to LTR and non-LTR retrotransposons)
and Class II (24% DNA transposons).

The impact of TE presence was further analyzed. In particular, the introduction of the parasite
into the American continent during the colonization allowed Wijayawardena et al. [92] to compare
the Old World and New World genomes to test for the breakdown of TE repression systems after a
physiological stress. They tested the abundance of TEs in New World and Old World Schistosoma
by evaluating the copy number of six TEs and found that, as expected, the New World Schistosoma
presented more copies of Class I and Class II elements. Interestingly, this difference was not reflected
in the transcriptome suggesting that either the repression system was reactivated or the copies were all
truncated. These results show that TEs are subjected to control mechanisms very similarly to other
model organisms. To understand the impact of TEs on gene regulation, Philippsen and DeMarco [93]
studied the distribution of TEs throughout the gene structure and observed that it was not uniform,
with introns on the 3′ side of the gene showing more TE insertions when compared to the 5′ introns.
Through the analysis of transcriptomic data, they found that some genes showed transcriptional
variants due to the influence of inserted TEs. These elements might play a role in changing the splicing
sites of genes. They also showed that six genes presented TE sequences in their coding regions, which
indicates a possible domestication of the included sequence. These results highlight the importance of
TEs in shaping the evolution of the Schistosoma genome and to what extent TEs have a direct impact
on the gene landscape.

Once the existence of TEs was established, the next question was to elucidate in what measure
these elements impacted the chromatin or epigenomic landscape of the genome. Previously, it was
considered that S. mansoni lacked detectable DNA methylation patterns [94]. It was not until 2013 that
cytosin methylation, in the CpG context, was described and found to be a conserved epigenetic feature
in Platyhelminthes including the three most studied schistosomes: S. haematobium, S. japonicum and
S. mansoni [95]. Since there are several indications that repeat elements play an important role in
the chromosome structure and therefore in the chromatin landscape of the parasite, the question
of the association of TEs and epigenetic modification in Schistosoma needed to be investigated.
It was observed that histone methylation of TE rich regions changed during the transition from
cercaria, the free-swimming larvae that infects the mammalian host to adult, which occurs inside
the host [96]. These changes included the decrease of H3K9me3 and H3K27me3 enrichment as well
as the increase in enrichment of H3K9ac and H3K4me3 modifications. The authors proposed that
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this could be an indication of large-scale chromatin rearrangements or chromosome displacements
in the nucleus during transformation into adults. Moreover, they also suggested that the repeat
containing large pericentromeric regions become heterochromatic when cercariae develop inside the
snail. Another peculiar observation during transformation from cercariae to adults was the nearly
complete loss of H3 modifications in 22 of the 36 W chromosome-specific (sex specific) repeats. It was
previously shown that transcription of these repeats can only be observed during larval stages and
was undetectable in adults [91]. When comparing cercariae to the adult stage in the vertebrate
host, H3K27me3 was found to be differentially enriched and a high sex-biased expression of TEs,
mainly those contained in introns, was observed. This work suggests that TEs could be involved in sex
chromosome inactivation as well as in the dosage compensation mechanism [97]. At the developmental
level, it has been shown that the different stages of the parasite can be discriminated by looking at
five chromatin modifications (i.e., the chromatin landscape) throughout the complete life-cycle of
the parasite and specifically through the analysis of histone methylation levels of repetitive elements.
The only stages that could not be readily discriminated were the miracidia and sporocyst I stages,
which are very similar [96].

As more knowledge accumulates on the importance of repeat elements, a detailed analysis on the
different classes of TEs would shed a clear light of the full importance of these elements in the chromatin
conformation and their potential implication in the regulation and shaping of the Schistosoma genome.

3. Bioinformatic Analysis of TE Sequences in Genomes

3.1. TE Insertion Identification and Polymorphism

The great diversity in structure, mechanism of transposition and repetitiveness of TEs makes their
accurate annotation in complete genomes challenging, which is further complicated by progressive
loss of sequence identity in decaying elements. The degree of complexity of this task will depend on
each genome [98], as the TE population dynamics and evolutionary forces leading to different rates of
TE family birth and extinction will vary from genome to genome [99]. There are two main approaches
to identify TEs in genome sequences: homology-based approaches, which use sequence similarity to
already characterized TEs, and de novo approaches. The sequence diversity of TEs limits the former,
although similarity among coding conserved domains of enzymatic activities commonly encoded by
TEs can be used to detect these regions. The de novo approaches are usually based on the repetitiveness
of TE sequences or their structural motifs (e.g., the presence of LTRs for LTR-retrotransposons).
Several bioinformatics tools are available based on these different approaches [7,98], and there are also
pipelines that combine the different tools to be able to make a comprehensive annotation of TEs, such
as the REPET package [100] (Table 1). Another tool called PiRATE has been developed recently, which
includes several available packages for TE identification and annotation like similarity based and de
novo structural based tools, repeat based and TE reconstruction from short reads [101]. Although these
tools are in general very efficient, it is still challenging to compare the TE landscapes of different
genomes only based on their TE annotations, even when they have been produced using the same
tools and parameters.

The annotation of TEs in reference genomes is only a snapshot at a given time of a particular
individual which may not be representative of all individuals of the species. Although a majority
of TEs are no longer able to transpose, and most insertions are likely to be fixed, mobile TEs are at
the origin of an important part of the genetic variability within populations. For example, in human,
several thousand polymorphic TE insertions were identified when comparing 185 samples in three
major populations [102]. It is therefore essential to be able to identify non-reference TE insertions.
There are different bioinformatic methods available to use NGS data on individuals or varieties to
identify TE insertion variability. Most of these methods use a reference genome of the species to map
de NGS paired-end short reads and identify those that map discordantly, selecting those for which
one of the reads maps to a previously identified TE. Examples of these include software packages
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such as Jitterbug [103], TEMP [104], MELT [105], PopoolationTE2 [106] or TEFLoN [107]. Others on
the contrary map first to the consensus sequence of previously identified TEs and map afterwards the
paired read onto the genome, such as TRACKPOSON [108]. A more recent approach using long Pacbio
reads has also been reported, but it still relies on the good annotation of reference TE sequences [109].
Another approach infers insertion events using the misalignment and split alignment of short reads
without relying on a database of previously identified TEs. Several of these tools have been reviewed
in [110].

For non-model species, due to the general lack of a good quality genome assembly or in the
case that no reference genome exists at all, the search for TEs is especially challenging. Similarity or
motif-based searches will identify older elements in the assembled draft genome or transcriptome,
but new elements with high sequence conservation will not be assembled and the data will be
hidden in the unassembled reads. In this case, TEs have to be reconstructed from the non-assembled
short reads by using software packages such as RepARK [111], Tedna [112], RepeatExplorer [113],
or dnaPipeTE [41].

3.2. Methods to Analyze Epigenetic Modifications Associated to TEs

3.2.1. On the Difficulty to Consider TE Sequences

Currently, very few tools are dedicated to specifically study epigenetic modifications associated
to TEs (Table 1). Usually, these sequences are rather ignored, their repetitive nature making it difficult
in some cases to assign reads produced by NGS technique to individual TE copies, which results in
multi-mapping problems. As individual TE copies usually contain specific SNPs, a fraction of the
reads will map to individual TE sequences unambiguously, which may be enough in some cases
to draw conclusions. However, this will depend on the repetitiveness and the sequence variability
(and therefore the age) of each particular TE family. Currently, the different read mappers have
various ways to handle multimapping reads. For example, the default parameters of Bowtie 2 allow
searching for multiple alignments and to report the best one [114]. Additional parameters may be
implemented to keep uniquely mapped reads, which in this case will remove almost all information
concerning TEs. Alternatively, it is possible to get all possible positions of reads or to return up to
a given number of alignments. The mapping may be performed on consensus TE sequences, which
represent a given TE family. However, the variation of quality among copies of a given family may
have a direct impact in the process of building the sequence reference (consensus) of the considered
family. These consensus sequences are usually supposed to correspond to full-length and active
sequences or to represent the ancestral element at the origin of all copies currently present in a genome.
Such type of sequences is available in the TE database Repbase [115], a resource that is widely used for
TE annotation. Normally, only nearly full-length and thus potentially active copies are considered in
the process of consensus construction. However, a consensus sequence may be quite divergent from
older copies. Moreover, not all species are represented in this database, which may lead to consider
consensus TE sequences from related species instead of real TE representative of the analyzed species.
This may lead to a wrong assessment in TE recognition by mapping approaches but also to a loss
of information from the unmapped reads. Thus, the crucial step of mapping reads on TE sequences
remains a challenge that will become easier as the sequenced reads become longer.

3.2.2. Histone Modifications

In the original study describing the ChIP-Seq method, to determine the chromatin landscape
associated to TEs in pluripotent and lineage-committed cells from mouse [116], reads were directly
aligned to a library of repetitive element consensus sequences obtained from Repbase. Since this
pioneer work, other studies have used a similar approach to determine histone modifications associated
to repeats. For example, to determine the chromatin landscape at centromeric and telomeric positions
in the human genome, researchers mapped reads from ChIP-seq data to consensus sequences of TEs
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known to be specifically found in these regions [117]. Other works have tried to circumvent the problem
of mapping on consensus sequences. Among them, one proposes a tool, Repeat Enrichment Estimator
available as a web interface, specifically to study histone modification enrichment of repeats [118].
This tool aims at performing enrichment analyses of repeats taking advantage of their increased
sequence coverage. An advantage of this method is that it incorporates both ambiguously and
uniquely mapped reads to avoid bias due to reads mapping on consensus sequences. This obviously
allows obtaining more informative reads associated to a given family. However, the final results
are not copy specific. This method only allows obtaining histone enrichment at the family level.
Another limitation is that the web interface only allows the use of a very limited number of model
species (human, mouse and Drosophila). A similar approach not implemented in a comprehensive tool
has been proposed in a study of histone modifications of human TEs [119]. In this work, TE insertions
from the genome are used rather than consensus sequences. In this procedure, the reads are aligned on
the genome and randomly assigned to a genomic location when a given read presents more than one
alignment with best scores. By crossing all the locations with read assignments to coordinates of the TE
annotations obtained via RepeatMasker [120] (http://www.repeatmasker.org), the authors determined
the enrichment of specific TE types. Similar to the Repeat Enrichment Estimator tool, the enrichment
obtained is not given at copy level and thus the information concerning the genomic location is lost.
Among the set of pipelines proposed in the method piPipes, which is dedicated to piRNA and TE
analysis [121], one is dedicated to the analysis of ChIP-Seq data and proposes two methods to consider
multi-mapping reads. Either the best alignments of multi-mapping reads are randomly assigned to a
location or the CSEM algorithm is used to assign unambiguous reads. By these approaches, it is thus
possible to consider repeat regions in the global performed analyses.

3.2.3. DNA Methylation

Several approaches for genome-wide methylation analysis have been developed [122].
Among them, two well-known methods, bisulfite sequencing (BS-Seq) and methyl-DNA
immunoprecipitation sequencing (MeDIP-Seq), allow genome-wide analyses of DNA methylation by
high throughput sequencing [123]. BS-Seq is often considered as a gold standard for high-resolution
DNA methylation profiling. It is however sometimes difficult to correctly map short reads obtained
from bisulfite converted genomic DNA when they derive from repeats. Other strategies have been
developed to more specifically analyze methylation level of repeats. Xie et al. [124] proposed a method
to amplify a large set of repeats along with their flanking sequences, from bisulfite converted genomic
DNA. They were able to apply this method on Alu elements in normal human tissue. In this approach,
Alu element insertions from the human genome sequence as well as consensus sequences of Alu
elements from Repbase are submitted to an in silico bisulfite treatment. Specific primers from a
particular subset of Alu elements are designed among these sequences to produce a specific library
that will be sequenced to obtain position specific sequences. The advantage of such an approach is
that it allows access to the position of methylated TEs. However, it suffers some pitfalls, e.g., it is
biased toward young Alu elements that are rich in CpG; it does not take into account a potential
insertion polymorphism that may occur between the reference genome and the analyzed tissue; and
it only focuses on one type of TEs. Another approach has been proposed to compute methylation
level on repeats using single-base DNA methylation profiles data [125]. Levels of methylation are
computed on the whole genome sequence. Then, the position of TE insertions with at least one CpG
are recorded from TE annotations from the human genome reference. In their work, the authors
group the different TEs in large classes (SINE, LINE, etc.) to obtain global methylation levels for
each category. As the individual TE copies usually contain specific SNPs, some reads may map to
TEs unambiguously. Actually, many analyses of TE methylation at the genome level are done with
uniquely mapped reads only. Even if it is still possible using such an approach to get information of
the methylation level for an individual insertion, the insertion polymorphism between the sample
and the reference genome is not taken into account, which would prevent confidently observing

http://www.repeatmasker.org
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individual insertion methylation level. More recently, a method called High-Throughput Targeted
Repeat Element Bisulfite Sequencing (HT-TREBS) has been developed with the aim to determine
which individual repeat elements escape methylation repression, since they may be the ones with a
direct impact on the genome [126]. In this method, specific primers are designed to study particular
TEs, and regions flanking these insertions are also sequenced, allowing to compare variation in the
number of repeats that are or not methylated across several samples. Even if this method remains
at a general level, it allows intra- and inter-individual comparisons. However, the element specific
primer approach implies that not all TEs can be considered in the same analysis. To try to circumvent
the drawbacks of these methods and in the perspective to detect only unmethylated Alu elements in
human cancer conditions, Jorda et al. [61] developed the Next-generation Sequencing of UnMethylated
Alu (NSUMA) method to selectively enrich for DNA fragments composed of an unmethylated Alu
repeat and its flanking regions, allowing an exact mapping in the genome. A ratio of differential DNA
methylation of Alu elements can then be calculated among different samples. Having the sequence of
the flanking region also allows to determine the position in the genome even in the case of polymorphic
insertions. This method allows a reduction in the sample complexity and the unique mapping of
the considered repeat. However, this method is focused on a very particular type of human TEs
but it probably may be possible to consider its adaptation to other types of TEs. Recently, a new
bioinformatic method, EpiTEome, has been proposed with the simultaneous goal to detect both TE
insertion sites and their DNA methylation level [127]. This approach allows detecting, in addition to
known TE insertions, any new insertions. Using BS-seq data, this program first retains discordant
reads with one mapping an annotated TE. Then, by a split-read approach, the breakpoint location of
the TE insertion is identified. Simultaneously, the methylation status of the insertion and the flanking
region is determined. Although this tool represents a great advance, the authors pointed out some
limitations on which further developments need to be done, e.g., the necessity of a high sequencing
coverage and having a closely related reference genome, and the fact that nested TE insertions will not
be found.

3.2.4. Small RNA Regulation

The third epigenetic mechanism having an impact on TE activity is represented by the action of
small RNAs (sRNAs). This regulation system is particularly important to control TEs in Drosophila.
To study this mechanism, it is also essential to take into account at the same time the expression
level of TEs. A first approach was proposed to analyze specific sRNAs of Drosophila from RNA-seq
data [128]. However, this method leads to a loss of information since only reads mapping at unique
positions with no mismatch on a reference genome are considered as well as using consensus sequences
of TEs to associate sRNAs to a TE family. Such a method is currently implemented in the piPipes
pipeline [121], which is suited only to analyze well annotated reference genomes. To take into account
these drawbacks, a new pipeline, TEtools, has recently been proposed [46]. This tool has been
developed for the analysis of TE expression for both mRNAs and sRNAs. It takes into account the
TE sequence diversity of a genome and can thus be applied even on unannotated or unassembled
genomes as long as TE sequences have been identified. It thus performs the mapping of RNA-seq
data directly on TE sequences and not on the complete genome, and performs differential expression
analyses when several samples are given. More recently, a new tool, SQuIRE has been proposed to
analyze the TE expression level in a locus specific manner allowing to assess variation of expression
between the different copies of a given family [129].
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Table 1. Bioinformatic tools allowing the identification and analysis of TEs.

Usage Tool Question References

TE annotation in assembled genomes
REPET Pipeline of tools based on “all-by-all” blast search to detect and annotate repeats in genomic sequences [100]

PiRATE Pipeline combining multiple analysis tools representing all the major approaches for TE detection [101]

TE polymorphism detection

Jitterbug Identifies new TE insertions in a sample with respect to a reference genome and predicts the allelic frequency of the insertions [103]

TEMP Identifies both the presence and absence of TE insertions in genomic DNA sequences [104]

MELT Identifies TE insertions on a population scale; Developed on the 1000 Human genomes project data [105]

PopoolationTE2 Identifies both new and annotated TE insertions allowing the comparison of TE abundance among pooled population samples or
different tissues [106]

TEFLoN Identifies the breakpoints and superfamily identity of both new and known TEs [107]

TRACKPOSON Identifies TE insertions in large dataset based on known TE consensus [108]

LoRTE Uses PacBio long read sequences to identify TE deletions and insertions between a reference genome and other sampled genomes [109]

TE annotation in unassembled genomes

RepARK Produces the assembly of de novo repeat sequences from detected repeat k-mer directly from raw reads. [111]

Tedna Assembles TEs directly from the reads [112]

RepeatExplorer Pipeline to identify and characterize repetitive DNA elements from NGS data using a graph-based clustering approaches to identify
repeats, and additional programs to annotate and quantify them. [113]

dnaPipeTE Pipeline to de novo assemble, annotate and quantify repeats from NGS low coverage genomic datasets. [41]

Epigenetic analysis of TEs

Repeat
Enrichment
Estimator

Histone modifications associated to TE families; Web interface developed to analyze human, mouse and Drosophila data. [118]

piPipes Set of pipelines to analyze histone modification, piRNAs and expression level associated to TEs [121]

EpiTEome Simultaneous goal to detect both TE insertion sites and their DNA methylation level. [127]

TEtools Analysis of TE expression for both mRNAs and sRNAs, taking into account the TE sequence diversity. [46]

SQuIRE Analysis of the TE expression level in a locus specific manner to assess variability between the expression of the different copies of a
given TE family. [129]
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3.2.5. Prospective Issues

Methodological efforts are still needed to study epigenetic modifications directly associated to TE
sequences, even if some tools and methods already exist. It is clear that progress needs to be made,
especially in the association of chromatin modifications and individual TE insertions. The majority
of the developed tools are also largely biased toward specific species, especially mammals. It is thus
necessary to develop more polyvalent tools that could also work for non-model species. A prerequisite
is to try as much as possible to rely on individual TE insertion sequences rather than on TE consensus.
It is particularly important to consider the global sequence diversity of a TE family that may be very
variable but also the variable genomic environment of a given insertion that may have consequences
on the associated epigenetic modifications. The main difficulty in handling repeats in such analyses
clearly comes from their repetitive nature that makes the unambiguous mapping of the short NGS
reads challenging. Currently, the size of the reads is smaller than a complete TEs, especially in the
case of ChIP-Seq data. This size is important to allow discrimination between similar sequences as
well as to have access to their localization (via overlapping reads between flanking regions and TE
sequences). It could be considered to directly assemble reads to artificially obtain longer reads as a
first step to bypass small read size. However, as long read technologies will continue to be developed,
such a problem should be easier to handle in a close future. To take into account the population
genomic dimension of some analysis, a possibility to be considered could be to put an emphasis on the
identification of TE flanking regions, as it is performed by insertion polymorphism identification tools.

4. Conclusions

TEs have an important role in genome functioning and evolution mainly because of the large
variety of mutations they can generate, which can have an impact on the response of the organism
to environmental changes. TEs are also the main target of various epigenetic mechanisms, mainly to
silence them and control their activity. These epigenetic mechanisms are also considered to adjust
or generate new phenotypes, associating the living environment of organisms with their genomes
and phenotypes. It is thus clear that both TEs and epigenetics mechanisms play an important role in
organism adaptation, independently but also jointly, making it crucial to consider TEs, along with
other repeats, when analyzing globally any epigenome.

Author Contributions: E.L. and C.V. conceived the review, E.L., J.C. and C.S. wrote the first draft. All authors
read and proofread the manuscript.

Funding: This work was funded by the ANR ExHyb (14-CE19-001).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Consortium International Human Genome Sequencing. Finishing the euchromatic sequence of the human
genome. Nature 2004, 431, 931–945. [CrossRef]

2. Adams, M.D.; Celniker, S.E.; Holt, R.A.; Evans, C.A.; Gocayne, J.D.; Amanatides, P.G.; Scherer, S.E.; Li, P.W.;
Hoskins, R.A.; Galle, R.F.; et al. The genome sequence of Drosophila melanogaster. Science 2000, 287, 2185–2195.
[CrossRef] [PubMed]

3. Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.;
FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921.
[PubMed]

4. Cordaux, R.; Batzer, M.A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet.
2009, 10, 691–703. [CrossRef] [PubMed]

5. Ludwig, M. Functional evolution of noncoding DNA. Curr. Opin. Genet. Dev. 2002, 12, 634–639. [CrossRef]
6. Wicker, T.; Sabot, F.; Hua-Van, A.; Bennetzen, J.L.; Capy, P.; Chalhoub, B.; Flavell, A.; Leroy, P.; Morgante, M.;

Panaud, O.; et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007,
8, 973–982. [CrossRef]

http://dx.doi.org/10.1038/nature03001
http://dx.doi.org/10.1126/science.287.5461.2185
http://www.ncbi.nlm.nih.gov/pubmed/10731132
http://www.ncbi.nlm.nih.gov/pubmed/11237011
http://dx.doi.org/10.1038/nrg2640
http://www.ncbi.nlm.nih.gov/pubmed/19763152
http://dx.doi.org/10.1016/S0959-437X(02)00355-6
http://dx.doi.org/10.1038/nrg2165


Genes 2019, 10, 258 13 of 18

7. Makałowski, W.; Pande, A.; Gotea, V.; Makałowska, I. Transposable elements and their identification. Methods
Mol. Biol. 2012, 855, 337–359.

8. Mills, R.E.; Bennett, E.A.; Iskow, R.C.; Devine, S.E. Which transposable elements are active in the human
genome? Trends Genet. 2007, 23, 183–191. [CrossRef]

9. Quesneville, H.; Bergman, C.M.; Andrieu, O.; Autard, D.; Nouaud, D.; Ashburner, M.; Anxolabehere, D.
Combined evidence annotation of transposable elements in genome sequences. PLoS Comput. Biol. 2005, 1,
e22. [CrossRef]

10. Dowsett, A.P.; Young, M.W. Differing levels of dispersed repetitive DNA among closely related species of
Drosophila. Proc. Natl. Acad. Sci. USA 1982, 79, 4570–4574. [CrossRef]

11. Kidwell, M.G.; Lisch, D.R. Transposable elements and host genome evolution. Trends Ecol. Evol. 2000, 15,
95–99. [CrossRef]

12. Biémont, C.; Vieira, C. Genetics: Junk DNA as an evolutionary force. Nature 2006, 443, 521–524. [CrossRef]
13. Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 2008, 9,

397–405. [CrossRef] [PubMed]
14. Frank, J.A.; Feschotte, C. Co-option of endogenous viral sequences for host cell function. Curr. Opin. Virol.

2017, 25, 81–89. [CrossRef] [PubMed]
15. Friedli, M.; Trono, D. The developmental control of transposable elements and the evolution of higher

species. Annu. Rev. Cell Dev. Biol. 2015, 31, 429–451. [CrossRef] [PubMed]
16. Pritham, E.J.; Zhang, Y.H.; Feschotte, C.; Kesseli, R.V. An Ac-like transposable element family with

transcriptionally active Y-linked copies in the white campion Silene latifolia. Genetics 2003, 165, 799–807.
[PubMed]

17. Okada, S.; Sone, T.; Fujisawa, M.; Nakayama, S.; Takenaka, M.; Ishizaki, K.; Kono, K.; Shimizu-Ueda, Y.;
Hanajiri, T.; Yamato, K.T.; et al. The Y chromosome in the liverwort Marchantia polymorpha has accumulated
unique repeat sequences harboring a male-specific gene. Proc. Natl. Acad. Sci. USA 2001, 98, 9454–9459.
[CrossRef] [PubMed]

18. Bachtrog, D.; Hom, E.; Wong, K.M.; Maside, X.; de Jong, P. Genomic degradation of a young Y chromosome
in Drosophila miranda. Genome Biol. 2008, 9, R30. [CrossRef] [PubMed]

19. Liu, Z.; Moore, P.H.; Ma, H.; Ackerman, C.M.; Ragiba, M.; Yu, Q.; Pearl, H.M.; Kim, M.S.; Charlton, J.W.;
Stiles, J.I.; et al. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature
2004, 427, 348–352. [CrossRef] [PubMed]

20. Kondo, M.; Hornung, U.; Nanda, I.; Imai, S.; Sasaki, T.; Shimizu, A.; Asakawa, S.; Hori, H.; Schmid, M.;
Shimizu, N.; et al. Genomic organization of the sex-determining and adjacent regions of the sex chromosomes
of medaka. Genome Res. 2006, 16, 815–826. [CrossRef] [PubMed]

21. Peichel, C.L.; Ross, J.A.; Matson, C.K.; Dickson, M.; Grimwood, J.; Schmutz, J.; Myers, R.M.; Mori, S.;
Schluter, D.; Kingsley, D.M. The master sex-determination locus in threespine sticklebacks is on a nascent Y
chromosome. Curr. Biol. 2004, 14, 1416–1424. [CrossRef] [PubMed]

22. Slotkin, R.K.; Martienssen, R. Transposable elements and the epigenetic regulation of the genome.
Nat. Rev. Genet. 2007, 8, 272–285. [CrossRef]

23. Thorson, J.L.M.; Smithson, M.; Beck, D.; Sadler-Riggleman, I.; Nilsson, E.; Dybdahl, M.; Skinner, M.K.
Epigenetics and adaptive phenotypic variation between habitats in an asexual snail. Sci. Rep. 2017, 7, 14139.
[CrossRef]

24. Fernández, A.F.; Toraño, E.G.; Urdinguio, R.G.; Lana, A.G.; Fernández, I.A.; Fraga, M.F. The epigenetic
basis of adaptation and responses to environmental change: perspective on human reproduction. Adv. Exp.
Med. Biol. 2014, 753, 97–117.

25. Chung, H.; Bogwitz, M.R.; McCart, C.; Andrianopoulos, A.; French-Constant, R.H.; Batterham, P.; Daborn, P.J.
Cis-regulatory elements in the accord retrotransposon result in tissue-specific expression of the Drosophila
melanogaster insecticide resistance gene Cyp6g1. Genetics 2007, 175, 1071–1077. [CrossRef]

26. Mateo, L.; Ullastres, A.; González, J. A transposable element insertion confers xenobiotic resistance in
Drosophila. PLoS Genet. 2014, 10, e1004560. [CrossRef] [PubMed]

27. Kanazawa, A.; Liu, B.; Kong, F.; Arase, S.; Abe, J. Adaptive evolution involving gene duplication and
insertion of a novel Ty1/copia-like retrotransposon in soybean. J. Mol. Evol. 2009, 69, 164–175. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.tig.2007.02.006
http://dx.doi.org/10.1371/journal.pcbi.0010022
http://dx.doi.org/10.1073/pnas.79.15.4570
http://dx.doi.org/10.1016/S0169-5347(99)01817-0
http://dx.doi.org/10.1038/443521a
http://dx.doi.org/10.1038/nrg2337
http://www.ncbi.nlm.nih.gov/pubmed/18368054
http://dx.doi.org/10.1016/j.coviro.2017.07.021
http://www.ncbi.nlm.nih.gov/pubmed/28818736
http://dx.doi.org/10.1146/annurev-cellbio-100814-125514
http://www.ncbi.nlm.nih.gov/pubmed/26393776
http://www.ncbi.nlm.nih.gov/pubmed/14573489
http://dx.doi.org/10.1073/pnas.171304798
http://www.ncbi.nlm.nih.gov/pubmed/11481501
http://dx.doi.org/10.1186/gb-2008-9-2-r30
http://www.ncbi.nlm.nih.gov/pubmed/18269752
http://dx.doi.org/10.1038/nature02228
http://www.ncbi.nlm.nih.gov/pubmed/14737167
http://dx.doi.org/10.1101/gr.5016106
http://www.ncbi.nlm.nih.gov/pubmed/16751340
http://dx.doi.org/10.1016/j.cub.2004.08.030
http://www.ncbi.nlm.nih.gov/pubmed/15324658
http://dx.doi.org/10.1038/nrg2072
http://dx.doi.org/10.1038/s41598-017-14673-6
http://dx.doi.org/10.1534/genetics.106.066597
http://dx.doi.org/10.1371/journal.pgen.1004560
http://www.ncbi.nlm.nih.gov/pubmed/25122208
http://dx.doi.org/10.1007/s00239-009-9262-1
http://www.ncbi.nlm.nih.gov/pubmed/19629571


Genes 2019, 10, 258 14 of 18

28. Rey, O.; Danchin, E.; Mirouze, M.; Loot, C.; Blanchet, S. Adaptation to global change: A transposable
element-epigenetics perspective. Trends Ecol. Evol. 2016, 31, 514–526. [CrossRef] [PubMed]

29. Marin, P.; Genitoni, J.; Barloy, D.; Maury, S.; Gibert, P.; Ghalambor, C.K.; Vieira, C. The potential role of
epigenetics and transposable elements in facilitating biological invasions. Funct. Ecol. 2019. accepted.

30. Slotkin, R.K. The case for not masking away repetitive DNA. Mob. DNA 2018, 9, 15. [CrossRef]
31. Goerner-Potvin, P.; Bourque, G. Computational tools to unmask transposable elements. Nat. Rev. Genet.

2018, 19, 688–704. [CrossRef] [PubMed]
32. Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature

2007, 450, 203–218. [CrossRef] [PubMed]
33. Hoskins, R.A.; Carlson, J.W.; Wan, K.H.; Park, S.; Mendez, I.; Galle, S.E.; Booth, B.W.; Pfeiffer, B.D.;

George, R.A.; Svirskas, R.; et al. The Release 6 reference sequence of the Drosophila melanogaster genome.
Genome Res. 2015, 25, 445–458. [CrossRef] [PubMed]

34. Kaminker, J.S.; Bergman, C.M.; Kronmiller, B.; Carlson, J.; Svirskas, R.; Patel, S.; Frise, E.; Wheeler, D.A.;
Lewis, S.E.; Rubin, G.M.; et al. The transposable elements of the Drosophila melanogaster euchromatin: A
genomics perspective. Genome Biol. 2002, 3, RESEARCH0084. [CrossRef] [PubMed]

35. Lerat, E.; Rizzon, C.; Biémont, C. Sequence divergence within transposable element families in the Drosophila
melanogaster genome. Genome Res. 2003, 13, 1889–1896. [CrossRef]

36. Lerat, E.; Burlet, N.; Biémont, C.; Vieira, C. Comparative analysis of transposable elements in the
melanogaster subgroup sequenced genomes. Gene 2011, 473, 100–109. [CrossRef] [PubMed]

37. Sessegolo, C.; Burlet, N.; Haudry, A. Strong phylogenetic inertia on genome size and transposable element
content among 26 species of flies. Biol. Lett. 2016, 12. [CrossRef]

38. Wiegmann, B.M.; Richards, S. Genomes of Diptera. Curr. Opin. Insect Sci. 2018, 25, 116–124. [CrossRef]
39. Arensburger, P.; Megy, K.; Waterhouse, R.M.; Abrudan, J.; Amedeo, P.; Antelo, B.; Bartholomay, L.; Bidwell, S.;

Caler, E.; Camara, F.; et al. Sequencing of Culex quinquefasciatus establishes a platform for mosquito
comparative genomics. Science 2010, 330, 86–88. [CrossRef]

40. Nene, V.; Wortman, J.R.; Lawson, D.; Haas, B.; Kodira, C.; Tu, Z.; Loftus, B.; Xi, Z.; Megy, K.; Grabherr, M.;
et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 2007, 316, 1718–1723. [CrossRef]

41. Goubert, C.; Modolo, L.; Vieira, C.; Moro, C.V.; Mavingui, P.; Boulesteix, M. De novo assembly and annotation
of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and
comparative analysis with the yellow fever mosquito (Aedes aegypti). Genome Biol. Evol. 2015, 7, 1192–1205.
[CrossRef] [PubMed]

42. Lipatov, M.; Lenkov, K.; Petrov, D.A.; Bergman, C.M. Paucity of chimeric gene-transposable element
transcripts in the Drosophila melanogaster genome. BMC Biol. 2005, 3, 24. [CrossRef] [PubMed]

43. Deloger, M.; Cavalli, F.M.G.; Lerat, E.; Biémont, C.; Sagot, M.F.; Vieira, C. Identification of expressed
transposable element insertions in the sequenced genome of Drosophila melanogaster. Gene 2009, 439, 55–62.
[CrossRef]

44. Sienski, G.; Dönertas, D.; Brennecke, J. Transcriptional silencing of transposons by Piwi and maelstrom and
its impact on chromatin state and gene expression. Cell 2012, 151, 964–980. [CrossRef]

45. Graveley, B.R.; Brooks, A.N.; Carlson, J.W.; Duff, M.O.; Landolin, J.M.; Yang, L.; Artieri, C.G.; van Baren, M.J.;
Boley, N.; Booth, B.W.; et al. The developmental transcriptome of Drosophila melanogaster. Nature 2011, 471,
473–479. [CrossRef]

46. Lerat, E.; Fablet, M.; Modolo, L.; Lopez-Maestre, H.; Vieira, C. TEtools facilitates big data expression
analysis of transposable elements and reveals an antagonism between their activity and that of piRNA genes.
Nucleic Acids Res. 2017, 45, e17. [CrossRef] [PubMed]

47. Bewick, A.J.; Vogel, K.J.; Moore, A.J.; Schmitz, R.J. Evolution of DNA methylation across insects.
Mol. Biol. Evol. 2016, 34, msw264. [CrossRef] [PubMed]

48. Provataris, P.; Meusemann, K.; Niehuis, O.; Grath, S.; Misof, B. Signatures of DNA methylation across insects
suggest reduced DNA methylation levels in holometabola. Genome Biol. Evol. 2018, 10, 1185–1197. [CrossRef]
[PubMed]

49. Sentmanat, M.F.; Elgin, S.C.R. Ectopic assembly of heterochromatin in Drosophila melanogaster triggered by
transposable elements. Proc. Natl. Acad. Sci. USA 2012, 109, 14104–14109. [CrossRef] [PubMed]

50. Lee, Y.C.G. The role of piRNA-mediated epigenetic silencing in the population dynamics of transposable
elements in Drosophila melanogaster. PLoS Genet. 2015, 11, e1005269. [CrossRef]

http://dx.doi.org/10.1016/j.tree.2016.03.013
http://www.ncbi.nlm.nih.gov/pubmed/27080578
http://dx.doi.org/10.1186/s13100-018-0120-9
http://dx.doi.org/10.1038/s41576-018-0050-x
http://www.ncbi.nlm.nih.gov/pubmed/30232369
http://dx.doi.org/10.1038/nature06341
http://www.ncbi.nlm.nih.gov/pubmed/17994087
http://dx.doi.org/10.1101/gr.185579.114
http://www.ncbi.nlm.nih.gov/pubmed/25589440
http://dx.doi.org/10.1186/gb-2002-3-12-research0084
http://www.ncbi.nlm.nih.gov/pubmed/12537573
http://dx.doi.org/10.1101/gr.827603
http://dx.doi.org/10.1016/j.gene.2010.11.009
http://www.ncbi.nlm.nih.gov/pubmed/21156200
http://dx.doi.org/10.1098/rsbl.2016.0407
http://dx.doi.org/10.1016/j.cois.2018.01.007
http://dx.doi.org/10.1126/science.1191864
http://dx.doi.org/10.1126/science.1138878
http://dx.doi.org/10.1093/gbe/evv050
http://www.ncbi.nlm.nih.gov/pubmed/25767248
http://dx.doi.org/10.1186/1741-7007-3-24
http://www.ncbi.nlm.nih.gov/pubmed/16283942
http://dx.doi.org/10.1016/j.gene.2009.03.015
http://dx.doi.org/10.1016/j.cell.2012.10.040
http://dx.doi.org/10.1038/nature09715
http://dx.doi.org/10.1093/nar/gkw953
http://www.ncbi.nlm.nih.gov/pubmed/28204592
http://dx.doi.org/10.1093/molbev/msw264
http://www.ncbi.nlm.nih.gov/pubmed/28025279
http://dx.doi.org/10.1093/gbe/evy066
http://www.ncbi.nlm.nih.gov/pubmed/29697817
http://dx.doi.org/10.1073/pnas.1207036109
http://www.ncbi.nlm.nih.gov/pubmed/22891327
http://dx.doi.org/10.1371/journal.pgen.1005269


Genes 2019, 10, 258 15 of 18

51. Guio, L.; Barrón, M.G.; González, J. The transposable element Bari-Jheh mediates oxidative stress response in
Drosophila. Mol. Ecol. 2014, 23, 2020–2030. [CrossRef]

52. Guio, L.; Vieira, C.; González, J. Stress affects the epigenetic marks added by natural transposable element
insertions in Drosophila melanogaster. Sci. Rep. 2018, 8, 12197. [CrossRef] [PubMed]

53. Wood, J.G.; Jones, B.C.; Jiang, N.; Chang, C.; Hosier, S.; Wickremesinghe, P.; Garcia, M.; Hartnett, D.A.;
Burhenn, L.; Neretti, N.; et al. Chromatin-modifying genetic interventions suppress age-associated
transposable element activation and extend life span in Drosophila. Proc. Natl. Acad. Sci. USA 2016,
113, 11277–11282. [CrossRef] [PubMed]

54. Lemos, B.; Araripe, L.O.; Hartl, D.L. Polymorphic Y chromosomes harbor cryptic variation with manifold
functional consequences. Science 2008, 319, 91–93. [CrossRef] [PubMed]

55. Lemos, B.; Branco, A.T.; Hartl, D.L. Epigenetic effects of polymorphic Y chromosomes modulate chromatin
components, immune response, and sexual conflict. Proc. Natl. Acad. Sci. USA 2010, 107, 15826–15831.
[CrossRef]

56. Wang, S.H.; Nan, R.; Accardo, M.C.; Sentmanat, M.; Dimitri, P.; Elgin, S.C.R. A distinct type of
heterochromatin at the telomeric region of the Drosophila melanogaster Y chromosome. PLoS ONE 2014,
9, e86451. [CrossRef] [PubMed]

57. Brown, E.; Bachtrog, D. The Y chromosome contributes to sex-specific aging in Drosophila. BioRxiv 2017.
[CrossRef]

58. Kulis, M.; Esteller, M. DNA methylation and cancer. Adv. Genet. 2010, 70, 27–56.
59. Ross, J.P.; Rand, K.N.; Molloy, P.L. Hypomethylation of repeated DNA sequences in cancer. Epigenomics 2010,

2, 245–269. [CrossRef] [PubMed]
60. Xie, H.; Wang, M.; Bonaldo, M.D.F.; Rajaram, V.; Stellpflug, W.; Smith, C.; Arndt, K.; Goldman, S.; Tomita, T.;

Soares, M.B. Epigenomic analysis of Alu repeats in human ependymomas. Proc. Natl. Acad. Sci. USA 2010,
107, 6952–6957. [CrossRef] [PubMed]

61. Jordà, M.; Díez-Villanueva, A.; Mallona, I.; Martín, B.; Lois, S.; Barrera, V.; Esteller, M.; Vavouri, T.;
Peinado, M.A. The epigenetic landscape of Alu repeats delineates the structural and functional genomic
architecture of colon cancer cells. Genome Res. 2017, 27, 118–132. [CrossRef]

62. Guo, H.; Zhu, P.; Yan, L.; Li, R.; Hu, B.; Lian, Y.; Yan, J.; Ren, X.; Lin, S.; Li, J.; et al. The DNA methylation
landscape of human early embryos. Nature 2014, 511, 606–610. [CrossRef]

63. Walter, M.; Teissandier, A.; Pérez-Palacios, R.; Bourc’his, D. An epigenetic switch ensures transposon
repression upon dynamic loss of DNA methylation in embryonic stem cells. eLife 2016, 5, e11418. [CrossRef]
[PubMed]

64. Berrens, R.V.; Andrews, S.; Spensberger, D.; Santos, F.; Dean, W.; Gould, P.; Sharif, J.; Olova, N.; Chandra, T.;
Koseki, H.; et al. An endosiRNA-Based Repression Mechanism Counteracts Transposon Activation during
Global DNA Demethylation in Embryonic Stem Cells. Cell Stem Cell 2017, 21, 694–703. [CrossRef]

65. Brink, R.A. A genetic change associated with the R locus in maize which is directed and potentially reversible.
Genetics 1956, 41, 872–889. [PubMed]

66. Kermicle, J.L. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission.
Genetics 1970, 66, 69–85. [PubMed]

67. McClintock, B. Chromosome organization and genic expression. Cold Spring Harb. Symp. Quant. Biol. 1951,
16, 13–47. [CrossRef]

68. McClintock, B. Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 1956, 21, 197–216.
[CrossRef]

69. McClintock, B. The significance of responses of the genome to challenge. Science 1984, 226, 792–801.
[CrossRef]

70. Zhang, H.; Lang, Z.; Zhu, J.-K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol.
2018, 19, 489–506. [CrossRef] [PubMed]

71. Law, J.A.; Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and
animals. Nat. Rev. Genet. 2010, 11, 204–220. [CrossRef] [PubMed]

72. Matzke, M.A.; Mosher, R.A. RNA-directed DNA methylation: An epigenetic pathway of increasing
complexity. Nat. Rev. Genet. 2014, 15, 394–408. [CrossRef] [PubMed]

73. Kenchanmane Raju, S.K.; Barnes, A.C.; Schnable, J.C.; Roston, R.L. Low-temperature tolerance in land plants:
Are transcript and membrane responses conserved? Plant Sci. 2018, 276, 73–86. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/mec.12711
http://dx.doi.org/10.1038/s41598-018-30491-w
http://www.ncbi.nlm.nih.gov/pubmed/30111890
http://dx.doi.org/10.1073/pnas.1604621113
http://www.ncbi.nlm.nih.gov/pubmed/27621458
http://dx.doi.org/10.1126/science.1148861
http://www.ncbi.nlm.nih.gov/pubmed/18174442
http://dx.doi.org/10.1073/pnas.1010383107
http://dx.doi.org/10.1371/journal.pone.0086451
http://www.ncbi.nlm.nih.gov/pubmed/24475122
http://dx.doi.org/10.1101/156042
http://dx.doi.org/10.2217/epi.10.2
http://www.ncbi.nlm.nih.gov/pubmed/22121873
http://dx.doi.org/10.1073/pnas.0913836107
http://www.ncbi.nlm.nih.gov/pubmed/20351280
http://dx.doi.org/10.1101/gr.207522.116
http://dx.doi.org/10.1038/nature13544
http://dx.doi.org/10.7554/eLife.11418
http://www.ncbi.nlm.nih.gov/pubmed/26814573
http://dx.doi.org/10.1016/j.stem.2017.10.004
http://www.ncbi.nlm.nih.gov/pubmed/17247669
http://www.ncbi.nlm.nih.gov/pubmed/17248508
http://dx.doi.org/10.1101/SQB.1951.016.01.004
http://dx.doi.org/10.1101/SQB.1956.021.01.017
http://dx.doi.org/10.1126/science.15739260
http://dx.doi.org/10.1038/s41580-018-0016-z
http://www.ncbi.nlm.nih.gov/pubmed/29784956
http://dx.doi.org/10.1038/nrg2719
http://www.ncbi.nlm.nih.gov/pubmed/20142834
http://dx.doi.org/10.1038/nrg3683
http://www.ncbi.nlm.nih.gov/pubmed/24805120
http://dx.doi.org/10.1016/j.plantsci.2018.08.002
http://www.ncbi.nlm.nih.gov/pubmed/30348330


Genes 2019, 10, 258 16 of 18

74. Lippman, Z.; Gendrel, A.-V.; Black, M.; Vaughn, M.W.; Dedhia, N.; McCombie, W.R.; Lavine, K.; Mittal, V.;
May, B.; Kasschau, K.D.; et al. Role of transposable elements in heterochromatin and epigenetic control.
Nature 2004, 430, 471–476. [CrossRef]

75. Mirouze, M.; Reinders, J.; Bucher, E.; Nishimura, T.; Schneeberger, K.; Ossowski, S.; Cao, J.; Weigel, D.;
Paszkowski, J.; Mathieu, O. Selective epigenetic control of retrotransposition in Arabidopsis. Nature 2009,
461, 427–430. [CrossRef] [PubMed]

76. Tsukahara, S.; Kobayashi, A.; Kawabe, A.; Mathieu, O.; Miura, A.; Kakutani, T. Bursts of retrotransposition
reproduced in Arabidopsis. Nature 2009, 461, 423–426. [CrossRef] [PubMed]

77. Sanchez, D.H.; Paszkowski, J. Heat-induced release of epigenetic silencing reveals the concealed role of an
imprinted plant gene. PLoS Genet. 2014, 10, e1004806. [CrossRef]

78. Pecinka, A.; Dinh, H.Q.; Baubec, T.; Rosa, M.; Lettner, N.; Mittelsten Scheid, O. Epigenetic regulation of
repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 2010, 22, 3118–3129.
[CrossRef]

79. Negi, P.; Rai, A.N.; Suprasanna, P. Moving through the stressed genome: Emerging regulatory roles for
transposons in plant stress response. Front. Plant Sci. 2016, 7, 1448. [CrossRef] [PubMed]

80. Casacuberta, J.M.; Grandbastien, M.A. Characterisation of LTR sequences involved in the protoplast specific
expression of the tobacco Tnt1 retrotransposon. Nucleic Acids Res. 1993, 21, 2087–2093. [CrossRef] [PubMed]

81. Cavrak, V.V.; Lettner, N.; Jamge, S.; Kosarewicz, A.; Bayer, L.M.; Mittelsten Scheid, O. How a retrotransposon
exploits the plant’s heat stress response for its activation. PLoS Genet. 2014, 10, e1004115. [CrossRef]

82. Butelli, E.; Licciardello, C.; Zhang, Y.; Liu, J.; Mackay, S.; Bailey, P.; Reforgiato-Recupero, G.; Martin, C.
(Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges.
Plant Cell 2012, 24, 1242–1255. [CrossRef] [PubMed]

83. Morata, J.; Tormo, M.; Alexiou, K.G.; Vives, C.; Ramos-Onsins, S.E.; Garcia-Mas, J.; Casacuberta, J.M.
The evolutionary consequences of transposon-related pericentromer expansion in melon. Genome Biol. Evol.
2018, 10, 1584–1595. [CrossRef] [PubMed]

84. Springer, N.M.; Lisch, D.; Li, Q. Creating order from chaos: Epigenome dynamics in plants with complex
genomes. Plant Cell 2016, 28, 314–325. [CrossRef] [PubMed]

85. Fujimoto, R.; Kinoshita, Y.; Kawabe, A.; Kinoshita, T.; Takashima, K.; Nordborg, M.; Nasrallah, M.E.;
Shimizu, K.K.; Kudoh, H.; Kakutani, T. Evolution and control of imprinted FWA genes in the genus
arabidopsis. PLoS Genet. 2008, 4, e1000048. [CrossRef] [PubMed]

86. Song, X.; Cao, X. Transposon-mediated epigenetic regulation contributes to phenotypic diversity and
environmental adaptation in rice. Curr. Opin. Plant Biol. 2017, 36, 111–118. [CrossRef] [PubMed]

87. Quadrana, L.; Bortolini Silveira, A.; Mayhew, G.F.; LeBlanc, C.; Martienssen, R.A.; Jeddeloh, J.A.; Colot, V.
The Arabidopsis thaliana mobilome and its impact at the species level. eLife 2016, 5. [CrossRef]

88. Quadrana, L.; Etcheverry, M.; Gilly, A.; Caillieux, E.; Madoui, M.-A.; Guy, J.; Silveira, A.B.; Engelen, S.;
Baillet, V.; Wincker, P.; et al. Transposon accumulation lines uncover histone H2A.Z-driven integration bias
towards environmentally responsive genes. BioRxiv 2018. [CrossRef]

89. Thieme, M.; Bucher, E. Transposable elements as tool for crop improvement. Adv. Bot. Res. 2018, 88, 165–202.
90. Berriman, M.; Haas, B.J.; LoVerde, P.T.; Wilson, R.A.; Dillon, G.P.; Cerqueira, G.C.; Mashiyama, S.T.;

Al-Lazikani, B.; Andrade, L.F.; Ashton, P.D.; et al. The genome of the blood fluke Schistosoma mansoni.
Nature 2009, 460, 352–358. [CrossRef]

91. Lepesant, J.M.J.; Roquis, D.; Emans, R.; Cosseau, C.; Arancibia, N.; Mitta, G.; Grunau, C. Combination of
de novo assembly of massive sequencing reads with classical repeat prediction improves identification of
repetitive sequences in Schistosoma mansoni. Exp. Parasitol. 2012, 130, 470–474. [CrossRef] [PubMed]

92. Wijayawardena, B.K.; DeWoody, J.A.; Minchella, D.J. The genomic proliferation of transposable elements
in colonizing populations: Schistosoma mansoni in the new world. Genetica 2015, 143, 287–298. [CrossRef]
[PubMed]

93. Philippsen, G.S.; DeMarco, R. Impact of transposable elements in the architecture of genes of the human
parasite Schistosoma mansoni. Mol. Biochem. Parasitol. 2018. [CrossRef]

94. Raddatz, G.; Guzzardo, P.M.; Olova, N.; Fantappie, M.R.; Rampp, M.; Schaefer, M.; Reik, W.; Hannon, G.J.;
Lyko, F. Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proc. Natl. Acad. Sci. USA
2013, 110, 8627–8631. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nature02651
http://dx.doi.org/10.1038/nature08328
http://www.ncbi.nlm.nih.gov/pubmed/19734882
http://dx.doi.org/10.1038/nature08351
http://www.ncbi.nlm.nih.gov/pubmed/19734880
http://dx.doi.org/10.1371/journal.pgen.1004806
http://dx.doi.org/10.1105/tpc.110.078493
http://dx.doi.org/10.3389/fpls.2016.01448
http://www.ncbi.nlm.nih.gov/pubmed/27777577
http://dx.doi.org/10.1093/nar/21.9.2087
http://www.ncbi.nlm.nih.gov/pubmed/8389038
http://dx.doi.org/10.1371/journal.pgen.1004115
http://dx.doi.org/10.1105/tpc.111.095232
http://www.ncbi.nlm.nih.gov/pubmed/22427337
http://dx.doi.org/10.1093/gbe/evy115
http://www.ncbi.nlm.nih.gov/pubmed/29901717
http://dx.doi.org/10.1105/tpc.15.00911
http://www.ncbi.nlm.nih.gov/pubmed/26869701
http://dx.doi.org/10.1371/journal.pgen.1000048
http://www.ncbi.nlm.nih.gov/pubmed/18389059
http://dx.doi.org/10.1016/j.pbi.2017.02.004
http://www.ncbi.nlm.nih.gov/pubmed/28273484
http://dx.doi.org/10.7554/eLife.15716
http://dx.doi.org/10.1101/447870
http://dx.doi.org/10.1038/nature08160
http://dx.doi.org/10.1016/j.exppara.2012.02.010
http://www.ncbi.nlm.nih.gov/pubmed/22381218
http://dx.doi.org/10.1007/s10709-015-9825-6
http://www.ncbi.nlm.nih.gov/pubmed/25681233
http://dx.doi.org/10.1016/j.molbiopara.2018.12.007
http://dx.doi.org/10.1073/pnas.1306723110
http://www.ncbi.nlm.nih.gov/pubmed/23641003


Genes 2019, 10, 258 17 of 18

95. Geyer, K.K.; Chalmers, I.W.; MacKintosh, N.; Hirst, J.E.; Geoghegan, R.; Badets, M.; Brophy, P.M.; Brehm, K.;
Hoffmann, K.F. Cytosine methylation is a conserved epigenetic feature found throughout the phylum
Platyhelminthes. BMC Genom. 2013, 14, 462. [CrossRef]

96. Roquis, D.; Taudt, A.; Geyer, K.K.; Padalino, G.; Hoffmann, K.F.; Holroyd, N.; Berriman, M.; Aliaga, B.;
Chaparro, C.; Grunau, C.; et al. Histone methylation changes are required for life cycle progression in the
human parasite Schistosoma mansoni. PLoS Pathog. 2018, 14, e1007066. [CrossRef] [PubMed]

97. Picard, M.A.L.; Boissier, J.; Roquis, D.; Grunau, C.; Allienne, J.-F.; Duval, D.; Toulza, E.; Arancibia, N.;
Caffrey, C.R.; Long, T.; et al. Sex-biased transcriptome of Schistosoma mansoni: Host-parasite interaction,
genetic determinants and epigenetic regulators are associated with sexual differentiation. PLoS Negl. Trop. Dis.
2016, 10, e0004930. [CrossRef]

98. Hoen, D.R.; Hickey, G.; Bourque, G.; Casacuberta, J.; Cordaux, R.; Feschotte, C.; Fiston-Lavier, A.-S.;
Hua-Van, A.; Hubley, R.; Kapusta, A.; et al. A call for benchmarking transposable element annotation
methods. Mob. DNA 2015, 6, 13. [CrossRef]

99. González, J.; Petrov, D.A. Evolution of Genome Content: Population Dynamics of Transposable Elements in
Flies and Humans. Methods Mol. Biol. 2012, 855, 361–383.

100. Flutre, T.; Duprat, E.; Feuillet, C.; Quesneville, H. Considering transposable element diversification in de
novo annotation approaches. PLoS ONE 2011, 6, e16526. [CrossRef]

101. Berthelier, J.; Casse, N.; Daccord, N.; Jamilloux, V.; Saint-Jean, B.; Carrier, G. A transposable
element annotation pipeline and expression analysis reveal potentially active elements in the microalga
Tisochrysis lutea. BMC Genom. 2018, 19, 378. [CrossRef]

102. Stewart, C.; Kural, D.; Strömberg, M.P.; Walker, J.A.; Konkel, M.K.; Stütz, A.M.; Urban, A.E.; Grubert, F.;
Lam, H.Y.; Lee, W.P.; et al. A comprehensive map of mobile element insertion polymorphisms in humans.
PloS Genet. 2011, 7, e1002236. [CrossRef] [PubMed]

103. Hénaff, E.; Zapata, L.; Casacuberta, J.M.; Ossowski, S. Jitterbug: Somatic and germline transposon insertion
detection at single-nucleotide resolution. BMC Genom. 2015, 16, 768. [CrossRef] [PubMed]

104. Zhuang, J.; Wang, J.; Theurkauf, W.; Weng, Z. TEMP: A computational method for analyzing transposable
element polymorphism in populations. Nucleic Acids Res. 2014, 42, 6826–6838. [CrossRef] [PubMed]

105. Gardner, E.J.; Lam, V.K.; Harris, D.N.; Chuang, N.T.; Scott, E.C.; Pittard, W.S.; Mills, R.E.; The 1000 Genomes
Project Consortium; Devine, S.E. The mobile element locator tool (MELT): Population-scale mobile element
discovery and biology. Genome Res. 2017, 27, 1916–1929. [CrossRef] [PubMed]

106. Köfler, R.; Gómez-Sánchez, D.; Schlötterer, C. PoPoolationTE2: Comparative population genomics of
transposable elements using pool-seq. Mol. Biol. Evol. 2016, 33, 2759–2764. [CrossRef] [PubMed]

107. Adrion, J.R.; Song, M.J.; Schrider, D.R.; Hahn, M.W.; Schaack, S. Genome-wide estimates of transposable
element insertion and deletion rates in Drosophila melanogaster. Genome Biol. Evol. 2017, 9, 1329–1340.
[CrossRef]

108. Carpentier, M.-C.; Manfroi, E.; Wei, F.-J.; Wu, H.-P.; Lasserre, E.; Llauro, C.; Debladis, E.; Akakpo, R.;
Hsing, Y.-I.; Panaud, O. Retrotranspositional landscape of Asian rice revealed by 3000 genomes. Nat. Commun.
2019, 10, 24. [CrossRef]

109. Disdero, E.; Filée, J. LoRTE: Detecting transposon-induced genomic variants using low coverage PacBio long
read sequences. Mob. DNA 2017, 8, 5. [CrossRef]

110. Ewing, A.D. Transposable element detection from whole genome sequence data. Mob. DNA 2015, 6, 24.
[CrossRef]

111. Koch, P.; Platzer, M.; Downie, B.R. RepARK—De novo creation of repeat libraries from whole-genome NGS
reads. Nucleic Acids Res. 2014, 42, 1–12. [CrossRef] [PubMed]

112. Zytnicki, M.; Akhunov, E.; Quesneville, H. Tedna: A transposable element de novo assembler. Bioinformatics
2014, 30, 1–3. [CrossRef] [PubMed]

113. Novák, P.; Neumann, P.; Pech, J.; Steinhaisl, J.; Macas, J. RepeatExplorer: A Galaxy-based web server
for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads.
Bioinformatics 2013, 29, 792–793. [CrossRef] [PubMed]

114. Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359.
[CrossRef]

115. Jurka, J.; Kapitonov, V.V.; Pavlicek, A.; Klonowski, P.; Kohany, O.; Walichiewicz, J. Repbase update, a database
of eukaryotic repetitive elements. Cytogenet. Genome Res. 2005, 110, 462–467. [CrossRef] [PubMed]

http://dx.doi.org/10.1186/1471-2164-14-462
http://dx.doi.org/10.1371/journal.ppat.1007066
http://www.ncbi.nlm.nih.gov/pubmed/29782530
http://dx.doi.org/10.1371/journal.pntd.0004930
http://dx.doi.org/10.1186/s13100-015-0044-6
http://dx.doi.org/10.1371/journal.pone.0016526
http://dx.doi.org/10.1186/s12864-018-4763-1
http://dx.doi.org/10.1371/journal.pgen.1002236
http://www.ncbi.nlm.nih.gov/pubmed/21876680
http://dx.doi.org/10.1186/s12864-015-1975-5
http://www.ncbi.nlm.nih.gov/pubmed/26459856
http://dx.doi.org/10.1093/nar/gku323
http://www.ncbi.nlm.nih.gov/pubmed/24753423
http://dx.doi.org/10.1101/gr.218032.116
http://www.ncbi.nlm.nih.gov/pubmed/28855259
http://dx.doi.org/10.1093/molbev/msw137
http://www.ncbi.nlm.nih.gov/pubmed/27486221
http://dx.doi.org/10.1093/gbe/evx050
http://dx.doi.org/10.1038/s41467-018-07974-5
http://dx.doi.org/10.1186/s13100-017-0088-x
http://dx.doi.org/10.1186/s13100-015-0055-3
http://dx.doi.org/10.1093/nar/gku210
http://www.ncbi.nlm.nih.gov/pubmed/24634442
http://dx.doi.org/10.1093/bioinformatics/btu365
http://www.ncbi.nlm.nih.gov/pubmed/24894500
http://dx.doi.org/10.1093/bioinformatics/btt054
http://www.ncbi.nlm.nih.gov/pubmed/23376349
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1159/000084979
http://www.ncbi.nlm.nih.gov/pubmed/16093699


Genes 2019, 10, 258 18 of 18

116. Mikkelsen, T.S.; Ku, M.; Jaffe, D.B.; Issac, B.; Lieberman, E.; Giannoukos, G.; Alvarez, P.; Brockman, W.;
Kim, T.-K.; Koche, R.P.; et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed
cells. Nature 2007, 448, 553–560. [CrossRef] [PubMed]

117. Rosenfeld, J.A.; Wang, Z.; Schones, D.E.; Zhao, K.; DeSalle, R.; Zhang, M.Q. Determination of enriched
histone modifications in non-genic portions of the human genome. BMC Genom. 2009, 10, 143. [CrossRef]
[PubMed]

118. Day, D.S.; Luquette, L.J.; Park, P.J.; Kharchenko, P.V. Estimating enrichment of repetitive elements from
high-throughput sequence data. Genome Biol. 2010, 11, R69. [CrossRef] [PubMed]

119. Huda, A.; Mariño-Ramírez, L.; Jordan, I.K. Epigenetic histone modifications of human transposable elements:
Genome defense versus exaptation. Mob. DNA 2010, 1, 2. [CrossRef]

120. Smit, A.F.A.; Hubley, R.; Green, P. RepeatMasker Open-4.0. 2013–2015. Available online: http://www.
repeatmasker.org (accessed on 30 March 2019).

121. Han, B.W.; Wang, W.; Zamore, P.D.; Weng, Z. piPipes: A set of pipelines for piRNA and transposon
analysis via small RNA-seq, RNA-seq, degradome- and CAGE-seq, ChIP-seq and genomic DNA sequencing.
Bioinformatics 2015, 31, 593–595. [CrossRef]

122. Beck, S.; Rakyan, V.K. The methylome: Approaches for global DNA methylation profiling. Trends Genet.
2008, 24, 231–237. [CrossRef] [PubMed]

123. Pomraning, K.R.; Smith, K.M.; Freitag, M. Genome-wide high throughput analysis of DNA methylation in
eukaryotes. Methods 2009, 47, 142–150. [CrossRef]

124. Xie, H.; Wang, M.; Bonaldo, M.D.F.; Smith, C.; Rajaram, V.; Goldman, S.; Tomita, T.;
Soares, M.B. High-throughput sequence-based epigenomic analysis of Alu repeats in human cerebellum.
Nucleic Acids Res. 2009, 37, 4331–4340. [CrossRef] [PubMed]

125. Su, J.; Shao, X.; Liu, H.; Liu, S.; Wu, Q.; Zhang, Y. Genome-wide dynamic changes of DNA methylation of
repetitive elements in human embryonic stem cells and fetal fibroblasts. Genomics 2012, 99, 10–17. [CrossRef]
[PubMed]

126. Ekram, M.B.; Kim, J. High-throughput targeted repeat element bisulfite sequencing (HT-TREBS):
genome-wide DNA methylation analysis of IAP LTR retrotransposon. PLoS ONE 2014, 9, e101683. [CrossRef]

127. Daron, J.; Slotkin, R.K. EpiTEome: Simultaneous detection of transposable element insertion sites and their
DNA methylation levels. Genome Biol. 2017, 18, 91. [CrossRef]

128. Brennecke, J.; Malone, C.D.; Aravin, A.A.; Sachidanandam, R.; Stark, A.; Hannon, G.J. An epigenetic role for
maternally inherited piRNAs in transposon silencing. Science 2008, 322, 1387–1392. [CrossRef]

129. Yang, W.R.; Ardeljan, D.; Pacyna, C.N.; Payer, L.M.; Burns, K.H. SQuIRE reveals locus-specific regulation of
interspersed repeat expression. Nucleic Acids Res. 2019. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nature06008
http://www.ncbi.nlm.nih.gov/pubmed/17603471
http://dx.doi.org/10.1186/1471-2164-10-143
http://www.ncbi.nlm.nih.gov/pubmed/19335899
http://dx.doi.org/10.1186/gb-2010-11-6-r69
http://www.ncbi.nlm.nih.gov/pubmed/20584328
http://dx.doi.org/10.1186/1759-8753-1-2
http://www.repeatmasker.org
http://www.repeatmasker.org
http://dx.doi.org/10.1093/bioinformatics/btu647
http://dx.doi.org/10.1016/j.tig.2008.01.006
http://www.ncbi.nlm.nih.gov/pubmed/18325624
http://dx.doi.org/10.1016/j.ymeth.2008.09.022
http://dx.doi.org/10.1093/nar/gkp393
http://www.ncbi.nlm.nih.gov/pubmed/19458156
http://dx.doi.org/10.1016/j.ygeno.2011.10.004
http://www.ncbi.nlm.nih.gov/pubmed/22044633
http://dx.doi.org/10.1371/journal.pone.0101683
http://dx.doi.org/10.1186/s13059-017-1232-0
http://dx.doi.org/10.1126/science.1165171
http://dx.doi.org/10.1093/nar/gky1301
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Examples of the Importance of TEs in Epigenomic Analyses (à Mettre Avant) 
	In Drosophila and Other Diptera 
	In Mammalian Genomes 
	In Plants 
	The Case of Schistosoma, a Non-Model Organism 

	Bioinformatic Analysis of TE Sequences in Genomes 
	TE Insertion Identification and Polymorphism 
	Methods to Analyze Epigenetic Modifications Associated to TEs 
	On the Difficulty to Consider TE Sequences 
	Histone Modifications 
	DNA Methylation 
	Small RNA Regulation 
	Prospective Issues 


	Conclusions 
	References

