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OPTIMAL CONTROL OF A POPULATION DYNAMICS MODEL
WITH MISSING BIRTH RATE*

CYRILLE KENNE!, GUNTER LEUGERING!, AND GISELE MOPHOUS$

Abstract. We consider a model of population dynamics with age dependence and spatial
structure but unknown birth rate. Using the notion of Low-regret [1], we prove that we can bring
the state of the system to a desired state by acting on the system via a localized distributed control.
We provide the optimality systems that characterize the Low-regret control. Moreover, using an
appropriate Hilbert space, we prove that the family of Low-regret controls tends to a so-called No-
regret control, which we, in turn, characterize.

Key words. Population dynamics, incomplete data, optimal control, No-regret control, Low-
regret control, Euler-Lagrange formula.

AMS subject classifications. 49J20, 92D25, 93C41

1. Introduction. In the modeling of the dynamics of some invasive species
governed by diffusive systems with age dependency(for instance invasive plants in
bounded domains), it may not be possible to have sufficient observations to obtain a
good approximation of the birth function or/and the mortality function [2]. In order
to avoid the disappearance of the other species it seems natural to control those inva-
sive species. More precisely, let 8 C R? be a bounded domain in which the invasive
species live. We denote by I' the boundary of the domain and we assume that it is
of class C2. For the time T' > 0 and the life expectancy of an individual A > 0, we
set U =(0,T)x(0,4),Q=UxQ,X=UxT,Qa=(0,4) xQ, Qr =(0,T) x Q
and @, = U X w, where w is a non-empty open subset of (2. Then we consider a
model describing the dynamics of an invasive species with age dependence and spatial
structure:

dy 0Oy B )
% 94 Ay+py = [f+uxe in Q,
(1.1) y = 0 on X,
y(Oa ) ) = yi‘ in QA?
y(-,0,) = [y 9(a)y(t,a,z) da in Qr,

where
e y = y(t, a,x) is the distribution of individuals of age a > 0, at time ¢ > 0 and
location = € €.
e The recruitment f € L?(Q) is a positive periodic function.
e The control v € L?(Q) which corresponds to the removal of the individuals in
a sub-domain w of € and yx,, denote the characteristic function of the control
set w.
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2 C. KENNE, G. LEUGERING, AND G. MOPHOU

e The mortality rate 4 = u(a) > 0 is a known increasing positive function
which is continuous on [0, A], whereas the fertility rate g = g(a) € L>(0, A)
is unknown and positive.

We assume as in [3], that:
a
(Hy) lim / p(s)ds = +oo,

a—A JO
which means that each individual in the population dies before age A. For more

literature on the population dynamics model and the signification of assumption (H1),
we refer to [3, 4, 5, 6, 7, 8, 9] and the reference therein.

Remark 1.1. Set

(1.2) W(T, A) = {p € L*(U; H)()); % % €L (U;H—1<ﬂ>)} :
Then we have (see [10]) that
(1L3)  W(T,A) € C(0.7], L*(Qa)) and W(T, 4) € €([0, 4], *(@r)).

Under the assumption on the data, (1.1) has a solution y(v,g) = y(t,a,z;v,g) in
W (T, A). We define the cost function

(1.4) J(v,9) = lly(v,9) — Zd”%?(Q) + N||U||2L2(Qw)7

where 24 € L*(Q) and N > 0 are given.

In this paper, we don’t want to determine the unknown fertility rate g. Actually,
we want to bring the distribution of individuals to a desired distribution z4 by acting
on the system via a control v. In other words, we are interested in solving the following
optimization problem:

inf sup  J(v,9).

vel?(Qw) ger2(0,4)

But observing that we could have sup J(v, g) = 400, we consider the optimization
g€L2(0,A)
problem:

(1.5) inf sup (J(v,9) — J(0,9)).

vEL2(Qu) geL2(0,A)

Problem (1.5) is called the No-regret control problem. The notions of No-regret
control and Low-regret control were introduced by J. -L. Lions [1] in order to control
a phenomenon described by a parabolic equation with missing initial condition. Let
us recall that one obtains the Low-regret control problem by relaxing the No-regret
control one. See (3.23),(3.24),(3.25) for the relaxation used in this article. By means
of the Legendre-Fenchel transform, we prove that the Low-regret control problem
is equivalent to a classical optimal control problem. The most difficult task is to
prove that this family of controls (called Low-regret controls) converges towards the
No-regret control. Also in [11], J. -L. Lions proved that these notion can be used
in the framework of decomposition methods. In [12], O. Nakoulima et al. applied
this notion to linear evolution equations with incomplete data and they proved that
the Low-regret controls converges to the No-regret control for which they obtained a
singular optimality system. B. Jacob et al. [13] generalized the notion of No-regret
control to population dynamics with incomplete initial data with a distributed control
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CONTROL OF A POPULATION DYNAMICS MODEL WITH MISSING BIRTH RATE 3

acting on the whole domain. They proved the existence and uniqueness of the No-
regret control and gave a singular optimality system that characterizes this control. In
the nonlinear case, this notion was considered by O. Nakoulima et al. [14] to control
on the whole domain a nonlinear system with incomplete data. Observing on the one
hand that the No-regret control is typically not easy to characterize and, on the other
hand that the Low-regret cost function may not be convex, they proved by adapting
this cost to a No-regret control that the adapted Low-regret control converge towards
this No-regret control characterized by a singular optimality system. In [15], J. Vélin
studied systems governed by quasilinear equations with unknown boundary condition
and a control acting on the whole domain. After established some regularity results
for the control-to-state and control-perturbation applications and its derivatives, he
proved by proceeding as in [14] that the adapted Low-regret control converge towards a
No-regret control characterized gain by a singular optimality. Note that in the above
papers, the convergence of the Low-regret control towards the No-regret control is
obtained by controlling on the whole domain.

In this paper, we use the notion of No-regret and Low-regret to control a model
describing the dynamics of population with age dependence and spatial structure
with missing birth rate by acting on a part of the domain. Observing that with an
unknown the birth rate, the control problem considered is now non-linear, we start by
proving some regularity results. Then we prove the existence of a No-regret control.
We then regularize the No-regret control problem to a Low-regret control problem
((3.23),(3.24),(3.25)). We introduce an appropriate Hilbert space to obtain estimates
on the states satisfying the optimality systems and by that characterize the Low-regret
control. Then we prove that the adapted Low-regret control converges towards a No-
regret control and establish a singular optimality system that, in turn, characterizes
this no-regret control.

The rest of this paper is structured as follows. In section 2, we give some regularity
results. We study the Low-regret and no-regret control and their characterizations in
section 3. A conclusion is given in section 4.

2. Preliminary results. In order to solve the optimization problem (3.2), we
need some preliminary results.
In what follows, we adopt the following notation

L = g—kg—A—kuI,
(2.1) ot Oa
' o= 290 A
= Ot da o

where [ is the identity operator.

PROPOSITION 2.1. Let y = y(v,g) be a solution of (1.1). Then the application
(v,9) + y(v,g) is a continuous function from L*(Q.) x L*(0, A) onto L*(U, H}(2)).

Proof. Let (vo, go) € L*(Q.) x L%(0, A). We show that (v, g) — y(v, g) is contin-
uous at (vg, go)-
Set ¥ = y(v,9) — y(vo, go), then 7 is solution to the problem

Ly = wvxq.,—voxq., n @,
y = 0 on X,
2.2 _ .
( ) y(oa Y ) = 0 m QAa
y('v 0, ) = 7 in  Qr,
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4 C. KENNE, G. LEUGERING, AND G. MOPHOU

where for (t,7) € Qr,

A
n(t, ) = / 9(@)y(t, 0,230, 9) — go(a)y(t, a, ; v0, go)] das

106 If we set z = e "t with r > 0, then we obtain that z is solution to the problem

Lz+rz = e (vxq. —voxq.) in Q,
. z = 0 on X,
107 (2.3) 20, = 0 in Qu
2(1,0,)) = e'p in - Qr.
Multiplying the first equation of system (2.3) by z and integrating by parts over @,
we get
—rt 1 2 1 2
e (v — o)z drdtda = §||Z(T7 g ')||L2(QA) - §||Z(07'7')||L2(QA)

w

1 1
264 N aor) = 516,09 Ry
HVZ”%Q(Q) —|—/ (r+ p)2>
Q
108 From this we deduce that
2 2 1 2 1 2 Lo e
109 (24) IVzllz2g) +rllzllz2g) < §||z(-,0, Mz + 5”“ —vollz2(q,,) + §||Z||L2(Q)7
110 because g > 0. On the other hand, observing that for (¢,x) € Qr,

A
111 Z(ta 03 ‘T) = 6*7’1\/ [g((l)y(t, a,T,v, g) - go(a)y(t, a, T, Vg, 90)] da
0

A

A

112 p— / (9(a) — gol@)y(t, a,, v, g)] da+ / go(a)z da,
0 0

113 we obtain

114 l[=(-,0, ')||2L2(QT) <2[g - 90||%2(0,A)Hy||i2(cg) + 2”90”%2(0,,4)||z\|%2(Q)'
Thus, (2.4) gives

1
Vel + (7 = Il = 5) Il < Lol bl

1
+ §||U - UOH%%QM)'

115 Choosing r such that r > ||g0||2L2(0 i 1, we have

1
116 ||Z||2L2(U;H5(Q)) <llg— 90\|%2(0,A)||y||3:2(c2) + 5”“ - UOH%Q(QM)'

117  From this we deduce

V2
118 ||Z||L2(U;Hg(§z)) < lg = gollz20,4) Iyl 22(@) + 7”” —wollz2(qQ.)-

This manuscript is for review purposes only.



CONTROL OF A POPULATION DYNAMICS MODEL WITH MISSING BIRTH RATE 5

119 Therefore,

v s ﬁ T
120 Hy||L2(U;Hg(Q)) <elg— gollzz(0,4) 1Yl L2(q) + o€ Mo - vollL2(q.)-
121 As (v,g9) = (vo,90), we have § — 0 strongly in L*(U; H}(2)). Hence y(v,g) —
122 y(vo, go) strongly in L2(U; H} (2)) as (v, g) — (vo,go)- d

123 PROPOSITION 2.2. Let A > 0. Let g,h € L*(0,A) and v,w € L*(Q.). Let also
A Ah) —
yw+ 2w, g+ M) —y(v.g9) o (7))

125 converges strongly in L?(U; H} () as A — 0 to a function § which is solution of

124y = y(v,g) be a solution of (1.1). Set gy, =

Ly = wxqg, in  Q,
. y = 0 on X,
e 29) 70.1) = 0 in Q.
_ A _ A .
9(~0,-) = [y 9(a)g da+ [ h(a)y(t,a,x5v,9) da in  Qr.
127 Proof. 7, is a solution to the problem
L?A = wXQW in Q7
yy = 0 on X,
128 7x(0,-) = 0 in - Qa,
A A
7,(,0,:) = / g(a)gy da—!—/ ha)y(t,a,z;v 4+ Aw,g + Ah) da in  Qr.
0 0
120 Define yy =y, — 7, where ¥ is a solution to (2.5). Then y, is a solution to
Lyyx = 0 in @,
yy = 0 on X,
130 (2.6) ya(0,-,-) = 0 in Qua,

ya(+, 0, )

A
/Q(G)ZJA da+m in Qp,
0

where for (¢,7) € Qr,

A
mt,z) = / h(a) [y(t, a 250 + M, g + Mh) — y(t,a,z30,9)] da.
0

131 We set zy = e "y, with 7 > 0. Then we obtain that z is a solution to the problem

Lzy+rzy = 0 in  Q,
N o = 0 on %,
132 (2.7) 20(0,5,) = 0 in Qa,
a(:0,) = [ gl@)m date My in Qr.

133 Multiplying the first equation of system (2.7) by z) and integrating by parts over @,
134 then using the fact that p > 0, we obtain

1
135 (2.8) IVaallZzig) + rllzallzzg) < §||Z/\('a07')”%2(QT)'
Since

||Z)\('707 )HQLQ(QT) < 2||9||%2(0,A)||Z/\||%2(Q)
+ 2||hH2L2(O,A)Hy(U + )‘wvg + Ah) - y(vvg)H%Z(U;Hé(Q))v

This manuscript is for review purposes only.



6 C. KENNE, G. LEUGERING, AND G. MOPHOU
it follows from (2.8) that

||VZ/\||L2(Q) +(r— H9||L2(0 A))”Z/\”L?(Q)
1Al 200,41y (v + Mw, g+ Ah) = y(v, 9) 172, HL(Q)"

136 Choosing r such that r > ||9||2L2(0 A)» We deduce

137 (2.9) Al L2 m ) < hll20,4)lly(v + Aw, g + M) — y(v, 9)l| L2012 (2))-
138  Hence,
130 (2.10) lyallL2 sz < €PNz, lly(v + Aw, g + Ah) = y(v,9) || 22(@)

140  Passing to the limit in this latter identity when A — 0 and using the fact that the func-
141 tion (v,g) = y(v,g) is continuous, it follows that yy — 0 strongly in L*(U; H}(2)).

142 This means that (7,) converges to ¥ strongly in L?(U; HE(2)) as A — 0. o
143 PropoSITION 2.3. The mapping
dy 2 2
144 a—g( 9): L*(Qu,) — L (L*(0, A); L*(U; H) ()
9y
145 v =—(v,g
146 dg (v, 5),
147 is continuous.
0
148 Proof. From Proposition 2.2, we have that g(h) = a—z(v,g) (h) is a solution to
Ly(h) = 0 in  Q,
" yh) = 0 on X,
L y(h)(()a?) =0 in Qa,
y(h)(-,0,-) fo da+f0 Yy(t,a,z;v,9) da in Q.

150 Let vy, vy € L3(Qy). Set 7, (h) = %(vl,g)(h), 7y(h) = g—z(vg,g)(h) and take z(h) =

151 e " (g, (h) —Yy(h)), r > 0. Tt then follows that Z(h) is a solution to problem
L

zZ(h)+rz(h) = 0 in Q,
(h,) - O on 27
152 (2.11) zZ(h)(0,-,r) = 0 A n Qa,
A0) = [ g@z) dat et i Qr,
0

153 where for (t,z) € Qr,

A
154 (212) n4(t’x) = / h(a’)(y(t?avx;vlag) - y(tvaa‘r;v27g)) da.
0

155  Multiplying the first equation of system (2.11) by Z(h) and integrating by parts over
156 @, we obtain

1 1. 1,
SIEOT ) + 5 A T2 — IR 0,91z )

57 (2.13
1 (213) +||Vz(h)|%2(Q)+/Q(r+u)z(h):0.

This manuscript is for review purposes only.



CONTROL OF A POPULATION DYNAMICS MODEL WITH MISSING BIRTH RATE 7

Observing

||E(h)(-,07')||%2(QT) < 2”9!%2(0’14)||§(h)”%2(@) )
+ Hh”LQ(O,A)”y(Ulvg) - y(v2a9)||L2(U;Hé(Q))

158 and choosing in (2.13) r such that r > HQH%Q(O 4)» We deduce

159 (2.14) IZ) |2 w;mi ) < Ihllzz0,4)[y(v1, 9) — y(v2, )l L2 m1 ()

160 Therefore,

161 (215) w1 (h) = To (W)l p2w;ma o) < €7 1Bl 20,01y (01, 9) — (02, 9)l L2 w2 (0

from which we deduce

71 —%lll = sup [91(h) = Yo (M)l L2 (w12 ()

heL2(0,A),|[h]I<1

ey (vi,9) = y(v2, 9l 23 (2)s

IN

where |[||-||| stands for the norm in £ (L?(0, A); L?(U; Hg(£2))). This leads us to

dy dy r
‘H(‘)g(vl’g) - @(UQ’Q)H‘ < e y(vr,9) = y(va, 9) L2 m3 )

162 Passing to the limit in this latter inequality when v; — wve while using Proposition
163 2.2, we obtain that g—z(vl,g) converges to g—g(vg,g) in £ (L0, A); L*(U; H{(2))). O

164 3. Resolution of the optimization problem (1.5). In this section, we are
165 concerned with the optimization problem (1.5). As the Low-regret and No-regret
166 notion introduced by Lions [1] uses the decomposition of the solution of (1.1) on the
167 form y(v,g) = y(v,0) + p(g) where y(v,0) is solution of (1.1) with ¢ = 0 and ¢(g)
168 a function depending of g, this decomposition is no longer valid because the map
169 g — y(v,g) from L?(0, A) to L?(U; H}(Q2)) is non-linear. Thus using the regularity
170 results of y proven in Proposition 2.1 and Proposition 2.2, we replace the cost function
171 defined in (1.4) by its linearized form with respect to g. We thus consider as in [17]
172 the new cost-function

173 (3.1) Ji1(v,g) = J(v,0) + %(v,())(g).

174 Then, we consider the following new optimization problem:

175 (3.2 inf Ji(v,g9) — J1(0,9)).
o (32) veigl(Qw)gef‘B(%A)( 1(v,9) = J1(0,9))

176 Let y(v,0) € L*(U; H} (£2)) be the solution of

Ly(v,0) = f+ox, in Q,
o y = 0 on %,
177 (3:3) y(0,-,-) = 3° in Qa,

y('vov') = 0 in QT‘

178 Then we have the following result.

This manuscript is for review purposes only.



8 C. KENNE, G. LEUGERING, AND G. MOPHOU

179 PROPOSITION 3.1. For any (v,g) € L?(Q.) x L?(0,A), the following equality
180  holds:
181 (3.4) Ji(v,g) = J(v,0) + 2/ (%(v,O)(g)) (y(v,0) — z4) dt da dz,

Q

where J is the cost function defined in (1.4) and

oJ IERT J(v,tg) *J(%O)
5, (1 0)(g) = lim t .

Proof. Observing on the one hand

J(v,tg) = lly(v,tg) — zallfaq) + Nllvllzz@w)
J(v,0) + lly(v,tg) — y(v,0)l|72(q)

+ 2 /Q(y(v,tg) —y(v,0))(y(v,0) — z4)dt da dz,

and on the other hand

oJ . J(v,tg) — J(v,0)
S (0.0)(g) = lim

’
t—0 t

using Proposition 2.2, we obtain that

oJ B y
L0 - 2 /Q (5g<v,o><g>) (y(v,0) — z0)dt da da

182 So, J1(v,g9) = J(v,0) + Q/Q <gZ(v,O)(g)> (y(v,0) — zq)dt da dzx. |

183 PROPOSITION 3.2. For any (v,g) € L*(Q.) x L?(0, A), we have
A
SB5) A~ h0.9) = J@0) - 0.0 +2 [ S@vg(da
0
185 where for any a € (0, A),
@6 S = [ e 080 (0.5) — y(h o, 5:0.060)(1,0.2) did

187 with £(v), a solution to

L*¢(v) = y(,0) -z in @,
o B0 () = 0 -
§)(4,:) = 0 in Qr.
189 Proof. In view of (3.4), we have
Ji(v,9) = J1(0,9) = J('U7O)a_y=](070)
90 (3.8) + 2 <8g(v,0)(g)) (y(v,0) — z4) dt dadx
Yy

This manuscript is for review purposes only.
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0
From Proposition 2.2, we have that §(g) = a—y(u 0)(g) is the solution to
g
Ly(g) = 0 in - Q,
7(9) = 0 on X,
(3.9) 79)(©0,-) = 0 in Qa,
7(9)(-,0,) = / g9(a)y(t,a,2;v,0) da in  Qr.
0

So, if we multiply the first equation of (3.9) by £(v) and integrate by parts over @,

we get

—/ gla)y(t,a,z;v,0)¢(v) (¢, 0, x) dtdadx—l—/
Q

which can be rewritten as

Q

@ v v -z adr =
(3.10) / (69( ’0)(9)) (y(v,0) = z4) dt dad
f; 9(a)y(t, a,z;v,0)(v)(¢,0,z) dt da da.

We also have

Jy
(3.11)

Using (3.8), (3.10) and (3.11), it follows that

(3.12)

Jl(vvg) - J1(07g) = J(U>O) - J(O>O)+

A
2/0 g(a) /QT [y(t, a,z;v,0)¢(v)(t,0,2) — y(t, a,2;0,0)£(0)(¢,0,2)] dadtdx

A
= J(v,0) — J(0,0) + 2/0 S(a;v) g(a)da.

| (52000 (10.0) ) dedo e =

/Q g(a)y(t,a,z;0,0)£(0)(t,0,z) dtdadz.

7(9) (y(v,0) — zq) dt dadz =0,

d

LEMMA 3.3. Let £(v) be the solution of problem (3.7). Then the application v —
&(v) is continuous from L?(Q,) onto L*(U; H}(£2)).

Proof. Let v1,vy € L?(Q.,), and define & = £(vy) — £(vs). Then ¢ is the solution

to problem
L*é = y(vl,O) _y(v270) in
& =0 on
(3.13) §(T, ) =0 in
EGLA) =0 in
By setting z = e~ "¢, it follows that z solves
L*Z+TZ = (y(’Ul,O) _y(UQaO))e_Tt
z = 0
(3.14) AT, = 0
Z(', A7 ) = 0

Q,
)

Qn,
Qr.

on
in
in

Q,
z,
Qa,
Qr.

This manuscript is for review purposes only.



10 C. KENNE, G. LEUGERING, AND G. MOPHOU
If we multiply the first equation of system (3.14) by z and integrating by parts over
Q, we get

1

1
§||Z(0’ S E2ga) + 5”2('707 M2 + IV2172(q) + /Q(T +p)2? dt dadr =

/ (y(v1,0) — y(v2,0))ze”"" dt da dx.
Q

It then follows

1 1 1
§||Z('707 Mi2m +IV2l7200) +7l2l172q) < 5”1/(”170) —y(v2,0)[1 720y + §HZH%2(Q)'

Taking r = % in this latter identity yields

1 1
3112650, Z2 0 + 5121 22wy o)) < Hy(vh 0) = y(v2,0)ll72(q)
2 ( @) S

Thus,

(3.15) I1€(-,0, ')H%?(QT) + HE||2L2(U;H5(Q)) < €T||y(7}170) y(v2,0)[|r2(Q)>

from which we deduce

€1l L2 3 0)) < e 2||y(v1, 0) — y(v2, 0)|| £2(q)-

Using Proposition 2.1, while passing to limit in this latter inequality when v1 — va,
we obtain that £ — 0 strongly in L?(U; H}(Q)). This means that &(v1) — &(v2)
strongly in L2(U; H}(2)) as v; — va. d

PROPOSITION 3.4. Let S(;v) be the function defined in (5.6). Then the map
v S(+;v) is continuous form L?(Q.,) onto L%(0, A).

Proof. Let vy and ve. Then in view of (3.6),

S(a;v1) — S(a;vy) = / (y(t, a,x;v1,0) — y(t, a, ;v2,0))E(v1)(¢E, 0, z) dt dz
- /Q y(t. @, 302, 0)((02)(1,0,2) — E(01) (1,0, )) dt do.

Using the Cauchy Schwarz inequality, we have

1S(a; v1) = S(a;v2)| < [[y(- @, 501,0) =y(s a5 502, 0)[ L2 1§ (v1) (-, 0, )l L2(01)
+lly( a5 v2,0)lL2(r) ||€(vz)( ) §(v1) (50, )22 @r)-

Observing on the one hand that £(ve) — &(v1) is solution of (3.13), and, on the other
hand that, in view of (3.15),

Hf(vz)(-, Oa ) - f(’Ul)(., 07 )Hiz(QT) < eT/2Hy(U17 0) - y(’l)g, 0)||L2(Q)

we have

IS(a;v1) — S(a;v2)| < ly(.;a,5v1,0) =y, a, 5v2,0) | L2 1€(v1) (-5 0, ) 220
+eT2 |y (., ay 3 v2,0) || L2 (@) 9/(v1, 0) — y(v2, 0| L2()

This manuscript is for review purposes only.
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Hence,
A

a;v1) — S(a;v9)|*da <

S(
0
2Hy( a,501,0) — y(,a,-;vz,O)lliz(Q)H{(m)( M Z2@n T
2¢" ”y( a, .; V2, )||L2 ||y(v1, ) (UZa )HL2(Q)

It then follows from Poincaré inequality,

1S (a;v1) — S(a;va)lz2(0,4) <
Cly(.,a,5v1,0) = y(. @, 502, 0)|| 2w m (@) 1€(W1) (0, )l L2 (@) +
C(e T/QHZJ( a,5v2,0)[[2(@) ly(v1,0) _y(v270)||L2(U;Hé(Q))a

214 where C() > 0 is a constant depending on 2. In view of Proposition 2.1, it follows
215 that S(-,v1) = S(-,v2) as vy — va . O

216 The following Lemma will be useful to prove the existence of the No-regret and Low-
217 regret controls.

LEMMA 3.5. Let S(.,v) be defined as in (3.6) for any a € L?(0, A). For any~y > 0,
we consider the sequences y¥ = y(t,a,x;u,0) and £(uY) , respectively, solutions of
(3.3) and (3.7) with v =Y. Assume that there exists C > 0 independent of v such
that

||S(, U’Y)”L?(O,A) < C.

218 Assume also that i € L2(Q,), £(.,0,.) € L2(Qr) and § = y(t, a, ;4,0) € L2(U; HL(Q))}
219 solution of (3.3), such that

220 (3.16a) u’ — @ weakly in  L*(U x w),
221 (3.16b) Y’ =9 = y(t,a,z;0,0) weakly in L*(U, H3 (),
332 (3.16¢) E(u)(.,0,.) = £(.,0,.) weakly in L*(Qr).

Then we have

S(a;u?) — S(a;a) weakly in D'(0, A).

224 Proof. Let D((0,A)) be the set of C*> function with compact support on (0, A).
225 Set for any ¢ € D((0, A))

A
226 (3.17) 27(t, x) :/ y(t,a, z;u”,0)p(a)da, (t,z) € Qr.
0
Then, in view of (3.16b), there exists a constant C' > 0 independent of  such that

127122 (@) < 1yl z2 (@) 01l 22 (0,4) < C-

N
N
-~

Consequently, there exists z € L?(Qr) such that
228 (3.18) 27 — z weakly in L*(Qr).

Moreover, using (3.17) we have that,

A
/ Aty 2)b(t, @) de dt = / / y(t, a, 2307, 0)p(a)(t, ) d dt da, Yo € D(Qr),
QT T 0
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which passing to the limit when v — 0 while using (3.16b) gives

lim 27
v—=0 JQr

A
(t,x)z(t,x) dx dt = / / y(t,a,z;4,0)¢p(a)Y(t, ) de dt daVip € D(Qr).
7 J0
This means that
A
27— / y(t, a,x;1,0)¢(a) da weakly in D' (Qr).
0

It follows from (3.18) and the uniqueness of the limit that,

A
(3.19) sfta) = [ ylt.aw: . 0)0()da, (t.0) € Qr-
0
Because y7 = y(t, a,z;u”,0) solves (3.3) with v = u”, we have that z7 solves
7y
% — Az = k7 in Qr,
2y = 0 on (0,T) x T,
A
A0 = [ vansed no,
0

where
A

A A
0
Bt = [ (F+uroda [ payoda— [ 2o

Consequently, in view of (3.16a) and (3.16b), we have there exists a positive constant
C independent of 7y such that

1/2
1E | 2(@r) < (2Hf||%2(Q) + 20wz, + ||N||ioo(o,A)||?/7||iz(Q)) 161122 0,)+

o9 <C
9allL20,4) ~

192 |

It then follows that there is C' > 0, independent of ~y, such that

1272 oryimmay < O
‘ 0" < C
3t LQ((O,T);H’I(Q)) a

Therefore, it follows from Aubin-Lions’s Lemma that
(3.20) 27 — 2z strongly in L*(Qr),

where

A
2(t,2) = / y(t,a,;0,0)6(a)da, (t,2) € Qr

because of (3.19).
Now in view of (3.6)

S(a;uY) = / [y(t,a,z;u”,0)E(u)(t,0,2) — y(t,a,2;0,0)£(0)(¢, 0, )] dt dx.
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Therefore for any ¢ € D(0, A),
A A
| s@ams@ae = [ [ s 000@dag)6.0.0) didads
0 T JO
- / y(t, a,;0,0)€(0)(t, 0, 2)é(a) dt da dx
Q

= / 27(t, 2)E(u")(t,0,z) dt da dx

/Q y(t, @, 2:0,0)£(0) (1,0, 2)p(a) dt da dz

Passing this latter identity to the limit while using (3.20), (3.19) and (3.16¢), we
obtain

A
/0 S(a;u")é(a)da — ; z(t, x)E(0)(¢,0,2) dt da dx

- / y(t,a,x;0,0)E(0)(t,0,2)p(a) dt da dx

@ A
/ /0 (y(t,a, z;1,0)¢(a)da)f(0)(t,0, z) dt da dx

- / y(t, a,2:0,0)£(0) (1,0, 2)é(a) dtdadz ¥ € D(0, A),
Q

which in view of (3.6), proves
S(a;u”) — S(a;a) weakly in D'(0, A).

|

From now on, we denote by D(©) the set of C* function with compact support on ©
and by D'(©), its dual.

3.1. Existence of No-regret control and Low-regret control. In view of
(3.5), the optimization problem (3.2) is equivalent to the following problem:

A
(3.21) inf sup [J(v,0) — J(0,0) + 2/ S(a;v)g(a)dal.
vEL*(Quw) geL2(0,A) 0

A
As / S(a;v)g(a)da is either equal to 0 or +00, we look for the control v in the set,
0

A
(3.22) M= {v € LQ(Qw);/O S(a;v)g(a)da =0, VYge€ LQ(O,A)} .

Note that the set M is strongly closed in L?(Q,,). Now, observing on the one hand
that the application v — J(v,0) — J(0,0) is coercive on L?(Q,), bounded below by
—J(0,0), and continuous because of Proposition 2.1, and on the other hand that the
application v + S(:;v) is continuous on L?(Q,,), using minimizing sequences and
Lemma 3.5, we prove that there exists a No-regret control @ in M satisfying (3.21).
We thus have proved the following result.

LEMMA 3.6. There exists a solution @ of (3.21) in M.
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As such a control 4 is not easy to characterize, we consider for any v > 0, the relaxed
optimization problem, which we refer to as the Low-regret-control problem:

A
(3.23) inf sup | J(v,0) = J(0,0) + 2/ S(a;v)g(a)da — 'y||g||%z(0 mE
veL?(Qu) geL2(0,A) 0 ’

Observing that

A
sup [J(v,o>—J<o,o>+2 / s<a;v>g<a>da—v|g|%2<0,A)]=

geL2(0,A)

0

A

S(a;v 1

J(0,0) = J(0,0) +2y sup V ( )g(a)da—Qllgﬂizw,A)}’
g€eL2(0,4) |Jo Y

using Fenchel-Legendre transform (see [16]), we obtain that,

A
S(a;v) 1, 9 1 9
2y sup / g(a)da — =||g =—||S(;v
s [ [ 2 gy = ol 0.0 | = SIS

and (3.23) is equivalent to

.24 inf v
(3 ) vellzgl(Qw)j <v)’
with
1
(3.25) J(v) = J(v,0) = J(0,0) + ;IIS(-; V)1 Z2(0,4)-

PROPOSITION 3.7. Let v > 0. Then there exists at least in L?(Q,,) a Low-regret
control u~ solution of problem (3.24).

Proof. We have J7(v) > —J(0,0) and J7(0) = 0. Using minimizing sequences,
Proposition 2.1, Proposition 3.4 and Lemma 3.5, we prove as for Lemma 3.6 that
problem (3.24) has at least one solution u, € L?(Q,,). |

Remark 3.8. The uniqueness of u, € L*(Q.,), solution of (3.24) is not guaranteed
because the application v — S(+;v) from L?(Q,,) to L?(0, A) is not necessarily strictly
convex. Consequently, we are not sure that control w., will converge to a No-regret
control © € M. So, in order to have a Low-regret control which will converge in M,
we adapt the cost function J7 to a No-regret control u.

3.2. Existence of the adapted low-regret control. Let u be a No-regret
optimal control. For any v > 0, we define the adapted cost function J7 by:

~ - 1
(326) V= j’y(’l)) = J(’U, 0) — J(O, 0) + ||’U — ’U;”iz(@w) + ;HS(,’U)”%z(O’A)
Then, we consider the following optimal control problem:

3.27 inf 77 (v).
(3.27) et | (v)
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PROPOSITION 3.9. Let v > 0. Then problem (3.27) has at least a solution W, in
L*(Qu).-
Proof. One proceeds as for the proof of Proposition 3.7 using the fact that v +—

J7(v) is continuous on L%(Q,,)( thanks to Proposition 2.1 and Proposition 3.4) and
the fact that lim J7(v) = +o0. 0

HL2<QW)—>+OO

PROPOSITION 3.10. Let u, € L*(Q.) be a solution of (5.27). Then there exist
Py =p(uy) € LQ(U§ H(}(Q)) and ¢ = q(u) € Lz(U§ H&(Q)) such that {Y, &, Dy, Gy}
is a solution of the systems:

[|v

L% = fH+uyxq, n Q,
yy = 0 on X,
3.28 ~ .
( ) Zi’y(ov'v') = yO m QA)
y’)’('vov') =0 in  Qr,
L*:g‘;, = Y, —24 m Q,
& =0 on X,
3.29 ~
( ) g’y(Ta'a ) = 0 mn QAa
f’y('vAa ) 0 m QT7
Lp, = 0 n  Q,
Py = 0 on X,
(3.30) py(0,+:) = 0 B i Qa,
1
p(,0,4) = —/ y(t,a,x;U,0)S(a;uy) da  in  Qr,
y N ¥ v
L'q, = y(uy,0) —24+0" in Q,
¢ = 0 on X,
3.31 ~ 7 .
( ) Q’Y(Ta'a') = 0 m QA)
Z]v’y('aAa') = 0 in QTa
and
(3.32) (N+1Duy—u+qg,=0 in Qu,

where @7 = %ﬁy + %S(m Uy)E(Uy)(t,0,2), Yy = y(ty,0) and &, = &(uy).
Proof. We write the Euler-Lagrange optimality condition that characterizes u.:
lim T (ty + Aw) — T (uy)

A—0 >\

=0, Yw e L*(Qu).

Using Proposition 2.2 and Proposition 3.2, we obtain after some calculations
(3.33)

oy - 1 ~
0 o %(UW,O)(w) y(u'yvo)*zd*;5(“7)('7(),')5(';“7) dt dadzx

+ (ﬂvfﬂ)wdtdad:ﬂ+/ Nu,wdtdadx
le o¢ Qu
+ 52 (@) (W)(-,0,) y (s, 0)S(+ 8y) dt dade, Vw € L*(Qu),

; QaU
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where F(w) = %(iy, 0)(w) and € = %(7)(10) are respectively solutions to
Ly(w) = w in Q,
gw) = 0 on X,
(334 F)(0,,) = 0 in Qu
y(U})(70, ) = 0 in QT
and
Lg y(w) in Q,
& =0 on X,
(3.35) §<T’ . ) = 0 in QA,
g('a Aa ) = 0 in QT'

To interpret (3.33), we use the adjoint states ¢, and p., solutions of (3.31) and (3.30)
respectively.
So if we multiply the first term of (3.34) by a function ¢, and the first equation

1
of (3.35) by a function \7;07, then integrate by parts over ), we, respectively, obtain
gl

(3.36) /Qy(w) <y(ﬂy, 0) = zq + \%py + %S(a; ﬂﬂﬁ(ﬁﬂ(t,(),x)) dt da dz =
wi w g dt da dx,

and

1 - 1
3.37 7/ -+ 0,)y(t,a, z;u,0)S(a;w dtdadavz—/*w p~ dt da dzx.
( )WQS( )y( v, 0)S(a; tiy) ﬂ@y()v
Combining (3.36), (3.37) and (3.33), we have

/((N+1)177—ﬂ+677)wdtdadx:0, vw € L*(Q.),

w

which implies that

(3.38) (N +1)iy — i+ Gy =0 in Q..
0

PROPOSITION 3.11. Let i, € L*(Q,,) be a solution of (3.27). Let also §s, Ey, Dy
and g be such that (3.28)-(3.32) hold true. Then we have following estimations:

(3.39) iyl 2.y < C (N, Nl L2y 190 L2@ays 1 F 2 (@)s Izall L2(@)) 5

1 . ~
(3.40) ﬁ ||5(';Uv)||Lz(oyA) <C (HUHLQ(Qw)v ||y0||L2(QA)v ||f||L2(Q)7 ”ZdHL?(Q)

3.41

IS¢ @) 20,4y < VAC (1ll 2@y 19° 1 22 (@0 1 | 220005 12l 22

3.42) 175l 22wy m3 () < C (N, T M|t 2@y, 18 2@y 1 22 (@) llzall 2(q)
343) &l 2 wsmp @y < C (T 1@l 2oy 19° 122 (@) 1 1 22(@) s 2l 2(@)

(3.41)
(3.42)
(3.43)
(3:44) 11,0, )l z20r) < C (T ll 2oy 19 2 (@ 1 2200 l1zall 2@
(3.45)
(3.46)
(3.47)

3.45
3.46

15+ 0, M r2@r) < C (1l n2(@u)s 180 2@ u)s 1 f Il £2(0), 1zall 2(0)

~— — — — ~— ~— ~—

1| 2w ) < C (T [l 2@ 19l L2 (@) 11 22 (@) lzall 22

~—

3.47) 1@yl 2wy < C (N T Nl 22 (@us 190122 (@a)s 11122 (@) 1zdll 2@

)

This manuscript is for review purposes only.



319
320
321
322
323

324

326

BN

w W w
NN N
o

CONTROL OF A POPULATION DYNAMICS MODEL WITH MISSING BIRTH RATE 17

where from now on, C(X) to denote a positive constant whose value varies from a
line to another but depends on X.

Proof. We proceed in three steps.
Step 1. We prove the estimations (3.39)-(3.43).
As 1, is solution of (3.27), we can write

(3.48) T (uy) < T7(0) = [[all 2 (q.)-
It then follows from the definition of 77 and .J given respectively by (3.26) and (1.4)
that,

~ ~ - 1 -

15 = ZallF2iq) + Ny lI72(q,) + Ity = TlZ2(g) + 18G5 ) F2(0,4) <

1720, + 19(0,0) = zallZ2q) = C (I[@ll 2(@u): 197 22(@a)s 1 £l 2(@): 12l 2 (@) -
Hence we deduce (3.39), (3.40), (3.41) and
(3.49) 17 = zallz2@) < C (ll 2oy 14° 2@ I 22 2l L2@)) -
Observing y, and Ev are respectively solution of (3.28) and (3.29), proceeding as for

7 in pages 3-4, we obtain that

~ 1 ~
1951 L2 (012 () < ﬁeQT(Ilyolle@A) +1fll2@) + iyl 2(qu))
and 3
~ ~ 2 _
1€4(-, 0, ')||L2(QT) + Hf’yHLZ(U;Hol(Q)) < *€2T|\y~/ - Zd||L2(Q)a
2

from which we, respectively, deduce (3.42), (3.43) and (3.44) because of (3.39) and
(3.49).
Step 2. We prove the estimations (3.45) and (3.46).

To prove (3.45), we observe that

<

1 /A
‘\ﬁ/o y(t, a, z;1y,0)S(a; uy) da

1/2
1 _ 4 N
WHS(JUW)”L%O,A) o y(t7a7m;u770) da .

So using (3.40) and (3.49), we deduce

J.

where C' = C' (”ﬂHLQ(Qw)v ||y0||L2(QA)7 ||f||L2(Q)7 ||ZdHL2(Q)) > 0. This means

dt dx

IN

1 - -
;HS(-; U172, m) 1921172 ()
< C,

1A ~ B
\/’V/O y(t7a7x;u'yyo)5(a,u,y) da

1P+ (50, )2y < € (Il z2@uys 19° 2@y 12200 lZall 22 (@) -

Since p., is solution of (3.30), proceeding as for 7 in pages 3-4 while using (3.45), we
obtain

~ 1 -
1Pyl 22 () < EGQT(”yOHL2(QA) + 12 @) + Ny llz2q.))-
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18 C. KENNE, G. LEUGERING, AND G. MOPHOU

Step 3. We prove (3.47).
We observe that gy, solution of (3.31), can be decomposed as g, = q~}{ + (}?y, where
'q“% is solution to

L*Z]v% = ’y"’y — Zd in Q7
G = 0 on X,
3.50 ~ 7 .
( ) q}/(T7 ) ) =0 m QA7
B(,A) = 0 in  Qr,
and (j?y is solution to
*~2 1 1 ~ ~ :

Lq, = \fﬁp,y + ;S(a;uv)f(uﬂ,)(t,o,x) in Q,

(3.51) z =0 on X,
g(T,~,~) =0 in Qu,
(J’y('aAv') =0 in  Qr.
Proceeding as for 3 in pages 3-4, while using (3.49), we obtain
(352) @2y < C (T l[@ll 2oy 190122 (@) 1 2@y 2dll 2(q)) -
Combining (3.33) and (3.37), we obtain
0 = / Y(w)(yy — 2q) dt da dx

Q

(3.53) + fQ Nﬂwwdtdadx—i—/ (Uy — w)wdtdadx
. Qu
1 1~
+ /yw (p + —£,(0)S(a;w ) dtdadz,Yw € L*(Q,,).

Q()\ﬁv ,y“/()(v) (Qu)
Set
(3.54) £ = {y(w), w e LQ(QUJ)} .

Then £ C L?(Q). We define on € x & the inner product:

(355)  (F).Hw))e = / vw dt da de + /Q H(0)g(w) dt da da, ¥5(v), j(w) € E.

Then £ endowed with the norm
(3.56) [G(w)12 = llwlliz(q.) + [T(w)l720), Vo(w) € €

is a Hilbert space. We set

Ty (uy) = \%pv + %gy(O)S(a; Uy ).

Then, in view of (3.53), we have for any w € L?(Q.,),
/ T, (@, )j(w)dtdads = — / F(w)(F, — za) dt dade
(3.57) 7@ Q

- Nﬂvwdtdadx—/ (Uy — W)w dt da dz.
Qu w
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Using the Cauchy Schwarz inequality, we have

’/Qy(w)@,yzd)dtdadx/ (N + 1)@, — @) wdt dada| <

w

19y = zall2@) (W)l 22 @) + (N + D[ty |22 (@uy 1wl 2@y +

Il L2 (@ llwllL2(q.)-
Therefore, using (3.49) and (3.39),

‘_/Qy<w)(y7—zd)dtdadm—/ (N +1)ii, — i) wdt da da| <

w

~ _ - vz
(155 = 2all3a(q) + (N + DIl 2.y + Nl z2@ul?)  I7(w)lle <
Clig(w)]e.

where C' = C (N, T, ||ﬂHL2(Qw)7 ||yo||L2(QA)7 ||f||L2(Q)7 ||ZdHL2(Q)) > 0. It then follows
from (3.57)

‘/ L (Uy)g(w)dtdadz| < C|lg(w)]|e.
Consequently,
12l = || Zeon + SE @S| <C
In particular,
(3.58) | FresE0s@)|  <c

L2(Q)
where C' = C (N, T, |[ull 2(q.), 1v° [ L2(@ ), | Fll 22(@)» I2all L2 (@) > O
Now, proceeding as for 7 in pages 3-4, while using (3.58), we obtain that
(359) @ lr2w;miey < C (N, T Nl L2y 180122 (@a), 112y I2dll L2 (@)) -
Finally from (3.52) and (3.59) we deduce (3.47). d
3.3. Characterization of the No-regret control.

PROPOSITION 3.12. The adapted Low-regret optimal control i, converges in L*(Q. )]
to the No-regret control u € M.

Proof. In view of (3.39)-(3.44), there exists a subsequence of (i, ¥, é}, S(.,uy))
still denoted by (@, Uy, &y, S(., ) and @ € L*(Qu), ¥ € L*(U, H} (), & € L*(U, H&(Q)),I
a € L*(0,A), 7 € L*(QT) such that

(3.60) i, — @ weakly in L?*(Q,),
(3.61) \;S(., u,)) — o weakly in L?(0, A),
(3.62) S(.,7,)) — 0 strongly in L*(0, A),
(3.63) 7, — g weakly in L*(U; Hy(Q2)),
(3.64) €, — € weakly in L2(U; H}(Q)),
(3.65) £,(.,0,.) = 7 weakly in L?(Qr).
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If we multiply the first equation (3.28) by ¢ € D(Q) and the first equation in (3.29)
by ¢ € D(Q) and integrate by parts over @), we have

/%L*¢dtdadx:/(f—&—ﬁﬁfxw)(bdtdadm
Q Q

and

/ & L dt da dz — / (B — 20 dt dado.
Q Q

Passing in these two latter identities to the limit, while using (3.60), (3.63) and (3.64),
we obtain

/@L*cﬁdtdadm:/(f+ﬁxw)¢dtdadx
Q Q

and

/§Lwdtdadx=/(g—zd)wdtdadx,
Q Q

which after an integration by parts over @) give

/L@qﬁdtdadw:/(f+axw)¢dtdadx, Vo € D(Q)
Q Q

and

/L*gwdtdadx:/@—zd)wdtdadx, Vi € D(Q),
Q Q

respectively. Hence, we can deduce

(3.66) Lj=f+ix, inQ
and
(3.67) L*¢=7—z4 in Q.

Note that 3, £ € L?(U,H}(Q)). This implies that y(t,a)|r and £(t,a)|p exist and
belong to L?(T") for almost every (¢,a) € U. On the other hand from (3.66), (3.67)
and the expression of the operator L and L* given by (2.1), we have g, Ee W (T, A).
It follows from Remark 1.1 that (5(0,.,.), (T, .,.)) exists and belongs (L2(Q4))? and
#(.,0,.),€(., A,.),£(.,0,.)) exists and belongs (L%(Qr))2.

Now, if we multiply the first equation (3.28) by ¢ € C°°(Q) such that ¢ = 0 on
3, ¢(,A,-) = 0in Qr and ¢(T,-,-) = 0 in Q4 and the first equation in (3.29) by
¥ € C%°(Q) such that 1) = 0 on ¥ and 9(0,-,-) = 0 in Q4 and integrate by parts over
Q, we respectively have that

- [ v o.am)dade s [ §10dads = [ (£ 4 Txa)odidads
Qa Q Q

and

gv(t,O,x)w(O,a,x)dtdx+/ fi,ledada::/@v—zd)¢dtdadx.
Qa Q Q

This manuscript is for review purposes only.



CONTROL OF A POPULATION DYNAMICS MODEL WITH MISSING BIRTH RATE 21

Passing these two latter identities to the limit while using (3.60), (3.63), (3.64) and
(3.65), we obtain

—/ yoqﬁ(O,a,x)dadx—l—/ ﬂL*¢dtdadx:/(f—&—dxw)qbdtdadx,

Q Q
Vo € C*°(Q) such that ¢lr =0, ¢(-, 4, )|g, =0, &(T, -, )|, =0,
and

/ T¢(0,a,x)dtdx+/ g[ﬂ/)dtdadx:/(g—zd)z/}dtdadz,
Qa _ Q Q

Vi € C*(Q) such that ¢|r = 0, ¥(0,-,-)]g, =0,

respectively, which after an integration by parts over @ give

/ (f +ixw)pdtdadr = —/ (y° — 5(0,a,2)) $(0,a,z) da dz+
Q

Qa
ﬂ%dtdadx—k/quﬁdtdad:c,
Qr 5 Ov Q

V¢ € C*°(Q) such that ¢|r =0, ¢(-, A, )|gr =0, &(T,-,")|g. =0,

g(tv Oa I)(b(t’ 0, I) dt dI —

and

/ ( — zq) dt dadx = / (1 — £(t,0,2)) (0, a, ) dt dz+
Q JQa
fQ L&y dtdadx + fQA &(T,a,2)y(T,a,z)dadz+

- ~O
o E(t, A, x)(t, A, x) dt do + /2 58—1/ dt da dz,
Vw € COC(Q) SuCh that 7/’|F = 07 ¢(07 E )|QA =0.

w
~

Using (3.66) and (3.67), we deduce from these latter identities that,

ot

0= —/ (v° — 5(0,a,2)) $(0, a, z) da dz+
Qa

376 (3.68) / gj(t,o,x)(b(t,(),x)dtd:rf/ﬂ%dfdad%
Or 7 s Ov

V¢ € C*°(Q) such that ¢|r =0, ¢(-, A, )|gr =0, &(T,-,-)|g. =0,

377 and

0= / (1 — £(t,0,2)) (0, a, z) dt da+
Qa

378 (3.69) 0 (T, a,2)y(T, a,z) da dz+

E(t, A, 2)Y(t, A, x) dt dx + / 8‘;%’ dt da dx,
3

Qr
Vi € C*°(Q) such that ¢|r =0, ¥(0,-,-)|g, =0.
If we successively take in (3.68) and (3.69),

d)(’vov ')‘QT =0 and gii

w('707 ')|QT = w('aAv ')|QT =0 and %‘F =0,

|F:07
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oo,
=
wl(/A)\ *Oanda—% =0

y 44 ) 1Qr — B r=Y

0,

then in (3.69),

o

% I = 07
we successively obtain
(370) ZAj(Oa 5 ) = yO in QAa
(371) E<T7 "y ) =0in QA7 )
(3.72) 9(-,0,-) =0in Qp,
(3.73) £(,A,-)=0in Qr,
then
(3.74) y=0on X,
(3.75) £(-,0,-) = 7 in Qr,
and finally,
(3.76) £=0onXx.

Now, using (3.60),(3.63), (3.65), (3.75) and (3.41), we have from Lemma 3.5 that
S(.,uY) — S(.,4) weakly in D'(0, A).

Hence, using (3.62) and the uniqueness of the limit that

S(.,y) — S(.,0) = 0 strongly in L*(0, A).
Consequently,

A A
/ S(a;uy)g(a) da — / S(a;ty)g(a)da =0.
0 0

Thus @& € M and we also have ||S(.;@)| £2(0,4) = 0. Since w is a No-regret control and
u e M, it follows from (3.21) that

(3.77) J(@,0) — J(0,0) < J(@,0) — J(0,0),

Observing that ., solves the problem ngl(fQ : T 7(v), we have
veE w

(3.78) T (i) < J7 (@) = J(@,0) - J(0,0),
which, in view of the definition of T given by (3.26), implies that
(i, 0) = J(0,0) + [[iy = ll72(,) < T (@) < T (@) = J(@,0) = J (0,0).

Using the convexity and lower semi-continuity of J on L?(Q,), (3.60) and (3.63), we
obtain

(3.79)  J(,0) = J(0,0) + [[& — W32, < liminf J7 (i) < J (@, 0) — J(0,0),

~¥—0
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which combining with (3.77) gives
it~ 32 q.) <0
U ULz Qu) =Y
398  Hence,
399 (3.80) =1 in Q.

100 Thus the adapted Low-regret controls converge in L?(Q,,) to the No-regret control.
401 Moreover from (3.80), (3.66), (3.70),(3.72) and (3.74), it follows that y¥ = y(«,0) €
402 L2(U; HY(Q)) unique solution of

Lg - f + ﬁXQW in Q7

, y = 0 on X,
103 (3.81) 0 Z; _ 0 n Q4
y('a 07 ) =0 in QT'

104 Similarly, from (3.67), (3.71),(3.73) and (3.76), we infer that £ = £(4) is the unique
405 solution of

L*¢ = y—2z in Q,
&E =0 on X,
106 (3.82 ~ .
( ) §(T7 %y ) = 0 m QAa
g('a A7 ) 0 in QT~
407 |
408 PRrROPOSITION 3.13. The No-regret control w € M is characterized by the func-

409 tions u, 7, 5, p and q which are unique solutions of the optimality system:

7 =0 on X,
410 (3.83) 7(0, - % = ¢ in Qa
g('aoa ) =0 in QT’
411
E =0 on X,
412 (3.84 py
(3.84) é(T’ ) = 0 in  Qa,
E ’7A7 ) =0 in QT’
113
. ﬁ = 0 on E,
114 (3.85) p(0,-,) = 0 in Qua,
I)’(.7O7 ) = )\1 m QT7
415
L*a = g— zd + AQ in Q7
_ g =0 on %,
416 (3.86) dT,.) = 0 in  Qa,
E]v('vA’ ) =0 n QT
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and

(3.87) Ni+q=0,

where L A
No= Eﬂﬁ/o Yy(t, a, x,u,)S(a;uy) da,
e = i (Jop 16O

Proof. We have already proved (3.83) and (3.84) (see Page 23).
From (3.45), (3.58),(3.46) and (3.47), we have there exist \; € L*(Qr), Ao €
L*(Q), p € L*>(U; H}(Q)) and q € L?(U; H}(Q)) such that

(3.88) P (-,0,.) = A1 in L*(Qr),

L 1z ;) — Ag in L2
(389) ﬁpw + 757(0)5( 5 'y) A2 L (Q),
(3.90) Py = P in L*(U; Hy (),
(3.91) @y — ¢ in L*(U; H) ().

Then, proceeding as for g, and EA, in Pages 19-22 while using (3.89)-(3.91), we prove
(3.85) and (3.86). To obtain (3.87), we pass to the limit in (3.38) while using (3.60),
(3.80) and (3.91). 0

4. Conclusions. We used the notion of No-regret and Low-regret to control a
model describing the dynamics of population with age dependence and spatial struc-
ture with missing birth rate. In contrast to some works on the topic which need the
control to act on the whole domain to obtain the convergence of the optimality system
that characterizes the Low-regret control towards the singular optimality characteriz-
ing the No-regret control, our control acts on a part of the domain. We then introduce
an appropriate Hilbert space and apply the Aubin-Lions Lemma to an appropriate
auxiliary problem to obtain the convergence of an adapted Low-regret control towards
a No-regret control that we characterize.
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