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OPTIMAL CONTROL OF A POPULATION DYNAMICS MODEL1

WITH MISSING BIRTH RATE∗2

CYRILLE KENNE† , GÜNTER LEUGERING‡ , AND GISÈLE MOPHOU§3

Abstract. We consider a model of population dynamics with age dependence and spatial4
structure but unknown birth rate. Using the notion of Low-regret [1], we prove that we can bring5
the state of the system to a desired state by acting on the system via a localized distributed control.6
We provide the optimality systems that characterize the Low-regret control. Moreover, using an7
appropriate Hilbert space, we prove that the family of Low-regret controls tends to a so-called No-8
regret control, which we, in turn, characterize.9

Key words. Population dynamics, incomplete data, optimal control, No-regret control, Low-10
regret control, Euler-Lagrange formula.11

AMS subject classifications. 49J20, 92D25, 93C4112

1. Introduction. In the modeling of the dynamics of some invasive species13

governed by diffusive systems with age dependency(for instance invasive plants in14

bounded domains), it may not be possible to have sufficient observations to obtain a15

good approximation of the birth function or/and the mortality function [2]. In order16

to avoid the disappearance of the other species it seems natural to control those inva-17

sive species. More precisely, let Ω ⊂ R3 be a bounded domain in which the invasive18

species live. We denote by Γ the boundary of the domain and we assume that it is19

of class C2. For the time T > 0 and the life expectancy of an individual A > 0, we20

set U = (0, T ) × (0, A), Q = U × Ω, Σ = U × Γ, QA = (0, A) × Ω, QT = (0, T ) × Ω21

and Qω = U × ω, where ω is a non-empty open subset of Ω. Then we consider a22

model describing the dynamics of an invasive species with age dependence and spatial23

structure:24

(1.1)


∂y

∂t
+
∂y

∂a
−∆y + µy = f + vχω in Q,

y = 0 on Σ,
y(0, ·, ·) = y0 in QA,

y(·, 0, ·) =
∫ A

0
g(a)y(t, a, x) da in QT ,

25

where26

• y = y(t, a, x) is the distribution of individuals of age a ≥ 0, at time t ≥ 0 and27

location x ∈ Ω.28

• The recruitment f ∈ L2(Q) is a positive periodic function.29

• The control v ∈ L2(Q) which corresponds to the removal of the individuals in30

a sub-domain ω of Ω and χω denote the characteristic function of the control31

set ω.32
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2 C. KENNE, G. LEUGERING, AND G. MOPHOU

• The mortality rate µ = µ(a) ≥ 0 is a known increasing positive function33

which is continuous on [0, A], whereas the fertility rate g = g(a) ∈ L∞(0, A)34

is unknown and positive.35

We assume as in [3], that:36

(H1) lim
a→A

∫ a

0

µ(s)ds = +∞,37

which means that each individual in the population dies before age A. For more38

literature on the population dynamics model and the signification of assumption (H1),39

we refer to [3, 4, 5, 6, 7, 8, 9] and the reference therein.40

Remark 1.1. Set41

(1.2) W (T,A) =

{
ρ ∈ L2(U ;H1

0 (Ω));
∂ρ

∂t
+
∂ρ

∂a
∈ L2

(
U ;H−1(Ω)

)}
.42

Then we have (see [10]) that43

(1.3) W (T,A) ⊂ C([0, T ], L2(QA)) and W (T,A) ⊂ C([0, A], L2(QT )).44

Under the assumption on the data, (1.1) has a solution y(v, g) = y(t, a, x; v, g) in45

W (T,A). We define the cost function46

(1.4) J(v, g) = ‖y(v, g)− zd‖2L2(Q) +N‖v‖2L2(Qω),47

where zd ∈ L2(Q) and N > 0 are given.48

In this paper, we don’t want to determine the unknown fertility rate g. Actually,
we want to bring the distribution of individuals to a desired distribution zd by acting
on the system via a control v. In other words, we are interested in solving the following
optimization problem:

inf
v∈L2(Qω)

sup
g∈L2(0,A)

J(v, g).

But observing that we could have sup
g∈L2(0,A)

J(v, g) = +∞, we consider the optimization49

problem:50

(1.5) inf
v∈L2(Qω)

sup
g∈L2(0,A)

(J(v, g)− J(0, g)).51

Problem (1.5) is called the No-regret control problem. The notions of No-regret52

control and Low-regret control were introduced by J. -L. Lions [1] in order to control53

a phenomenon described by a parabolic equation with missing initial condition. Let54

us recall that one obtains the Low-regret control problem by relaxing the No-regret55

control one. See (3.23),(3.24),(3.25) for the relaxation used in this article. By means56

of the Legendre-Fenchel transform, we prove that the Low-regret control problem57

is equivalent to a classical optimal control problem. The most difficult task is to58

prove that this family of controls (called Low-regret controls) converges towards the59

No-regret control. Also in [11], J. -L. Lions proved that these notion can be used60

in the framework of decomposition methods. In [12], O. Nakoulima et al. applied61

this notion to linear evolution equations with incomplete data and they proved that62

the Low-regret controls converges to the No-regret control for which they obtained a63

singular optimality system. B. Jacob et al. [13] generalized the notion of No-regret64

control to population dynamics with incomplete initial data with a distributed control65
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CONTROL OF A POPULATION DYNAMICS MODEL WITH MISSING BIRTH RATE 3

acting on the whole domain. They proved the existence and uniqueness of the No-66

regret control and gave a singular optimality system that characterizes this control. In67

the nonlinear case, this notion was considered by O. Nakoulima et al. [14] to control68

on the whole domain a nonlinear system with incomplete data. Observing on the one69

hand that the No-regret control is typically not easy to characterize and, on the other70

hand that the Low-regret cost function may not be convex, they proved by adapting71

this cost to a No-regret control that the adapted Low-regret control converge towards72

this No-regret control characterized by a singular optimality system. In [15], J. Vélin73

studied systems governed by quasilinear equations with unknown boundary condition74

and a control acting on the whole domain. After established some regularity results75

for the control-to-state and control-perturbation applications and its derivatives, he76

proved by proceeding as in [14] that the adapted Low-regret control converge towards a77

No-regret control characterized gain by a singular optimality. Note that in the above78

papers, the convergence of the Low-regret control towards the No-regret control is79

obtained by controlling on the whole domain.80

In this paper, we use the notion of No-regret and Low-regret to control a model81

describing the dynamics of population with age dependence and spatial structure82

with missing birth rate by acting on a part of the domain. Observing that with an83

unknown the birth rate, the control problem considered is now non-linear, we start by84

proving some regularity results. Then we prove the existence of a No-regret control.85

We then regularize the No-regret control problem to a Low-regret control problem86

((3.23),(3.24),(3.25)). We introduce an appropriate Hilbert space to obtain estimates87

on the states satisfying the optimality systems and by that characterize the Low-regret88

control. Then we prove that the adapted Low-regret control converges towards a No-89

regret control and establish a singular optimality system that, in turn, characterizes90

this no-regret control.91

The rest of this paper is structured as follows. In section 2, we give some regularity92

results. We study the Low-regret and no-regret control and their characterizations in93

section 3. A conclusion is given in section 4.94

2. Preliminary results. In order to solve the optimization problem (3.2), we95

need some preliminary results.96

In what follows, we adopt the following notation97

(2.1)


L =

∂

∂t
+

∂

∂a
−∆ + µI,

L∗ = − ∂

∂t
− ∂

∂a
−∆ + µI,

98

where I is the identity operator.99

Proposition 2.1. Let y = y(v, g) be a solution of (1.1). Then the application100

(v, g) 7→ y(v, g) is a continuous function from L2(Qω)×L2(0, A) onto L2(U,H1
0 (Ω)).101

Proof. Let (v0, g0) ∈ L2(Qω)×L2(0, A). We show that (v, g) 7→ y(v, g) is contin-102

uous at (v0, g0).103

Set y = y(v, g)− y(v0, g0), then y is solution to the problem104

(2.2)


Ly = vχQω − v0χQω in Q,
y = 0 on Σ,

y(0, ·, ·) = 0 in QA,
y(·, 0, ·) = η in QT ,

105
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4 C. KENNE, G. LEUGERING, AND G. MOPHOU

where for (t, x) ∈ QT ,

η(t, x) =

∫ A

0

[g(a)y(t, a, x; v, g)− g0(a)y(t, a, x; v0, g0)] da.

If we set z = e−rty with r > 0, then we obtain that z is solution to the problem106

(2.3)


Lz + rz = e−rt(vχQω − v0χQω ) in Q,

z = 0 on Σ,
z(0, ·, ·) = 0 in QA,
z(·, 0, ·) = e−rtη in QT .

107

Multiplying the first equation of system (2.3) by z and integrating by parts over Q,
we get ∫

Qω

e−rt(v − v0)z dxdtda =
1

2
‖z(T, ·, ·)‖2L2(QA) −

1

2
‖z(0, ·, ·)‖2L2(QA)

+
1

2
‖z(·, A, ·)‖2L2(QT ) −

1

2
‖z(·, 0, ·)‖2L2(QT )

+ ‖∇z‖2L2(Q) +

∫
Q

(r + µ)z2.

From this we deduce that108

(2.4) ‖∇z‖2L2(Q) + r‖z‖2L2(Q) ≤
1

2
‖z(·, 0, ·)‖2L2(QT ) +

1

2
‖v − v0‖2L2(Qω) +

1

2
‖z‖2L2(Q),109

because µ ≥ 0. On the other hand, observing that for (t, x) ∈ QT ,110

z(t, 0, x) = e−rt
∫ A

0

[g(a)y(t, a, x, v, g)− g0(a)y(t, a, x, v0, g0)] da111

= e−rt
∫ A

0

[(g(a)− g0(a))y(t, a, x, v, g)] da+

∫ A

0

g0(a)z da,112

we obtain113

‖z(·, 0, ·)‖2L2(QT ) ≤ 2‖g − g0‖2L2(0,A)‖y‖
2
L2(Q) + 2‖g0‖2L2(0,A)‖z‖

2
L2(Q).114

Thus, (2.4) gives

‖∇z‖2L2(Q) +

(
r − ‖g0‖2L2(0,A) −

1

2

)
‖z‖2L2(Q) ≤ ‖g − g0‖2L2(0,A)‖y‖

2
L2(Q)

+
1

2
‖v − v0‖2L2(Qω).

Choosing r such that r > ‖g0‖2L2(0,A) + 1
2 , we have115

‖z‖2L2(U ;H1
0 (Ω)) ≤ ‖g − g0‖2L2(0,A)‖y‖

2
L2(Q) +

1

2
‖v − v0‖2L2(Qω).116

From this we deduce117

‖z‖L2(U ;H1
0 (Ω)) ≤ ‖g − g0‖L2(0,A)‖y‖L2(Q) +

√
2

2
‖v − v0‖L2(Qω).118
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Therefore,119

‖y‖L2(U ;H1
0 (Ω)) ≤ erT ‖g − g0‖L2(0,A)‖y‖L2(Q) +

√
2

2
erT ‖v − v0‖L2(Qω).120

As (v, g) → (v0, g0), we have y → 0 strongly in L2(U ;H1
0 (Ω)). Hence y(v, g) →121

y(v0, g0) strongly in L2(U ;H1
0 (Ω)) as (v, g)→ (v0, g0).122

Proposition 2.2. Let λ > 0. Let g, h ∈ L2(0, A) and v, w ∈ L2(Qω). Let also123

y = y(v, g) be a solution of (1.1). Set yλ =
y(v + λw, g + λh)− y(v, g)

λ
. Then (yλ)124

converges strongly in L2(U ;H1
0 (Ω)) as λ→ 0 to a function ȳ which is solution of125

(2.5)


Ly = wχQω in Q,
y = 0 on Σ,

y(0, ·, ·) = 0 in QA,

y(·, 0, ·) =
∫ A

0
g(a)y da+

∫ A
0
h(a)y(t, a, x; v, g) da in QT .

126

Proof. yλ is a solution to the problem127 
Lyλ = wχQω in Q,
yλ = 0 on Σ,

yλ(0, ·, ·) = 0 in QA,

yλ(·, 0, ·) =

∫ A

0

g(a)yλ da+

∫ A

0

h(a)y(t, a, x; v + λw, g + λh) da in QT .

128

Define yλ = yλ − y, where y is a solution to (2.5). Then yλ is a solution to129

(2.6)


Lyλ = 0 in Q,
yλ = 0 on Σ,

yλ(0, ·, ·) = 0 in QA,

yλ(·, 0, ·) =

∫ A

0

g(a)yλ da+ η1 in QT ,

130

where for (t, x) ∈ QT ,

η1(t, x) =

∫ A

0

h(a) [y(t, a, x; v + λw, g + λh)− y(t, a, x; v, g)] da.

We set zλ = e−rtyλ with r > 0. Then we obtain that zλ is a solution to the problem131

(2.7)


Lzλ + rzλ = 0 in Q,

zλ = 0 on Σ,
zλ(0, ·, ·) = 0 in QA,

zλ(·, 0, ·) =
∫ A

0
g(a)zλ da+ e−rtη1 in QT .

132

Multiplying the first equation of system (2.7) by zλ and integrating by parts over Q,133

then using the fact that µ ≥ 0, we obtain134

(2.8) ‖∇zλ‖2L2(Q) + r‖zλ‖2L2(Q) ≤
1

2
‖zλ(·, 0, ·)‖2L2(QT ).135

Since

‖zλ(·, 0, ·)‖2L2(QT ) ≤ 2‖g‖2L2(0,A)‖zλ‖
2
L2(Q)

+ 2‖h‖2L2(0,A)‖y(v + λw, g + λh)− y(v, g)‖2
L2(U ;H1

0 (Ω))
,

This manuscript is for review purposes only.
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it follows from (2.8) that

‖∇zλ‖2L2(Q) + (r − ‖g‖2L2(0,A))‖zλ‖
2
L2(Q) ≤

‖h‖2L2(0,A)‖y(v + λw, g + λh)− y(v, g)‖2L2(U ;H1
0 (Ω)).

Choosing r such that r > ‖g‖2L2(0,A), we deduce136

(2.9) ‖zλ‖L2(U ;H1
0 (Ω)) ≤ ‖h‖L2(0,A)‖y(v + λw, g + λh)− y(v, g)‖L2(U ;H1

0 (Ω)).137

Hence,138

(2.10) ‖yλ‖L2(U ;H1
0 (Ω)) ≤ erT ‖h‖L2(0,A)‖y(v + λw, g + λh)− y(v, g)‖L2(Q).139

Passing to the limit in this latter identity when λ→ 0 and using the fact that the func-140

tion (v, g) 7→ y(v, g) is continuous, it follows that yλ → 0 strongly in L2(U ;H1
0 (Ω)).141

This means that (yλ) converges to y strongly in L2(U ;H1
0 (Ω)) as λ→ 0.142

Proposition 2.3. The mapping143

∂y

∂g
(·, g) : L2(Qω)→ L

(
L2(0, A);L2(U ;H1

0 (Ω)
)

144

v 7→ ∂y

∂g
(v, g),145

146

is continuous.147

Proof. From Proposition 2.2, we have that y(h) =
∂y

∂g
(v, g)(h) is a solution to148 

Ly(h) = 0 in Q,
y(h) = 0 on Σ,

y(h)(0, ·, ·) = 0 in QA,

y(h)(·, 0, ·) =
∫ A

0
g(a)y(h) da+

∫ A
0
h(a)y(t, a, x; v, g) da in QT .

149

Let v1, v2 ∈ L2(Qω). Set y1(h) =
∂y

∂g
(v1, g)(h), y2(h) =

∂y

∂g
(v2, g)(h) and take z(h) =150

e−rt(y1(h)− y2(h)), r > 0. It then follows that z(h) is a solution to problem151

(2.11)


Lz(h) + rz(h) = 0 in Q,

z(h) = 0 on Σ,
z(h)(0, ·, ·) = 0 in QA,

z(h)(·, 0, ·) =

∫ A

0

g(a)z(h) da+ e−rtη4 in QT ,

152

where for (t, x) ∈ QT ,153

(2.12) η4(t, x) =

∫ A

0

h(a)(y(t, a, x; v1, g)− y(t, a, x; v2, g)) da.154

Multiplying the first equation of system (2.11) by z(h) and integrating by parts over155

Q, we obtain156

(2.13)

1

2
‖z(h)(T, ·, ·)‖2L2(QA) +

1

2
‖z(h)(·, A, ·)‖2L2(QT ) −

1

2
‖z(h)(·, 0, ·)‖2L2(QT )

+‖∇z(h)‖2L2(Q) +

∫
Q

(r + µ)z(h) = 0.
157
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Observing

‖z(h)(·, 0, ·)‖2L2(QT ) ≤ 2‖g‖2L2(0,A)‖z(h)‖2L2(Q)

+ ‖h‖2L2(0,A)‖y(v1, g)− y(v2, g)‖2L2(U ;H1
0 (Ω))

and choosing in (2.13) r such that r > ‖g‖2L2(0,A), we deduce158

(2.14) ‖z(h)‖L2(U ;H1
0 (Ω)) ≤ ‖h‖L2(0,A)‖y(v1, g)− y(v2, g)‖L2(U ;H1

0 (Ω)).159

Therefore,160

(2.15) ‖y1(h)− y2(h)‖L2(U ;H1
0 (Ω)) ≤ erT ‖h‖L2(0,A)‖y(v1, g)− y(v2, g)‖L2(U ;H1

0 (Ω)),161

from which we deduce

|||y1 − y2||| = sup
h∈L2(0,A),‖h‖≤1

‖y1(h)− y2(h)‖L2(U ;H1
0 (Ω))

≤ erT ‖y(v1, g)− y(v2, g)‖L2(U ;H1
0 (Ω)),

where |||·||| stands for the norm in L
(
L2(0, A);L2(U ;H1

0 (Ω))
)
. This leads us to∣∣∣∣∣∣∣∣∣∣∣∣∂y∂g (v1, g)− ∂y

∂g
(v2, g)

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ erT ‖y(v1, g)− y(v2, g)‖L2(U ;H1
0 (Ω)).

Passing to the limit in this latter inequality when v1 → v2 while using Proposition162

2.2, we obtain that ∂y
∂g (v1, g) converges to ∂y

∂g (v2, g) in L
(
L2(0, A);L2(U ;H1

0 (Ω))
)
.163

3. Resolution of the optimization problem (1.5). In this section, we are164

concerned with the optimization problem (1.5). As the Low-regret and No-regret165

notion introduced by Lions [1] uses the decomposition of the solution of (1.1) on the166

form y(v, g) = y(v, 0) + ϕ(g) where y(v, 0) is solution of (1.1) with g = 0 and ϕ(g)167

a function depending of g, this decomposition is no longer valid because the map168

g 7→ y(v, g) from L2(0, A) to L2(U ;H1
0 (Ω)) is non-linear. Thus using the regularity169

results of y proven in Proposition 2.1 and Proposition 2.2, we replace the cost function170

defined in (1.4) by its linearized form with respect to g. We thus consider as in [17]171

the new cost-function172

(3.1) J1(v, g) = J(v, 0) +
∂J

∂g
(v, 0)(g).173

Then, we consider the following new optimization problem:174

(3.2) inf
v∈L2(Qω)

sup
g∈L2(0,A)

(J1(v, g)− J1(0, g)).175

Let y(v, 0) ∈ L2(U ;H1
0 (Ω)) be the solution of176

(3.3)


Ly(v, 0) = f + vχω in Q,

y = 0 on Σ,
y(0, ·, ·) = y0 in QA,
y(·, 0, ·) = 0 in QT .

177

Then we have the following result.178
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8 C. KENNE, G. LEUGERING, AND G. MOPHOU

Proposition 3.1. For any (v, g) ∈ L2(Qω) × L2(0, A), the following equality179

holds:180

(3.4) J1(v, g) = J(v, 0) + 2

∫
Q

(
∂y

∂g
(v, 0)(g)

)
(y(v, 0)− zd) dt da dx,181

where J is the cost function defined in (1.4) and

∂J

∂g
(v, 0)(g) = lim

t→0

J(v, tg)− J(v, 0)

t
.

Proof. Observing on the one hand

J(v, tg) = ‖y(v, tg)− zd‖2L2(Q) +N‖v‖2L2(Qω)

= J(v, 0) + ‖y(v, tg)− y(v, 0)‖2L2(Q)

+ 2

∫
Q

(y(v, tg)− y(v, 0))(y(v, 0)− zd)dt da dx,

and on the other hand

∂J

∂g
(v, 0)(g) = lim

t→0

J(v, tg)− J(v, 0)

t
,

using Proposition 2.2, we obtain that

∂J

∂g
(v, 0)(g) = 2

∫
Q

(
∂y

∂g
(v, 0)(g)

)
(y(v, 0)− zd)dt da dx.

So, J1(v, g) = J(v, 0) + 2

∫
Q

(
∂y

∂g
(v, 0)(g)

)
(y(v, 0)− zd)dt da dx.182

Proposition 3.2. For any (v, g) ∈ L2(Qω)× L2(0, A), we have183

(3.5) J1(v, g)− J1(0, g) = J(v, 0)− J(0, 0) + 2

∫ A

0

S(a; v)g(a)da,184

where for any a ∈ (0, A),185

(3.6) S(a; v) =

∫
QT

[y(t, a, x; v, 0)ξ(v)(t, 0, x)− y(t, a, x; 0, 0)ξ(0)(t, 0, x)] dt dx186

with ξ(v), a solution to187

(3.7)


L∗ξ(v) = y(v, 0)− zd in Q,
ξ(v) = 0 on Σ,

ξ(v)(T, ·, ·) = 0 in QA,
ξ(v)(·, A, ·) = 0 in QT .

188

Proof. In view of (3.4), we have189

(3.8)

J1(v, g)− J1(0, g) = J(v, 0)− J(0, 0)

+ 2

∫
Q

(
∂y

∂g
(v, 0)(g)

)
(y(v, 0)− zd) dt da dx

−
∫
Q

(
∂y

∂g
(0, 0)(g)

)
(y(0, 0)− zd) dt da dx.

190
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From Proposition 2.2, we have that y(g) =
∂y

∂g
(v, 0)(g) is the solution to191

(3.9)


Ly(g) = 0 in Q,
y(g) = 0 on Σ,
y(g)(0, ·, ·) = 0 in QA,

y(g)(·, 0, ·) =

∫ A

0

g(a)y(t, a, x; v, 0) da in QT .

192

So, if we multiply the first equation of (3.9) by ξ(v) and integrate by parts over Q,
we get

−
∫
Q

g(a)y(t, a, x; v, 0)ξ(v)(t, 0, x) dt da dx+

∫
Q

y(g) (y(v, 0)− zd) dt da dx = 0,

which can be rewritten as193

(3.10)

∫
Q

(
∂y

∂g
(v, 0)(g)

)
(y(v, 0)− zd) dt da dx =∫

Q

g(a)y(t, a, x; v, 0)ξ(v)(t, 0, x) dt da dx.
194

We also have195

(3.11)

∫
Q

(
∂y

∂g
(0, 0)(g)

)
(y(0, 0)− zd) dt da dx =∫

Q

g(a)y(t, a, x; 0, 0)ξ(0)(t, 0, x) dt da dx.
196

Using (3.8), (3.10) and (3.11), it follows that197

(3.12)
J1(v, g)− J1(0, g) = J(v, 0)− J(0, 0)+

2

∫ A

0

g(a)

∫
QT

[y(t, a, x; v, 0)ξ(v)(t, 0, x)− y(t, a, x; 0, 0)ξ(0)(t, 0, x)] dadtdx

= J(v, 0)− J(0, 0) + 2

∫ A

0

S(a; v) g(a)da.

198

199

Lemma 3.3. Let ξ(v) be the solution of problem (3.7). Then the application v 7→200

ξ(v) is continuous from L2(Qω) onto L2(U ;H1
0 (Ω)).201

Proof. Let v1, v2 ∈ L2(Qω), and define ξ̄ = ξ(v1)− ξ(v2). Then ξ̄ is the solution202

to problem203

(3.13)


L∗ξ̄ = y(v1, 0)− y(v2, 0) in Q,
ξ̄ = 0 on Σ,

ξ̄(T, ·, ·) = 0 in QA,
ξ̄(·, A, ·) = 0 in QT .

204

By setting z = e−rtξ, it follows that z solves205

(3.14)


L∗z + rz = (y(v1, 0)− y(v2, 0))e−rt in Q,

z = 0 on Σ,
z(T, ·, ·) = 0 in QA,
z(·, A, ·) = 0 in QT .

206
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If we multiply the first equation of system (3.14) by z and integrating by parts over
Q, we get

1

2
‖z(0, ·, ·)‖2L2(QA) +

1

2
‖z(·, 0, ·)‖2L2(QT ) + ‖∇z‖2L2(Q) +

∫
Q

(r + µ)z2 dt da dx =∫
Q

(y(v1, 0)− y(v2, 0))ze−rt dt da dx.

It then follows

1

2
‖z(·, 0, ·)‖2L2(QT ) +‖∇z‖2L2(Q) +r‖z‖2L2(Q) ≤

1

2
‖y(v1, 0)−y(v2, 0)‖2L2(Q) +

1

2
‖z‖2L2(Q).

Taking r = 1
2 in this latter identity yields

1

2
‖z(·, 0, ·)‖2L2(QT ) +

1

2
‖z‖2L2(U ;H1

0 (Ω)) ≤
1

2
‖y(v1, 0)− y(v2, 0)‖2L2(Q).

Thus,207

(3.15) ‖ξ(·, 0, ·)‖2L2(QT ) + ‖ξ‖2L2(U ;H1
0 (Ω)) ≤ e

T ‖y(v1, 0)− y(v2, 0)‖L2(Q),208

from which we deduce

‖ξ‖L2(U ;H1
0 (Ω)) ≤ eT/2‖y(v1, 0)− y(v2, 0)‖L2(Q).

Using Proposition 2.1, while passing to limit in this latter inequality when v1 → v2,209

we obtain that ξ → 0 strongly in L2(U ;H1
0 (Ω)). This means that ξ(v1) → ξ(v2)210

strongly in L2(U ;H1
0 (Ω)) as v1 → v2.211

Proposition 3.4. Let S(·; v) be the function defined in (3.6). Then the map212

v 7→ S(·; v) is continuous form L2(Qω) onto L2(0, A).213

Proof. Let v1 and v2. Then in view of (3.6),

S(a; v1)− S(a; v2) =

∫
QT

(y(t, a, x; v1, 0)− y(t, a, x; v2, 0))ξ(v1)(t, 0, x) dt dx

−
∫
QT

y(t, a, x; v2, 0)(ξ(v2)(t, 0, x)− ξ(v1)(t, 0, x)) dt dx.

Using the Cauchy Schwarz inequality, we have

|S(a; v1)− S(a; v2)| ≤ ‖y(., a, .; v1, 0)− y(., a, .; v2, 0)‖L2(QT )‖ξ(v1)(., 0, .)‖L2(QT )

+‖y(., a, .; v2, 0)‖L2(QT )‖ξ(v2)(., 0, .)− ξ(v1)(., 0, .)‖L2(QT ).

Observing on the one hand that ξ(v2)− ξ(v1) is solution of (3.13), and, on the other
hand that, in view of (3.15),

‖ξ(v2)(., 0, .)− ξ(v1)(., 0, .)‖2L2(QT ) ≤ e
T/2‖y(v1, 0)− y(v2, 0)‖L2(Q),

we have

|S(a; v1)− S(a; v2)| ≤ ‖y(., a, .; v1, 0)− y(., a, .; v2, 0)‖L2(QT )‖ξ(v1)(., 0, .)‖L2(QT )

+eT/2‖y(., a, .; v2, 0)‖L2(QT )‖y(v1, 0)− y(v2, 0)‖L2(Q).
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Hence, ∫ A

0

|S(a; v1)− S(a; v2)|2da ≤

2‖y(., a, .; v1, 0)− y(., a, .; v2, 0)‖2L2(Q)‖ξ(v1)(., 0, .)‖2L2(QT )+

2eT ‖y(., a, .; v2, 0)‖2L2(Q)‖y(v1, 0)− y(v2, 0)‖2L2(Q).

It then follows from Poincaré inequality,

‖S(a; v1)− S(a; v2)‖L2(0,A) ≤
C(Ω)‖y(., a, .; v1, 0)− y(., a, .; v2, 0)‖L2(U ;H1

0 (Ω))‖ξ(v1)(., 0, .)‖L2(QT )+

C(Ω)eT/2‖y(., a, .; v2, 0)‖L2(Q)‖y(v1, 0)− y(v2, 0)‖L2(U ;H1
0 (Ω)),

where C(Ω) > 0 is a constant depending on Ω. In view of Proposition 2.1, it follows214

that S(·, v1)→ S(·, v2) as v1 → v2 .215

The following Lemma will be useful to prove the existence of the No-regret and Low-216

regret controls.217

Lemma 3.5. Let S(., v) be defined as in (3.6) for any a ∈ L2(0, A). For any γ > 0,
we consider the sequences yγ = y(t, a, x;uγ , 0) and ξ(uγ) , respectively, solutions of
(3.3) and (3.7) with v = uγ . Assume that there exists C > 0 independent of γ such
that

‖S(., uγ)‖L2(0,A) < C.

Assume also that û ∈ L2(Qω), ξ̂(., 0, .) ∈ L2(QT ) and ŷ = y(t, a, x; û, 0) ∈ L2(U ;H1
0 (Ω))218

solution of (3.3), such that219

uγ ⇀ û weakly in L2(U × ω),(3.16a)220

yγ ⇀ŷ = y(t, a, x; û, 0) weakly in L2(U,H1
0 (Ω)),(3.16b)221

ξ(uγ)(., 0, .) ⇀ ξ̂(., 0, .) weakly in L2(QT ).(3.16c)222223

Then we have

S(a;uγ) ⇀ S(a; û) weakly in D′(0, A).

Proof. Let D((0, A)) be the set of C∞ function with compact support on (0, A).224

Set for any φ ∈ D((0, A))225

(3.17) zγ(t, x) =

∫ A

0

y(t, a, x;uγ , 0)φ(a)da, (t, x) ∈ QT .226

Then, in view of (3.16b), there exists a constant C > 0 independent of γ such that

‖zγ‖L2(QT ) ≤ ‖yγ‖L2(Q)‖φ‖L2(0,A) ≤ C.

Consequently, there exists z ∈ L2(QT ) such that227

(3.18) zγ ⇀ z weakly in L2(QT ).228

Moreover, using (3.17) we have that,∫
QT

zγ(t, x)ψ(t, x) dx dt =

∫
QT

∫ A

0

y(t, a, x;uγ , 0)φ(a)ψ(t, x) dx dt da, ∀ψ ∈ D(QT ),
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which passing to the limit when γ → 0 while using (3.16b) gives

lim
γ→0

∫
QT

zγ(t, x)z(t, x) dx dt =

∫
QT

∫ A

0

y(t, a, x; û, 0)φ(a)ψ(t, x) dx dt da ∀ψ ∈ D(QT ).

This means that

zγ ⇀

∫ A

0

y(t, a, x; û, 0)φ(a) da weakly in D′(QT ).

It follows from (3.18) and the uniqueness of the limit that,229

(3.19) z(t, x) =

∫ A

0

y(t, a, x; û, 0)φ(a)da, (t, x) ∈ QT .230

Because yγ = y(t, a, x;uγ , 0) solves (3.3) with v = uγ , we have that zγ solves
∂zγ

∂t
−∆zγ = kγ in QT ,

zγ = 0 on (0, T )× Γ,

zγ(0) =

∫ A

0

y0(a, x)φ(a)da inΩ,

where

kγ(t, x) =

∫ A

0

(f + uγχω)φda−
∫ A

0

µ(a)yγφda−
∫ A

0

∂yγ

∂a
φda.

Consequently, in view of (3.16a) and (3.16b), we have there exists a positive constant
C independent of γ such that

‖kγ‖L2(QT ) ≤
(

2‖f‖2L2(Q) + 2‖uγ‖2L2(Qω) + ‖µ‖2L∞(0,A)‖y
γ‖2L2(Q)

)1/2

‖φ‖L2(0,A)+

‖yγ‖L2(Q)

∥∥∥∂φ∂a∥∥∥
L2(0,A)

≤ C.

It then follows that there is C > 0, independent of γ, such that
‖zγ‖L2((0,T );H1

0 (Ω)) ≤ C,∥∥∥∥∂zγ∂t
∥∥∥∥
L2((0,T );H−1(Ω))

≤ C.

Therefore, it follows from Aubin-Lions’s Lemma that231

(3.20) zγ → z strongly in L2(QT ),232

where

z(t, x) =

∫ A

0

y(t, a, x; û, 0)φ(a)da, (t, x) ∈ QT

because of (3.19).233

Now in view of (3.6)

S(a;uγ) =

∫
QT

[y(t, a, x;uγ , 0)ξ(uγ)(t, 0, x)− y(t, a, x; 0, 0)ξ(0)(t, 0, x)] dt dx.
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Therefore for any φ ∈ D(0, A),∫ A

0

S(a;uγ)φ(a)da =

∫
QT

∫ A

0

(y(t, a, x;uγ , 0)φ(a)da)ξ(uγ)(t, 0, x) dt da dx

−
∫
Q

y(t, a, x; 0, 0)ξ(0)(t, 0, x)φ(a) dt da dx

=

∫
QT

zγ(t, x)ξ(uγ)(t, 0, x) dt da dx

−
∫
Q

y(t, a, x; 0, 0)ξ(0)(t, 0, x)φ(a) dt da dx

Passing this latter identity to the limit while using (3.20), (3.19) and (3.16c), we
obtain∫ A

0

S(a;uγ)φ(a)da →
∫
QT

z(t, x)ξ(û)(t, 0, x) dt da dx

−
∫
Q

y(t, a, x; 0, 0)ξ(0)(t, 0, x)φ(a) dt da dx

=

∫
QT

∫ A

0

(y(t, a, x; û, 0)φ(a)da)ξ(û)(t, 0, x) dt da dx

−
∫
Q

y(t, a, x; 0, 0)ξ(0)(t, 0, x)φ(a) dt da dx ∀φ ∈ D(0, A),

which in view of (3.6), proves

S(a;uγ) ⇀ S(a; û) weakly in D′(0, A).

234

From now on, we denote by D(Θ) the set of C∞ function with compact support on Θ235

and by D′(Θ), its dual.236

3.1. Existence of No-regret control and Low-regret control. In view of237

(3.5), the optimization problem (3.2) is equivalent to the following problem:238

(3.21) inf
v∈L2(Qω)

sup
g∈L2(0,A)

[J(v, 0)− J(0, 0) + 2

∫ A

0

S(a; v)g(a)da].239

As

∫ A

0

S(a; v)g(a)da is either equal to 0 or +∞, we look for the control v in the set,240

(3.22) M =

{
v ∈ L2(Qω);

∫ A

0

S(a; v)g(a)da = 0, ∀g ∈ L2(0, A)

}
.241

Note that the set M is strongly closed in L2(Qω). Now, observing on the one hand242

that the application v 7→ J(v, 0) − J(0, 0) is coercive on L2(Qω), bounded below by243

−J(0, 0), and continuous because of Proposition 2.1, and on the other hand that the244

application v 7→ S(·; v) is continuous on L2(Qω), using minimizing sequences and245

Lemma 3.5, we prove that there exists a No-regret control ũ in M satisfying (3.21).246

We thus have proved the following result.247

Lemma 3.6. There exists a solution ũ of (3.21) in M.248
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As such a control ũ is not easy to characterize, we consider for any γ > 0, the relaxed249

optimization problem, which we refer to as the Low-regret-control problem:250

(3.23) inf
v∈L2(Qω)

sup
g∈L2(0,A)

[
J(v, 0)− J(0, 0) + 2

∫ A

0

S(a; v)g(a)da− γ‖g‖2L2(0,A)

]
.251

Observing that

sup
g∈L2(0,A)

[
J(v, 0)− J(0, 0) + 2

∫ A

0

S(a; v)g(a)da− γ‖g‖2L2(0,A)

]
=

J(v, 0)− J(0, 0) + 2γ sup
g∈L2(0,A)

[∫ A

0

S(a; v)

γ
g(a)da− 1

2
‖g‖2L2(0,A)

]
,

using Fenchel-Legendre transform (see [16]), we obtain that,

2γ sup
g∈L2(0,A)

[∫ A

0

S(a; v)

γ
g(a)da− 1

2
‖g‖2L2(0,A)

]
=

1

γ
‖S(·; v)‖2L2(0,A)

and (3.23) is equivalent to252

(3.24) inf
v∈L2(Qω)

J γ(v),253

with254

(3.25) J γ(v) = J(v, 0)− J(0, 0) +
1

γ
‖S(·; v)‖2L2(0,A).255

256

Proposition 3.7. Let γ > 0. Then there exists at least in L2(Qω) a Low-regret257

control uγ solution of problem (3.24).258

Proof. We have J γ(v) ≥ −J(0, 0) and J γ(0) = 0. Using minimizing sequences,259

Proposition 2.1, Proposition 3.4 and Lemma 3.5, we prove as for Lemma 3.6 that260

problem (3.24) has at least one solution uγ ∈ L2(Qω).261

Remark 3.8. The uniqueness of uγ ∈ L2(Qω), solution of (3.24) is not guaranteed262

because the application v 7→ S(·; v) from L2(Qω) to L2(0, A) is not necessarily strictly263

convex. Consequently, we are not sure that control uγ will converge to a No-regret264

control ũ ∈ M. So, in order to have a Low-regret control which will converge in M,265

we adapt the cost function J γ to a No-regret control ũ.266

3.2. Existence of the adapted low-regret control. Let ũ be a No-regret267

optimal control. For any γ > 0, we define the adapted cost function J̃ γ by:268

(3.26) v 7→ J̃ γ(v) = J(v, 0)− J(0, 0) + ‖v − ũ‖2L2(Qω) +
1

γ
‖S(·; v)‖2L2(0,A).269

Then, we consider the following optimal control problem:270

(3.27) inf
v∈L2(Qω)

J̃ γ(v).271

272
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Proposition 3.9. Let γ > 0. Then problem (3.27) has at least a solution ũγ in273

L2(Qω).274

Proof. One proceeds as for the proof of Proposition 3.7 using the fact that v 7→275

J̃ γ(v) is continuous on L2(Qω)( thanks to Proposition 2.1 and Proposition 3.4) and276

the fact that lim
‖v‖

L2(Qω)
→+∞

J γ(v) = +∞.277

Proposition 3.10. Let ũγ ∈ L2(Qω) be a solution of (3.27). Then there exist278

p̃γ = p(ũγ) ∈ L2(U ;H1
0 (Ω)) and q̃γ = q(ũγ) ∈ L2(U ;H1

0 (Ω)) such that {ỹγ , ξ̃γ , p̃γ , q̃γ}279

is a solution of the systems:280

(3.28)


Lỹγ = f + ũγχQω in Q,
ỹγ = 0 on Σ,

ỹγ(0, ·, ·) = y0 in QA,
ỹγ(·, 0, ·) = 0 in QT ,

281

282

(3.29)


L∗ξ̃γ = ỹγ − zd in Q,

ξ̃γ = 0 on Σ,

ξ̃γ(T, ·, ·) = 0 in QA,

ξ̃γ(·, A, ·) = 0 in QT ,

283

284

(3.30)


Lp̃γ = 0 in Q,
p̃γ = 0 on Σ,

p̃γ(0, ·, ·) = 0 in QA,

p̃γ(·, 0, ·) =
1
√
γ

∫ A

0

y(t, a, x; ũγ , 0)S(a; ũγ) da in QT ,

285

286

(3.31)


L∗q̃γ = y(ũγ , 0)− zd + %γ in Q,
q̃γ = 0 on Σ,

q̃γ(T, ·, ·) = 0 in QA,
q̃γ(·, A, ·) = 0 in QT ,

287

and288

(N + 1)ũγ − ũ+ q̃γ = 0 in Qω,(3.32)289

where %γ = 1√
γ p̃γ + 1

γS(a; ũγ)ξ(ũγ)(t, 0, x), ỹγ = y(ũγ , 0) and ξ̃γ = ξ(ũγ).290

Proof. We write the Euler-Lagrange optimality condition that characterizes ũγ :

lim
λ→0

J̃ γ(ũγ + λw)− J̃ γ(ũγ)

λ
= 0, ∀w ∈ L2(Qω).

Using Proposition 2.2 and Proposition 3.2, we obtain after some calculations291

(3.33)

0 =

∫
Q

(
∂y

∂v
(ũγ , 0)(w)

)(
y(ũγ , 0)− zd +

1

γ
ξ(ũγ)(·, 0, ·)S(·; ũγ)

)
dt da dx

+

∫
Qω

(ũγ − ũ)w dt da dx+

∫
Qω

Nũγ w dt da dx

+
1

γ

∫
Q

∂ξ

∂v
(ũγ)(w)(·, 0, ·) y(ũγ , 0)S(·; ũγ) dt da dx, ∀w ∈ L2(Qω),

292
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where y(w) =
∂y

∂v
(ũγ , 0)(w) and ξ =

∂ξ

∂v
(ũγ)(w) are respectively solutions to293

(3.34)


Ly(w) = w in Q,
y(w) = 0 on Σ,

y(w)(0, ·, ·) = 0 in QA,
y(w)(·, 0, ·) = 0 in QT

294

and295

(3.35)


L∗ξ = y(w) in Q,

ξ = 0 on Σ,

ξ(T, ·, ·) = 0 in QA,

ξ(·, A, ·) = 0 in QT .

296

To interpret (3.33), we use the adjoint states q̃γ and p̃γ solutions of (3.31) and (3.30)297

respectively.298

So if we multiply the first term of (3.34) by a function q̃γ and the first equation299

of (3.35) by a function
1
√
γ
pγ , then integrate by parts over Q, we, respectively, obtain300

(3.36)

∫
Q

y(w)

(
y(ũγ , 0)− zd +

1
√
γ
pγ +

1

γ
S(a; ũγ)ξ(ũγ)(t, 0, x)

)
dt da dx =∫

Qω
w q̃γ dt da dx,

301

and302

1

γ

∫
Q

ξ(·, 0, ·)y(t, a, x; ũγ , 0)S(a; ũγ) dt da dx =
1
√
γ

∫
Q

y(w) pγ dt da dx.(3.37)303

Combining (3.36), (3.37) and (3.33), we have304 ∫
Qω

((N + 1)ũγ − ũ+ q̃γ)w dt da dx = 0, ∀w ∈ L2(Qω),305

which implies that306

(N + 1)ũγ − ũ+ q̃γ = 0 in Qω.(3.38)307

Proposition 3.11. Let ũγ ∈ L2(Qω) be a solution of (3.27). Let also ỹγ , ξ̃γ , p̃γ308

and q̃γ be such that (3.28)-(3.32) hold true. Then we have following estimations:309

‖ũγ‖L2(Qω) ≤ C
(
N, ‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
,(3.39)310

1
√
γ
‖S(·; ũγ)‖L2(0,A) ≤ C

(
‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
,(3.40)311

‖S(·; ũγ)‖L2(0,A) ≤
√
γC
(
‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
,(3.41)312

‖ỹγ‖L2(U ;H1
0 (Ω)) ≤ C

(
N,T, ‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
,(3.42)313

‖ξ̃γ‖L2(U ;H1
0 (Ω)) ≤ C

(
T, ‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
,(3.43)314

‖ξ̃γ(., 0, .)‖L2(QT ) ≤ C
(
T, ‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
,(3.44)315

‖p̃γ(., 0, .)‖L2(QT ) ≤ C
(
‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
,(3.45)316

‖p̃γ‖L2(U ;H1
0 (Ω)) ≤ C

(
T, ‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
,(3.46)317

‖q̃γ‖L2(U ;H1
0 (Ω)) ≤ C

(
N,T, ‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
,(3.47)318
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where from now on, C(X) to denote a positive constant whose value varies from a319

line to another but depends on X.320

Proof. We proceed in three steps.321

Step 1. We prove the estimations (3.39)-(3.43).322

As ũγ is solution of (3.27), we can write323

(3.48) J̃ γ(ũγ) ≤ J̃ γ(0) = ‖ũ‖L2(Qω).324

It then follows from the definition of J̃ γ and J given respectively by (3.26) and (1.4)
that,

‖ỹγ − zd‖2L2(Q) +N‖ũγ‖2L2(Qω) + ‖ũγ − ũ‖2L2(Q) +
1

γ
‖S(·; ũγ)‖2L2(0,A) ≤

‖ũ‖2L2(Qω) + ‖y(0, 0)− zd‖2L2(Q) = C
(
‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
.

Hence we deduce (3.39), (3.40), (3.41) and325

(3.49) ‖ỹγ − zd‖L2(Q) ≤ C
(
‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
.326

Observing ỹγ and ξ̃γ are respectively solution of (3.28) and (3.29), proceeding as for
y in pages 3-4, we obtain that

‖ỹγ‖L2(U ;H1
0 (Ω)) ≤

1√
2
e2T (‖y0‖L2(QA) + ‖f‖L2(Q) + ‖ũγ‖L2(Qω))

and

‖ξ̃γ(., 0, .)‖L2(QT ) + ‖ξ̃γ‖L2(U ;H1
0 (Ω)) ≤

√
2

2
e2T ‖ỹγ − zd‖L2(Q),

from which we, respectively, deduce (3.42), (3.43) and (3.44) because of (3.39) and327

(3.49).328

Step 2. We prove the estimations (3.45) and (3.46).329

To prove (3.45), we observe that∣∣∣∣∣ 1
√
γ

∫ A

0

y(t, a, x; ũγ , 0)S(a; ũγ) da

∣∣∣∣∣ ≤
1
√
γ
‖S(.; ũγ)‖L2(0,A)

(∫ A

0

y(t, a, x; ũγ , 0)2da

)1/2

.

So using (3.40) and (3.49), we deduce∫
QT

∣∣∣∣∣ 1
√
γ

∫ A

0

y(t, a, x; ũγ , 0)S(a; ũγ) da

∣∣∣∣∣
2

dt dx ≤ 1

γ
‖S(.; ũγ)‖2L2(0,A)‖ỹγ‖

2
L2(Q)

≤ C,

where C = C
(
‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
> 0. This means

||pγ(·, 0, ·)||L2(Q) ≤ C
(
‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
.

Since pγ is solution of (3.30), proceeding as for y in pages 3-4 while using (3.45), we
obtain

‖p̃γ‖L2(U ;H1
0 (Ω)) ≤

1√
2
e2T (‖y0‖L2(QA) + ‖f‖L2(Q) + ‖ũγ‖L2(Qω)).
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18 C. KENNE, G. LEUGERING, AND G. MOPHOU

Step 3. We prove (3.47).330

We observe that q̃γ , solution of (3.31), can be decomposed as q̃γ = q̃1
γ + q̃2

γ , where331

q̃1
γ is solution to332

(3.50)


L∗q̃1

γ = ỹγ − zd in Q,
q̃1
γ = 0 on Σ,

q̃1
γ(T, ·, ·) = 0 in QA,
q̃1
γ(·, A, ·) = 0 in QT ,

333

and q̃2
γ is solution to334

(3.51)


L∗q̃2

γ =
1
√
γ
pγ +

1

γ
S(a; ũγ)ξ(ũγ)(t, 0, x) in Q,

q̃2
γ = 0 on Σ,

q̃2
γ(T, ·, ·) = 0 in QA,
q̃2
γ(·, A, ·) = 0 in QT .

335

Proceeding as for y in pages 3-4, while using (3.49), we obtain336

(3.52) ‖q̃1
γ‖L2(U ;H1

0 (Ω)) ≤ C
(
T, ‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
.337

Combining (3.33) and (3.37), we obtain338

(3.53)

0 =

∫
Q

y(w)(ỹγ − zd) dt da dx

+
∫
Qω

Nũγ w dt da dx+

∫
Qω

(ũγ − ũ)w dt da dx

+

∫
Q

y(w)

(
1
√
γ
pγ +

1

γ
ξ̃γ(0)S(a; ũγ)

)
dt da dx, ∀w ∈ L2(Qω).

339

Set340

(3.54) E =
{
y(w), w ∈ L2(Qω)

}
.341

Then E ⊂ L2(Q). We define on E × E the inner product:342

(3.55) 〈y(v), y(w)〉E =

∫
Qω

vw dt da dx+

∫
Q

y(v)y(w) dt da dx, ∀y(v), y(w) ∈ E .343

Then E endowed with the norm344

(3.56) ‖y(w)‖2E = ‖w‖2L2(Qω) + ‖y(w)‖2L2(Q), ∀y(w) ∈ E345

is a Hilbert space. We set

Tγ(ũγ) =
1
√
γ
pγ +

1

γ
ξ̃γ(0)S(a; ũγ).

Then, in view of (3.53), we have for any w ∈ L2(Qω),346

(3.57)

∫
Q

Tγ(ũγ)y(w)dtdadx = −
∫
Q

y(w)(ỹγ − zd) dt da dx

−
∫
Qω

Nũγ w dt da dx−
∫
Qω

(ũγ − ũ)w dt da dx.
347
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Using the Cauchy Schwarz inequality, we have∣∣∣∣−∫
Q

y(w)(ỹγ − zd) dt da dx−
∫
Qω

((N + 1)ũγ − ũ)w dt da dx

∣∣∣∣ ≤
‖ỹγ − zd‖L2(Q)‖y(w)‖L2(Q) + (N + 1)‖ũγ‖L2(Qω)‖w‖L2(Qω)+

‖ũ‖L2(Qω)‖w‖L2(Qω).

Therefore, using (3.49) and (3.39),∣∣∣∣− ∫
Q

y(w)(ỹγ − zd) dt da dx−
∫
Qω

((N + 1)ũγ − ũ)w dt da dx

∣∣∣∣ ≤
(
‖ỹγ − zd‖2L2(Q) + [(N + 1)‖ũγ‖L2(Qω) + ‖ũ‖L2(Qω)]

2
)1/2

‖y(w)‖E ≤
C‖y(w)‖E ,

where C = C
(
N,T, ‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
> 0. It then follows

from (3.57) ∣∣∣∣∫
Q

Tγ(ũγ)y(w)dtdadx

∣∣∣∣ ≤ C‖y(w)‖E .

Consequently,

‖Tγ(ũγ)‖E′ =

∣∣∣∣∣∣∣∣ 1
√
γ
pγ +

1

γ
ξ̃γ(0)S(a; ũγ)

∣∣∣∣∣∣∣∣
E′
≤ C.

In particular,348

(3.58)

∣∣∣∣∣∣∣∣ 1
√
γ
pγ +

1

γ
ξ̃γ(0)S(a; ũγ)

∣∣∣∣∣∣∣∣
L2(Q)

≤ C,349

where C = C
(
N,T, ‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
> 0.350

Now, proceeding as for y in pages 3-4, while using (3.58), we obtain that351

(3.59) ‖q̃2
γ‖L2(U ;H1

0 (Ω)) ≤ C
(
N,T, ‖ũ‖L2(Qω), ‖y0‖L2(QA), ‖f‖L2(Q), ‖zd‖L2(Q)

)
.352

Finally from (3.52) and (3.59) we deduce (3.47).353

3.3. Characterization of the No-regret control.354

Proposition 3.12. The adapted Low-regret optimal control ũγ converges in L2(Qω)355

to the No-regret control ũ ∈M.356

Proof. In view of (3.39)-(3.44), there exists a subsequence of (ũγ , ỹγ , ξ̃γ , S(., ũγ))357

still denoted by (ũγ , ỹγ , ξ̃γ , S(., ũγ)) and û ∈ L2(Qω), ỹ ∈ L2(U,H1
0 (Ω)), ξ̃ ∈ L2(U,H1

0 (Ω)),358

α ∈ L2(0, A), τ ∈ L2(QT ) such that359

ũγ ⇀ û weakly in L2(Qω),(3.60)360

1
√
γ
S(., ũγ)) ⇀ α weakly in L2(0, A),(3.61)361

S(., ũγ))→ 0 strongly in L2(0, A),(3.62)362

ỹγ ⇀ ỹ weakly in L2(U ;H1
0 (Ω)),(3.63)363

ξ̃γ ⇀ ξ̃ weakly in L2(U ;H1
0 (Ω)),(3.64)364

ξ̃γ(., 0, .) ⇀ τ weakly in L2(QT ).(3.65)365
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If we multiply the first equation (3.28) by φ ∈ D(Q) and the first equation in (3.29)
by ψ ∈ D(Q) and integrate by parts over Q, we have∫

Q

ỹγL
∗φdt da dx =

∫
Q

(f + ũγχω)φdt da dx

and ∫
Q

ξ̃γLψ dt da dx =

∫
Q

(ỹγ − zd)ψ dt da dx.

Passing in these two latter identities to the limit, while using (3.60), (3.63) and (3.64),
we obtain ∫

Q

ỹL∗φdt da dx =

∫
Q

(f + ûχω)φdt da dx

and ∫
Q

ξ̃Lψ dt da dx =

∫
Q

(ỹ − zd)ψ dt da dx,

which after an integration by parts over Q give∫
Q

Lỹ φ dt da dx =

∫
Q

(f + ûχω)φdt da dx, ∀φ ∈ D(Q)

and ∫
Q

L∗ξ̃ ψ dt da dx =

∫
Q

(ỹ − zd)ψ dt da dx, ∀ψ ∈ D(Q),

respectively. Hence, we can deduce366

(3.66) Lỹ = f + ûχω in Q367

and368

(3.67) L∗ξ̃ = ỹ − zd in Q.369

Note that ỹ, ξ̃ ∈ L2(U,H1
0 (Ω)). This implies that ỹ(t, a)|Γ and ξ̃(t, a)|Γ exist and370

belong to L2(Γ) for almost every (t, a) ∈ U. On the other hand from (3.66), (3.67)371

and the expression of the operator L and L∗ given by (2.1), we have ỹ, ξ̃ ∈W (T,A).372

It follows from Remark 1.1 that (ỹ(0, ., .), ξ̃(T, ., .)) exists and belongs (L2(QA))2 and373

(ỹ(., 0, .), ξ̃(., A, .), ξ̃(., 0, .)) exists and belongs (L2(QT ))2.374

Now, if we multiply the first equation (3.28) by φ ∈ C∞(Q) such that φ = 0 on
Σ, φ(·, A, ·) = 0 in QT and φ(T, ·, ·) = 0 in QA and the first equation in (3.29) by
ψ ∈ C∞(Q) such that ψ = 0 on Σ and ψ(0, ·, ·) = 0 in QA and integrate by parts over
Q, we respectively have that

−
∫
QA

y0 φ(0, a, x) da dx+

∫
Q

ỹγ L
∗φda dx =

∫
Q

(f + ũγχω)φdt da dx

and ∫
QA

ξ̃γ(t, 0, x)ψ(0, a, x) dt dx+

∫
Q

ξ̃γ Lψ da dx =

∫
Q

(ỹγ − zd)ψ dt da dx.
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Passing these two latter identities to the limit while using (3.60), (3.63), (3.64) and
(3.65), we obtain

−
∫
QA

y0 φ(0, a, x) da dx+

∫
Q

ỹL∗φdt da dx =

∫
Q

(f + ûχω)φdt da dx,

∀φ ∈ C∞(Q) such that φ|Γ = 0, φ(·, A, ·)|QT = 0, φ(T, ·, ·)|QA = 0,

and ∫
QA

τ ψ(0, a, x) dt dx+

∫
Q

ξ̃Lψ dt da dx =

∫
Q

(ỹ − zd)ψ dt da dx,

∀ψ ∈ C∞(Q) such that ψ|Γ = 0, ψ(0, ·, ·)|QA = 0,

respectively, which after an integration by parts over Q give∫
Q

(f + ûχω)φdt da dx = −
∫
QA

(y0 − ỹ(0, a, x))φ(0, a, x) da dx+∫
QT

ỹ(t, 0, x)φ(t, 0, x) dt dx−
∫

Σ

ỹ
∂φ

∂ν
dt da dx+

∫
Q

Lỹ φ dt da dx,

∀φ ∈ C∞(Q) such that φ|Γ = 0, φ(·, A, ·)|QT = 0, φ(T, ·, ·)|QA = 0,

and ∫
Q

(ỹ − zd)ψ dt da dx =

∫
QA

(τ − ξ̃(t, 0, x))ψ(0, a, x) dt dx+∫
Q
L∗ξ̃ψ dt da dx+

∫
QA

ξ̃(T, a, x)ψ(T, a, x) da dx+∫
QT

ξ̃(t, A, x)ψ(t, A, x) dt dx+

∫
Σ

ξ̃
∂ψ

∂ν
dt da dx,

∀ψ ∈ C∞(Q) such that ψ|Γ = 0, ψ(0, ·, ·)|QA = 0.

Using (3.66) and (3.67), we deduce from these latter identities that,375

(3.68)

0 = −
∫
QA

(y0 − ỹ(0, a, x))φ(0, a, x) da dx+∫
QT

ỹ(t, 0, x)φ(t, 0, x) dt dx−
∫

Σ

ỹ
∂φ

∂ν
dt da dx,

∀φ ∈ C∞(Q) such that φ|Γ = 0, φ(·, A, ·)|QT = 0, φ(T, ·, ·)|QA = 0,

376

and377

(3.69)

0 =

∫
QA

(τ − ξ̃(t, 0, x))ψ(0, a, x) dt dx+∫
QA

ξ̃(T, a, x)ψ(T, a, x) da dx+∫
QT

ξ̃(t, A, x)ψ(t, A, x) dt dx+

∫
Σ

ξ̃
∂ψ

∂ν
dt da dx,

∀ψ ∈ C∞(Q) such that ψ|Γ = 0, ψ(0, ·, ·)|QA = 0.

378

If we successively take in (3.68) and (3.69),

φ(·, 0, ·)|QT = 0 and
∂φ

∂ν
|Γ = 0,

ψ(·, 0, ·)|QT = ψ(·, A, ·)|QT = 0 and
∂ψ

∂ν
|Γ = 0,
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∂φ

∂ν
|Γ = 0,

ψ(·, A, ·)|QT = 0 and
∂ψ

∂ν
|Γ = 0,

then in (3.69),
∂ψ

∂ν
|Γ = 0,

we successively obtain379

ỹ(0, ·, ·) = y0 in QA,(3.70)380

ξ̃(T, ·, ·) = 0 in QA, ,(3.71)381

382

ỹ(·, 0, ·) = 0 in QT ,(3.72)383

ξ̃(·, A, ·) = 0 in QT ,(3.73)384

then385

ỹ = 0 on Σ,(3.74)386

ξ̃(·, 0, ·) = τ in QT ,(3.75)387

and finally,388

ξ̃ = 0 on Σ.(3.76)389

Now, using (3.60),(3.63), (3.65), (3.75) and (3.41), we have from Lemma 3.5 that

S(., uγ) ⇀ S(., û) weakly in D′(0, A).

Hence, using (3.62) and the uniqueness of the limit that

S(., ũγ)→ S(., û) = 0 strongly in L2(0, A).

Consequently, ∫ A

0

S(a; ũγ)g(a) da→
∫ A

0

S(a; ûγ)g(a) da = 0.

Thus û ∈M and we also have ‖S(.; û)‖L2(0,A) = 0. Since ũ is a No-regret control and390

û ∈M , it follows from (3.21) that391

(3.77) J(ũ, 0)− J(0, 0) ≤ J(û, 0)− J(0, 0),392

Observing that ũγ solves the problem inf
v∈L2(Qω)

J̃ γ(v), we have393

(3.78) J̃ γ(ũγ) ≤ J̃ γ(ũ) = J(ũ, 0)− J(0, 0),394

which, in view of the definition of J̃ γ given by (3.26), implies that

J(ũγ , 0)− J(0, 0) + ‖ũγ − ũ‖2L2(Qω) ≤ J̃
γ(ũγ) ≤ J̃ γ(ũ) = J(ũ, 0)− J(0, 0).

Using the convexity and lower semi-continuity of J on L2(Qω), (3.60) and (3.63), we395

obtain396

(3.79) J(û, 0)− J(0, 0) + ‖û− ũ‖2L2(Qω) ≤ lim inf
γ→0

J̃ γ(ũγ) ≤ J(ũ, 0)− J(0, 0),397
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which combining with (3.77) gives

‖û− ũ‖2L2(Qω) ≤ 0.

Hence,398

(3.80) û = ũ in Qω.399

Thus the adapted Low-regret controls converge in L2(Qω) to the No-regret control.400

Moreover from (3.80), (3.66), (3.70),(3.72) and (3.74), it follows that ỹ = y(ũ, 0) ∈401

L2(U ;H1
0 (Ω)) unique solution of402

(3.81)


L ỹ = f + ũχQω in Q,
ỹ = 0 on Σ,

ỹ(0, ·, ·) = y0 in QA,
ỹ(·, 0, ·) = 0 in QT .

403

Similarly, from (3.67), (3.71),(3.73) and (3.76), we infer that ξ̃ = ξ(ũ) is the unique404

solution of405

(3.82)


L∗ξ̃ = ỹ − zd in Q,

ξ̃ = 0 on Σ,

ξ̃(T, ·, ·) = 0 in QA,

ξ̃(·, A, ·) = 0 in QT .

406

407

Proposition 3.13. The No-regret control ũ ∈ M is characterized by the func-408

tions ũ, ỹ, ξ̃, p̃ and q̃ which are unique solutions of the optimality system:409

(3.83)


L ỹ = f + ũχQω in Q,
ỹ = 0 on Σ,

ỹ(0, ·, ·) = y0 in QA,
ỹ(·, 0, ·) = 0 in QT ,

410

411

(3.84)


L∗ξ̃ = ỹ − zd in Q,

ξ̃ = 0 on Σ,

ξ̃(T, ·, ·) = 0 in QA,

ξ̃(·, A, ·) = 0 in QT ,

412

413

(3.85)


L p̃ = 0 in Q,
p̃ = 0 on Σ,

p̃(0, ·, ·) = 0 in QA,
p̃(·, 0, ·) = λ1 in QT ,

414

415

(3.86)


L∗q̃ = ỹ − zd + λ2 in Q,
q̃ = 0 on Σ,

q̃(T, ·, ·) = 0 in QA,
q̃(·, A, ·) = 0 in QT

416
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and417

(3.87) Nũ+ q̃ = 0,418

where

λ1 = lim
γ→0

1
√
γ

∫ A

0

yγ(t, a, x, ũγ)S(a; ũγ) da,

λ2 = lim
γ→0

(
1
√
γ
pγ +

1

γ
ξ̃γ(0)S(a; ũγ)

)
.

Proof. We have already proved (3.83) and (3.84) (see Page 23).419

From (3.45), (3.58),(3.46) and (3.47), we have there exist λ1 ∈ L2(QT ), λ2 ∈420

L2(Q), p̃ ∈ L2(U ;H1
0 (Ω)) and q̃ ∈ L2(U ;H1

0 (Ω)) such that421

p̃γ(., 0, .) ⇀ λ1 in L2(QT ),(3.88)422

1
√
γ
pγ +

1

γ
ξ̃γ(0)S(a; ũγ) ⇀ λ2 in L2(Q),(3.89)423

p̃γ ⇀ p̃ in L2(U ;H1
0 (Ω)),(3.90)424

q̃γ ⇀ q̃ in L2(U ;H1
0 (Ω)).(3.91)425

Then, proceeding as for ỹγ and ξ̃γ in Pages 19-22 while using (3.89)-(3.91), we prove426

(3.85) and (3.86). To obtain (3.87), we pass to the limit in (3.38) while using (3.60),427

(3.80) and (3.91).428

4. Conclusions. We used the notion of No-regret and Low-regret to control a429

model describing the dynamics of population with age dependence and spatial struc-430

ture with missing birth rate. In contrast to some works on the topic which need the431

control to act on the whole domain to obtain the convergence of the optimality system432

that characterizes the Low-regret control towards the singular optimality characteriz-433

ing the No-regret control, our control acts on a part of the domain. We then introduce434

an appropriate Hilbert space and apply the Aubin-Lions Lemma to an appropriate435

auxiliary problem to obtain the convergence of an adapted Low-regret control towards436

a No-regret control that we characterize.437

Acknowledgments. The third author was supported by the Alexander von438

Humboldt foundation, under the programme financed by the BMBF entitled “German439

research Chairs”. The first author is grateful for the facilities provided by the German440

research Chairs. The second author was supported by the DFG-TRR 154 ”Model-441

lierung Simulation und Optimierung am Beispiel von Gasnetzwerken” (TPA05),442

REFERENCES443
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