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Table SI1. Information about the carbon precursors used in the hydrothermal treatment.

Precursor  Chemical structure Molecular formula Molecular . Supplier ~ Commercial
weight (g mol™) reference
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Fig. SI1. Determination of the water contact angle of a droplet deposited on a spherical solid

surface: (a) using a straight baseline and Eq. (1) where 6, (°) is the true contact angle; (b) using a
curved baseline.
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Fig. SI2. XRD patterns of: (a) PBS1.0C and PBT1.0C (i.e., metal-free HCSs derived from big
templates with sucrose and tannin, respectively, as precursors) pyrolysed at different temperatures
(900 and 1500°C); the green circles indicate the peaks of NaCl, present as impurity, in the case of
HCSs tested after solar evaporation of salt water; and (b) PBSFeC (i.e., iron-loaded HCSs)
pyrolysed at 900, 1200 and 1500°C (the red stars and triangles indicate the peaks related to

metallic iron and to iron carbide, respectively).
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Fig. SI3. SEM images (top and middle rows) obtained with backscattered electrons of: (a)
PBSFeC-900, and (b, ¢, d) PBSFeC-1500 at different magnifications and in which iron particles
are seen as white spots, with local EDX analysis (bottom row) of two different points shown in (a)
and (b).
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Fig. S14. XRD patterns of PBSNIC (i.e., Ni-loaded HCSs) pyrolysed at different temperatures
(900, 1200 and 1500°C). The inset is a zoom on the (002) reflection of carbon.
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Fig. SI5. SEM images with backscattered electrons of: (a) PBSNiC-900, and (b) PBSNiC-1500 in
which nickel particles are seen as white spots, and (c) the EDX analysis of one white spot in (a).



Table S12. Structure analysis of metal-loaded HCSs prepared at different pyrolysis temperatures,
based on XRD. 6y is the Bragg angle, £ is the line broadening at half the maximum intensity of

the reflection, L. is the crystallite size along ¢ axis, and doo; is the interlayer spacing.

Sample name 2602 (°) B L. (pm) dooz (PM)
PBSFeC900 25.829 0.0342 466 346
PBSFeC1200 25.872 0.0317 501 344
PBSFeC1500 25.872 0.0312 519 345
PBSNiC900 26.144 0.01878 844 340
PBSNiC1200 26.111 0.01878 939 341
PBSNiC1500 26.05/26.48 0.0141/0.0038 1140/3826 341/337

Fig. SI6. (a) Three HCSs of type PBS1.0C-900 submitted to compression with a 50g reference
weight; (b) Strong attraction between metal-loaded HCSs and an Nd-based supermagnet

(Supermagnete® N35, adhesion strength ~ 8.2 kg).
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Fig. SI7. Contact angles of a few representative samples measured by two methods, using: (a-b) a
linear baseline as shown in Fig. Slla; (c-d) a curved baseline as shown in Fig. SI1b. (a and c)
Time-dependent contact angle for two HCSs prepared from different precursors and pyrolysed at
different temperatures, and (b and d) corresponding average contact angle 40 s after deposition of
the water droplet.
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Fig. SI9. (a) PBS1.0C-900 hollow carbon spheres still floating three months after they were put at
the surface of salt water; (b) Weight loss of an HCS-free beaker containing 20 g of 3.5 wt.% NaCl

and submitted to a radiant power of 1 kW m, as a function of time.
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Fig. S110. Changes of evaporation rate of salt water covered with HCSs as a function of their: (a)
oxygen content; and (b) water contact angle, for each tested radiant power. (c) Correlation
between floatability and contact angle for both cases of minimal and maximal wetting. The lines

are linear fits in (a) but only guides for the eye in (b) and (c).

AF

3.5f
E 3 *
)
<
p 250
0
®
5 2 +
a -
3 15f —
] + —_
= —
4 1 ‘__-—'
ES —

+ -
-
0.5 Pty
L
4]
0 1 2 3
Time (h)

Fig. SI11. Experimental (crosses) and simulated (lines) evaporation rate (using a convective
exchange coefficient he = 47 W m™ K™ of the HCS-free system submitted to a radiant power of 1
kW m?, as a function of time: without (dashed line); and with a source term increasing linearly
with the power of the solar simulator (solid line).
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Fig. SI12. Impact on the presence of one HCS in the system (case #3 of Fig. 5b) on: (a) surface

temperature; (b) surface water vapour pressure; and (c) p./T ratio (the index “a” referring to air),

as a function of time.
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Fig. SI113. Same as Fig. 14, but the source term was set to zero.
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