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Abstract. A wide range of machine learning problems involve handling
graph-structured data. Existing machine learning approaches for graphs,
however, often imply computing expensive graph similarity measures,
preprocessing input graphs, or explicitly ordering graph nodes. In this
work, we present a novel and simple convolutional neural network archi-
tecture for supervised learning on graphs that is provably invariant to
node permutation. The proposed architecture operates directly on arbi-
trary graphs and performs no node sorting. It also uses a simple multi-
layer perceptron for prediction as opposed to conventional convolution
layers commonly used in other deep learning approaches for graphs. De-
spite its simplicity, our architecture is competitive with state-of-the-art
graph kernels and existing graph neural networks on benchmark graph
classification data sets. Our approach clearly outperforms other deep
learning algorithms for graphs on multiple multiclass classification tasks.
We also evaluate our approach on a real-world original application in ma-
terials science, on which we achieve extremely reasonable results.

Keywords: Graph neural networks - Graph convolution - Graph classi-
fication.

1 Introduction

Many real-world data present an inherent structure and can be modelled as se-
quences, graphs, or hypergraphs. Machine learning applications involving such
structured data include natural language processing [8], modelling of DNA and
RNA sequences [28], molecular property prediction [12], and link prediction in
citation and social graphs [2]. Graph-structured data in particular are very com-
mon in practice and are at the heart of this work.

We distinguish two main classification problems on graphs: node classifica-
tion and graph classification. In this work, we consider the problem of graph
classification, that is, given a set G = {G;}7, of arbitrary graphs G; and their
respective labels {y;}",, where y; € {1,...,C} and C' > 2 is the number of

* Supported by the Emergence@QINC-2018 program of the French National Center for
Scientific Research (CNRS).



2 Atamna et al.

classes, we aim at finding a mapping fo(G) : G — {1,...,C}, where 6 denotes
the parameters to optimize.

A variety of graph kernels [T6J26125] have been proposed in the literature to
tackle the aforementioned classification problem. The idea is to define similar-
ity measures (i.e. kernels) on graphs that can then be used by classical kernel
methods—such as support vector machines (SVMs)—to perform classification.

The advent of deep learning approaches in the past decades and their spec-
tacular success on a variety of tasks, such as image processing, have led to the
emergence of multiple deep architectures for graphs. Graph convolutional net-
works in particular extend convolutional neural networks (CNNs), traditionally
defined for regular grids, to graphs by trying to generalize the concepts of “con-
volution” and “pooling” to graph-structured data. Despite their efficiency, deep
learning approaches for graphs usually have very elaborate architectures that
render the interpretation of the proposed models difficult [35].

In this paper, we present a novel and simple graph convolutional network for
graph classification that is inspired by the work of [21] on semi-supervised node
classification. Our architecture supports input graphs of varying sizes and struc-
tures represented as adjacency and node feature matrices, and can be applied
directly to any graph classification task (e.g. bioinformatics and social graphs)
as illustrated in our experiments. We are motivated in particular by a chal-
lenging application in materials science, which consists in assessing the stability
of new chemical compounds in order to store hydrogen efficiently. This tedious
task is traditionally tackled through expensive DFT (density functional theory)
calculations [22].

Our contributions in this work are multifold:

— We propose a novel end-to-end graph convolutional network for graph clas-
sification that is able to process arbitrary graphs directly without any pre-
processing;

— The architecture of our Simple Permutation-Invariant Graph Convolutional
Network (SPI-GCN) is simple in that (i) no node sorting is required and (ii)
the new graph features extracted after the graph convolution are fed to a
simple multilayer perceptron (MLP) to perform classification;

— SPI-GCN is invariant to node permutation—i.e. graph isomorphism (GI),
which guarantees that the same output is returned for equivalent graphs;

— We demonstrate through numerical experiments on benchmark graph data
sets that SPI-GCN is competitive with state-of-the-art approaches. It also
clearly outperforms similar deep learning methods on multiclass classification
problems;

— We also test SPI-GCN on a rich original data set gathered and managed by
the ICMPEﬂ and dedicated to the generation of new stable crystal structures;

— Our PyTorch implementation of SPI-GCN and the data sets are publicly
available at https://github.com/asmaatamna/SPI-GCN.

This paper is organized as follows. Section [2] discusses the related work. We
introduce some graph theory concepts and notations in Section[3] In Section[d] we

3 East Paris Institute of Chemistry and Materials Science, France.
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introduce our graph convolutional network, SPI-GCN. Our experimental results
are presented in Section [5] Finally, a discussion and concluding remarks are
provided in Section [6]

2 Related Work

There are two main supervised machine learning approaches for graph-structured
data: graph kernels and graph neural networks.

Graph kernels [T6425] define a similarity measure on graphs thereby allow-
ing the application of kernel machines, such as SVMs, to graph classification.
To measure the similarity between two graphs, most graph kernels proceed by
decomposing each graph into substructures, e.g. subtrees [39], graphlets [40], or
shortest paths [4513], then comparing these substrucutres pairwise. Graph de-
composition can be very expensive for large graphs, and research has focused on
designing tractable kernels. An effective class of graph kernels are the Weisfeiler-
Lehman (WL) kernels [39] that implement a feature extraction mechanism based
on the WL algorithm [47] for graph isomorphism test; the proposed kernels, how-
ever, only support discrete features. In [48|, a general framework is presented
where a deep neural network is used to learn latent representations of the sub-
structures used by different graph kernels, as a way to leverage the dependencies
between substructures. Recent works on graph kernels [23]29] discuss the bene-
fit of comparing more global graph substructures. Graph kernels have been the
state-of-the-art in graph classification; their main drawback, however, is their
computational inefficiency. In particular, the training complexity of graph ker-
nels is at least quadratic in the number of graphs [39].

Graph neural networks were first introduced in [I5J36]. The so-called Graph
Neural Network (GNN) presented in [36] is a recurrent architecture that learns
latent node representations for each node using its neighbors’ information un-
til a fixed point is reached. More recent deep learning approaches for graphs
aim at generalizing conventional CNNs from regular grids to irregular graph do-
mains; they are commonly referred to as graph convolutional networks (GCNs)
and are usually classified into two categories in the literature: spectral GCNs,
rooted in graph signal processing and where the graph convolution is defined as
a function of the graph’s Laplacian matrix, and spatial GCNs where the graph
convolution consists in collecting local information from a node’s neighborhood.
A pioneering spectral approach is presented in [6], then extended in [I7] by the
introduction of a graph estimation procedure. In [43], a graph attention network
(GAT) model for node classification is proposed with a convolution operator
that implicitly assigns different weights to neighboring nodes. A related recent
work is presented in [41], where the proposed spatial GCN also assigns different
weights to neighboring nodes by exploiting edge features as a way to collect more
refined structural information. [I0] presents a spectral approach where localized
convolution filters are defined as Chebyshev polynomials of the diagonal eigen-
values matrix associated to the graph’s Laplacian, thereby reducing the O(n?)
cost of spectral convolutions on graphs. [2I] introduces a first-order approxima-
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tion of the Chebyshev filter presented in [10] for node classification on large-scale
graphs. This approach bridges the gap between spectral and spacial approaches,
since the convolutions are performed in the spacial domain while being rooted in
the spectral domain. The authors show that the convolved node representations
computed by their approach can be interpreted as the graph coloring returned
by the 1-dimensional WL algorithm [47]. A related node classification approach
that is invariant to graph isomorphism is presented in [I]. [I2] introduces a graph
convolution approach for graph-level classification that generalizes molecular fin-
gerprint design through the use of a differentiable neural network. The approach,
however, does not scale to graphs with wide node degree distributions due to the
use of node degree-specific trainable weight matrices. A popular deep learning
approach for graphs, PATCHY-SAN, is presented in [3I]. The authors define of
a spatial graph convolution operator that extracts normalized local “patches”
(neighborhood representations) of the graph which are then sorted and fed to
a 1-dimensional traditional convolution layer to perform graph-level classifica-
tion. The method, however, requires the definition of a node ordering, as well as
running the WL algorithm, in a preprocessing step. The normalization of the ex-
tracted parches, on the other hand, implies sorting the nodes again and using the
external graph software NAUTY [27]. A related GCN that is invariant to node
permutation has been recently presented in [50]. The convolution operator is
closely related to the first-order approximation of the Chebyshev filter presented
in [21I], and the authors introduce a SortPooling operator that sorts the con-
volved nodes, which are then fed to a 1-dimensional classical convolution layer
for graph-level classification. Graph neural networks have been largely applied
in chemistry as well. In [I3], the authors unify existing graph neural networks for
supervised learning on molecules under a common message passing framework.
Following this framework, [37] introduces a new graph convolutional architec-
ture that extends the work in [2II12] to link prediction and node classification
for large-scale relational multigraphs.

Our approach extends the approximate Chebyshev filter of [2I] to graph-
level classification by introducing a sum-pooling operator to obtain graph-level
representations. Our approach is also related to [50] in that we adopt the same
graph convolution operator inspired by the one in [21]. Unlike [50], however, our
approach does not require the definition of any node ordering, yet it retains the
permutation-invariance property as demonstrated in Section [d] and we only use
a simple MLP to perform classification. Our work is also related to [41I1] that
use summing-based pooling operators and, hence, are also invariant to node per-
mutation. Both approaches, however, are memory-consuming (in [41], a weight
matrix is generated for each edge while [I] requires storing power series of the
adjacency matrix) and, consequently, do not scale to very large graphs.

3 Some Graph Concepts

We follow the graph theory framework to formally define the graph-structured
data that we handle in this paper and to introduce some graph-related concepts.
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A graph G is a pair (V, E) of a set V = {v1,...,v,} of vertices (or nodes)
v;, and a set E C V x V of edges (v;,v;). In practice, a graph G is often
represented by an adjacency matriz A € R™*™ modelling the edges of the graph,
where n = |V| is the number of vertices, and such that a;; = 1 if there is an edge
between nodes v; and v; ((v;,v;) € E) and a;; = 0 otherwise. Edges can be either
oriented, and we say that the graph is directed, or non-oriented, in which case we
say that the graph is undirected. Note that the adjacency matrix of undirected
graphs is symmetric. In an undirected graph, we say that two vertices v; and
v; are neighbors if there exists and edge (v;,v;) € E, and we denote N (i) the
neighborhood of v;, i.e. the set of the indices of all neighbors of v;. The number
of neighbors, |N(i)|, of a node v; is called the degree of v;. In directed graphs,
similar notions of indegree and outdegree exist. Finally, edges of the form (v;,v;),
i.e. edges between a node and itself, are referred to as self-loops.

We assume that a graph G is characterized by a node feature matriz X €
R™*? with d being the number of node features, in addition to its adjacency
matrix AE| Each row x; € R? of X contains the feature representation of a node
v;, where d is the dimension of the feature space. Since we only consider node
features in this paper (as opposed to edge features for instance), we will refer to
the node feature matrix X simply as the feature matriz in the rest of this paper.

We now introduce the notion of graph isomorphism in Definition

Definition 1 (Graph Isomorphism). Two graphs G1 = (V1,E1) and Gy =
(Va, Eq) are isomorphic if there exists a bijection g : Vi — Va such that every
edge (u,v) is in Ey if and only if the edge (g(u), g(v)) is in Es.

Informally, Definition [I] states that two graphs are isomorphic if there exists a
vertex permutation such that when applied to one graph, we recover the vertex
and edge sets of the other graph. That is, two graphs are isomorphic if they have
the same structure independently of the vertex indexing.

The problem of determining whether two graphs are isomorphic is called
the graph isomorphism (GI) problem and is an important one in graph and
complexity theory. It is known to be in the class NP and has been largely studied
since the 1970’s [33]. The notion of graph isomorphism is also directly related
to the important notion of invariance to node permutation, as we discuss in the
next section.

4 Simple Permutation-Invariant Graph Convolutional
Network (SPI-GCN)

SPI-GCN’s architecture mainly consists of the following sequential modules:

1) A graph convolution module that encodes local graph structure and node
features in a substructure feature matrix whose rows represent the nodes of
the graph;

4 We assume without loss of generality that node features are real-valued. Our archi-
tecture, however, can handle both real-valued and discrete-valued node features.
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2) A sum-pooling layer that transforms the substructure feature matrix com-
puted previously into a single feature vector representation of the input graph
by summing its rows;

3) A prediction module consisting of dense layers that reads the vector repre-
sentation of the graph and outputs predictions.

Figure [1| summarizes the general architecture of SPI-GCN.

Input graph Graph convolution layers Sum-pooling Simple MLP

NN

H 1 1 L D) !
X3) iy | Zp D73 Zy &——>73) iy

Fig. 1. The general structure of SPI-GCN. The graph convolution layer extracts succes-
sive substructure feature matrices from the input graph. The last substructure feature
matrix is presented to the sum-pooling layer which sums the feature vectors represent-
ing the nodes of the graph, resulting in a one-vector representation for the input graph.
This vector representation is then presented to a simple multilayer perceptron (MLP)
to perform prediction.

Let G be a graph represented by the adjacency matrix A € R™*™ and the
feature matrix X € R"*¢, where n and d represent the number of nodes and
the dimension of the feature space respectively. Without loss of generality, we
consider graphs without self-loops, i.e. the adjacency matrix A has zeros on its
diagonal. Additionally, when node features are not available (purely structural
graphs), we take X =1, where I,, € R"*" is the identity matrix.

Notations. We adopt the following notations in the rest of the paper. Matrices
are denoted using capital letters while vectors are denoted using small letters.
Scalars, on the other hand, are denoted using small italic letters. Let consider a
matrix M. m; denotes its ith row (vector) and m;; denotes the entry at its ith
row and jth column. Its inverse matrix is denoted M™*.

4.1 Graph Convolution Module

Given a graph G defined by an adjacency matrix A and a feature matrix X, we
define the first convolution layer as follows:

7= (D AXW) , (1)
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where A = A + 1, is the adjacency matrix of G with added self-loops, D is
the diagonal node degree matrix of A ie. d“ = Z?Zl aij, for i = 1,...,n,
W € R4 is a trainable weight matrix with ' columns, f : R®*d" — Rnxd" jg
a nonlinear activation function, and Z € R"*?" is the output convolved graph.

The graph convolution defined in extracts local structure and feature
information as follows. First, self-loops are added to the graph via A to include
each node’s features in the convolution. The modified adjacency matrix A is then
multiplied by X to produce a matrix X := AX € R"*4 such that

Si=xi+ Y x,i=1..,m. (2)
JEN(4)

That is, the ith row of X represents the sum of the feature vector of node i

and the feature vectors of its neighboring nodes. We then multiply X by ]A)i1 to
keep the aggregated features on the same scale. The resulting n x d matrix is
then mapped to a new d’-dimensional feature space through multiplication by
W. Finally, a nonlinear activation function f is applied element-wise resulting
in a n x d’ substructure feature matrix Z that contains the convolution result.

To stack multiple convolution layers, we generalize the propagation rule in
as follows: )

Z* = fH(DAZWY) (3)
where Z° = X, Z! € R™ 4 is the output of the Ith convolution layer with d;
being the number of output features at layer [, W! € R¥xdi+1 ig a trainable
weight matrix that maps the features in Z' from a d;-dimensional space to a
dj41-dimensional one, and f! is the nonlinear activation function applied at level
[. Each row of the resulting matrix 7 € R*di+1 contains a node representation
in a new feature space.

Once the input graph has been propagated through all the graph convolution
layers, we return the result of the last layer. That is, for a network with L
convolution layers, the result of the convolution is the last substructure feature
matrix Z%. Note that accepts graphs with varying node numbers without
changing the structure of the convolution layer, i.e. using the same weight matrix
W!. Another important feature of is that the graph convolution computation
can be parallelized across the nodes.

Our graph convolution model is inspired by the one proposed in [21] for semi-
supervised node classification and where the convolution operator is motivated
via spectral graph theory. The idea in [2I] is later adopted in [50], where a
graph convolution operator very similar to ours is presented. However, while our
operator allows the use of different activation functions f!, as modelled in ,
the one in [50] uses the same nonlinear activation function in all convolution
layers. Additionally, [50] use all the substructure feature matrices, Z', in the
pooling layer whereas we only use the last one, Z¥.

Our graph convolution operator is connected to the 1-dimensional Weisfeiler-
Lehman (WL) algorithm [47] as shown in [2TJ50]. The WL algorithm iteratively

5 If G is a directed graph, D corresponds to the outdgree diagonal matrix of A.
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computes a vertex coloring for a given graph and is applied in practice to the GI
problem. The output of the convolution layer in can be viewed as the vertex
coloring computed by the 1-dimensional WL algorithm. This parallel with the
WL algorithm allows to define invariant pooling operators such as the SortPool-
ing layer presented in [50] and our sum-pooling layer that we define below.

4.2 Sum-Pooling Layer

The graph convolution module returns a node-level representation Z% € R?*dz
of an input graph G, for a module with L convolution layers. The sum-pooling
layer produces a graph-level representation z'P by summing the rows of Z%

according to
n
7zTP = Z 7k (4)
i=1

The resulting vector zTP € R? contains the final vector representation (or
embedding) of the input graph G in a dj-dimensional space. This vector repre-
sentation is then used for prediction—graph classification in our case.

Using the sum-pooling layer in (4)) results in the invariance of our architecture
to node permutation as stated in Theorem [T} This invariance property is crucial
as it ensures that SPI-GCN will produce the same output for two isomorphic—
and hence equivalent—graphs.

Theorem 1. Let G and G, be two arbitrary isomorphic graphs. The sum-pooling
layer of SPI-GCN produces the same vector representation for G and G..

Proof. Let A and A be the adjacency matrices of G and G. respectively. A,
is obtained by interchanging the ith and jth rows and columns of A for every
permuted nodes i and j of G. Let Z' and Zlg be the substructure feature matri-
ces corresponding to G and G. respectively and output by the (I — 1)th graph
convolution layer defined in . Similarly to A, Zé is defined by interchanging
rows i and j of Z' for every permuted nodes i and j of G. It is then easy to see
that the matrix ACZlc corresponds to the matrix AZ' where we interchange rows
corresponding to permuted nodes. Note that this result holds when A and A_ are

A1 A1~

replaced by the normalized adjacency matrices D A and D_ A; respectively.
A1~ ”—1 n

Therefore, multiplying D AZ' and D, AGZZg by the same weight matrix W,

then applying the same nonlinear activation function f!, will result in two matri-

ces Z!™! and lel with the same rows ordered differently. Since the sum-pooling

layer in simply sums the rows of Z*1 and Zl;rl7 we end up with the same
vector representation for G and G.. O

Using a summing-based pooling operator (e.g. sum or average of node fea-
tures) is a simple idea that has already been implemented in graph neural net-
works such as [I/41I]. The key advantage of summing-based methods is their
efficiency and inherent invariance to node permutation. Their main drawback,
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on the other hand, is that by summing node features, we lose more refined infor-
mation on individual nodes and on the global structure of the graph. We show
through our work, however, that when combined with the right graph convo-
lution, summing-based architectures are competitive with more complex deep
learning graph architectures.

4.3 Prediction Module

The prediction module of SPI-GCN consists in a simple multilayer perceptron
(MLP), i.e. fully connected linear layers followed by nonlinear activation func-
tions. It takes as input the graph-level representation zt? € R% returned by the
sum-pooling layer and returns either (i) a probability p € [0, 1] in case of binary
classification or (ii) a vector p € R of probabilities such that ch=1 p; = 1in
case of C-class classification, with C > 2.

As a consequence of the architecture presented above, SPI-GCN can be
trained in an end-to-end fashion through backpropagation. Moreover, since only
one graph is treated in a forward pass, the training complexity of SPI-GCN is
linear in the number of graphs.

In the next section, we assess the performance of SPI-GCN and compare it
with more complex approaches, including two recent graph deep learning meth-
ods and a state-of-the-art graph kernel.

5 Experiments

We evaluate the performance of SPI-GCN on benchmark data sets for graph
classification and on an original real-world data set of metal hydrides that we
refer to as HYDRIDES. We compare our approach with one state-of-the-art
graph kernel and two recent deep learning approaches for graph-structured data.
Our PyTorch [32] implementation of SPI-GCN, as well as the data, are available
at |https://github.com/asmaatamna/SPI-GCN.

5.1 Data Sets

Benchmark data sets We use nine public benchmark data sets to evaluate the
accuracy of SPI-GCN. These data sets include five bioinformatics data sets (MU-
TAG [9], PTC [42], ENZYMES [], NCI1 [46], and PROTEINS [I1]), two social
network data sets (IMDB-BINARY and IMDB-MULTI [4]]), one image data set
where images are represented as region adjacency graphs (COIL-RAG [34]), and
one synthetic data set (SYNTHIE [3()])E| These data sets are available at [19] in
a specific text format that we process in order to transform the graphs into a
(adjacency matrix, feature matrix) format that can be processed by our neural
network. Table [1| summarizes the total number of graphs, the number of classes,
the average node number (avg. n), the maximum node number (max. n), and
the number of node features d for each data set.

5 Due to space limitations, we refer the reader to the indicated references for more
details on the tested data sets.
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HYDRIDES data set HYDRIDES is a real-world data set designed by ma-
terials scientists at the ICMPE that contains graph representations of metal
hydrides. Metal hydrides play a central role in modern chemistry as they can
be used as a storage compound for hydrogen. A very active research field in
materials science focuses on synthesizing stable metal hydrides suitable for ef-
ficient hydrogen storage. A metal hydride is a chemical compound consisting
of one or more hydrogen (H) atoms bonded with one or more metallic atoms.
Our metal hydrides are binary, that is, all metallic atoms are of the same type
(e.g. H-Ni compounds, H-Pd compounds, etc). A metal hydride has a crystal
structure composed of a unit cell—a set of atoms arranged in a particular way
in the 3-dimensional Euclidean space—that is repeated periodically. Hence, a
metal hydride can be fully described by the Euclidean coordinates of the atoms
in its unit cell. In crystallography, this geometric information is usually encoded
in the so-called POSCAR format that can be used for DFT calculations [24]
which determine electronic and stability properties of a given compound, among
other properties. DFT calculations, however, are very time consuming, hence the
usefulness of machine learning approaches to accelerate decision making. Our
HYDRIDES data set contains graphs corresponding to binary compounds that
we collect in POSCAR format from the public Pearson’s crystal database [44],
as well as from [5]. Hydrides are classified into two categories—stable or non-
stable—depending on their standard heat of formation. To convert the POSCAR
format to our (adjacency matrix, feature matrix) format, we proceed as follows:

— Each unit cell—and hence each metal hydride—is represented by an undi-
rected graph;

— The nodes of the graph correspond to the atoms of the unit cell;

— An edge is created between two nodes if one is the other’s nearest neighbor
in terms of Euclidean distance;

— Each node is represented by a d-dimensional one-hot vector, where d = 28
corresponds to the atom types available in our data set (H combined with
27 metals).

The properties of the HYDRIDES data set are summarized in Table

5.2 Experimental Set-Up

Network architecture The instance of SPI-GCN that we use for experiments
has two graph convolution layers of 128 and 32 hidden units respectively, fol-
lowed by a hyperbolic tangent function (tanh) and a softmax function (per node)
respectively. The sum-pooling layer is a classical sum applied row-wise; it is fol-
lowed by a prediction module consisting of a MLP with one hidden layer of 256
hidden units followed by a batch normalization layer [I8] and a rectified linear
unit (ReLU) as activation function. We choose this architecture by trial and
error, and we keep it unchanged throughout the experiments.
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Table 1. Properties of the tested data sets.

Property Graphs Classes Avg.n Max.n d

MUTAG 188 2 17.93 28 —
PTC 344 2 14.29 64 -
ENZYMES 600 6 32.63 126 18
NCI1 4110 2 29.87 111 -
PROTEINS 1113 2 39.06 620 1

IMDB-BINARY 1000 2 19.77 136 —
IMDB-MULTI 1500 3 13 89 -
COIL-RAG 3900 100 3.01 11 64
SYNTHIE 400 4 95 100 1

HYDRIDES 1020 2 7.40 70 28

Baselines We compare SPI-GCN with the state-of-the-art Weisfeiler-Lehman
subtree kernel (WL) [39], the well-known graph neural network PATCHY-SAN
(PSCN) [31], and the more recent deep learning approach Deep Graph Convolu-
tional Neural Network (DGCNN) [50] that uses a very similar convolution module
to ours.

Experimental procedure We train SPI-GCN using full batch ADAM opti-
mizer [20], with cross entropy as the loss function to minimize. After trying few
combination of values, we set ADAM’s hyperparameters as follows. The algo-
rithm is trained for 200 epochs on all benchmark data sets and for 500 epochs
on HYDRIDES, and the learning rate is set to 1073, To estimate the accuracy,
we perform 10-fold cross validation using 9 folds for training and one fold for
testing each time. We report the average (test) accuracy and the corresponding
standard deviation in Table |2l Note that we only use node attributes in our
experiments. In particular, SPI-GCN does not exploit node or edge labels of the
data sets. When node attributes are not available, we use the identity matrix as
the feature matrix (X = I,,) for each graph.

We follow the same procedure for DGCNN. We use the authors’ PyTorch
implementation [49] and perform 10-fold cross validation with the recommended
values for training epochs, learning rate, and the SortPooling parameter k, for
each data set. These values are reported in Table [4]

For PSCN, we report the results from the original paper [31] (for receptive
field size k = 10) as we could not find an authors’ public implementation of the
algorithm. The experiments were conducted using a similar procedure as ours.

For WL, we follow [31/48| and set the height parameter h to 2. We choose
the regularization parameter C' of the SVM from {10~7,1075,...,107} using
cross validation as follows: we split the data set into a training set (90% of the
graphs) and a test set (remaining 10%), then perform 10-fold cross validation
on the training set with LIBSVM [7]. The parameter C' with the highest average
validation accuracy is then evaluated on the test set. The experiment is repeated
10 times and we report the average test accuracy and the standard deviation. We
test the algorithm without using node labels (WL), then with node labels (WLy,;).
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We use the authors’ MATLAB implementation [38] where we modify the cross
validation script to implement the evaluation procedure described previouslym

5.3 Results

Table [2] shows the results for our algorithm (SPI-GCN), Daenn [50], PSCN [31],
and WL [39] when node labels are not used. We observe that SPI-GCN is highly
competitive with other algorithms despite using the same architecture for all
data sets and not tuning the hyperparameters. The only noticeable exceptions
are on the NCI1 and IMDB-BINARY data sets, where the best approach (PSCN
and WL respectively) is up to 1.19 times better. On the other hand, SPI-GCN
performs better than DGCNN and WL on classification tasks with more than
3 classes (ENZYMES, COIL-RAG, SYNTHIE). The difference in accuracy is
particularly significant on COIL-RAG (100 classes), where SPI-GCN is around
34.26 times better than DGCNN. This suggests that the features extracted by
SPI-GCN are more suitable to characterize the graphs at hand. Results for WL
on COIL-RAG and SYNTHIE are not available as we could not find these data
sets in the appropriate format for the algorithm online. SPI-GCN also achieves
a very reasonable accuracy on the HYDRIDES data set.

We also compare SPI-GCN with WL when node labels are exploited (WLy,;).
The results, listed in Table [3} show that while the accuracy of WL significantly
improves on the PROTEINS and ENZYMES data sets (up to 1.32 times), SPI-
GCN remains competitive with WL,;, and even better on the MUTAG data
set. Note that no node labels are available for the IMDB-BINARY and IMDB-
MULTI data sets, hence the absence of results for WL,,;.

We expect the accuracy (respectively variance) of SPI-GCN to improve (re-
spectively decrease) after tuning its hyperparameters to individual data sets. The
exploitation of node labels (as additional features) and edge labels (as weights in
the adjacency matrix) may also benefit SPI-GCN;, especially on data sets where
it lags behind other approaches, such as NCI1 and IMDB-BINARY.

6 Conclusion

We were motivated by the development of a principled deep learning approach
for graph classification. We proposed an original graph convolutional neural net-
work, SPI-GCN, that is able to process arbitrary graphs directly without any
preprocessing, and that is invariant to graph isomorphism thanks to the use of a
simple sum-pooling operator. Unlike related deep learning approaches, SPI-GCN
has a simple architecture that does not require to sort graphs’ vertices and that
uses a simple multilayer perceptron to perform classification. Nonetheless, SPI-
GCN is competitive with state-of-the-art graph kernels and outperforms similar
deep learning approaches on multiclass classification tasks in terms of predictive

" The original script returns the average test accuracy of the best C' parameters, i.e.
parameters with the best validation accuracy on each fold, for one complete run of
10-fold cross validation.
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Table 2. Accuracy results for SPI-GCN, two deep learning methods (DccnNN, PSCN),
and a graph kernel method (WL without node labels).

Algorithm SPI-GCN Dacenn PSCN WL
MUTAG 84.40+8.14 86.11+7.14 88.9544.37 81.67+ 15.50
PTC 56.41+5.71 55.00+£5.10 62.29+5.68 56.76 £ 5.89
NCI1 64.11+237 72.73+156 76.34+1.68 71.58+2.63
PROTEINS 72.06 £3.18 72.79+3.58 75.0042.51 68.73+4.24
ENZYMES 50.17 £5.60 47.00 + 8.36 — 38.67 £ 4.83
IMDB-BINARY  60.40 £4.15 68.60+5.66 71.00+2.29 72.10+5.30
IMDB-MULTI 4413 £4.61 45.20+£3.75 45.23+2.84 51.26 +4.31
COIL-RAG 75.72+3.65 2.21+0.33 - -
SYNTHIE 71.00 +£6.44 54.25+4.34 - -
HYDRIDES 82.25 £ 3.29 — — —

Table 3. Accuracy results for SPI-GCN and the Weisfeiler-Lehman subtree kernel with
(WLp1) and without (WL) node labels.

Algorithm SPI-GCN WL WL
MUTAG 84.40 + 8.14 82.77 4+ 8.46 81.67 + 15.50
PTC 56.41 £5.71 57.05 &+ 7.61 56.76 £+ 5.89
NCI1 64.11 £ 2.37 79.87 £ 1.77 71.58 + 2.63
PROTEINS 72.06 £+ 3.18 72.25 + 3.22 68.73 +4.24
ENZYMES 50.17 £ 5.60 51.16 + 5.33 38.67 £4.83
IMDB-BINARY 60.40 +4.15 — 72.10 =+ 5.30
IMDB-MULTI 44.13 £ 4.61 — 51.26 + 4.31

Table 4. Hyperparameters used by DGCNN on each data set.

Parameter Training epochs  Learning rate  SortPooling &
MUTAG 300 1077 0.6
PTC 200 1074 0.6
ENZYMES 500 1074 0.6
NCI1 200 1074 0.6
PROTEINS 100 1075 0.6
IMDB-BINARY 300 1074 0.9
IMDB-MULTI 500 1074 0.9
COIL-RAG 500 1074 0.6
SYNTHIE 500 1074 0.6

accuracy. In the light of these results, we argue that the effectiveness of a graph
neural network relies on that of its graph convolution operator more than it does
on the use of conventional deep learning components to perform classification.
On a more general level, we are interested in designing interpretable ap-
proaches for graph classification. Indeed, the majority of machine learning mod-
els are “black boxes” [35], i.e. it is difficult for human experts to explain why a
model returns a particular output given a certain input data. On the other hand,
more complex models are not necessarily more accurate [35]. In this context,
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building simple architectures is a step towards a better interpretability. Other
research avenues include extending our approach to extremely large-scale graph
classification problems and using SPI-GCN as a discriminator in a generative
adversarial network (GAN) [I4] architecture for graphs.
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