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Abstract: 14 

Biodegradable and biocompatible polymers are widely used for the encapsulation of drug 15 
molecules. Various particulate carriers with different sizes and characteristics have been 16 
prepared by miscellaneous techniques. In this review, we reported the commonly used 17 
preformed polymer based techniques for the preparation of micro and nano-structured 18 
materials intended for drug encapsulation. A description of polymer solvent interaction was 19 
provided. The most widely used polymers were reported and described and their realted 20 
research studies were mentioned. Moreover, principles of each technique and its crucial 21 
operating conditions were described and discussed. Recent applications of all the reported 22 
techniques in drug delivery were also reviewed. 23 

Introduction: 24 

Particulate carriers have gained tremendous interest during the last decades which permitted 25 
to deliver many hydrophilic and hydrophobic molecules. Obtained particles present small size 26 
which facilitates their absorption. These drug delivery systems allow the protection of active 27 
pharmaceutical ingredients from degradation, enhance biopharmaceutical properties and could 28 
provide passive or active targeting or sustained delivery. Biomedical applications of the 29 
developed carriers are continuously growing (Ahmad 2013)(Soares 2013)(Miladi et al. 2013). 30 
Although, they present different physicochemical properties, the used polymers are mainly 31 
biocompatible and biodegradable. A multitude of techniques are used to obtain these particles. 32 
These methods differ by their principles and the nature of drug molecules that could be 33 
encapsulated. Some successfully marketed products led to an enlargement of the applications 34 
and the interest given by researchers to these drug delivery systems. Choice of the technique 35 
and operating conditions is crucial to obtain formulations bearing good properties for in vitro 36 
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and in vivo applications. In this review, we will focus on polymeric nanoparticles and give a 37 
scope about the most used polymers. We will also describe the common preformed polymer 38 
based techniques used for the encapsulation of drug molecules. We will also review the major 39 
applications of the developed particles during the last years and their main properties. 40 

1. Polymer solvent interactions: 41 

A lot of techniques that rely on preformed polymers have been used for the preparation of 42 
particulate carriers. Although these methods are quite different, they generally share a unique 43 
principle which is polymer precipitation. Precipitation of the polymer occurs either when a 44 
non solvent is added or after subsequent decrease of its solubility in a solvent. Many 45 
parameters could influence polymer solubility such as, solvent nature, pH, salinity and 46 
temperature of the dispersion medium. Solubility of polyelectrolytes in water, for example, is 47 
highly pH and salinity dependent (Gennes 1979), while that of poly(alkyl acrylamide) and 48 
poly(alkyl methacrylamide), is mainly temperature dependent (Elaissari 2002). In fact, 49 
nanoprecipitation and emulsion based techniques are based on the addition of a non solvent to 50 
the polymer which causes its precipitation. However, ionic gelation technique, for instance, in 51 
which generally a polyelectrolyte is used as polymer, is based on the addition of a salt or an 52 
oppositely charged polymer. This results in a change in the salinity of the medium and the 53 
appearance of electrostatic interactions and thus, leads to polymer precipitation. The 54 
thermodynamic behavior of the polymer in a given solution is highly dependent on the Flory 55 
c-parameter. This parameter is defined as the free energy change per solvent molecule (in kBT 56 
units) when a solvent-solvent contact is shifted to a solvent-polymer contact. It is expressed 57 
by the following mathematical equations: 58 

Tapez	une	équation	ici. 59 

c= ∆2
345

= ∆675∆8
345

= 9
:
− 𝐴(1 − ?

5
)        Equation (1) 60 

Where kB and T are Boltzmann constant and temperature, respectively; A and q parameters 61 
are defined as follow: 62 

𝐴 = :A8B34
:34

           Equation (2) 63 

𝜃 = :∆6
:∆8B34

          Equation (3) 64 

          65 

It can be seen that the A parameter is directly related to entropy changes, whereas q 66 
temperature is a function of both entropic and enthalpic variations. When q temperature = T, 67 
the corresponding Flory c-parameter = 1/2, at which the second Virial coefficient is equal 68 
zero (Elias 2003). The latter can be easily determined from light scattering measurements of a 69 
diluted polymer solution. At q temperature conditions, the binary interactions among 70 
constituents will be negligible and only the excluded volume effects will be predominant. 71 
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Consequently, the solvent will be a good solvent for the polymer when c < 1/2 and a poor one 72 
when c > 1/2 (Minost et al. 2012). 73 

2. Commonly used polymers for encapsulation: 74 

A lot of polymers have been used for drug encapsulation but only biodegradable and 75 
biocompatible polymers are suitable for biomedical applications. The biodegradability of a 76 
polymer is acquired by the presence of a labile function such as ester, orthoester, anhydride, 77 
carbonate, amide, urea or urethane in their backbone. These polymers could be of natural 78 
(polysaccharides and protein based polymers) or synthetic (polyesters) nature (Pillai & 79 
Panchagnula 2001). The most commonly used polymers for drug encapsulation are polyesters 80 
(lactide and glycolide copolymers, poly-e-caprolactone), acrylic polymers 81 
(polymethacrylates) and polyamides (gelatin and albumin). The selection of the right polymer 82 
is a crucial step to obtain particles that are suitable for a well-defined application. In fact, 83 
polymers’ structures are highly different and their surface and bulk properties are highly 84 
relevant for the obtaining of the desirable biological application. Copolymers could be also 85 
used to monitor the hydrophobicity of the materials. Some polymers are poly(ethyleneglycol) 86 
(PEG) copolymerized in order to decrease nanoparticle recognition by the reticular 87 
endothelial system. Table 1 contains examples of the most used biocompatible and 88 
biodegradable polymers in encapsulation. Some polymers, especially those having 89 
mucoadhesive properties, could also be used for coating the nanocarriers (Mazzaferro et al. 90 
2012)(Zandanel & Vauthier 2012).  91 

2.1.Natural polymers: 92 
2.1.1. Chitosan: 93 

Chitosan is obtained by deacetylation of chitin, which is the structural element in the 94 
exoskeleton of crustaceans (crabs, shrimp, etc.) and cell walls of fungi. It is a cationic and 95 
biodegradable polysaccharide consisting of repeating D-glucosamine and N-acetyl-D-96 
glucosamine units, linked via (1-4) glycosidic bonds. Chitosan is non toxic and can be 97 
digested in the physiological environment, either by lysozymes or by chitinases, which are 98 
present in the human intestine and in the blood. These properties led to increased interest for 99 
this polymer in pharmaceutical research and in industry as a carrier for drug delivery (Mao et 100 
al. 2010). In addition, chitosan has mucoadhesive properties owing to its positive charge that 101 
allows interaction with the negatively-charged mucosal surface. Consequently, the use of 102 
chitosan as a matrix (Patil & Sawant 2011) or as a coating material (Mazzarino et al. 2012) in 103 
drug encapsulation had become a promising strategy to prolong the residence time, to increase 104 
the absorption of active molecules through the mucosa (Mao et al. 2010)(Alpar et al. 2005) 105 
and also for targeted delivery (Park et al. 2010).  106 
 107 

2.1.2. Dextran and its derivatives: 108 
Dextran polymers are produced by bacteria from sucrose. Chemical synthesis is also possible. 109 
These glucose polymers consist predominantly of linear a-1,6-glucosidic linkage with some 110 
degree of branching via 1,3-linkage. Dextran-based microspheres have got much attention 111 
because of their low toxicity, good biocompatibility and biodegradability, which are of 112 
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interest for application in biomedical and pharmaceutical fields (Mehvar 2000). Many detxran 113 
polymers such as Sephadex® (cross-linked dextran microspheres) as well as Spherex® 114 
(cross-linked starch microspheres) were used as carriers for drug delivery. Other derivatives 115 
of dextran and starch including diethyl aminoethyl dextran and polyacryl starch have also 116 
been used for mucosal drug delivery. Illum et al. proposed some mechanisms to explain 117 
absorption enhancement effects of cross-linked starch and dextran microspheres intended to 118 
nasal delivery which are: (1) Deposition of the microspheres in the less or non ciliated 119 
anterior part of the nasal cavity and slower nasal clearance; (2) Retention of the formulation in 120 
the nasal cavity for an extended time period because of the bioadhesive properties of the 121 
microspheres and (3) The local high drug concentration provided by the gelled system in 122 
close contact with the epithelial absorptive surface (Illum et al. 2001). 123 
 124 

2.1.3. Cyclodextrins: 125 
Cyclodextrins (CDs) are cyclic oligosaccharides that contain at least six D-(+) glucopyranose 126 
units which are attached by a-(1,4) glucosidic bonds. They have been widely used for the 127 
formulation of drugs with bioavailability concerns resulting from poor solubility, poor 128 
stability and severe side effects. There are 3 natural CDs which are α-, β-, and γ-CDs (with 6, 129 
7, or 8 glucose units respectively) (Challa et al. 2005). In addition, amphiphilic cyclodextrins 130 
are synthetic derivatives of natural cyclodextrins. Such derivatives are able to self-organize in 131 
water to form micelles and nano-aggregates, which is interesting for pharmaceutical 132 
applications, mainly, encapsulation (Gèze et al. 2002). In fact, amphiphilic cyclodextrins have 133 
recently been used to prepare nanoparticles and nanocapsules without surfactants and have 134 
shown high drug-loading capacity with favorable release properties (Lemos-Senna et al. 135 
1998)(Çirpanli et al. 2009)(Duchêne 1999). They have also been used for targeting and for 136 
increasing drug loading (Duchêne et al. 1999).  137 
 138 

2.1.4. Gelatin: 139 
Gelatin is a natural polymer that is derived from collagen. It is commonly used for 140 
pharmaceutical and medical applications because of its biodegradability and biocompatibility 141 
in physiological environments. Gelatin is attractive for use in controlled release due to its 142 
nontoxic, bioactive properties and inexpensive price. It is also a polyampholyte having both 143 
cationic and anionic groups along with hydrophilic groups. Mechanical properties, swelling 144 
behavior and thermal properties of gelatin depend significantly on its crosslinking degree. 145 
(Young et al. 2005). 146 
 147 

2.2.Biodegradable polyesters: 148 
Polyester-based polymers are among of the most widely investigated materials for drug 149 
delivery. Poly(lactic acid) (PLA), poly(glycolic acid) (PGA) and their copolymers poly(lactic 150 
acid-co-glycolic acid) (PLGA) along with poly-e-caprolactone are some of the well-defined 151 
biomaterials with regard to design and performance for drug-delivery applications. 152 
 153 

2.2.1. PLGA: 154 
 155 
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PLGA, a copolymer of lactic acid and glycolic acid, has generated tremendous interest due to 156 
its excellent biocompatibility, biodegradability, and mechanical strength. PLGA is approved 157 
by the US FDA and European Medicine Agency (EMA) in various drug delivery systems in 158 
humans. In order to improve the formulation of controlled drug delivery systems, an 159 
understanding of the physical, chemical, and biological properties of polymers is helpful. In 160 
fact, the polymer is commercially available with different molecular weights and copolymer 161 
compositions. The degradation time can vary from several months to several years, depending 162 
on the molecular weight and copolymer ratio (Danhier et al. 2012). For example, lactic acid is 163 
more hydrophobic than glycolic acid and, therefore, lactide-rich PLGA copolymers are less 164 
hydrophilic, absorb less water, and subsequently, degrade more slowly (Dinarvand et al. 165 
2011). PLGA particles are widely used to encapsulate active molecules with a broad spectrum 166 
of pharmaceutical applications (Danhier et al. 2012)(Menei et al. 2005)(Singh et al. 2004).   167 
 168 

2.2.2. PLA: 169 
 170 
PLA is a biocompatible and biodegradable synthetic polyester which undergoes scission in 171 
the body to monomeric units of lactic acid. The latter is a natural intermediate in carbohydrate 172 
metabolism. PLA possess good mechanical properties and it is largely used for the 173 
preparation of particles (Gupta & Kumar 2007). 174 
 175 

2.2.3. PCL: 176 
It was in 1930s that the ring-opening polymerization of PCL was studied. The biodegradable 177 
property of this synthetic polymer was first identified in 1973. PCL is suitable for controlled 178 
drug delivery due to its high permeability to many drugs and non-toxicity (Sinha et al. 2004). 179 
Molecular weight dependent surface hydrophobicity and crystallinity of PCL are the causes 180 
for its slower biodegradation in two distinct phases such as random non-enzymatic cleavage 181 
and enzymatic fragmentation. The lipophillic drugs are generally distributed uniformly in the 182 
matrix while the hydrophilic drugs tend to move towards the interface and remain on the 183 
surface of PCL formulation in adsorbed state. Diffusion was described as the only possible 184 
mechanism by which the lipophilic drugs release from PCL particles as they were shown to be 185 
intact for a much longer duration in vivo. However, two phenomenons could be implicated in 186 
hydrophilic drugs’ release. Highly lipophilic drugs that resist complete diffusion are released 187 
upon surface erosion by enzymatic action while hydrophilic drugs that accumulate at the 188 
interface during the formulation processes are released by desorption at the initial period of 189 
release study or dosage intake. This results in a biphasic drug release pattern for PCL particles 190 
with much higher burst release for hydrophilic drugs than lipophilic ones (Dash & 191 
Konkimalla 2012). 192 
 193 

2.3.Pegylated polymers: 194 
A lot of the above cited polymers could be conjugated to PEG chains, which allows the 195 
enhancement of their hydrophilicity and permits the obtaining of a stealth surface that could 196 
protect the prepared carriers from degradation by the cells belonging to the reticuloendothelial 197 
system. Conjugation to PEG confers also bioadhesive properties for the carriers (Yoncheva et 198 
al. 2005). 199 
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 200 
 201 
 202 
 203 
 204 

Table 1. Commonly used polymers 205 

Materials References 
Polymers 

Natural polymers 
Chitosan (Elmizadeh et al. 2013)(Fàbregas et al. 2013) (Khalil et al. 

2012) (Konecsni et al. 2012)(Du et al. 2009)(Bernkop-
Schnürch et al. 2006) (Gan et al. 2005) (Asada et al. 2004) 

Dextran (Liang et al. 2013) (Dai et al. 2012)(Sajadi Tabassi et al. 
2008) (Koten et al. 2003) 

Dextran derivatives (Kanthamneni et al. 2012)(Kauffman et al. 2012) (Aumelas et 
al. 2007) (Miyazaki et al. 2006) 

Cyclodextrins (Çirpanli et al. 2009) (Memişoğlu et al. 2003) (Pariot et al. 
2002)(Lemos-Senna et al. 1998) 

Gelatin (Nahar et al. 2008) (Balthasar et al. 2005) (Vandervoort & 
Ludwig 2004) (Bruschi et al. 2003) 

Synthetic polymers 
Biodegradable polyesters 
PLGA (Gyulai et al. 2013) (Beck-Broichsitter et al. 2012) (Morales-

Cruz et al. 2012) (Beck-Broichsitter et al. 2011)(Nehilla et al. 
2008) (Song et al. 2008)(Budhian et al. 2007) (Bozkir & Saka 
2005)(Fonseca et al. 2002)(Yang et al. 1999) (Govender et al. 
1999) 

PLA (Bazylińska et al. 2013)(Fredriksen & Grip 2012) (Kadam et 
al. 2012) (Kumari et al. 2011) (Ataman-Önal et al. 2006) 
(Lamalle-Bernard et al. 2006) (Hyvönen et al. 2005) (Katare 
et al. 2005) (Chorny et al. 2002) (Leo et al. 2000)  

PCL (Behera & Swain 2012)(Guerreiro et al. 2012) (Hernán Pérez 
de la Ossa et al. 2012) (Khayata et al. 2012) (Arias et al. 
2010) (Wang et al. 2008)(Limayem Blouza et al. 2006) 
(Tewa-Tagne et al. 2006) (Yang et al. 2006) (Le Ray et al. 
2003)(Chawla & Amiji 2002) (Raval et al.) (Hombreiro Pérez 
et al. 2000) (Benoit et al. 1999) (Masson et al. 1997) 

poly(lactide-co-glycolide-co-
caprolactone) 

(Zhang et al. 2006)  

Acrylic polymers 
Eudragit  (Hao et al. 2013)(Das et al. 2010) (Eidi et al. 2010)(Trapani et 

al. 2007)(Galindo-Rodríguez et al. 2005) (Haznedar & 
Dortunç 2004) (Pignatello et al. 2002) 

Others 
Polyvinylbenzoate (Labruère et al. 2010) 
Pegylated polymers 
Chitosan-PEG (Seo et al. 2009) 
MPEG-PCL (Falamarzian & Lavasanifar 2010)(Xin et al. 2010)  
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PCL-PEG-PCL (Suksiriworapong et al. 2012)(Huang et al. 2010)(Gou et al. 
2009)  

poly(caprolactone)-
poly(ethylene oxide)-
polylactide 

(Hu et al. 2003) 

PLA-PEG (Sacchetin et al. 2013) (Essa et al. 2010) (Ishihara et al. 2010) 
(Vila et al. 2005) (Vila et al. 2004) (Govender et al. 2000) 
(Huang et al. 1997)  

PLA-PEG-PLA (Chen et al. 2011)(Ruan & Feng 2003) 
MPEG-PLA (Zheng et al. 2010)(Dong & Feng 2007)(Dong & Feng 2004) 
 206 

3. Used methods for the encapsulation of active molecules: 207 
3.1.Nanoprecipitation: 208 

 209 

 210 

Figure 1. the nanoprecipitation technique (Pinto Reis et al. 2006) 211 

 212 

The nanoprecipitation technique was first developed by Fessi et al. in 1986 (Devissaguet et al. 213 
1991). The technique allows the obtaining of either nanospheres or nanocapsules. The organic 214 
phase could be added to the aqueous phase under magnetic stirring. This one-step process 215 
allows the instantaneous and reproducible formation of monodisperse nanoparticles. 216 
Nanoprecipitation is simple, is by far the fastest, most reproducible, and industrially feasible 217 
preparation procedure of nanospheres (Vauthier & Bouchemal 2009). Practically, two 218 
miscible phases are required: an organic solvent in which the polymer is dissolved and an 219 
aqueous phase (non-solvent of the polymer). The most common used organic solvents are 220 
ethanol and acetone. Such solvents are miscible in water and easy to remove by evaporation. 221 
Some oils could be added to these solvents to allow the dissolving of the active (Rosset et al. 222 
2012). As Figure 1 shows, the method is based on the addition of one phase to the other under 223 
moderate magnetic stirring which causes the interfacial deposition of a polymer after 224 
displacement of the organic solvent from the organic solution. This leads to the formation of a 225 
suspension of nanoparticles. The organic phase could be a mixture of solvents such as, 226 
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mixture of acetone with water or ethanol etc. Similarly, the aqueous phase could consist of a 227 
mixture of non-solvents and could contain surfactants. Commonly used polymers are 228 
biodegradable polyesters, especially poly-e-caprolactone (PCL), poly(lactide) (PLA) and 229 
poly(lactide-co-glycolide) (PLGA) (Rao & Geckeler 2011).  Particle formation process 230 
includes three basic steps which are, particle nucleation, molecular growth and aggregation. 231 
The rate of every step has a crucial impact on the particle size distribution. Supersaturation is 232 
the driving force that manages all of these steps, namely, particles nucleation rate. 233 
Supersaturation, itself, is influenced by fluid dynamics and mixing. In fact, low stirring rate 234 
results in low nucleation rates while higher mixing rates give high nucleation rates (Lince et 235 
al. 2008). 236 

Operational parameters that should be controlled include the organic phase to non organic 237 
phase ratio, the concentration of the polymer and the stabilizer and the amount of the drug. 238 
Every one of these parameters may exert an impact on the characteristics of the obtained 239 
nanoparticles (size, uniformity and charge). In fact, an increase of the polymer amount 240 
generally increases particles’ size (Chorny et al. 2002)(Simşek et al. 2013)(Dong & Feng 241 
2004)(Asadi et al. 2011). The same effect was obtained after increasing the polymer 242 
molecular weight (Limayem Blouza et al. 2006)(Holgado et al. 2012). These findings were 243 
explained by an increase of the viscosity of the organic phase which rendered solvent 244 
diffusion more difficult and thus, led to larger nanoparticles’ size. The effect of increasing 245 
organic phase volume seems conflicting: some studies showed that it causes a decrease of the 246 
particles size (Dong & Feng 2004) while others showed the opposite phenomenon (Asadi et 247 
al. 2011). Increasing the water phase amount lead to a decrease of the particles size as a result 248 
to the increased diffusion of the water-miscible solvent in the aqueous phase and thus, the 249 
more rapid precipitation of the polymer and formation of nanoparticles (Budhian et al. 2007). 250 
An increase of the surfactant amount generally causes a decrease of the particles size and 251 
reduces size distribution (Contado et al. 2013) (Siqueira-Moura et al. 2013). Some studies did 252 
not, however, found significant change following surfactant amount increase (Dong & Feng 253 
2004). The nature of the surfactant may also influence the particles’ size (Limayem Blouza et 254 
al. 2006). Increasing mixing rate decreases the particles size as it causes faster diffusion rate 255 
(Asadi et al. 2011). Theoretical drug loading may also influence particles size and drug 256 
loading (Govender et al. 1999). Nanoprecipitation is generally designed for the encapsulation 257 
of hydrophobic drug molecules (Seju et al. 2011)(Katara & Majumdar 2013)(Seremeta et al. 258 
2013). Such actives may be dissolved within the organic phase. Bilalti et al. described a 259 
nanoprecipitation technique intended to the encapsulation of hydrophilic molecules but the 260 
size of the obtained particles was not sufficiently uniform (Bilati et al. 2005). To further 261 
improve the reproducibility of the nanoprecipitation technique and make it more convenient 262 
for industrial applications, membrane contactor and microfluidic technology were 263 
successfully used (Khayata et al. 2012)(Xie & Smith 2010). These techniques allow better 264 
size control within different batches of particles. Table 2 contains some examples of the 265 
applications of the nanoprecipitation technique for drug delivery during the last years. It can 266 
be concluded that polyesters are among the most used polymers for the preparation of the 267 
nanoparticles by this technique. 268 
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 269 

 270 

 271 

 272 

Table 2. Some applications of the nanoprecipitation technique 273 

Encapsulated 
molecule 

Polymer  Size (nm) Zeta 
potential 
(mV) 

Reference 

Doxorubicin Gelatin-co-PLA-
DPPE 

131.5-
161.1 

- (Han et al. 
2013) 

Aceclofenac Eudragit RL 100 75.5-
184.4 

22.5 - 32.6 (Katara & 
Majumdar 
2013) 

Doxorubicin dextran-b-
polycaprolactone) 

95-123.3 - (Li et al. 2013) 

Chloroaluminum 
phthalocyanine 

PLGA 220.3-
326.3 

-17.7-(-
40.9) 

(Siqueira-
Moura et al. 
2013) 

Efavirenz PCL and 
Eudragit® RS 
100 

89.5 - 
173.9 

-17.9-53.8 (Seremeta et 
al. 2013) 

Paclitaxel PLGA 50 - 150 -15 - (-20) (Wang et al. 
2013) 

Retinoic acid PLA 153.6-
229.8 

-27.4-(-
20.9) 

(Almouazen et 
al. 2012) 

Brimonidine 
Tartrate 

Eudragit® RL 
100 

123.5 - 
140.2 

13.1- 20.8 (Khan et al. 
2012) 

Vitamin E PCL 123-320 -24.5-(-
1.46) 

(Khayata et al. 
2012) 

Paclitaxel hydrophobized 
pullulan 

127.6-253  (Lee et al. 
2012) 

Curcumin PCL, chitosan 104-125 (-0.099)-
79.8 

(Mazzarino et 
al. 2012) 

Diclofenac PCL 152 -50 (Mora-Huertas 
et al. 2012) 

Amphotericin B PLGA 86-153 -31.4-(-9.1) (Van de Ven 
et al. 2012) 

Epirubicin poly(butyl 
cyanoacrylate) 

217-235 -4.5-(-0.1) (Yordanov 
2012) 

Camptothecin beta-cyclodextrin 
PLGA 
PCL 

281 
 

187 
274 

-13 
 

-0.06 
-19 

(Cırpanlı et al. 
2011) 

Naringenin Eudragit® E 90 - (Krishnakumar 
et al. 2011) 
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Olanzapine PLGA 91.2 -23.7 (Seju et al. 
2011) 

 274 

3.2.Emulsion diffusion (ESD): 275 

 276 
 277 

Figure 2. Emulsion diffusion technique (Pinto Reis et al. 2006) 278 
 279 

ESD was first developed by Quintanar-Guerrero and Fessi (Quintanar-Guerrero et al. 1996) to 280 
prepare PLA based nanospheres. Three liquid phases are needed in this technique: an organic 281 
phase, an aqueous phase and a dilution phase. The organic phase generally contains the 282 
polymer and the hydrophobic drug. The aqueous phase is a solution of a stabilizing agent 283 
while the dilution phase usually consists of a large volume of water. Mutual saturation of the 284 
aqueous and organic phase allows further obtaining of a thermodynamically equilibrated 285 
emulsion upon high speed homogenization. Subsequent addition of an excess of water enables 286 
the diffusion of the organic solvent from the dispersed phase resulting in precipitation of the 287 
polymer and the formation of the particles (Figure 2). Commonly used polymers in this 288 
method include PCL, PLA and Eudragit® (Mora-Huertas et al. 2010). Table 3 shows that the 289 
technique is mainly used for the encapsulation of hydrophobic molecules. However, 290 
hydrophilic molecules may also be encapsulated by a modified solvent diffusion method 291 
using an aqueous inner phase (Ma et al. 2001). Operating conditions affecting the size of the 292 
obtained particles include external/internal phase ratio, emulsification stirring rate, volume 293 
and temperature of water for dilution, polymer amount and concentration of the stabilizer 294 
(Quintanar-Guerrero et al. 1996)(Mora-Huertas et al. 2010). Influence of high shear 295 
homogenization and sonication on the particles size was assessed and it was found that 296 
sonication was more efficient for particle size reduction. The nature of the surfactant 297 
influenced also the particles size. In fact, when Pluronic F68 (PF68), 298 
didodecyldimethylammonium bromide (DMAB) and polyvinylalcohol (PVA) were 299 
compared, DMAB gave the smallest particles but with the lowest encapsulation efficiency 300 
(Jain et al. 2011). Particles size was also described to increase with an increase of initial drug 301 
amount (Youm et al. 2012), polymer amount (Youm et al. 2012)(Esmaeili et al. 2011) and the 302 
oil phase volume (Esmaeili et al. 2011)(Poletto et al. 2008). An increase of the surfactant 303 
amount resulted in a decrease of the size but it seems that above some level further significant 304 
size reduction is no longer possible (Jain et al. 2011)(Surassmo et al. 2010). An increase of 305 
the homogenization rate led to a decrease of the particles’ size (Jain et al. 2011)(Kwon et al. 306 
2001)(Galindo-Rodríguez et al. 2005). Likely, the same effect was obtained following an 307 
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increase of the temperature and the volume of the added water also decreases particles’ size 308 
(Kwon et al. 2001)(Song et al. 2006). The nature of the organic solvent also influenced 309 
particle size (Song et al. 2006). Table 3 shows some of the recent applications of the ESD 310 
technique. 311 
 312 

Table 3. Applications of the emulsion diffusion method 313 
 314 

Encapsulated 
molecule 

Polymer  Size  Zeta potential 
(mV) 

Reference 

Articaine PCL - - (Campos et al. 
2013) 

Omeprazole Eudragit L 
100-55 

256.3- 

337.1 nm 
8.92 - 16.53 (Hao et al. 2013) 

Curcumin  polyurethane 
and polyurea 

216- 4901 
nm 

- (Souguir et al. 
2013) 

Matricaria recutita L. 
extract 

PEG-PBA-
PEG 

186- 446 
nm 

- (Esmaeili et al. 
2011) 

Bovine serum albumin Chitosan  81-98 µm - (Karnchanajindanun 
et al. 2011) 

Alendronate PLGA 145 nm -4.7 (Cohen-Sela et al. 
2009) 

An oligonucleotide PLA 390 nm - (Delie et al. 2001) 
 315 
 316 

3.3.Simple Emulsion evaporation (SEE): 317 

 318 
 319 

Figure 3. Emulsion solvent evaporation (Pinto Reis et al. 2006) 320 

 321 
The SEE technique is widely used in the field of particulate carriers’ development. This 322 
method was first developed by (Vanderhoff et al. 1979). It consists mainly on the formation of 323 
a simple emulsion followed by the evaporation of the organic solvent. Subsequent 324 
precipitation of the polymer allows the obtaining of the particles (Figure 3). Practically, for oil 325 
in water emulsion method, the polymer is dissolved in a volatile and non miscible organic 326 
solvent such as chloroform, ethylacetate or dichloromethane. This organic phase, in which the 327 
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drug and the polymer are dissolved, is then dispersed by high speed homogenization or by 328 
sonication in an aqueous phase containing a surfactant. Once an oil-in-water (o/w) emulsion is 329 
obtained, the evaporation of the organic solvent permits the precipitation of the polymer and 330 
thus, the formation of the particles. As it can be seen in Table 4, SEE is generally used for the 331 
encapsulation of hydrophobic drugs (O’Donnell & McGinity 1997). The evaporation of the 332 
organic solvent is obtained by moderately stirring the emulsion at room temperature or under 333 
high temperature and low pressure conditions. The obtained particles can be then harvested by 334 
ultracentrifugation or filtration then washed and lyophilized. Membrane technology was also 335 
used to prepare particles by the simple emulsion technique (Doan et al. 2011). Another 336 
alternative of the technique is the use of water in oil emulsion method that is suitable for the 337 
encapsulation of hydrophilic active molecules. Particulate carriers are obtained after 338 
evaporation of the water phase which causes the precipitation of the hydrophilic polymer 339 
(Banerjee et al. 2012). Parameters that have to be managed include organic phase to water 340 
phase ratio, nature of the surfactant and its concentration, stirring rate, polymer amount and 341 
evaporation rate. Decreasing the organic solvent volume resulted generally in a decrease of 342 
the particle size (Budhian et al. 2007). Particle size could also be decreased by increasing 343 
surfactant amount (Valot et al. 2009)(Manchanda et al. 2010)(Khaled et al. 2010)(Su et al. 344 
2009), increasing stirring rate (Su et al. 2009)(Lee et al. 2012)(Avachat et al. 2011)(Yadav & 345 
Sawant 2010) or increasing aqueous phase (Adibkia et al. 2011). However, an increase of 346 
polymer amount generally increases particles’ size (Doan et al. 2011)(D’Aurizio et al. 347 
2011)(Adibkia et al. 2011)(Agnihotri & Vavia 2009). Table 4 shows the applications of the 348 
SEE technique in drug delivery. Polyesters are widely used for the encapsulation on 349 
hydrophobic drugs. 350 
 351 

Table 4. Applications of the emulsion solvent evaporation technique 352 

Encapsulated 
molecule 

Polymer  Size  Zeta potential 
(mV) 

Reference 
 

Curcumin PLGA and 
PLGA-PEG 

161.9-152.4 nm - (Khalil et al. 
2013) 

Efavirenz  PCL and 
Eudragit® RS 
100 

83.4-219.5 nm 53 (Seremeta et al. 
2013) 

Human amylin PCL 202 nm - (Guerreiro et al. 
2012) 

Azithromycin PLGA 14.11-15.29 µm - (Li et al. 2012) 
Teniposide PLGA 113.9-135.4 nm -36.6-(-23.1) (Mo et al. 2012) 
Camptothecin PCL-PEG-PCL 4.2-5.4 µm - (Dai et al. 2011) 
Naproxen PLGA 352-824 µm - (Javadzadeh et al. 

2010) 
Doxorubicin PLGA 137-164 nm -12.3-(-9.9) (Manchanda et al. 

2010) 
Dexamethasone PLGA 5.18-7 µm - (Rawat & Burgess 

2010) 
Ibuprofen Eudragit RSPO 14-51.1 µm - (Valot et al. 2009) 
 353 
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3.4.Double emulsion evaporation (DEE): 354 

 355 

 356 

Figure 5. Double emulsion solvent evaporation technique (Giri et al. 2013) 357 

Double emulsion technique is suitable for the encapsulation of hydrophilic molecules (See 358 
Table 5). Generally, the method consists on the dispersion of an aqueous phase in a non 359 
miscible organic solvent to form the first emulsion (W1/O). This dispersion is performed 360 
under high shear homogenization or low power sonication for a short time. This step is 361 
followed by the dispersion of the obtained emulsion in a second aqueous phase containing a 362 
hydrophilic emulsifier. Again, homogenization could be carried under high shear 363 
homogenization or with a sonication probe. When sonication is used, it must be performed at 364 
low power and within a short period of time to not break the first emulsion (Giri et al. 2013). 365 
After the formation of the multiple emulsion, evaporation of the volatile organic solvent under 366 
low pressure (by a rotary evaporator) or at ambient temperature allows the obtaining of the 367 
particulate carriers (Figure 4). There are other types of multiple emulsions like w/o/o or o/w/o 368 
(Giri et al. 2013). A lot of parameters may influence the properties of the obtained particles 369 
such as, relative phases’ ratio (Khoee et al. 2012), amount of the polymer and its nature and 370 
molecular weight (Zambaux et al. 1998) (Péan et al. 1998) (Van de Ven et al. 2011), nature of 371 
the surfactants and their amounts (Zhao et al. 2007)(Khoee & Yaghoobian 2009)(Dhanaraju et 372 
al. 2004), homogenization speed (Eley & Mathew 2007)(Basarkar et al. 2007), the 373 
composition of the external phase (Péan et al. 1998) (Tse et al. 2009) and evaporation speed 374 
(Khoee et al. 2012). Operating conditions may also influence strongly encapsulation 375 
efficiency (Tse et al. 2009)(Billon et al. 2005)(Silva et al. 2013)(Zhou et al. 2013)(Karataş et 376 
al. 2009)(Hachicha et al. 2006)(Al-Kassas 2004)(Cun et al. 2011)(Gaignaux et al. 2012)(Cun 377 
et al. 2010). Membrane technique and microfluidic devices were also used to prepare 378 
particulate carriers by the DES method (Vladisavljević & Williams 2007)(van der Graaf et al. 379 
2005). 380 

 381 

Table 5. Applications of the double emulsion technique 382 

Encapsulated 
molecule 

Polymer  Size  Zeta potential 
(mV) 

Reference 
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Vancomycin PLGA 450-466 nm -7.2-(-3.5) (Zakeri-
Milani et al. 
2013) 

Prostaglandin E1 PLGA 7-22.5 µm - (Gupta & 
Ahsan 
2011) 

Deoxyribonuclease I PLGA 190.4-349 nm - (Osman et 
al. 2011) 

S. equi antigens PCL 242.5-450.2 nm -53.1-38.7 (Florindo et 
al. 2009) 

Hepatitis B surface 
antigen 

PLGA 1-5 µm 0.51-14 (Thomas et 
al. 2009) 

Plasmid DNA PLGA 1.9-4.6 µm -24.6-(-22.9) (Tse et al. 
2009) 

 383 

3.5.Spray drying: 384 

 385 

Figure 4. The spray drying method (Pinto Reis et al. 2006) 386 

 387 

Spray drying is a simple process which gained too much interest due to its cost-effectiveness 388 
and scalability (Sou et al. 2011). Practically, a polymer containing drug solution is atomized 389 
and sprayed into a drying chamber where droplets are dried by heated air. Reduction of 390 
droplets’ size that follows atomization allows the obtaining of an enormous surface area 391 
between droplets and the drying gas. The subsequent precipitation of the polymer permits the 392 
encapsulation of the drug within the obtained particulate carriers. The evaporation of the 393 
solvent occurs within a very short period of time. Consequently, the materials never reach the 394 
inlet temperature of drying gas. This is very attractive for encapsulating heat-sensitive drug 395 
molecules like proteins (Cal & Sollohub 2010)(Sollohub & Cal 2010)(Prata et al. 2013). 396 
Many operating conditions could influence the properties of the obtained particles. Parameters 397 
to be controlled include the drying air temperature and humidity (Bruschi et al. 2003), the rate 398 
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and fluid dynamics of the air flow, the atomization process (Droplet size, spray rate, spray 399 
mechanism) and the composition of ingredients and excipients in the feeding solution (Rattes 400 
& Oliveira 2007). PLA (Baras et al. 2000)(Gander et al. 1996)(Sastre et al. 2007)(Muttil et al. 401 
2007), PLGA (Wang & Wang 2002)(Mu & Feng 2001)(Castelli et al. 1998)(Bittner et al. 402 
1999)(Prior et al. 2000)(Conti et al. 1997), PCL, methacrylate polymers (Esposito et al. 403 
2002)(Año et al. 2011)(Cruz et al. 2010)(Hegazy et al. 2002)(Raffin et al. 2008) and chitosan 404 
(He et al. 1999)(Giunchedi et al. 2002)(Cevher et al. 2006) are among the most used polymers 405 
in spray-drying method. As Table 6 shows, the technique allowed the obtaining of mainly 406 
microparticles bearing better drug solubility and sustained release. 407 

 408 

Table 6. Applications of the spray drying technique 409 

Encapsulated 
molecule 

Polymer  Size  Zeta potential 
(mV) 

Reference 
 

Nimodipine PLGA 1.9-2.37 µm - (Bege et al. 
2013) 

Theophylline Eudragit RS30D < 60µm - (Garekani et al. 
2013) 

Ofloxacin PLA 2.6-4.9 µm - (Palazzo et al. 
2013) 

Sodium 
diclofenac 

PGA-co-PDL 
PEG-PGA-co-
PDL and mPEG-
co-(PGA-co-PDL) 

2.3 µm 
3.9 µm 
2.5 µm 

-32.2 
-29.9 
-31.2 

(Tawfeek 2013) 

Sodium fluoride Chitosan 3.4-5.3 µm - (Keegan et al. 
2012) 

Plasmid  Chitosan 2.5-11.7 µm - (Mohajel et al. 
2012) 

Heparin PLGA 2.5-3.8 µm -63.5 - (-28.2) (Yildiz et al. 
2012) 

Alendronate  Eudragit® S100 13.8 µm - (Cruz et al. 
2010) 

Zolmitriptan Chitosan 
glutamate and 
Chitosan base 

2.6-9.4 µm - (Alhalaweh et 
al. 2009) 

Triamcinolone PLGA 0.5-1.5 µm - (da Silva et al. 
2009) 

Acyclovir Chitosan  18.7-34.9 µm - (Stulzer et al. 
2009) 

 410 

3.6.Supercritical fluid technology (SFT): 411 
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 412 
Figure 6. Schematic presentation of the experimental set up for the RESS process (Byrappa 413 

et al. 2008)  414 

 415 
In the recent years, novel particle formation techniques using supercritical fluids (SCF) have 416 
been developed in order to overcome some of the disadvantages of conventional techniques 417 
that are: (1) poor control of particle size and morphology; (2) degradation and lost of 418 
biological activity of thermo sensitive compounds; (3) low encapsulation efficiency and (4) 419 
low precipitation yield (Santos et al. 2013). Moreover, SFT present the main advantage of not 420 
requiring the use of toxic solvents. In fact, SCF based technologies have attracted enormous 421 
interest for the production of microparticles  and nanoparticles (Table 7), since their 422 
emergence in the early 1990s (Sanli et al. 2012). The supercritical state is achieved when a 423 
substance is exposed to conditions above its critical pressure and temperature. In such 424 
conditions, the fluid will have liquid-like density and, thus, solvating properties that are 425 
similar to those of liquids and, at the same time, gas-like mass transfer properties. Carbon 426 
dioxide (CO2) is the most commonly used critical fluid. In fact, CO2 is nontoxic, 427 
nonflammable and easy recyclable. Moreover, CO2 has moderate critical parameters of CO2 428 
(a critical pressure of 7.4 MPa and a critical temperature of 304.1 K) and low price and is 429 
highly available which makes it very attractive from an economical point of view and also for 430 
the processing of labile compounds (Elizondo et al. 2012). Supercritical fluid technology 431 
methods can be divided in four methods which are rapid expansion of supercritical solution 432 
(RESS), Particles from gas saturated solutions (PGSS), gas antisolvent (GAS) and 433 
supercritical antisolvent process (SAS).These methods depend on whether CO2 was used as a 434 
solvent, a solute or an antisolvent. Figure 6 shows the experimental set up of the RESS 435 
technique. In the RESS technique, the drug and the polymer are first dissolved in supercritical 436 
CO2 in high pressure chamber. The subsequent passing of the solution through a nozzle 437 
results in a rapid decrease of the pressure and thus, a precipitation of the drug particles 438 
embedded in the polymer matrix and their recovery in the extraction unit (Byrappa et al. 439 
2008). A lot of parameters such as the density of the SCF (Pressure and temperature of 440 
supercritical fluid) (Kalani & Yunus 2012), flow rate of drug-polymer solution and/or CO2 441 
and formulation variables (Martin et al. 2002) could influence the size of the obtained 442 
particles. Table 7 shows that SFT was used for the processing of nanoparticles and 443 
microparticles mainly based on polyesters. 444 
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Table 7. Applications of the SCF technology 445 

Encapsulated molecule Polymer  Size  Zeta 
potential 
(mV) 

Reference 
 

Hydrocortisone acetate PLGA 1-5 µm - (Falco et al. 
2013) 

17a-methyltestosterone PLA 5.4-20.5 µm 13.9 - 67.7 (Sacchetin et 
al. 2013) 

Paracetamol PLA 301-1461 nm - (Kalani & 
Yunus 2012) 

5-fluorouracil PLLA-
PEG/PEG 

175 nm - (Zhang et al. 
2012) 

Human growth hormone PLGA 93 µm - (Jordan et al. 
2010) 

Azacytidine  PLA 2 µm - (Argemí et al. 
2009) 

Bovine serum albumin PLA 2.5 µm - (Kang et al. 
2009) 

Retinyl palmitate PLA 40-110nm - (Sane & 
Limtrakul 
2009) 

Indomethacin PLA 2.35 µm - (Kang et al. 
2008) 

 446 

3.7.Ionic gelation (IG): 447 

 448 

Figure 7. Gelation mechanism of polysaccharides in water  (Guenet 1992) 449 

IG method is used mainly with natural hydrophilic polymers to prepare particulate carriers. 450 
These polymers include gelatin, alginate, chitosan and agarose. IG has the advantage of not 451 
using organic solvents. The technique is based on the transition of the polymer from liquid 452 
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state to a gel (Figure 7). For instance, gelatin based particles are obtained after the hardening 453 
of the droplets of emulsified gelatin solution. The particles are obtained after cooling gelatin 454 
emulsion droplets below the gelation point in an ice bath. For alginate, however, particles are 455 
produced by drop-by-drop extrusion of the sodium alginate solution into the calcium chloride 456 
solution. Sodium alginate, in fact, is a water-soluble polymer that gels in the presence of 457 
multivalent cations such as calcium. Chitosan particles are prepared by spontaneous formation 458 
of complexes between the positively charged chitosan and polyanions (tripolyphosphate or 459 
gelatin) or by the gelation of a chitosan solution dispersed in an oil emulsion (Mahapatro & 460 
Singh 2011). Figure 7 illustrates the gelation mechanism of polysaccharides. At high 461 
temperatures, a random coil conformation is assumed. With decreasing temperature, the 462 
aggregation of double helices structure forms the physical junctions of gels (Rees & Welsh 463 
1977). 464 

Table 8. Some applications of the ionic gelation technique 465 

Encapsulated 
molecule 

Polymer  Size  Zeta 
potential 
(mV) 

Reference 
 

Articaine 
hydrochloride 

Alginate/chitosan 340-550 nm -22 - (-19) (de Melo et al. 
2013) 

TNF-a siRNA trimethyl 
chitosan-cysteine 

146.9 nm 25.9 (He et al. 2013) 

Paclitaxel O-carboxymethyl 
chitosan 

130-180 nm -30 - (-12) (Maya et al. 
2013) 

pDNA Chitosan 403-153 nm 46.2 - 56.9 (Cadete et al. 
2012) 

Gemcitabine Chitosan 95 nm - (Derakhshandeh 
& Fathi 2012) 

Dexamthasone 
sodium phosphate 

Chitosan 256 – 350 nm - (Doustgani et 
al. 2012) 

Itraconazole Chitosan 190 - 240 nm 11.5 - 18.9 (Jafarinejad et 
al. 2012) 

5-fluorouracil and 
leucovorin 

Chitosan 40.7-97.4 nm 25.6 - 28.9 (Li et al. 2011) 

Insulin Chitosan and 
arabic gum 

172-245 nm 35.7-43.4 (Avadi et al. 
2010) 

CKS9 peptide 
sequence 

Chitosan 226.2 nm - (Yoo et al. 
2010) 

 466 

3.8.Layer by layer: 467 
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 468 

Figure 8. The layer by layer technique based on electrostatic interaction (Ariga et al. 2011) 469 

 470 

Polyelectrolyte self assembly is also called layer-by-layer (LbL) assembly process. The 471 
earliest technology was based on the assembly of colloidal particles on a solid core (Iler 472 
1966). From the 1990s, applications were expanded. LbL allowed, in fact, the assembly of 473 
polyelectrolyte films using organic and biopolymers, proteins, peptides, polysaccharides and 474 
DNA (Powell et al. 2011). This approach was first developed by Sukhorukov et al 475 
(Sukhorukov et al. 1998). Polyelectrolytes are classified according to their origin. Standard 476 
synthetic polyelectrolytes include poly(styrene sulfonate) (PSS), poly 477 
(dimethyldiallylammonium chloride) (PDDA), poly(ethylenimine) (PEI), poly(N-isopropyl 478 
acrylamide (PNIPAM), poly(acrylic acid) (PAA), poly (methacrylic acid) (PMA), poly(vinyl 479 
sulfate) (PVS) and poly(allylamine) (PAH). Natural polyelectrolytes include nucleic acids, 480 
proteins and polysaccharides such as, alginic acid, chondroitin sulfate, DNA, heparin, 481 
chitosan, cellulose sulfate, dextran sulfate and carboxymethylcellulose (de Villiers et al. 482 
2011). The obtained particles are vesicular and are called polyelectrolyte capsules. Assembly 483 
process is based on irreversible electrostatic attraction that leads to polyelectrolyte adsorption 484 
at supersaturating polyelectrolyte concentrations. Other interactions such as, hydrogen bonds, 485 
hydrophobic interactions and Van der Waals forces were also described (de Villiers et al. 486 
2011). A colloidal template that serves to the adsorption of the polyelectrolyte is also needed. 487 
The commonly used cores for the formulated particles are derived from stabilized colloidal 488 
dispersions of charged silica, charged poly(styrene) spheres, metal oxides, polyoxometalates 489 
and conducting liquid crystalline polymers. Carrier systems can be functionalized with 490 
stimuli-responsive components that respond to temperature, pH and ionic strength. The 491 
polymers/colloids used in the polyelectrolyes self -assembly technique can also be 492 
functionalized to alter its properties preceding layer by layer assembly. Experimental 493 
parameters that have to be managed include coating material concentration, ion concentration 494 
and the pH of the medium (Vergaro et al. 2011).  Polymer assembly occurs after incubation of 495 
the template in the polymer solution or by decreasing polymer solubility by drop-wise 496 
addition of a miscible solvent (Radtchenko et al. 2002). This procedure could be repeated 497 
with a second polymer to allow sequential deposition of multiple polymer layers (Figure 8). 498 
The polyelectrolytes self-assembly presents advantages over a lot of conventional coating 499 
methods:  (1) the simplicity of the process and equipment; (2) its suitability to coating most 500 
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surfaces; (3) the availability of an abundance of natural and synthetic colloids; (4) the flexible 501 
application to objects with irregular shapes and sizes; (5) the formation of stabilizing coats 502 
and (6) control over the required multilayer thickness (de Villiers et al. 2011). 503 

 504 

Table 9. Applications of the layer by layer technique 505 

Active Polyelectrolytes Size Zeta potential 
(mV) 

References 

Kaempferol Sodium 
Alginate and protamine 
sulfate 

161 nm - 8.9 (Kumar et 
al. 2012) 

Designed peptide DP-
2015 

poly-l-glutamic acid and 
poly-l-lysine 

- - (Powell et 
al. 2011) 

5-fluorouracil Poly(L-glutamic acid) and 
chitosan 

1 µm 25-40 (Yan et al. 
2011) 

Plasmid DNA plasmid DNA and reducible 
hyperbranched 
poly(amidoamine) or 
polyethylenimine 

- - (Blacklock 
et al. 2009) 

Artemisinin Alginate, gelatin and 
chitosan 

806 nm -33 (Chen et al. 
2009) 

Insulin glucose oxidase and catalase  6 µm - (Qi et al. 
2009) 

Heparin poly(styrene sulfonate) and 
chitosan 

1 μm -10.4 (Shao et al. 
2009) 

Acyclovir Poly(vinyl galactose 
ester-co-methacryloxyethyl 
trimethylammonium 
chloride) and poly(sodium 4-
styrenesulfonate) 

- - (Zhang et 
al. 2008a) 

Propranolol 
hydrochloride 

Poly(vinyl galactose ester-
co-methacryloxyethyl 
trimethylammonium 
chloride) and Poly(sodium 4-
styrenesulfonate) 

5-15.6 
µm 

- (Zhang et 
al. 2008b) 

 506 

Conclusion: 507 

Encapsulation of active molecules is a crucial approach that has been widely used for many 508 
biomedical applications. It permits enhancement of bioavailability of molecules, sustained 509 
delivery, passive or active targeting and decrease of toxicity and side effects. These 510 
formulations can render some active molecules more suitable for a specific route such as the 511 
delivery of protein by the oral route or the delivery of some drugs via the blood brain barrier. 512 
Thus, they enhance efficiency, patient compliance and allow successful management of 513 
diseases. Many biodegradable and biocompatible polymers were investigated. The choice of 514 
the technique and the suitable polymer is a crucial step. It depends on the physicochemical 515 
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properties of the drug to be encapsulated. The management of operating conditions is also a 516 
hard task to monitor particles’ properties and to enhance drug loading. Recent research works 517 
are focusing on active targeting by the coating the carriers by biomolecules that specifically 518 
recognize a well-defined cell receptor. One can also notice a shift for more ’intelligent’ drug 519 
delivery systems. Responsive materials, for example, react to a specific physiological 520 
stimulus such as a variation of pH to release the encapsulated drug. Other thermo-sensitive 521 
materials deliver drugs at a specific temperature. It can be noted also that more attention is 522 
paid to safer methods that avoid the use of organic solvents (RESS) or to techniques that 523 
provide better reproducibility and easy scalability (microfluidics and membrane 524 
emulsification technology), which could be attractive for industrial processing.  525 
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