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Introduction

This article extends my previous one [START_REF]A refinement of Singer's bound for Liouvillian integration. The low-dimensional cases[END_REF] for higher degrees, using the results therein and the technique developed in [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF]. In [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF], I introduced the problem of Liouvillian integration of linear differential equations whose coefficients are rational functions over an algebraically closed field of characteristic 0. There are different kinds of algorithms for deciding if a symbolically-given differential equation of that kind has a non-null Liouvillian solution, computing one of these solutions in the positive case, some of them purely symbolic, as reviewed in [Llo19b, §2.3], and also a hybrid numeric-symbolic from my thesis [START_REF] Llorente | Métodos numérico-simbólicos para calcular soluciones liouvillianas de ecuaciones diferenciales lineales[END_REF], which combines numerical and symbolic computations for a symbolically correct output. Both kinds of algorithms are based on the following theorems of Singer.

Theorem 1 (Singer). If a linear differential equation with coefficients rational functions over an algebraically closed field of characteristic 0 has non-null Liouvillian solutions, then it admits such a solution y with y /y an algebraic over the said field of rational functions of degree I(r) at most, for the function I of Theorem 2. [Sin81, thm. 2.4] Theorem 2 (Singer). There exists an arithmetic function I such that, for each n and any field K algebraically closed, every subgroup G of GL(n, K) with a 1-reducible subgroup of finite index admits a 1-reducible subgroup of index I(n) at most. [Sin81, prop. 2.2] Remark 3. A subgroup of GL(n, K) is called m-reducible if it leaves invariant a subspace of dimension m.

The optimal values of the function I(k) were known up to k = 5 before my extension. In [START_REF]A refinement of Singer's bound for Liouvillian integration. The low-dimensional cases[END_REF], I extend the table of optimal values up to k = 11. In [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF], I give a general bound of I(k) for any k that, despite not being optimal, improves Jordan's bound by an exponential factor. Nevertheless, it could be useful to sharpen Singer's bound for as many intermediate values as possible, covering most of the practical applications.

The structure of the article is the following. After some reminders from [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF] and [START_REF]A refinement of Singer's bound for Liouvillian integration. The low-dimensional cases[END_REF] in §2, I proceed with the detailed study degree by degree in §3, which leaves some lengthy details for §4 (from degree 12), §5 (for degree multiple of 6), §6 (for degree 16) and §7 (for degree power of an odd prime). Finally, I gather the conclusions in §8.

Preliminary remarks

Remarks on components and quasicomponents

In this section, I review some results from [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF] and [START_REF]A refinement of Singer's bound for Liouvillian integration. The low-dimensional cases[END_REF] that will be used in the study of the present article.

According to [START_REF] Michael | Bounds for finite primitive complex linear groups[END_REF], a component of a finite group G is a quasisimple subnormal subgroup, and a quasicomponent is a non-cyclic p-core of G. The components and quasicomponents control the structure of a finite primitive linear group, which is enough for the purpose of [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF], but for sharpening Singer's bound we have to take into account some components or quasicomponents "in the shadow," which appear when the generalized Fitting subgroup F * (G) is not irreducible.

If we restrict to finite subgroups of SL(k, C) whose center contains the k-th roots of unity, which can be achieved by the transformation G → (C * G) ∩ SL(k, C), we can proceed without loss of generality. With this restriction, we can construct a finite sequence of daylight groups, some finite complex linear groups whose Kronecker product contains the original group in a suitable basis, maybe after restoring the roots of unity. These daylight groups have irreducible generalized Fitting subgroups, so they are controlled by their own components and quasicomponents alone. Thus, the contributors of G are all the components and quasicomponents of all the daylight groups. The product of the degrees of the contributors, actual or in the shadow, is the degree of G.

I define the absolute completion of the representation of a component or quasicomponent in degree n as its normalizer in SL(n, C). This is a finite extension of the corresponding component or quasicomponent. In the case of components, we can look for the candidates in the Atlas [START_REF] Conway | Atlas of finite groups[END_REF], discarding those not representable in the corresponding degree. In the case of quasicomponents, I prove in [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF] that it is enough to consider the Weil representation of [START_REF] Gérardin | Three Weil representations associate to finite fields[END_REF] for the odd case and the almost-extraspecial-by-symplectic representation of [START_REF] Stephen | On the faithful representations, of degree 2 n , of certain extensions of 2-groups by orthogonal and symplectic groups[END_REF] for the even case.

Finally, multiplying the index of a large 1-reducible subgroup of each absolute completion, we get an upper bound of the index of a large 1-reducible subgroup of the original group. For this purpose, I distinguish the restrictions of Singer's bounds I prim to primitive linear groups and I abs to absolute completions. This way, we obtain the elementary bound of the index of a 1-reducible subgroup, which may be enough or not. In some cases concerning the component 2.J 2 in degree 6, I will have to resort to computing subgroups of the Kronecker product.

Other remarks

In [START_REF]A refinement of Singer's bound for Liouvillian integration. The low-dimensional cases[END_REF] I used Cormier's test, and I will use it in the present article. This test is a GAP translation of the MAGMA function IsOneReducGroup written by Cormier in [START_REF] Cormier | Résolution des équations différentielles linéaires d'ordre 4 et 5: applications à la théorie de Galois classique[END_REF]Annex B]. The GAP translation is given in [Llo19c, §3.2], and it checks if a subgroup H of G is 1-reducible for a representation given by a character X. This function computes only with characters, but requires restricting X to H.

As the character needed for Cormier's test may be not unique, in [Llo19c, §3.2] I granted that they yield the same result if they are related by Galoisian conjugation or product by linear characters. If all the characters for certain group yield the same minimal index, then this minimal index is shared by the isoclinism variants of the group. Also, if a group G has a a 1-reducible subgroup G 1 , then any subgroup H of G admits H 1 = G 1 ∩ H as 1-reducible subgroup with [H : H 1 ] [G : G 1 ]. However, one should be aware that we have to be working the restricted representation of G.

For the components, I use Hiss-Malle's tables, found in [START_REF] Hiss | Low-dimensional representations of quasi-simple groups[END_REF] and corrected in [START_REF]Corrigenda: Low-dimensional representations of quasi-simple groups[END_REF], which give the components irreducibly representable in a certain degree n, including those of type A n+1 and m.L 2 (q) outside the main table. For the groups with these components, I proved in [START_REF]A refinement of Singer's bound for Liouvillian integration. The low-dimensional cases[END_REF]§3.3] that those of type A n+1 are (n + 1)-safe, and that those of type m.L 2 (q) are y n -safe for y n = 4(n + 1)(2n + 1) log 3 (2n + 1) , where r-safe means having a 1-reducible subgroup of index r at most. When the index r is omitted, it refers to the current record. I say that a group is safe after a weak computation when I consider the abelian counterimage of the largest cyclic group of the inner group.

Detailed study degree by degree

For the components I use the Atlas notation [START_REF] Conway | Atlas of finite groups[END_REF], unless stated otherwise.

Study for degree 12

The possible components in degree 12 are 6.A 6 , A 13 , U 3 (4), L 3 (3), 2.S 4 (5), 2.M 12 , 6.Suz and 2.G 2 (4), apart from some of type m.L 2 (q). Notice that L 3 (3) was omitted in [START_REF] Hiss | Low-dimensional representations of quasi-simple groups[END_REF], which is corrected in [START_REF]Corrigenda: Low-dimensional representations of quasi-simple groups[END_REF]. The groups of component A 13 are 13-safe and those of type m.L 2 (q) are 2600-safe. The group 6.Suz , which is its own absolute completion, affords an index of 32760, as proved in §4.1. The component 2.G 2 (4) yields the groups 2.G 2 (4) and 2.G 2 (4).2, which are studied in §4.2 and §4.3 respectively. These two groups also afford the index 32760. Using the center as 1-reducible subgroup, the groups with component 6.A 6 or L 3 (3) are safe. The groups with component U 3 (4) or 2.M 12 are safe after weak computations. The group 2.S 4 (5), which is its own absolute completion, yields an index of 1872 after Cormier's test.

For the cases with several contributors, the elementary bounds are safe for 3 × 4 and 2 ×2 × 3. For the decomposition 2 × 6, I study in §5 the case of an icosahedral component is degree 2 and 2.J 2 in degree 6, which yields an index of 18900. The case of a quasicomponent in degree 2 and 2.J 2 in degree 6 yields an index of 22680 at most. The case of a contributor in degree 6 different from 2.J 2 , yields the bound 12 • 2520 = 30240 for the index, using the data form [START_REF]A refinement of Singer's bound for Liouvillian integration. The low-dimensional cases[END_REF]§4.6]. Therefore, we have computed I prim (12) = I abs (12) = 32760.

Study for degree 13

The possible components in degree 13 are A 14 , U 3 (4), S 4 (5) and S 6 (3), apart from some of type m.L 2 (q). The groups of component A 14 are 14-safe and those of type m.L 2 (q) are 4536-safe. Though the components U 3 (4), S 4 (5) and S 6 (3) have non-trivial outer groups, they are their own absolute completion.

For the group U 3 (4), its largest maximal subgroup has index 65 and degrees of irreducible representation 1, 12 and 15, so any faithful representation of this maximal subgroup in degree 13 is 1-reducible. For the group S 4 (5), its second maximal subgroup has index 156 and degrees of irreducible representation 1, 4, 5, 6, 12 and over 13. The irreducible characters up to degree 6 vanish on a subgroup consisting on the first 5 conjugacy classes in the GAP standard character table [START_REF]GAP -Groups, Algorithms, and Programming[END_REF], so any faithful representation of this maximal in degree 13 must be 12 + 1 and thus 1-reducible.

For the group S 6 (3), its third maximal subgroup has index 3640 and degrees of irreducible representation 1, 2, 3, 4, 6, 8, 9, 12 and over 13. Similarly to the previous component, the irreducible characters up to degree 9 vanish on a subgroup consisting on the first 9 conjugacy classes in the GAP standard character table, so any faithful representation of this maximal subgroup in degree 13 must be 12 + 1 and thus 1-reducible.

For the case of a quasicomponent of degree 13, we see in §7 that the Weil representation yields an index of 2184. Therefore, we have proved that I prim (13) and I abs (13) are below 32760, which is enough for computing I(13).

Study for degree 14

The possible components in degree 14 are A 7 , 2.A 7 , A 8 , A 15 , U 3 (3), 2.S 6 (3), Sz (8), G 2 (3), J 2 and 2.J 2 , apart from some of type m.L 2 (q). The groups of component A 15 are 15-safe and those of type m.L 2 (q) are 5220-safe. Using the center as 1-reducible subgroup, the groups with component A 7 or 2.A 7 yield index 5040. After a weak computation, the groups with component A 8 are proved 5040-safe, and those with component Sz (8) are proved 6720-safe. For the group G 2 (3), its fifth maximal subgroup has index 378 and degrees of irreducible representation 1, 12, 13 and over 14, so any faithful representation of this maximal in degree 14 is 1-reducible. This 1-reducible subgroup has index 756 in G 2 (3).2. + are 1 and 9, so the subgroup K of M with structure 2 × 3 1+4 + has 1 faithful constituent of degree 9 and 5 non-faithful linear constituents. As M normalizes K, then M permutes the 5 invariant lines of K. The index in M of the stabilizer M 0 of one of these lines is at most 5, so [2.S 6 (3) : M 0 ] = [2.S 6 (3) : M ][M : M 0 ] 364 • 5 = 1820. Thus, I have proved that the component 2.S 6 (3) is 1820-safe. Recall that there is no extension 2.S 6 (3).2 in degree 14.

Cormier's test on U 3 (3) computes an order of 96 and an index of 63, which yields in U 3 (3).2 an index of 126. The largest maximal subgroup of J 2 is isomorphic to U 3 (3), so we can take the 1-reducible subgroup of order 96, which yields index 6300. So, 2.J 2 contains a subgroup of structure 2.U 3 (3), which must be a direct product 2 × U 3 (3) because the Schur multiplier of U 3 (3) is trivial. The direct product of the central left-hand-side factor and the 1-reducible subgroup of order 96 yields an index of 6300. For the component 2.J 2 we must also consider the extensions 2.J 2 .2, where the 1-reducible subgroup has index 12600.

For the case with several contributors, the elementary bound for 2 × 7 is 12 • 56 = 672. Therefore, we have proved that I prim (14) and I abs (14) are below 32760, which is enough for computing I(14).

Study for degree 15

The possible components in degree 15 are 3.A 6 , A 7 , 3.A 7 , A 16 , 3.L 3 (4), U 4 (2), 3 1 .U 4 (3) and S 6 (2), apart from some of type m.L 2 (q). The groups of component A 16 are 16-safe and those of type m.L 2 (q) are 5952-safe. Using the center as 1-reducible subgroup, the groups with component 3.A 6 , A 7 or 3.A 7 are 5040-safe. After a weak computation, the groups with component 3.L 3 (4) or U 4 (2) are proved 5760-safe. For the group S 6 (2), its second maximal subgroup has index 36 and degrees of irreducible representation 1, 7, 14 and over 15, so any faithful representation of this maximal in degree 15 is 1-reducible.

The component 3 1 .U 4 (3) admits only extensions 3 1 .U 4 (3).2 i for i ∈ {1, 2}, but only i = 2 is representable in degree 15. The group 3 1 .U 4 (3) has two complex-conjugate irreducible characters of degree 15, so any representation thereof can be regarded as a subgroup of 3 1 .U 4 (3).2 2 , and safe if the latter is so. As discussed in [START_REF]A refinement of Singer's bound for Liouvillian integration. The low-dimensional cases[END_REF], [START_REF] Lindsey | On a six-dimensional projective representation of PSU 4 (3)[END_REF] gives a faithful representation of 6 1 .U 4 (3).2 2 in degree 6, which can converted into an isomorphic permutation group for efficiency, since GAP command AtlasGroup("3_1.U4(3)") fails. The quotient by the central subgroup of order 2 is a copy of 3 1 .U 4 (3).2 2 and has 4 irreducible characters of degree 15 related by complex conjugation and product with linear characters. Cormier's test on any of them yields an index of 540.

For the case with several contributors, the elementary bound for 3×5 is 36•55 = 1980. Therefore, we have proved that I prim (15) and I abs (15) are below 32760, which is enough for computing I(15).

Study for degree 16

The possible components in degree 16 are 2.A 10 , 2.A 11 , A 17 , L 3 (3), M 11 and M 12 , apart from some of type m.L 2 (q). The groups of component A 17 are 17-safe and those of type m.L 2 (q) are 6732-safe. The components 2.A 11 , L 3 (3), M 11 and M 12 are their own absolute completion. The groups L 3 (3) and M 11 are 7920-safe with the trivial subgroup. A weak computation proves M 12 8640-safe.

Cormier's test applied to 2.A 10 takes too long for the GAP standard AtlasGroup("2.A10"), which is a subgroup of GL(16, 3), even trying to find a permutation representation, so I resort to the representation in GL(8, 5) given in [START_REF] Wilson | Atlas of finite group representations -version 3[END_REF], which GAP quickly transforms into a permutation representation for efficiency. Applying the test to this last group of permutations, we obtain a 1-reducible subgroup of order 3024 and index 1200, which yields in 2.A 10 .2 an index of 2400. The largest maximal subgroup of 2.A 11 is 2.A 10 , so we can take the same 1-reducible subgroup, which in 2.A 11 has index 13200.

The case of quasicomponents is studied in §6, where I obtain the afforded minimum index 36720 by a primitive linear group, so a new record is established. For the cases with several contributors, the elementary bounds for 2 ×4 , 4 ×2 , 2 ×2 × 4 and 2 × 8 are 20736-safe. Therefore, we have computed I prim (16) = I abs (16) = 36720.

Study for degree 17

The possible components in degree 17 are A 18 and some of type m.L 2 (q). The groups of component A 17 are 17-safe and those of type m.L 2 (q) are 7560-safe. For the case of a quasicomponent of degree 17, the Weil representation yields an index of 4896. Therefore, we have proved that I prim (17) and I abs (17) are below 36720, which is enough for computing I(17).

Study for degree 18

The possible components in degree 18 are A 19 , S 4 (4) and 3.J 3 , apart from some of type m.L 2 (q). The groups of component A 19 are 19-safe and those of type m.L 2 (q) are 8436safe. Cormier's test on S 4 (4) yields an index of 120, which in S 4 (4).4 means index 480.

The largest maximal subgroup of J 3 contains a copy of L 2 (16), so 3.J 3 contains a subgroup of structure 3.L 2 (16), which must be a direct product 3 × L 2 (16) because L 2 (16) has a trivial Schur multiplier. The degrees of irreducible representation of L 2 (16), and thus of 3 × L 2 (16), are 1, 15, 16 and 17, so any faithful representation of these groups in degree 18 is 1-reducible. Hence, 3.J 3 has a 1-reducible subgroup of index 12312. Notice that there is no representation of 3.J 3 .2 in degree 18.

For the cases with several contributors, the elementary bounds for 3 × 6, 2 × 9 and 2 × 3 ×2 are 136080, 45360 and 15552 respectively. For the decomposition 3 × 6, I study in §5 the case of a Valentiner component is degree 3 and 2.J 2 in degree 6, which yields an index of 136080. This establishes a new record, afforded by the Kronecker product of primitive groups, hence by a primitive group, according to [Asc00, thm. 1]. Therefore, we have computed I prim (18) = I abs (18) = 136080.

Study for degree 19

The possible components in degree 19 are A 20 and of some of type m.L 2 (q). The groups of component A 20 are 20-safe and those of type m.L 2 (q) are 9360-safe. For the case of a quasicomponent of degree 19, the Weil representation yields an index of 6840. Therefore, we have proved that I prim (19) and I abs (19) are below 136080, which is enough for computing I(19).

Study for degree 20

The possible components in degree 20 are 2.A 7 , A 8 , A 21 , L 3 (4), 4 2 .L 3 (4), U 3 (5), U 4 (2), 2.U 4 (2), 2.U 4 (3) and 4.U 4 (3), apart from some of type m.L 2 (q). The groups of component A 21 are 21-safe and those of type m.L 2 (q) are 10332-safe. The groups with component 2.A 7 are 5040-safe taking the center as 1-reducible subgroup. After a weak computation, the groups with component A 8 are proved 2688-safe, those with component L 3 (4) or 4 2 .L 3 (4) are proved 34560-safe, those with component U 3 (5) are proved 75600-safe, and those with component U 4 (2) or 2.U 4 (2) are proved 4320-safe.

The For the cases with several contributors, the elementary bounds for 2 × 10, 2 ×2 × 5, 4 × 5 are 23760, 7920 and 6600 respectively. Therefore, we have proved that I prim (20) and I abs (20) are below 136080, which is enough for computing I(20).

Study for degree 21

The possible components in degree 21 are A 7 , 3.A 7 , A 8 , A 9 , A 22 , 3.L 3 (4), U 3 (3), U 3 (5), 3.U 3 (5), U 4 (3), 3 1 .U 4 (3), 3.U 6 (2), S 6 (2), M 22 , 3.M 22 and J 2 , apart from some of type m.L 2 (q). The groups of component A 22 are 22-safe and those of type m.L 2 (q) are 11352safe. Taking the center as 1-reducible subgroup, the groups with component of type m.A 7 are proved 5040-safe, those with component A 8 are proved 40320-safe, and those with component U 3 (3) are proved 12096-safe. After the corresponding weak computations, the groups with component A 9 , 3.L 3 (4), U 3 (5), 3.U 3 (5), S 6 (2), M 22 , 3.M 22 or J 2 are proved 96768-safe.

Cormier's test applied to the component U 4 (3), in a permutation representation obtained from [START_REF] Breuer | Atlas vefification: Atlas groups and the representations used[END_REF], yields an index of 112. Any admissible extension U 4 (3).a has a D 8 , so #a 8 and thus this 1-reducible subgroup has index 112 • 8 = 896 at most. The component 3 1 .U 4 (3) admits only extensions 3 1 .U 4 (3).2 i for i ∈ {1, 2}, both representable in degree 21. Taking the permutation representation obtained from [START_REF] Breuer | Atlas vefification: Atlas groups and the representations used[END_REF] for 3 1 .U 4 (3) and any of the two complex-conjugate faithful irreducible characters of degree 21, Cormier's test yields an index of 126, which in 3 1 .U 4 (3).2 i means index 252.

The + are 1 and 16, so the subgroup K of M with structure 3 × 2 1+8 + has 1 faithful constituent of degree 16 and 5 non-faithful linear constituents. As M normalizes K, then M permutes the 5 invariant lines of K. The index in M of the stabilizer M 0 of one of these lines is at most 5, so

[3.U 6 (2) : M 0 ] = [3.U 6 (2) : M ][M : M 0 ] 693 • 5 = 3465. Thus, I have proved that the component 3.U 6 (2) is 3465-safe. Any admissible extension 3.U 6 (2).a has a S 3 , so #a 6 and thus [3.U 6 (2).a : M 0 ] = [3.U 6 (2) : M 0 ]#a 3465 • 6 = 20790.
For the cases with several contributors, the elementary bound for 3 × 7 is 2016. Therefore, we have proved that I prim (21) and I abs (21) are below 136080, which is enough for computing I(21).

Study for degree 22

The possible components in degree 22 are A 23 , U 6 (2), M 23 , HS and M c L, apart from some of type m.L 2 (q). The groups of component A 23 are 23-safe and those of type m.L 2 (q) are 12420-safe. The simple groups M 23 , HS and M c L admit M 22 as a maximal subgroup. The degrees of irreducible representation of M 22 are 1, 21 and over 22, so any faithful representation in degree 22 is 1-reducible. The index of this 1-reducible subgroup in M 23 , HS , HS .2, M c L and M c L.2 is 23, 100, 200, 2025 and 4050 respectively.

The second maximal subgroup M of U 6 (2) has structure 2 1+8 + .H, for certain group H, and index 693. The degrees of irreducible representability of 2 1+8 + are 1 and 16, so the subgroup K of M with this extraspecial structure has 1 faithful constituent of degree 16 and 6 non-faithful linear constituents. As M normalizes K, then M permutes the 6 invariant lines of K. The index in M of the stabilizer M 0 of one of these lines is at most 6, so

[U 6 (2) : M 0 ] = [U 6 (2) : M ][M : M 0 ] 693 • 6 = 4158.
Thus, I have proved that the component U 6 (2) is 4158-safe. Any admissible extension U 6 (2).a has a S 3 , so #a 6 and thus [U 6 (2).a :

M 0 ] = [U 6 (2) : M 0 ]#a 4158 • 6 = 24948.
For the cases with several contributors, the elementary bound for 2 × 11 is 3564. Therefore, we have proved that I prim (22) and I abs (22) are below 136080, which is enough for computing I(22).

Study for degree 23

The possible components in degree 23 are A 24 , M 24 , Co 3 and Co 2 , apart from some of type m.L 2 (q). The groups of component A 24 are 24-safe and those of type m.L 2 (q) are 13536-safe. The rest of the components have trivial outer groups and thus are their own absolute completion. The largest maximal subgroup of M 24 is M 23 , the largest maximal subgroup of Co 3 is M c L.2, the second maximal subgroup of Co 2 is U 6 (2).2, and the degrees of irreducible representation of these maximal subgroups are 1, 22 and over 23, so any faithful representation thereof in degree 23 is 1-reducible. The index of these 1-reducible subgroups is 24, 276 and 2300 respectively. For the case of a quasicomponent of degree 23, the Weil representation yields an index of 12144. Therefore, we have proved that I prim (23) and I abs (23) are below 136080, which is enough for computing I(23).

Study for degree 24

The possible components in degree 24 are 3.A 7 , 6.A 7 , 2.A 8 , A 25 , 12 1 .L 3 (4), U 4 (2), 2.S 4 (7) and 2.Co 1 , apart from some of type m.L 2 (q). The groups of component A 25 are 25-safe and those of type m.L 2 (q) are 14700-safe. Taking the center as 1-reducible subgroup, the components 3.A 7 and 6.A 7 are proved 2520-safe, and the component 2.A 8 is proved 20160-safe. These components are their own absolute completion. Also with the center, the groups U 4 (2) and U 4 (2).2 are proved 51840-safe. A weak computation proves the component 12 1 .L 3 (4) 2880-safe. Any admissible extension 12 1 .L 3 (4).a has a 2 × S 3 , so #a 12, which yield index 2880 • 12 = 34560 at most.

The largest maximal subgroup of Co 1 is Co 2 with index 98280, so 2.Co 1 admits a subgroup with structure 2.Co 2 , which must be a direct product 2 × Co 2 since Co 2 has a trivial Schur multiplier. The degrees of irreducible representation of Co 2 are 1, 23 and over 24, so any representation of Co 2 , and thus of 2 × Co 2 , in degree 24 is 1-reducible. Hence, the index of this 1-reducible subgroup is also 98280. Now, let me consider the component Sp(4, 7) = 2.S 4 (7). Considering the natural action as a symplectic group on F 4 7 , the stabilizer of a line (of any, by Witt theorem) is a subgroup H with index 400, which can be computed with GAP. The degrees of irreducible representation of H are 1, 3, 4, 6, 7, 8, 21 and over 24. The intersection of the kernels of the irreducible characters of degree up to 8 is a subgroup of order 343, so a faithful representation of H needs a constituent of degree 21. The rest of the constituents of H may be three linear ones or one of degree 3, but anyway it is 3-reducible. By Singer's theorem, it admits a 1-reducible subgroup of index I(3) = 36 at most, which yields index 400 • 36 = 14400 in Sp(4, 7) and 28800 in the absolute completion.

For the cases with several contributors, the elementary bound for 4 × 6 is 120 • 3780 = 453600. This bound is afforded by the Kronecker product of 2.A 7 in degree 4 and 2.J 2 in degree 6, as I study in §5, so this primitive group establishes a new record. The same bound is valid for the decomposition 2 ×2 × 6, as studied in [START_REF]A refinement of Singer's bound for Liouvillian integration. The low-dimensional cases[END_REF]§4.4]. The elementary bounds of the rest of the decompositions are below this value. Therefore, we have computed I prim (24) = I abs (24) = 453600.

Study for degree 25

The possible components in degree 25 are A 26 and S 4 (7), apart from some of type m.L 2 (q). The groups of component A 26 are 26-safe and those of type m.L 2 (q) are 15912-safe.

I will now consider the component PSp(4, 7) = S 4 (7) in a similar way as Sp(4, 7) in degree 24. Considering the natural action on the projective space of dimension 3 over F 7 , the stabilizer of a projective point is a subgroup H 0 with index 400, the projectivization of the subgroup H previously considered in Sp(4, 7). The degrees of irreducible representation of H 0 are among those of H. As the irreducible characters of H in degree up to 8 vanish on certain subgroup of order 343, so happens with H 0 , thus a faithful representation of H 0 needs a constituent of degree 21 and it is 3-reducible. By Singer's theorem, it admits a 1-reducible subgroup of index I(3) = 36 at most, which yields index 400 • 36 = 14400 in PSp(4, 7) and 28800 in the absolute completion.

The case of a quasicomponent is studied in §7, obtaining an index of 97500. For the cases with several contributors, the elementary bound for 5 ×2 is 3025. Therefore, we have proved that I prim (25) and I abs (25) are below 453600, which is enough for computing I(25).

Study for degree 26

The possible components in degree 26 are A 27 , L 3 (3), L 4 (3), 3 D 4 (2) and 2 F 4 (2) , apart from some of type m.L 2 (q). The groups of component A 27 are 27-safe and those of type m.L 2 (q) are 17172-safe. Taking the center as 1-reducible subgroup, the groups with component L 3 (3) are proved 11232-safe.

The seventh maximal subgroup of the component L 4 (3) is A 6 .2 2 , corrected from the Atlas, and degrees of irreducible representation 1, 8, 9 and 10. Applying Cormier's test on the characters of degree 8, we get order 20, and on the characters of degree 9 and 10 we get order 72. So, the restricted representation of the maximal subgroup has two options. The option of containing a constituent of degree 9 or 10 implies admitting a 1-reducible subgroup of order 72. The option of containing only constituents of degree 1 or 8 implies having at least two linear constituents. In the former case, there is a 1reducible subgroup of order 72, while in the latter case the maximal subgroup of order 720 is 1-reducible itself. This yields an index of 84240 in L 4 (3) and of 168480 in L 4 (3).2 2 , the only extension admissible in degree 26.

The largest maximal subgroup M of 3 D 4 (2) has structure 2 1+8 + .H, for certain group H, and index 819. The degrees of irreducible representability of 2 1+8 + are 1 and 16, so the subgroup K of M with this extraspecial structure has 1 faithful constituent of degree 16 and 10 non-faithful linear constituents. As M normalizes K, then M permutes the 10 invariant lines of K. The index in M of the stabilizer M 0 of one of these lines is at most 10, so

[ 3 D 4 (2) : M 0 ] = [ 3 D 4 (2) : M ][M : M 0 ] 819 • 10 = 8190. Thus, I have proved that the component 3 D 4 (2) is 8190-safe. Now, [ 3 D 4 (2).3 : M 0 ] = 3[ 3 D 4 (2) : M 0 ] 3 • 8190 = 24570.
The eighth maximal subgroup H of the component 2 F 4 (2) has index 14976, and its character table available in GAP. The degrees of irreducible representation of H are 1, 2, 3 and 24. The intersection of the kernels of the irreducible characters of degree up to 3 is a subgroup of order 25, so a faithful representation of H needs a constituent of degree 24. The rest of the constituents of H may be two linear ones or one of degree 2, but anyway it is 2-reducible. By Singer's theorem, it admits a 1-reducible subgroup of index I(2) = 12 at most, which yields index 14976 • 12 = 179712 in 2 F 4 (2) . Notice that 2 F 4 (2) .2 is not representable in degree 26.

For the cases with several contributors, the elementary bound for 2 × 13 is 393120. Therefore, we have proved that I prim (26) and I abs (26) are below 453600, which is enough for computing I(26).

Study for degree 27

The possible components in degree 27 are A 9 , A 28 , L 3 (3), U 3 (3), S 6 (2), 3.O 7 (3), 3.G 2 (3) and 2 F 4 (2) , apart from some of type m.L 2 (q). The groups of component A 28 are 28-safe and those of type m.L 2 (q) are 18480-safe. Taking the center as 1-reducible subgroup, the groups with component A 9 , L 3 (3) or U 3 (3) are proved 362880-safe. A weak computation proves S 6 (2) 96768-safe, and 3.G 2 (3) 326592-safe.

The largest maximal subgroup H of the component 3.O 7 (3) has index 351 and its degrees of irreducible representation are 1, 20, 21 and over 27. Immediately, any character of degree 27 has at least one linear constituent, so H is 1-reducible. Notice that 3.O 7 (3).2 is not representable in degree 27.

The fourth maximal subgroup H of the component 2 F 4 (2) has index 2304 and its degrees of irreducible representation are 1, 13, 24, 25 and 26. It is easy to check that any character of degree 27 has at least one linear constituent, so H is 1-reducible. For the absolute completion, the index of H in 2 F 4 (2) .2 is 4608.

The case of a quasicomponent corresponds to the Weil representation, so it has a subgroup isomorphic to 3 × Sp(6, 3), where the cyclic factor corresponds to the center. As the orthogonal group GO + (6, 3) is embedded in the symplectic factor, we have a subgroup 3 × GO + (6, 3) of index 275562. The degrees of irreducible representation of this group are 1, 26 and over 27, so any representation in degree 27 is 1-reducible. Hence, this case is 275562-safe.

For the cases with several contributors, the elementary bounds for 3 ×3 and 3 × 9 are 46656 and 31104 respectively. Therefore, we have proved that I prim (27) and I abs (27) are below 453600, which is enough for computing I(27).

Study for degree 28

The possible components in degree 28 are A 8 , A 9 , A 29 , 2.L 3 (4), 4 2 .L 3 (4), U 3 (3), U 3 (5), O + 8 (2) and 2.Ru, apart from some of type m.L 2 (q). The groups of component A 29 are 29safe and those of type m.L 2 (q) are 19836-safe. Taking the center as 1-reducible subgroup, the groups with component A 8 , A 9 , 2.L 3 (4), 4 2 .L 3 (4), U 3 (3) or U 3 (5) are proved 362880safe. Notice that, despite having outer group S 3 , the component U 3 (5) admits only the extension U 3 (5).2 in degree 28.

The largest maximal subgroup H of the component O + 8 (2) has index 120 and its degrees of irreducible representation are 1, 6, 10, 15, 20, 24 and over 28. It is easy to check that any character of degree 28 has at least one linear constituent, so H is 1-reducible. Any admissible extension O + 8 (2).a has a S 3 , so #a 6 and thus

[O + 8 (2).a : H] = [O + 8 (2) : H]#a 120 • 6 = 720.
The largest maximal subgroup H of the component 2.Ru has index 4060 and its character table is available in GAP. Its degrees of irreducible representation are 1, 27 and over 28, so H is 1-reducible. Notice that Ru has a trivial outer group.

For the cases with several contributors, the elementary bounds for 2 × 14, 2 ×2 × 7 and 4 × 7 are 174720, 8064 and 6720 respectively. Therefore, we have proved that I prim (28) and I abs (28) are below 453600, which is enough for computing I(28).

Study for degree 29

The possible components in degree 29 are A 30 and of some of type m.L 2 (q). The groups of component A 30 are 30-safe and those of type m.L 2 (q) are 21240-safe. For the case of a quasicomponent of degree 29, the Weil representation yields an index of 24360. Therefore, we have proved that I prim (29) and I abs (29) are below 453600, which is enough for computing I(29).

Study for degree 30

The possible components in degree 30 are A 31 , L 3 (5), L 5 (2) and U 4 (2), apart from some of type m.L 2 (q). The groups of component A 31 are 31-safe and those of type m.L 2 (q) are 22692-safe. Taking the center as 1-reducible subgroup, the groups with component U 4 (2) are proved 51840-safe. After a weak computation, those with component L 3 (5) are proved 24000-safe.

The largest maximal subgroup H of the component L 5 (2) has index 31 and its degrees of irreducible representation are 1, 7, 14, 15, 20, 21, 28 and over 30. It is easy to check that any character of degree 30 has at least one linear constituent, so H is 1-reducible. For the absolute completion, the index of H in L 2 (5).2 is 62.

For the cases with several contributors, the elementary bounds for all the decomposition are 207900-safe. Therefore, we have proved that I prim (30) and I abs (30) are below 453600, which is enough for computing I(30).

Study for degree 31

The possible components in degree 31 are A 32 and L 3 (5), apart from some of type m.L 2 (q). The groups of component A 32 are 32-safe and those of type m.L 2 (q) are 24192-safe. After a weak computation, the groups with component L 3 (5) are proved 24000-safe. For the case of a quasicomponent of degree 31, the Weil representation yields an index of 29760. Therefore, we have proved that I prim (31) and I abs (31) are below 453600, which is enough for computing I(31).

Study for degree 32

The possible components in degree 32 are 2.A 12 , 2.A 13 , A 33 , U 3 (3) and 2.M 12 , apart from some of type m.L 2 (q). The groups of component A 33 are 33-safe and those of type m.L 2 (q) are 25740-safe. Taking the center as 1-reducible subgroup, the groups with component U 3 (3) or 2.M 12 are proved 12096-safe and 190080-safe respectively.

As A 11 is embedded in A 12 and A 13 , the components 2.A 12 and 2.A 13 have a subgroup of structure 2.A 11 , which may be either the direct product or the Schur cover. As the degrees of irreducible representation of A 11 are 1, 10 and over 32, the direct product is 1-reducible itself. The degrees of irreducible representation of the Schur cover are 1, 10, 16 and over 32, so this case is 1-reducible unless it reduces as 16 + 16. In this case, the subgroup is 16-reducible and, by Singer's theorem, it admits a 1-reducible subgroup of index 13200 at most, according to the present study for degree 16. In 2.A 12 it yields an index of 13200 • 12 = 158400, and in 2.A 13 of 13200 • 12 • 13 = 2059200.

The case of quasicomponents is similar to that studied in §6, but much more complicated computationally. Although the maximal subgroups of S 10 (2) are studied in [START_REF] Rauhi | The maximal subgroups of the symplectic group PSp(10, 2)[END_REF], the subgroups of S 10 (2) reduce to the subgroups of S 8 (2) which had to be reduced to another study of the same author. Therefore, I give up computing the optimal value of I(32), being enough with a bound. By a similar argument as in the beginning of §6, the Runge group G we can take without loss of generality admits a monomial subgroup M of index 75735. The stabilizer M 1 of the first Cartesian axis satisfies

[M : M 1 ] 32, so [G : M 1 ] = [G : M ][M : M 1 ]
75735 • 32 = 2423520. This means that this case is 2423520-safe.

For the cases with several contributors, the elementary bounds for all the decomposition are 440640-safe. Therefore, we have proved that I prim (32) and I abs (32) are below 2423520, so we get this bound as a good estimate of I(32), since it is less than 6 times the previous record.

Study for degree 33

The possible components in degree 33 are A 34 and some of type m.L 2 (q). The groups of component A 34 are 34-safe and those of type m.L 2 (q) are 27336-safe. For the cases with several contributors, the elementary bound for 3 × 11 is 10692. Therefore, we have proved that I prim (33) and I abs (33) are below 2423520, which is enough for keeping our bounding value.

Study for degree 34

The possible components in degree 34 are A 35 , S 4 (4) and O - 8 (2), apart from some of type m.L 2 (q). The groups of component A 35 are 35-safe and those of type m.L 2 (q) are 28980-safe. After a weak computation, S 4 (4) is proved 230400-safe.

The fourth maximal subgroup of O - 8 (2) has structure 2 1+8 + .H, for certain group H, and index 1071. The degrees of irreducible representability of 2 1+8 + are 1 and 16, so the subgroup K of M with this extraspecial structure has 1 or 2 faithful constituents of degree 16 and at most 2 or 18 non-faithful linear constituents. As M normalizes K, then M permutes the aforesaid invariant lines of K. The index in M of the stabilizer M 0 of one of these lines is at most 18, so

[O - 8 (2) : M 0 ] = [O - 8 (2) : M ][M : M 0 ] 1071 • 18 = 19278. Thus, I have proved that the component O - 8 (2) is 19278-safe. Now, [O - 8 (2).2 : M 0 ] = 2[O - 8 (2) : M 0 ] 2 • 19278 = 38556.
For the cases with several contributors, the elementary bound for 2 × 17 is 440640. Therefore, we have proved that I prim (34) and I abs (34) are below 2423520, which is enough for keeping our bounding value.

Study for degree 35

The possible components in degree 35 are A 7 , A 8 , A 9 , A 10 , A 36 , L 3 (4), U 4 (3), S 6 (2), S 8 (2), O + 8 (2) and Sz (8), apart from some of type m.L 2 (q). The groups of component A 36 are 36-safe and those of type m.L 2 (q) are 30672-safe. Taking the center as 1-reducible subgroup, the groups with component A 7 , A 8 , A 9 , L 3 (4) or Sz (8) are proved 362880-safe. After a weak computation, those of component A 10 are proved 172800-safe. Applying Cormier's test to both characters of U 4 (3), it yields index 126. Any admissible extension U 4 (3).a has a D 8 , so #a 8 and thus the index in the total group is 1008 at most. Applying Cormier's test to both characters of S 6 (2), it yields index 120 and 36. Applying Cormier's test to S 8 (2) on the list of its subgroups up to index 36720 computed in §6.1, it yields an index of 5355. Notice that S 6 (2) and S 8 (2) have a trivial outer group, so they are their own absolute completion. As S 6 (2) is embedded in O + 8 (2) as a maximal subgroup, we can inherit the 1-reducible subgroup, so O + 8 (2) is 14400-safe. Any admissible extension O + 8 (2).a has a S 3 , so #a 6 and thus the index in the total group is 86400 at most.

For the cases with several contributors, the elementary bound for 5 × 7 is 3080. Therefore, we have proved that I prim (35) and I abs (35) are below 2423520, which is enough for keeping our bounding value.

Study for degree 36

The possible components in degree 36 are m.A 7 for m ∈ {2, 6}, A 10 , A 37 , m.L 3 (4) for m ∈ {2, 4 2 , 6, 12 2 }, 2.U 4 (2), m.U 4 (3) for m ∈ {3 2 , 12 2 }, and J 2 , apart from some of type m.L 2 (q). The groups of component A 37 are 37-safe and those of type m.L 2 (q) are 32412safe. Using the center as 1-reducible subgroup, the groups with component of type m.A 7 , m.L 3 (4) and 2.U 4 (2) are safe. The groups A 10 , S 10 , J 2 and J 2 .2 are safe after weak computations.

For the components 3 2 .U 4 (3) and 12 2 .U 4 (3), notice that they only admit the extensions m.U 4 (3).2 i for i ∈ {1, 3}, so we are considering groups up to order 2m#U 4 (3). The sixth maximal subgroup of U 4 (3) contains the extraspecial group 3 1+4 + . The counterimage of this extraspecial group in 3 2 .U 4 (3) is a central extension 3.3 1+4 + , whose 10 non-isomorphic possibilities can be computed with GAP. All these possibilities admit abelian subgroups of order 81, which yields an index of 120960 in 3 2 .U 4 (3), and of 241920 in 3 2 .U 4 (3).2 i for the admissible i. The counterimage of any of the extraspecial group 3 1+4 + in 12 2 .U 4 (3) is a central extension 12.3 1+4 + , which can be seen as an extension 4.P for P one the 10 possibilities previously computed. As P is a 3-group, the extension is a direct product 4 × P , so it admits an abelian subgroup of order 4 • 81 = 324 regardless the possibility P , which yields an index of 120960 in 12 2 .U 4 (3), and of 241920 in 12 2 .U 4 (3).2 i for the admissible i.

For the cases with several contributors, the elementary bounds are safe for 2 ×2 × 3 ×2 , 4 × 3 ×2 , 2 ×2 × 9, 4 × 9 and 2 × 18. The decomposition 2 × 3 × 6 can inherit the bound of 2 × 18, according to our study of degree 18. However, the computations for 3 × 12 and the general case of 6 ×2 are unfeasible, so we have to resort to the elementary bounds 1179360 and 14288400. In order to find fitter bounds, I apply Goursat's Lemma for two components 2.J 2 in §5, finding that the index 604800 is afforded by this primitive group. So, we can keep 1179360 for 3 × 12 and use the bound 3780 • 2520 = 9525600 for the rest of 6 ×2 . Therefore, we have proved 604800 I prim (36) 9525600.

Study for degree 37

The possible components in degree 37 are A 38 and some of type m.L 2 (q). The groups of component A 38 are 38-safe and those of type m.L 2 (q) are 34200-safe. For the case of a quasicomponent of degree 37, the Weil representation yields an index of 50616. Therefore, we have proved that I prim (37) and I abs (37) are below 9525600, which is enough for keeping our bounding value.

Study for degree 38

The possible components in degree 38 are A 39 and some of type m.L 2 (q). The groups of component A 39 are 39-safe and those of type m.L 2 (q) are 36036-safe. For the cases with several contributors, the elementary bound for 2 × 19 is 82080. Therefore, we have proved that I prim (38) and I abs (38) are below 9525600, which is enough for keeping our bounding value.

Study for degree 39

The possible components in degree 39 are A 40 , L 3 (3), L 4 (3) and U 3 (4), apart from some of type m.L 2 (q). The groups of component A 40 are 40-safe and those of type m.L 2 (q) are 37920-safe. Taking the center as 1-reducible subgroup, the groups with component L 3 (3) or U 3 (4) are proved 249600-safe. The fifth maximal subgroup of L 4 (3) contains an elementary abelian subgroup of order 3 4 , which yields an index of 299520 at most in the admissible extension of the component. For the cases with several contributors, the elementary bound for 3 × 13 is 131040. Therefore, we have proved that I prim (39) and I abs (39) are below 9525600, which is enough for keeping our bounding value.

4 Study on 6.Suz , 2.G 2 (4) and 2.G 2 (4).2

This section is devoted to the components 6.Suz and 2.G 2 (4) in degree 12.

On 6.Suz

The outer group of Suz is 2, but its bicyclic extension 6.Suz .2 has no irreducible representation of degree less than 24 apart of the linear ones, so the only primitive group to consider with the component 6.Suz is itself, which is primitive and a group attaining the optimal bound of [START_REF] Michael | Bounds for finite primitive complex linear groups[END_REF]. As the primitive representation G of 6.Suz in degree 12 is irreducible, we can restrict our search of large 1-reducible subgroups of G to its maximal subgroups. According to the Atlas tables available in GAP, the three largest conjugacy classes of maximal subgroups of 6.Suz have index 1782, 22880 and 32760, having the rest of maximal subgroups an index 135135 at least.

A largest maximal subgroup H of G has type 3 × (2.G 2 (4)) and its character table is available in GAP. As H has 3 irreducible representations of degree 12 and no one of smaller degree apart of the linear ones, we have that H is irreducible. The largest maximal subgroup of 2.G 2 (4) has index 416, so any proper subgroup of H has index 416 at least. Hence, a 1-reducible subgroup of H has index 416 at least in H, and thus its index in G is at least 741312.

Consider now a maximal subgroup H of index 22880 in G, which has type (3 2 × 2).U 4 (3).2 3 and its character table is available in GAP. As H has 2 irreducible representations of degree 12 and no one of smaller degree apart of the linear ones, we have that H is irreducible. So, a 1-reducible subgroup of H has index 2 at least in H, and thus its index in G is at least 45760.

Finally, consider a maximal subgroup H of index 32760 in G, which has type 6 × U 5 (2) and its character table is available in GAP. As H has no irreducible representation of degree 12 but it has some of degrees 10 and 11 apart of the linear ones, we have that H is reducible in the form 1 + 1 + 10 or 1 + 11, hence 1-reducible. So, we have found a 1-reducible subgroup of G with index 32760. Consequently, as the 1-reducible subgroups of other maximal subgroups of G have greater index, we have computed the minimal index of a 1-reducible subgroup of G.

On 2.G 2 (4)

The outer group of G 2 (4) is 2, and its bicyclic extensions 2.G 2 (4).2 has two faithful irreducible representations of degree 12, so we can consider the irreducible groups G 1 = 2.G 2 (4) and G 2 = 2.G 2 (4).2, regardless their primitiveness. As 2.G 2 (4) has a unique class of irreducible representations in degree 12, we can assume that G 1 is a subgroup of G 2 for any instance of G 2 . I shall prove that G 1 and G 2 are primitive. If we had a system of imprimitivity V of length r > 1 for G 1 , then the stabilizer H of all the r subspaces in V is a normal subgroup of G 1 . As G 1 is irreducible, H is a proper normal subgroup thereof and, as

G 1 /Z(G 1 ) is simple, H is central in G 1 . The permutation action of G 1 on V induces a homomorphism φ : G 1 → S r whose kernel is H, so #G 2 (4) = [G 1 : Z(G 1 )] divides [G 1 : H] = #φ(G 1 ), which divides #S r = r!.
As 13 divides #G 2 (4), then r 13, which is in contradiction with the degree 12 of the representation, thus G 1 is primitive. As any system of imprimitivity for G 2 is valid for its subgroup G 1 , then G 2 is also primitive.

We have seen that the group 6.Suz has a maximal subgroup of type 3 × (2.G 2 (4)), so G 1 can be embedded in a representation G Suz of 6.Suz in degree 12. As G Suz has a 1-reducible subgroup H of index 32760, then H ∩ G 1 is a 1-reducible subgroup of G 1 with index 32760 at most. I shall prove that this bound is attained. We have seen that H can be chosen a maximal subgroup of type 6 × U 5 (2) in G Suz , so it has two direct factors: H 0 of type U 5 (2) and the sixth roots of unity 6 √ 1. The group 3G 1 obtained by adding the third roots of unity to G 1 as a direct factor is a maximal subgroup of type 3

× (2.G 2 (4)) in G Suz of index 1782, thus [H : H ∩ 3G 1 ] [G Suz : 3G 1 ] = 1782. As the intersection K = H ∩ 3G 1 contains Z(3G 1 ) = Z(H) = 6 √ 1, the quotient K/ 6 √ 1 can be embedded both in H/ 6 √ 1 H 0 U 5 (2) and in 3G 1 / 6 √ 1 G 2 (4). It is straightforward to check that the intersection K 0 = K ∩ H 0 is a direct factor of K, complemented by the sixth roots of unity, so K 0 K/ 6 √ 1. Hence, [H 0 : K 0 ] = [H : K] 1782 and #K 0 divides #G 2 (4).
The search with GAP of the candidates for K 0 with these constrictions in index and order yields 6 subgroups up to conjugacy in H 0 U 5 (2).

The irreducible characters of U 5 (2) of degree up to 12 are the trivial one χ 1 of degree 1, a single χ 10 of degree 10, and a pair of complex conjugates χ 11 and χ11 of degree 11, so the only possibilities for the character of H 0 are 2χ 1 + χ 10 , χ 1 + χ 11 and χ 1 + χ11 . Each χ among these 3 characters can be restricted to any of the candidates C 0 for K 0 , where we can compute the sets V r (χ| C 0 , C 0 ) with GAP, with the definition V r (α, A) = {α(a) : a ∈ A, ord(a) = r}. I will compare the values of V 6 for 3G 1 and the direct product C = 6 √ 1C 0 . On one hand, each element of C factors in a unique form as g = λg 0 with λ ∈ 6 √ 1 and g 0 ∈ C 0 . The only possibilities for g to have order 6 are the following: g 0 of order 6 and any λ, g 0 of order 3 and λ of order 2 or 6, g 0 of order 2 and λ of order 3 or 6, and finally g 0 of order 1 and λ of order 6. These four cases allow us to compute V 6 for C from the V r for C 0 and r ∈ {1, 2, 3, 6}. On the other hand, each element of 3G 1 factors in a unique form as g = λg 0 with λ ∈ 3 √ 1 and g 0 ∈ G 1 . The only possibilities for g to have order 6 are reduced to the following: g 0 of order 6 and any λ, and finally g 0 of order 2 and λ of order 3. These two cases allow us to compute V 6 for 3G 1 , and its only irreducible character of degree 12, from the V 2 and V 6 for G 1 , which can be computed from the character table of 2.G 2 (4) in GAP library.

Given a candidate C 0 for K 0 and a candidate character χ for H 0 , we can compute the values of V 6 for the corresponding C and χ, which must be contained in the computed V 6 for 3G 1 if we want to allow C to be contained in 3G 1 . This computation yields the same V 6 for conjugate C 0 by the action of H 0 , so we can reduce the possibilities to compute to the 6 conjugacy classes of the C 0 . The result of this computation is that only the C 0 with order 7680 yields positive results, so this candidate is K 0 and we have a GAP representative of its isomorphism class, which will be useful for dealing with G 2 . Moreover, the positive results are only gotten for this group for the characters χ 1 + χ 11 and χ 1 + χ11 .

With this information, we can draw the conclusion for

G 1 with K 1 = K ∩ G 1 . It is easy to check that [K : K 1 ] = 3, so #K 1 = 2#K 0 = 15360 and [G 1 : K 1 ] = 32760. As K 0 is 1-reducible, so is K 1 , hence the bound for G 1 is attained.

On 2.G 2 (4).2

Let me continue with G 2 . As [K : K 1 ] = 3, we can compute with GAP the candidates for K 1 as the subgroups of index 3 in K. The result is 4 normal subgroups where 3 are isomorphic to each other and the remaining is not isomorphic to anyone. This last candidate for K 1 has Z(K 1 ) = Z(K), so it contains the third roots of unity and thus cannot be contained in G 1 . One of these candidates is the direct product 2K 0 of K 0 and Z = {I, -I}, so I will take it as representative of the isomorphism class of K 1 . Any candidate C for K 1 is isomorphic to 2K 0 , and they both contain Z as their center, so the quotients C/Z and 2K 0 /Z are isomorphic. These quotients are embedded in G 1 /Z G 2 (4). A 10-minute1 computation with GAP shows that there is an only embedding of 2K 0 /Z K 0 into G 2 (4) up to conjugacy in the image, so C/Z and 2K 0 /Z are actually conjugate in G 1 /Z. Pulling them back to G 1 , we get that C and 2K 0 are conjugate in G 1 . Therefore, 2K 0 is a representative of the orbit Ω of K 1 by conjugacy of G 1 . Moreover, the previous GAP computation proved that Ω is the family of all the embeddings of 2K 0 in G 1 respecting the centers. We can also deduce K 1 = 2K 0 .

In order to draw the conclusion for G 2 , I will use the following result.

Theorem 4. If a complex linear group G has a 1-reducible normal subgroup N such that the characters of the linear constituents of N are all distinct by conjugacy, then G is 1-reducible with the same invariant lines as N .

Proof. As the characters of the linear constituents of N are all distinct by conjugacy, in particular they cannot be repeated, so there is a finite family of lines invariant by N , each one corresponding to a linear constituent. Let χ 1 , . . . , χ r be the linear characters and Cv 1 , . . . , Cv r the invariant lines of these linear constituents. We have g(v i ) = χ i (g)v i for every g ∈ N and 1 i r. For every g ∈ N , h ∈ G and 1 i r, we have

h -1 gh ∈ N , (h -1 gh)(v i ) = χ i (h -1 gh)v i = χ h i (g)v i and g(h(v i )) = χ h i (g)h(v i ).
This means that Ch(v i ) is an invariant line by N with character χ h i . As the only conjugate of the character of an invariant line of N is character itself, corresponding to the same invariant line, then χ h i = χ i for every h ∈ G and 1 i r. Moreover, there exist mappings ψ i : G → C * such that h(v i ) = ψ i (h)v i for every h ∈ G and 1 i r. These mappings ψ i are well defined, extend the corresponding χ i to G, and are linear characters. Therefore, the lines Cv 1 , . . . , Cv r are invariant by G.

The 1-reducible normal subgroup to which I want to apply Theorem 4 is K 1 = 2K 0 , so I need to prove that the characters of its linear constituents are all distinct by conjugacy. Recall that the admissible characters for H 0 are χ 0 = χ 1 + χ 11 and its complex conjugate. Computing with GAP, the restriction of χ 0 to K 0 decomposes as ψ 0 = ψ 1,1 + ψ 1,3 + ψ 10 in sum of irreducible characters of K 0 , where ψ 1,1 is the trivial character, ψ 1,3 is another linear character, ψ 10 has degree 10 and the image of ψ 1,3 is the group of third roots of the unity. This decomposition holds for the restriction of the natural character of H to K 1 = 2K 0 , yielding η 0 = η 1,1 + η 1,3 + η 10 where each η * extends the corresponding ψ * . The values that each η * can take are those of the corresponding ψ * and their opposites, so η 1,1 can only take the values ±1. Contrary, as η 1,3 extends ψ 1,3 , its image contains the group of third roots of the unity, so η 1,1 and η 1,3 cannot be conjugate characters. The same happens for the complex conjugates, so my claim at the beginning of the paragraph is proved.

If the normalizer

N of K 1 in G 1 is strictly larger than K 1 , then Theorem 4 implies that N is a 1-reducible subgroup of G 1 with [G 1 : N ] strictly dividing [G 1 : K 1 ], so [G 1 : N ] 1 2 [G 1 : K 1 ] in particular, and thus [G 2 : N ] = 2[G 1 : N ] [G 1 : K 1 ] = 32760.
In this case, G 2 reaches or improves the bound.

Let me assume that the normalizer

N of K 1 in G 1 is exactly K 1 . If g is an element of G 2 outside G 1 , g -1 K 1 g is a subgroup of G 1 isomorphic to K 1 , so g -1 K 1 g belongs to Ω and thus g -1 K 1 g = h -1 K 1 h for certain h ∈ G 1 . As g 0 = gh -1 is another element of G 2 outside G 1 and g -1 0 K 1 g 0 = K 1 , then g 0 normalizes K 1 .
As g 2 0 lies in G 1 and normalizes K 1 , then it belongs to N = K 1 . So, adding g 0 to K 1 we get an extension

K 2 = K 1 .2 that, according to Theorem 4, is 1-reducible. Finally, [G 2 : K 2 ] = [G 1 : K 1 ] = 32760, so G 2
reaches the bound also in this case.

Applying Goursat's Lemma to Kronecker products

This section is devoted to the Kronecker product of certain primitive linear groups G r of degree r with an irreducible representation G 6 of 2.J 2 in degree 6, resulting a primitive linear group G 6r = G r ⊗ G 6 of degree 6r, whose primitivity is granted by [Asc00, thm. 1]. The possibilities for G r to consider will be G 2 = 2.A 5 , G 3 = 3.A 6 , G 4 = 2.A 7 , and G 6 itself, which are the groups affording the respective optimal value of I prim (r).

As the subgroup lattice of G 6r is too large to be computed with GAP, even considering the subgroups up to conjugacy in G 6r , we can resort to Goursat's Lemma to construct the subgroups of G 6r that contain the center. For a modern statement of Goursat's Lemma, I refer to [START_REF] Petrillo | Goursat's other theorem[END_REF]. Goursat's Lemma characterizes the subgroups of a direct product of two groups, and can be applied to G × = G r × G 6 . As G 6r is a quotient of G × by a central subgroup, the subgroups of G 6r containing Z(G 6r ) correspond to the subgroups of

G × containing Z(G × ). Recall that Z(G × ) = Z(G r ) × Z(G 6 ) contains the amalgamated subgroup.
According to this modern statement, the subgroups of F 1 × F 2 are in bijection with the triples T = (H 1 /N 1 , H 2 /N 2 , φ), where each H i is a subgroup of F i , each N i a normal subgroup of H i , and φ an isomorphism H 1 /N 1 H 2 /N 2 . Following the construction of this bijection, the subquotients H i /N i need to be considered in the triples as pairs (H i , N i ). Also, if φ is an isomorphism H 1 /N 1 H 2 /N 2 , then all such isomorphism are of the form φ • α for α ∈ Aut(H 1 /N 1 ), so we can group all the triples (H 1 /N 1 , H 2 /N 2 , φ • α) for computational convenience as ((H 1 , N 1 ), (H 2 , N 2 ), (φ, Aut(H 1 /N 1 ))). Given an admissible triple T , the corresponding subgroup of F 1 × F 2 is

F T = {(g 1 , g 2 ) : g 1 ∈ H 1 , g 2 ∈ H 2 , φ(g 1 N 1 ) = g 2 N 2 }.
Let me find generators for F T . Let N i be systems of generators of the respective N i , and H 1 a system of generators of H 1 modulo N 1 . Let us form H 2 with a representative h of φ(hN 1 ) ∈ H 2 /N 2 for each h ∈ H 1 . This way, we have formed a system of generators of H 2 modulo N 2 . A system of generators of F T has three kinds of elements: those (g, 1) for g ∈ N 1 , those (1, g) for g ∈ N 2 , and those (h, h ) for h ∈ H 1 and its corresponding h ∈ H 2 .

Let me apply Goursat's Lemma to G × . A subquotient of G n containing the center corresponds to a pair (H, N ) where we have the chain of subgroups Z(G n ) < N < H < G n and N H. We can express T as

((H 1 , N 1 ), (H 2 , N 2 ), φ) with Z(G r ) < N 1 H 1 < G r , Z(G 6 ) < N 2 H 2 < G 6 , and φ an isomorphism H 1 /N 1 H 2 /N 2 . This way, the image of F T in G 6r would be G T = {g 1 ⊗ g 2 : (g 1 , g 2 ) ∈ F T }.
We have characterized the subgroups of G 6r that contain Z(G 6r ).

If R n is a system of representatives of the subgroups of G n by conjugacy and we restrict the triples to those ((H 1 , N 1 ), (H 2 , N 2 ), φ) with H 1 ∈ R r and H 2 ∈ R 6 , we are only leaving out conjugates by conjugacy of G 6r , as I shall prove. Let

H 1 ∈ R r and h r ∈ G r such that h -1 r H 1 h r ∈ R r . If T = ((H 1 , N 1 ), (H 2 , N 2 ), φ) yields G T , then h = h r ⊗ I yields a conjugate h -1 G T h corresponding to the triple T = ((h -1 r H 1 h r , h -1 r N 1 h r ), (H 2 , N 2 ), φ )
for certain φ , so h -1 G T h belongs to the restricted family and thus we are only leaving out a conjugate by G 6r . The proof is completed mutatis mutandis for the second factor. Previously, I proposed grouping all the admissible triples T = ((H 1 , N 1 ), (H 2 , N 2 ), φ) with the same H 1 , N 1 , H 2 and N 2 by putting (φ, A) with A = Aut(H 1 /N 1 ) in the third position, representing the family {φ • α : α ∈ A} of all the isomorphism H 1 /N 1 H 2 /N 2 . I shall prove that we can take A a system of representatives of Aut(H 1 /N 1 ) modulo Inn(H 1 /N 1 ), leaving out only conjugates by G 6r . If α ∈ Inn(H 1 /N 1 ), then there exists h ∈ H 1 such that α(gN 1 ) = (h -1 gh)N 1 for any g ∈ H 1 . If h 0 = h ⊗ I, then we can check that h 0 G T h -1 0 corresponds to the triple T = ((H 1 , N 1 ), (H 2 , N 2 ), φ • α). This completes the proof.

Looking for maximal-order 1-reducible subgroups of G 6r we can restrict the search to subgroups that contain Z(G 6r ), since this center is scalar. As 1-reducibility is invariant by conjugacy, we can apply the restrictions of the last two paragraphs. Then, such a group G T contains N 1 ⊗ N 2 , so the latter product is 1-reducible. I shall prove that, in this case, both N 1 and N 2 are 1-reducible, allowing us to restrict the subquotients to consider to those with a 1-reducible denominator.

Theorem 5. If A and B are linear groups and A ⊗ B is 1-reducible, then both A and B are 1-reducible.

Proof. Let {v 1 , . . . , v r } be a basis of the vector space where A acts. Let u be a director vector of an invariant line of A ⊗ B. There exist unique vectors w 1 , . . . , w r from the vector space where B acts such that u

= v 1 ⊗ w 1 + • • • + v r ⊗ w r .
An element of B acts by mapping each w i to w i , so it maps u to λu = v 1 ⊗ w 1 + • • • + v r ⊗ w r . By the linear independence of the v i , we have w i = λw i for each i. As u = 0, then not all the w i vanish, so B is 1-reducible.

Similarly, decomposing u by a basis of the vector space where B acts, we can prove the 1-reducibility of A.

So, given systems of representatives R n of the subgroups of G n by conjugacy, we construct the pairs (H n , N n ) where H n ∈ R n , N n H n and N n is 1-reducible, obtaining a family S n . We select from S r × S 6 the subfamily F 0 of the pairs ((H 1 , N 1 ), (H 2 , N 2 )) with H 1 /N 1 isomorphic to H 2 /N 2 . To each element of F 0 , we associate a pair (φ, A) formed by an isomorphism H 1 /N 1 H 2 /N 2 and a system of representatives of Aut(H 1 /N 1 ) modulo Inn(H 1 /N 1 ). This association allows us to construct a final family F in the following way: for each pair ((H 1 , N 1 ), (H 2 , N 2 )) and its associate (φ, A), we add the triples ((H 1 , N 1 ), (H 2 , N 2 ), φ • α) for each α ∈ A. The subgroups of G 6r represented by the triples of F include conjugates of all the 1-reducible ones.

The construction of the previous paragraph can be easily implemented in GAP. Notice that the order of the group associated to

((H 1 , N 1 ), (H 2 , N 2 ), φ) is #H 1 •#N 2 = #N 1 •#H 2
divided by the order of the amalgamated group, so we can also compute their order in GAP and start checking the largest ones. We can even discard those triples whose associated group has greater index than the elementary bound. The 1-reducibility check could be performed by Cormier's test in a permutation representation G 6r , so we would need to compute the character of G 6r and the subgroups associated to the triples. In order to avoid these computations in G 6r , I will resort to direct computation of common eigenvectors, which only requires in dimension 6r some Linear Algebra.

Having nice coefficients is crucial for performing Gaussian elimination. In order to have a nice representation of G 6 , I take that of [Lin88, §1]. Lindsey's matrix generators are very nice but they are 5. A permutation representation of this linear group moves 24192 points, while the permutation group G 6 given by AtlasGroup moves only 200 points. It is feasible to compute an isomorphism between these two permutation groups, yielding a representation of G 6 in degree 6. Notice that computing the permutation representations of Lindsey's group takes reasonable runtime only if we set the size of the group before the computation. It happens that the images of the 2 standard generators of G 6 are still, and much nicer than the representations obtained with IrreducibleRepresentationsDixon or IrreducibleAffordingRepresentation.

The same procedure can be followed for a nice representation of G r in degree r, taking the generators of [START_REF] Kovacic | An algorithm for solving second order linear homogeneous differential equations[END_REF]thm. 4] for the icosahedral group in degree 2, those of [SU93, §4.1.2] for the Valentiner group in degree 3, and those of [Cor01, §4.2.1] for 2.A 7 in degree 4. Notice that it does not matter if the representation was thought for acting on column vectors or on row vectors, since the transposed representation of a given one is another representation of the same degree. As in the four cases we are considering for G n we can take any irreducible representation, we can forget about this issue and take the representations as given.

The case for r = 2 in dimension 12

The maximal order afforded by a subgroup of G × yields a subgroup of G 12 of index 18900. This subgroup G T of G 12 has two variants of φ. Both φ admit 2 combinations of eigenvalues in the generators of G T such that the joint eigenspace has dimension 2, so G T is 1-reducible, and thus the afforded index is 18900.

The case for r = 3 in dimension 18

As Z(G 3 ) = 3 and Z(G 6 ) = 2, we have G 18 G × . The maximal order of a subgroup of G × with the stated restrictions is afforded by 2 subgroups of index 113400. Either subgroup has two variants of φ, but the joint eigenspace has dimension 0 for any subgroup, φ and combination of eigenvalues in the generators. The next greatest order of a subgroup of G × with the stated restrictions is afforded by 2 subgroups of index 136080. One of these subgroups is defined with H 1 = N 1 and H 2 = N 2 , so it is the direct product N 1 × N 2 and admits a unique φ. As the corresponding subgroup of G 18 is the Kronecker product N 1 ⊗ N 2 of two 1-reducible groups, it is 1-reducible. The other subgroup has H 1 /N 1 H 2 /N 2 C 2 , so also a unique φ. However, the joint eigenspace has dimension 0 for this subgroup and any combination of eigenvalues in the generators. Therefore, the afforded index is 136080.

The case for r = 4 in dimension 24

The maximal order of a subgroup of G × with the stated restrictions is afforded by 1 subgroup of index 453600. This subgroup is defined with H 1 = N 1 and H 2 = N 2 , so it is the direct product N 1 × N 2 and admits a unique φ. As the corresponding subgroup of G 24 is the Kronecker product N 1 ⊗ N 2 of two 1-reducible groups, it is 1-reducible. Therefore, the afforded index is 453600.

The case for r = 6 in dimension 36

The maximal order of a subgroup of G × with the stated restrictions is afforded by 1 subgroup of index 604800. This subgroup is defined with

H 1 = H 2 = G 6 and N 1 = N 2 = Z(G 6 ), so H 1 /N 1 H 2 /N 2
J 2 has outer group C 2 and it thus admits two φ. For the inner φ we can take the identity, yielding the diagonal subgroup of G × augmented by Z(G × ). This subgroup is easy to compute and admits 1 combination of eigenvalues in the generators such that the joint eigenspace has dimension 1, so this subgroup is 1-reducible. With this result, it is not necessary to compute for the outer φ. Therefore, the afforded index is 604800.

Note on the quasicomponent of degree 16

In this section I shall consider the absolute completion of a quasicomponent in degree 16. By previous reductions found in [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF]§5] and [START_REF]On the uniqueness of the orthogonal or symplectic extension of a faithful irreducible representation of an (almost) extraspecial group[END_REF], this group is the Runge group of genus 4 up to conjugacy in GL(16, C). For the Runge group, I refer to [START_REF]Codes and Siegel modular forms[END_REF]. This group G has a normal subgroup N = O 2 (G) with G/N Sp(8, 2). Runge also studies the diagonal subgroup D of G and the monomial subgroup M of G, understanding monomial in the sense of products of a diagonal matrix and a permutation matrix. We have also that both D and N are contained in M ; also [G : M ] = 2295.

Before studying its 1-reducible subgroups, I shall check that G is indeed primitive. Assume that G had a system of imprimitivity V of length m > 1. As G is irreducible, then V is transitive and m divides 16. The stabilizer H of V in G is a normal subgroup. As G is irreducible, then H is a proper normal subgroup of G. By simplicity of G/N Sp(8, 2), then H is contained in N and thus in M . If m is a strict divisor of 16, then m 8. As G/H is embedded in S m , and thus in S 8 , then #G 8! #H 8! #N , so [G : N ] 8!, but [G : N ] = # Sp(8, 2) > 8!. From this contradiction, we can establish that m = 16, so V is monomial in the sense that it consists of lines, and thus H diagonalizes in a basis associated with V. We have that H is abelian, it contains Z(G) = Z(N ), and H/Z(N ) is an isotropic subspace of N/Z(N ) where G/N acts symplectically. As a consequence of Witt's theorem, H can be conjugated by a matrix g ∈ G so that (g -1 Hg)/Z(N ) lies in a Lagrangian subspace represented by diagonal matrices, so g -1 Hg is diagonal and is contained in M . Moreover, applying the conjugation by g, the Cartesian axes form a system of imprimitivity for G, so all the matrices of G are monomial in the matrix sense. This conclusion of G = M contradicts [G : M ] = 2295, so we can also discard the hypothesis of m > 1 and conclude that G is primitive.

As described in [Run93, p. 62], the monomial group M contains a subgroup of permutation matrices where the 16 Cartesian axes are labeled by the points of F 4 2 . With these labels, the permutation subgroup corresponds to the affine subgroup on F 4 2 , which is transitive. Hence, the permutation of the Cartesian axes that M performs is transitive, so the stabilizer M 1 of the first axis in M has [M : M 1 ] = 16. Therefore, we have a 1-reducible subgroup M 1 with [G : M 1 ] = 16[G : M ] = 36720. In order to prove that this is the minimal index affordable by a 1-reducible subgroup of G, I need [Llo19c, thm. 7], which proves that any 1-reducible subgroup of N is abelian. Now, I shall prove that no other 1-reducible subgroup H of G can afford smaller index than 36720. This proof is lengthy, because it requires a previous computation of the subgroups of S 8 (2) of index up to 36720.

Low-index subgroups of S 8 (2) up to conjugacy

In order to compute up to conjugacy the subgroups of index up to 36720 of S 8 (2), we could try the GAP command LowIndexSubgroups, but the computation becomes unfeasible, so I shall proceed by iterated layers of maximality resorting to some theoretical results. Obviously, the only subgroup of the zeroth layer is S 8 (2) itself. The first layer consists of the maximal subgroups of S 8 (2), which were classified in [START_REF]The maximal subgroups of the symplectic group PSp(8, 2)[END_REF] as an application of Aschbacher's theorem. This classification of the maximal subgroups of S 8 (2) claims to be up to isomorphism, but some proofs therein can be easily extended to uniqueness up to conjugacy. Otherwise, with the isomorphism class of a subgroup we can compute the conjugacy classes of the subgroups of S 8 (2) that belong to this isomorphism class. As [START_REF]The maximal subgroups of the symplectic group PSp(8, 2)[END_REF] differs from standard notation, I list below its classification with some comments. Notice that his article considers PSp(8, 2) and refers to the projective action, while I shall consider Sp(8, 2) and its natural action, but these groups are isomorphic. The first four classes, the stabilizers of isotropic subspaces, are unique up to conjugacy due to Witt's theorem.

1. The stabilizer of a point in PSp(8, 2), which corresponds to the stabilizer of a line in Sp(8, 2). This group has the type 2 7 : S 6 (2) and thus index 255. So, we are interested in its subgroups of index up to 144.

2. The stabilizer of a line in PSp(8, 2), which corresponds to the stabilizer of a plane in Sp(8, 2). This group has the type 2 11 : (S 3 × S 4 (2)) and thus index 5355. So, we are interested in its subgroups of index up to 6.

3. The stabilizer of a plane in PSp(8, 2), which corresponds to the stabilizer of a 3space in Sp(8, 2). This group has the type 2 12 : (L 3 (2) × S 3 ) and thus index 11475. So, we are interested in its subgroups of index up to 3.

4. The stabilizer of a 3-space in PSp(8, 2), which corresponds to the stabilizer of a 4-space in Sp(8, 2). This group has the type 2 10 : L 4 (2) and thus index 2295. So, we are interested in its subgroups of index up to 16. (2) than standard GAP commands. We take the normalizer N of H, which has #N = 2#O - 8 (2). So, N is an embedding of GO -(8, 2) and H its corresponding Ω -(8, 2). Then, I compute (runtime: 5sec) the maximal subgroups of H up to index 136, obtaining a conjugacy class of type 2 6 : U 4 (2) and another of type S 6 (2), apart from H itself. They are M - 3 and M - 4 respectively. Their respective normalizers double the order, being necessarily M - 1 and M - 2 respectively. We add N , H and the four M - i to the result. For items 1 through 4, I compute the stabilizers of isotropic subspaces of F 8 2 by the symplectic from of Sp(8, 2) of the dimension corresponding to the item, and add convert these subgroups into permutation groups by the fixed isomorphism. These computations are inexpensive. I also compute the families of subgroups of the corresponding stabilizers with the bound on the index indicated in corresponding item. The only non-immediate computation corresponds to item 1 (runtime: 25sec). We add to the result the four families, which consist of 21, 11, 3 and 5 subgroups respectively.

The direct product

For efficiency, I remove duplicates, subgroups that are conjugate inside S 8 (2). We finally add the whole S 8 (2), getting 41 classes of conjugacy. With these computed family, we can proceed as in [Llo19c, §5].

Low-index 1-reducible subgroups of G in degree 16

With our precomputed alternative to the GAP command LowIndexSubgroups(Sp(8,2),36720), I shall proceed by the elementary abelian extension method (EAE of [START_REF] Hulpke | Computing subgroups invariant under a set of automorphisms[END_REF]) in order to find the 1-reducible subgroups of G of index up to 36720. Following Glasby's construction of [START_REF] Stephen | On the faithful representations, of degree 2 n , of certain extensions of 2-groups by orthogonal and symplectic groups[END_REF], it is feasible to construct G/Z(G) as the centralizer of Z(G) in Aut(N ), identifying N/Z(G) with Inn(N ), and also the preimages in G of individual elements in G/Z(G), but it becomes unfeasible to construct the group G itself. Fortunately, the EAE method shows its power with G/Z(G) since it is an extension of the elementary abelian group N/Z(G) by the group S 8 (2), whose low-index subgroups are known.

If H is a minimal-index 1-reducible subgroup of G, then it has index 36720 at most. Moreover, H contains Z(G) because the latter consists of scalars. So, we can pass to the quotient U = H/Z(G) in G/Z(G), which inherits the bound on the index form H. From U , we can define two associated subgroups A and B of G/Z(G), with A = U, V , B = U ∩V and V = N/Z(G). The counterimage K of B in G is 1-reducible and contained in N , so K is abelian and thus B is an isotropic subspace of V . Restricting ourselves to the normalizer N B of B in G/Z(G), we can pass to the quotient by B. We have the chains B < V < A < N B , V /B < A/B < N B /B and A/V < N B /V Q B < S 8 (2), and also [A : G/Z(G)] 36720, so A/V corresponds to a subgroup of S 8 (2) of index 36720 at most.

The procedure starts computing the candidates for A/V by translating the subgroups of Q B of index up to 36720 in S 8 (2). Then, pulling them back to candidates for A/B, we compute the complements C to V /B in A/B, which is optimized for V /B elementary abelian. Each complement C is pulled back as a candidate for U . The candidates for U can be checked for 1-reducibility of H by computing the common eigenvectors of the counterimage in G (given by Glasby) of a small set of generators of U .

As B is an isotropic subspace of V , it can be null, a line, a plane, a 3-space of a 4-space. With only one instance of each dimension is enough, since Witt's theorem grants that all the isotropic subspaces of the same dimension correspond to conjugate subgroups. In the 4, 5, 6 and 12, so the only non-1-reducible option is 4 + 4 + 5. The intersection of the kernels of all the characters of degree 4 and 5 of H is a subgroup K of order 125. As any combination 4 + 4 + 5 vanishes on K, it cannot be the restriction of the degree-13 constituent of the Weil representation, so this restriction is necessarily 1-reducible. Thus, we have a 1-reducible subgroup H of Sp(4, 5) with order 60000. The product of Z(G) and H is again 1-reducible and has order 300000, which yields an index 97500.

Conclusions

In the present article, I have computed the optimal values of I(n) for 12 n 31, with some bounds for 32 n 39, which are gathered in Figure 1 together with those from [START_REF]A refinement of Singer's bound for Liouvillian integration. The low-dimensional cases[END_REF]. These values are plotted in Figure 2 for observing their behavior. The present article and [START_REF]A refinement of Singer's bound for Liouvillian integration. The low-dimensional cases[END_REF] extend the known optimal values of I(n) from n 5 to n 31. So, there is a barrier at n = 32 due to the quasicomponent, but there are also other steps observed in the behavior of the optimal value of I. Except the outlier degree 3, all the steps in I(n) are observed at powers of 2 or at multiples of 6. The former are due to the quasicomponents, while the latter come from the component 2.J 2 of degree 6 in the compound case. So, I have broken here the barrier at degree 12, which required a long study, and computed enough values of Singer's bound for most the applications. For a general value of I, one can resort to the bound given in [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF] and completed in [START_REF]A refinement of Singer's bound for Liouvillian integration. The low-dimensional cases[END_REF]. and ordinary characters for simple groups. With computational assistance from
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  for m ∈ {2, 4}. The degrees of irreducible representability of 3 1+4 + are 1 and 9, so the subgroup K of M with structure m × 3 1+4 + has 1 or 2 faithful constituents of degree 9 and 2 or 11 non-faithful linear constituents. As M normalizes K, then M permutes the invariant lines of K. The index in M of the stabilizer M 0 of one of these lines is at most 11, so [m.U 4 (3) : M 0 ] = [m.U 4 (3) : M ][M : M 0 ] 280 • 11 = 3080. Thus, I have proved that the component m.U 4 (3) is 3080-safe for m ∈ {2, 4}. Any admissible extension m.U 4 (3).a has a D 8 , so #a 8 and thus [m.U 4 (3).a : M 0 ] = [m.U 4 (3) : M 0 ]#a 3080 • 8 = 24640.
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 2 Figure 2: Plot of the optimal values of I in logarithmic scale. The dotted line means an upper bound.

  S 3 × S 6 (2) of index 5440. So, we are interested in its subgroups of index up to 6. As explained in the item 13 of this list, there is a single conjugacy class of embeddings of this product in S 8 (2). All the subgroups of this direct product of index up to 6 are of the form H × S 6 (2), which yields 4 classes according to the subgroup H of S 3 .6. A group of typeH 1 = Sp(2, 2) S 4 and index 1523200. So, we are not interested in this maximal subgroup or its proper subgroups. ⊗3 .S 3 of index 36556800. So, we are not interested in this maximal subgroup or its proper subgroups. 11. A group isomorphic to GO + (8, 2) of index 136. So, we are interested in its subgroups of index up to 270. There is a single conjugacy class of embeddings of GO + (8, 2) in S 8 (2). 12. A group isomorphic to GO -(8, 2) of index 120. So, we are interested in its subgroups of index up to 306. There is a single conjugacy class of embeddings of GO -(8, 2) in S 8 (2). 13. A group of type S 6 (2) and index 32640. So, we are only interested in this maximal subgroup and not in its proper subgroups. There are 3 conjugacy classes of embeddings H of S 6 (2) in S 8 (2). The normalizer of such an embedding H yields an index [N : H] of 1, 2 and 6, respectively. Only the case [N : H] = 1 yields a maximal subgroup. The case of [N : H] = 6 is the only possibility for N S 3 × S 6 (2) of the item 5 in this list. For item 12, I compute (runtime: 145sec) the embeddings of O - 8 (2) in S 8 (2), finding a single conjugacy class H. Notice that [WWT18] provides a smaller-degree permutation representation of O - 8

	9. H 4 = Sp(2, 2)×Sp(4, 2) of index 10967040. So, we are not interested in this maximal
	subgroup or its proper subgroups.
	10. H 5 = Sp(2, 2)

7. H 2 = Sp(4, 2) S 2 of index 45696. So, we are not interested in this maximal subgroup or its proper subgroups.

8. A group of type H 3 = Sp(4, 4).2 and index 24192. So, we are only interested in this maximal subgroup and not in its proper subgroups. There is a single conjugacy class of embeddings of Sp(4, 4) in S 8 (2), and the normalizer N of such an embedding H has [N : H] = 2, so N is the only subgroup of type H 3 in S 8 (2) up to conjugacy.

  Table of the optimal values of I(n) by ranges of n.

	n	I(n)
	2	12
	3	36
	4-5	120
	6-11	3780
	12-15	32760
	16-17	36720
	18-23	136080
	24-31	453600
	32-35	2423520
	36-39	9525600
	Figure 1:	
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In the second layer, we must consider the subgroups of GO + (8, 2) of index up to 270 and the subgroups of GO -(8, 2) of index up to 306. Among the maximal subgroups of GO -(8, 2), we take Ω -(8, 2) and the two largest ones M - 1 and M - 2 of the list from [CCN85, p. 89], which have types M - 1 = 2 6 : U 4 (2) : 2 and M - 2 2 × S 6 (2) and a single conjugacy class each one. In the third layer, we take the two largest maximal subgroups M - 3 and M - 4 of Ω -(8, 2), which have types M - 3 = 2 6 : U 4 (2) and M - 4 S 6 (2) and a single conjugacy class each one, and the subgroups of index 2 in M - 1 and M - 2 . As M - 1 and M - 2 have a single conjugacy class of subgroups of index 2 each one, which is a consequence of the argument in item 5 for M - 2 , we can take M - 3 and M - 4 respectively. Summarizing, representatives by conjugacy of the subgroups of GO -(8, 2) with index 306 at most are GO -(8, 2), Ω -(8, 2) and the four M - i . Among the maximal subgroups of GO + (8, 2), we take Ω + (8, 2) and the 4 largest ones M + 1 , M + 2 M + 3 and M + 4 of the list from [CCN85, p. 85], which correspond to the first 6 rows excluding the novelty 2 3+6 : (L 3 (2)×2). These maximal groups have types

: S 8 and M + 4 = 2 6 : A 8 , with a single conjugacy class each one. In the third layer, we take the 6 largest maximal subgroups M + 5 and M + 6 of Ω + (8, 2), which have types M + 5 S 6 (2) and M + 6 = 2 6 : A 8 , with three conjugacy classes each one, and the subgroups of index 2 in M + 1 and M + 3 . Notice that two of the conjugacy classes of M + 5 and two of M + 6 are also maximal in GO + (8, 2), with fusion in M + 2 and M + 4 respectively, so we need only to take the class of M + 5 and the class of M + 6 that are not maximal in GO + (8, 2). As M + 1 and M + 3 have a single conjugacy class of subgroups of index 2 each one, we can take the previously selected M + 5 and M + 6 respectively. Summarizing, representatives by conjugacy of the subgroups of GO + (8, 2) with index 270 at most are GO + (8, 2), Ω + (8, 2) and the six M + i . In order to compute in GAP all these subgroups of S 8 (2), I start with an isomorphism (runtime: 20sec) between the natural modular representation Sp(8, 2), needed for the first four items in the list, and a small-degree permutation representation thereof, more convenient for the rest of the computations. The standard commands in GAP yield a permutation representation of degree 255, but [START_REF] Wilson | Atlas of finite group representations -version 3[END_REF] gives one of degree 120.

For item 5, I compute (runtime: 45sec) the embeddings of S 6 (2) in S 8 (2), which yields 3 conjugacy classes we can distinguish by their normalizers. We take the only normalizer N with #N = 6#S 6 (2) and compute (runtime: 11sec) its subgroups of index 6 at most. We add the 4 subgroups to the result. Also, for item 13, we add to the result the only embedding of S 6 (2) in S 8 (2) that equals its normalizer.

For item 8, I compute (runtime: 195sec) the embeddings of S 4 (4) is S 8 (2), finding a single conjugacy class. We take the normalizer N of this only class, which has #N = 2#S 4 (4). We add N to the result.

For item 11, I compute (runtime: 50sec) the embeddings of O + 8 (2) in S 8 (2), finding a single conjugacy class H. We take the normalizer N of H, which has #N = 2#O + 8 (2). So, N is an embedding of GO + (8, 2) and H its corresponding Ω + (8, 2). Then, I compute (runtime: 15sec) the maximal subgroups of H up to index 135, obtaining 3 conjugacy classes of type S 6 (2) and other 3 of type 2 6 : A 8 , apart from H itself. The first of these triples of conjugacy classes by H consists of a couple that is conjugate by N , which corresponds to M + 2 , and a remaining one H 1 whose normalizer N 1 in N has #N 1 = 2#H 1 . The other triples of conjugacy classes by H consist of a couple that is conjugate by N , which corresponds to M + 4 , and a remaining one H 3 whose normalizer N 3 in N has #N 3 = 2#H 3 . Fitting the previous discussion of maximal subgroups, we have

3 and H 1 = M + 6 . We add N , H and the six M + i to the result.

case of B of dimension 0, then the quotient by B is an isomorphism and N B = G/Z(G), so Q B = S 8 (2) and we need all the strength of our previous computation of low-index subgroups of S 8 (2). Pulling back each subgroup of this family, we get candidates for A, so the candidates for U are the complements to V in these candidates for A. The bottleneck is the computation of the complements, which takes too long as groups of automorphisms but can be shortened (runtime: 70sec) by using an auxiliary permutation representation. The result is a single complement with index 8355840 in G/Z(G), so we can discard the 0-dimensional case.

In the case that B has positive dimension, we need the quotient maps π 2 of N B by B and π 0 of G/Z(G) by V , apart from using an auxiliary permutation representation of G/Z(G). Once constructed B of the corresponding dimension, we compute N B and the corresponding Q B from π 0 (N B ). By means of the GAP command ContainingConjugates, we select the conjugacy classes of subgroups of Q B with index up to 36720 in S 8 (2), taken from the corresponding family of low-index subgroups of S 8 (2) up to conjugacy. This way, we have computed the candidates for A/V , which pulled back by π 0 yield the candidates for A. Passing to quotient by π 2 , we get the candidates for A/B, where we compute the complements C to V /B. Then, each π -1 2 (C) is a candidate for U . For B of dimension 1, we find (bottleneck runtime: 25sec) 4 such candidates for U , but with an index much larger than 36720, so we can discard this case. For B of dimension 2, we find (bottleneck runtime: 7sec) 9 candidates for U , but also with an index much larger than 36720, so we can discard this case too. For B of dimension 3, we get (without a bottleneck) 3 candidates for U , whose index is much larger than 36720, so this case is also discarded. Finally, for B of dimension 4, the bottleneck is in the selection of subgroups (runtime: 17sec). We get 7 candidates for U , whose index is greater than 36720 with one exception. In this exception, the index is precisely 36720, so we have proved that the minimum index affordable by a 1-reducible subgroup is 36720.

Note on quasicomponents in odd degree

This section is devoted to establishing bounds for the cases of quasicomponents in odd degree. By previous reductions found in [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF]§5] and [START_REF]On the uniqueness of the orthogonal or symplectic extension of a faithful irreducible representation of an (almost) extraspecial group[END_REF], the absolute completion is the Weil representation up to conjugacy in GL(p k , C). For the Weil representation, I refer to [START_REF] Gérardin | Three Weil representations associate to finite fields[END_REF]. This group G is semidirect product of its normal subgroup N p 1+2k + and Sp(2k, p). In [Llo19c, §3.5] I proposed for p ∈ {3, 5, 7, 11} to take an abelian subgroup A of N of order p r+1 corresponding to an isotropic subspace of dimension r and an abelian subgroup B of the stabilizer of this isotropic subspace in the factor Sp(2k, p). The order of B can be taken p r(r+1)/2+2r(k-r) according to [START_REF]The maximal subgroups of the symplectic group PSp(8, 2)[END_REF]§3]. The product of A and B is direct and abelian, and the case r = 1 is enough for p ∈ {13, 17, 19, 23, 31, 37}, yielding order p 3 . However, for p k = 25, such a product has order p for r = 0, order p 5 for r = 1, and order p 6 for r = 2, but none of these orders yields an index smaller than the established record for degree 25, so we need to try the other approach. Let me restrict now to p = 5 and k = 2 for degree p k = 25. The Weil representation of the factor Sp(4, 5) can be expressed as direct sum of 2 irreducible representations of degree 12 and 13 respectively. The constituent of degree 13 has a kernel of order 2 that is precisely the center of Sp(4, 5). The stabilizer H of a Lagrangian plane in Sp(4, 5) inherits the restriction of the Weil representation, but its constituent of degree 13 reduces further because H has no irreducible representation of degree 13, according to its character table computed with GAP. The degrees of the candidate constituents of this restriction are 1,