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Abstract

A tree transducer with origin translates an input tree into a pair of output
tree and origin information. The origin information maps each node in the
output tree to the unique node in the input tree that created it. In this way,
the implementation of the transducer becomes part of its semantics. We show
that the landscape of decidable properties changes drastically when origin
information is added. For instance, equivalence of nondeterministic top-
down and MSO transducers with origin becomes decidable. Both problems
are undecidable without origin. The equivalence of deterministic top-down
tree-to-string transducers is decidable with origin, while without origin it
has (until very recently) been a long standing open problem. With origin,
we can decide if a deterministic macro tree transducer can be realized by
a deterministic top-down tree transducer; without origin this is an open
problem.

Keywords: top-down and MSO tree transducers, origin, decidability,
equivalence, injectivity, query determinacy

1. Introduction

Tree transducers were invented in the early 1970’s as a formal model
for compilers and linguistics by Thatcher [37] and Rounds [35]. They are
being applied in many fields of computer science, such as syntax-directed
translation [23], databases [33, 25], linguistics [30, 6], programming lan-
guages [40, 32], and security analysis [27]. The most essential feature of tree
transducers is their good balance between expressive power and decidability.
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top-down tree-to-tree top-down tree-to-string mso tree-to-string
det nd det nd det nd

no + − [36] − + −
origin [19] [24] [24] [15]

with + + + − + +
origin

Table 1: Decidability of equivalence

Bojańczyk [5] introduces (string) transducers with origin. For “regular”
string-to-string transducers with origin he presents a machine independent
characterization which admits Angluin-style learning and the decidability of
natural subclasses. These results indicate that classes of translations with
origin are mathematically even better behaved than their origin-less counter
parts.

We initiate a rigorous study of tree transducers with origin by investigat-
ing the decidability of equivalence, injectivity, and query determinacy on the
following models:

• top-down tree-to-tree transducers [37, 35],

• top-down tree-to-string transducers [17], and

• mso definable tree-to-string transducers, see, e.g., [15].

Unlike the string transducers of Bojańczyk [5], we will see that equivalent
models of tree-to-string transducers do not remain equivalent in the presence
of origin. This motivates the study of subclass definability problems (defin-
ability of a translation from a class in a subclass) when considering the origin
semantics.

Table 1 summarizes our results on equivalence; the words non-/deterministic
are abbreviated by nd/det and decidable/undecidable by +/−. The first
change from − to + is the equivalence of nondeterministic top-down tree
transducers. In the non-origin case this problem is already undecidable for
restricted string-to-string transducers, as shown by Griffith [24]. In the pres-
ence of origin it becomes decidable for tree transducers, because origin implies
that any connected region of output nodes with the same origin is generated
by one single rule. Hence, the problem reduces to letter-to-letter trans-
ducers as studied by Andre and Bossut [1]. What about nondeterministic
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top-down tree-to-string transducers (column four in Table 1)? Here output
patterns cannot be treated as letters. By deferring output generation to a
leaf they can simulate non-origin translations with undecidable equivalence
(i.e., finite-state string transducers) [24]. Finally, let us discuss column three.
Here the origin information induces a structure on the output strings: re-
cursive calls of origin-equivalent transducers must occur in similar “blocks”,
so that the same children of the current input node are visited in the same
order (but possibly with differing numbers of recursive calls). This block
structure allows to reason over single input paths, and to reduce the problem
to deterministic tree-to-string transducers with monadic input. The latter
can be reduced [31] to the famous hdt0l sequence equivalence problem.

Injectivity for deterministic transducers is undecidable for all origin-free
models of Table 1. With origin, we prove undecidability in the tree-to-string
case and decidability in the mso and top-down tree cases. The latter is again
due to the rigid structure implied by origins. We can track if two different
inputs, over the same input nodes, produce the same output tree. We use
the convenient framework of recognizable relations to show that the set of
trees for which a transducer with origin produces the same output can be
recognized by a tree automaton.

We present two results on subclass definability. Recall from [14] that a
deterministic top-down tree-to-string translation is mso definable if and only
if it is of linear size increase. As mentioned above, a top-down tree-to-string
transducer can defer its output generation to the leaves of the input tree.
For instance, it can realize the identity on monadic input trees, by producing
a state call for each input node; each such state call ignores the rest of the
tree until it reaches the unique input leaf. Thus, even for a translation of
linear size increase, the number of output nodes with same origin can be
unbounded. In contrast, for an mso transducer the number of nodes with
same origin is always bounded (“bounded origin property”). Thus, origin
translations of deterministic top-down tree-to-string transducers form a strict
superclass of those of mso transducers (the same holds for the string-to-string
“regular” translations studied by Bojańczyk [5]). We prove that for a given
deterministic top-down tree-to-string transducer it is decidable whether an
origin-equivalent mso transducer exists; this is done by deciding the bounded
origin property.

The second subclass definability result concerns a more powerful model
of tree transducer: the macro tree transducer [18]. This model can be seen as
a generalization of top-down tree transducers by adding context-parameters
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(of type output tree) to the states. We show that, under origin semantics,
it is decidable for a given total deterministic macro tree transducer, whether
it can be realized by a top-down tree transducer. This is an open problem
in the non-origin setting. The proof relies on two properties: (1) the origin
translation must be order-preserving, i.e., the origins of output descendant
nodes must be descendants, and (2) on each path of the output tree, the
number of nodes with same origin must be bounded.

Motivation

Clearly, the more information we include in a translation, the more prop-
erties become decidable. Consider invertability: on the one extreme, if all
reads and writes are recorded (under acid), then any computation becomes
invertible. The question then arises, how much information needs to be in-
cluded in order to be invertible. This problem has recently deserved much
attention in the programming language community, see, e.g., [39]. Our work
here was inspired by the very similar view/query determinacy problem. This
problem asks for a given view and query, whether the query can be answered
on the output of the view. It was shown decidable by Benedikt, Engel-
friet, and Maneth [2] for views that are linear extended tree transducers, and
queries that are deterministic mso or top-down transducers. For views that
include copying, the problem quickly becomes undecidable [2]. Our results
show that such views can be supported, if origin is included. Consider for
instance a view that regroups a list of publications into sublists of books,
articles, etc. A tree transducer realizing this view needs copying (i.e., needs
to process the original list multiple times). Without origin, we do not know
a procedure that decides determinacy for such a view. With origin, We prove
that determinacy is decidable for views with origin and (origin-less) queries,
where the view and query are either given by deterministic top-down trans-
ducers or by deterministic mso transducers. As expected: the world becomes
safer with origin, but more restrictive (e.g., the query “is book X before ar-
ticle Y in the original list?” becomes determined when origin is added to the
above view).

The tracking of origin information was studied in the programming lan-
guage community, see the e.g. Deursen, Klint, and Tip [38]. As a technical
tool it was used by Engelfriet and Maneth [14] to characterize the MSO de-
finable macro tree translations, and, by Lemay, Maneth, and Niehren [28] to
give a Myhill-Nerode theorem for deterministic top-down tree transducers.
From a linguistic point of view, origin mappings on their own are subject of
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interest and are called “dependencies” or “links”. Maletti [29] shows that
dependencies (i.e., origins) give “surprising insights” into the structure of
tree translations: many separation results concerning expressive power can
be obtained on the level of dependencies. Further such linking theorems
are given by Fülöp and Maletti [22] and are used to prove that certain tree
relations cannot be computed by multi bottom-up tree transducers.

A preliminary version of this paper was presented at ICALP [20].

2. Preliminaries

For a nonnegative integer k we denote by [k] the set {1, . . . , k}.

2.1. Strings, ranked trees, and contexts

Let A be an alphabet. We denote by A∗ the set of strings over A, and by
ε the empty string. Let w ∈ A∗. The length of a w is denoted by |w|. The
set of positions of w is the set V (w) = [|w|]. For j ∈ [|w|], w[j] denotes the
j-th symbol of w.

A ranked alphabet Σ is a finite set of symbols σ each with an associated
natural number k called its rank. We write σ(k) to denote that σ has rank k,
and denote by Σ(k) the set of all symbols in Σ of rank k.

The set TΣ of trees over Σ is the smallest set T so that if k ≥ 0, t1, . . . , tk ∈
T , and σ ∈ Σ(k), then σ(t1, . . . , tk) ∈ T . For the tree σ() we simply write
σ. The set V (t) of nodes of tree t ∈ TΣ is the subset of N∗ defined as
{ε} ∪ {iu | i ∈ [k], u ∈ V (ti)} if t = σ(t1, . . . , tk) and σ ∈ Σ(k). Thus ε
denotes the root node, and ui denotes the i-th child of a node u. For clarity
we often write u.i instead of ui. The height of t, denoted height(t), is defined
as one plus the maximum length of any node in V (t). Two nodes u, v are
incomparable if there does not exists w such that either u = vw or v = uw.

For a tree t and u ∈ V (t) we denote by t[u] the label of node u in t, and
by t/u the subtree of t rooted at u. For a tree t′, we denote by t[u ← t′]
the tree obtained from t by replacing the subtree rooted at node u by the
tree t′. We extend this notation to parallel replacement: let t1, . . . , tn be
trees and u1, . . . , un be nodes from t that are pairwise incomparable. Then
t[u1 ← t1, . . . , un ← tn] stands for (. . . ((t[u1 ← t1])[u2 ← t2]) . . . [un ← tn]).
Given ∆ ⊆ Σ, V∆(t) denotes the set of nodes u ∈ V (t) such that t[u] ∈ ∆.

A Σ-context is a tree C over Σ ∪ {⊥(0)} where ⊥ is a special symbol not
in Σ. Let u1, . . . , uk be all ⊥-nodes of C in preorder. Given trees t1, . . . , tk,
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we denote by C[t1, . . . , tk] the tree C[ui ← ti | i ∈ [k]] obtained from C by
replacing ui by ti for i ∈ [k].

2.2. Translations

Let Σ,∆ be two ranked alphabets. A tree translation (from TΣ to T∆) is
a relation R ⊆ TΣ × T∆. Let A be an alphabet. A tree-to-string translation
is a relation R ⊆ TΣ×A∗. The domain of a translation R, denoted dom(R),
is defined as the projection of R on its first component. A translation R is
functional if R is a function.

2.3. Origin translations

Let s1, s2 be two structures (strings or trees). An origin mapping of s2

in s1 is a mapping o : V (s2)→ V (s1). An origin translation is a set of pairs
(s1, (s2, o)) such that o is an origin mapping of s2 in s1. Given v ∈ V (s2) and
u ∈ V (s1), if o(v) = u then we say that “v has origin u” or that “the origin
of v is u”.

3. Tree Translations with Origin

3.1. Top-down Tree Transducers

A top-down tree transducer (top transducer for short) is a rule-based
finite-state device that translates ranked trees to ranked trees.

Definition 1. A top-down tree transducer is a tuple (Q,Σ,∆, q0, R) where
Q is a finite set of states, Σ is a ranked alphabet of input symbols, ∆ is a
ranked alphabet of output symbols, q0 ∈ Q is the initial state, and R is a set
of rules of the form q(σ(x1, . . . , xk))→ ζ, where q ∈ Q, σ ∈ Σ(k), and ζ is a
tree over ∆ ∪ {q′(xi) | q′ ∈ Q, i ∈ [k]}, where each symbol q′(xi) has rank 0.

Intuitively, applying the rule q(σ(x1, . . . , xk)) → ζ to an input tree tree
s = σ(s1, . . . , sk) produces the output tree t obtained by replacing in ζ all
symbols q′(xi) by trees over ∆, themselves obtained by evaluating si in state
q′. The origin of all ∆-nodes in ζ is the root node of s. Since rules are non-
deterministic, there might be several different ways of replacing the subtrees
q′(xi) and therefore several output trees t can be associated with a single
input tree s.

Formally, every state q ∈ Q realizes an origin translation JqKo defined re-
cursively as follows. Let s = σ(s1, . . . , sk) be a tree and let q(σ(x1, . . . , xk))→
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ζ be a rule of M . Let V = V (ζ) \ V∆(ζ) be the set of nodes in ζ with a label
of the form q′(xi). For each v ∈ V , let ζ[v] = qv(xiv) where qv ∈ Q and
iv ∈ [k]. For all v ∈ V and (siv , (tv, ov)) ∈ JqvKo, it holds that (s, (t, o)) ∈ JqKo
where

• t = ζ[v ← tv | v ∈ V ],

• o(v′) = ε for v′ ∈ V∆(ζ) and o(vv′) = ivov(v
′) for v ∈ V and v′ ∈ V (tv).

The tree translation realized by q is defined as JqK = {(s, t) | ∃o : (s, (t, o)) ∈
JqKo}. The origin (tree) translation realized by M is JMKo = Jq0Ko, and the
(tree) translation realized by M is JMK = Jq0K. For a top transducer M , we
often write dom(M) for dom(JMK).

Example 2. Consider the top transducer M1 = (Q,Σ,∆, q0, R) with Q =
{q}, Σ = {h(1), a(0)}, ∆ = {f (2), a(0)}, and R consisting of the following
rules.

q(h(x1)) → f(q(x1), q(x1))
q(a) → a.

The transducer M1 translates a monadic input tree of height n into a balanced
binary tree of height n. The origin of a node u in the output tree is the unique
node of the input tree at the same depth as u. Hence, the origin of u is the
input node 1|u|. This translation is illustrated in Figure 1 for input tree
h(h(h(a))).

Example 3. Consider the top transducer M2 = (Q,Σ,∆, q0, R) with Q =
{q0, q}, Σ = {h(1), a(0)}, ∆ = {f (2), h(1), a(0)}, and R consisting of the follow-
ing rules.

q0(h(x1)) → f(q0(x1), q(x1))
q0(a) → a
q(h(x1)) → h(q(x1))
q(a) → a.

This transducer translates a monadic input tree of height n into a left-comb
of monadic subtrees of decreasing height. Thus, h(h(h(a))) is translated into
f(f(f(a, a), h(a)), h(h(a))). Again, the origin of node u is the node 1|u|. This
translation is illustrated in Figure 2.

Let M be a top-down tree transducer. Then M is deterministic if for
any two of its rules q(σ(x1, . . . , xk))→ ζ and q(σ(x1, . . . , xk))→ ζ ′ from M ,
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Figure 1: Translation of input tree h(h(h(a))) by the transducer M1. Dashed arrows
depict the origin translation.

it holds that ζ = ζ ′. The class of deterministic top-down tree transducers
is denoted by dtop. Transducers from dtop realize functional translations
and functional origin translations. The transducer M is non-deleting if each
xi that occurs in the left-hand side of a rule also appears in the right-hand
side of that rule. It is non-erasing if no rule has a right-hand side of the form
q′(xi), and thus, each rule contains at least one symbol from ∆. Finally, it
is trimmed if for any transducer M ′ obtained from M by removing one of its
rules, it holds that JM ′Ko 6= JMKo.

Example 4. Consider the top transducer M3 = (Q,Σ,∆, q0, R) with Σ =
∆ = {f (2), g(3), a(0), b(0)}, Q = {q0, qa, qb}, and R consisting of the following
rules.

q0(f(x1, x2)) → f(qa(x1), q0(x2))
q0(f(x1, x2)) → g(q0(x2), qb(x1), q0(x2))

q0(a) → a
q0(b) → b
qa(a) → a
qb(b) → b

The domain dom(M) of JMK are trees of the form

f(c1, f(c2, . . . f(cn−1, cn) . . . ))
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Figure 2: Translation of the input tree h(h(h(a))) by the transducer M2. Dashed arrows
depict the origin translation.

where c1 . . . , cn ∈ {a, b}. Note that (a, (t, o)) (resp. (b, (t, o))) does not belong
to JqbKo (resp. JqaKo) for any t and o. Figure 3 shows the unique output tree
for the input tree s = f(a, f(b, a)). Note that M is non-deterministic, but at
the same time JMK is a function. Indeed, it can be shown that JMK cannot
be realized by a dtop transducer. This is because at an f -input node u the
transducer has to output either an f or a g, depending on the first subtree of
u. Since the transducer has no way of checking the first subtree of an f -input
node, it has to guess non-deterministically and then verify the guess using
the states qa and qb. Note that in the presence of look-ahead, such a situation
cannot occur: every functional non-deterministic top-down tree translation
can (effectively) be realized by a dtop transducer with look-ahead, as proven
by Engelfriet [11].

3.2. Top-Down Transducers with Look-Ahead

Note that top transducers are forced to produce at least one output
symbol when they translate the leaf of an input tree. To inspect parts of
the input tree without producing output, a top transducer can be equipped
with regular look-ahead, leading to top-down tree transducers with regular
look-ahead (topR transducers for short). This is achieved by changing the
rules so that each left-hand side is of the form q(σ(x1, . . . , xk) : L) where L
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Figure 3: Translation of input tree f(a, f(b, a)) by the transducer M3.

is a regular tree language. Such a rule can be applied only if the input tree
σ(s1, . . . , sk) is in L. A topR transducer M is deterministic if for any two
rules with left-hand sides q(σ(x1, . . . , xk) : L1) and q(σ(x1, . . . , xk) : L2), we
have L1 ∩ L2 = ∅. Note that any top transducer M can be transformed
into a topR transducer MR by adding universal look-ahead languages. The
classes of deterministic top-down tree transducers with regular look-ahead
is denoted by dtopR. As for dtop, transducers from dtopR realize only
functional translations and functional origin translations.

Example 5. Recall the non-deterministic top-down tree transducer M3 from
Example 4. Its input and output alphabets are Σ = ∆ = {f (2), g(3), a(0), b(0)}.
Let La be the regular tree language consisting of all trees f(a, t) with t ∈ TΣ,
and let Lb = {f(b, t) | t ∈ TΣ}. Then JM3K is realized by a deterministic
top-down tree transducer with look-ahead M4. The transducer M4 has the
unique state q0 and the following rules.

q0(f(x1, x2) : La) → f(a, q0(x2))
q0(f(x1, x2) : Lb) → g(q0(x2), b, q0(x2))

q0(a) → a
q0(b) → b

A (top-down) tree automaton is a triple (P,Σ, δ) where P is a finite set of
states, Σ is a ranked alphabet, and δ is the transition function. The rules in
δ are of the form (p, a) → (p1, . . . , pk) where a ∈ Σ(k) and p, p1, . . . , pk ∈ P .
The tree language L(p) induced by state p is defined recursively as

L(p) =
⋃

(p,a)→(p1,...,pk)

{a(t1, . . . , tk) | t1 ∈ L(p1), . . . , tk ∈ L(pk)}.
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To define look-ahead of a top-down transducer M with input alphabet Σ,
one can assume a tree automaton (P,Σ, δ) and replace in the left-hand side
of transitions q(σ(x1, . . . , xk) : L) of M the language L by some state p
such that L(p) = L. Equivalently, one can replace the left-hand side by
q(σ(x1 : p1, . . . , xk : pk)) where p1, . . . , pk ∈ P so that σ(L(p1), . . . , L(pk)) =
L. We will later make use of these different ways of defining top-down tree
transducers with look-ahead.

Example 6. As an example of the notation of look-ahead just defined, we
present an equivalent dtopR for the transducer M4 of Example 5. Let Σ =
{f (2), g(3), a(0), b(0)}. We define the look-ahead automaton (P,Σ, δ) with P =
{pa, pb, p} and δ consisting of these rules:

(a) → pa
(b) → pb
(a) → p
(b) → p
(z, f) → p for every z ∈ P.

The rules of the transducer are now written as follows.

q0(f(x1 : pa, x2 : p)) → f(a, q0(x2))
q0(f(x1 : pb, x2 : p)) → g(q0(x2), b, q0(x2))

q0(a) → a
q0(b) → b

3.3. mso Transducers

In this section we define deterministic mso tree transducers as a restric-
tion of deterministic mso graph transducers, a logic-based transducer model
defined using monadic second-order logic (mso).

Let Σ,Γ be two disjoint alphabets, and let SΣ,Γ = {(σ(x))σ∈Σ, (γ(x, y))γ∈Γ}
be a signature with unary and binary predicate symbols. A labeled graph g
is a structure over SΣ,Γ, i.e. a domain V (g) of vertices, together with an
interpretation of the predicates σ and γ (denoted σg and γg) such that every
vertex is labeled by a unique symbol from Σ, and every edge is labeled by a
unique symbol from Γ. We denote by Gr(Σ,Γ) the set of labeled graphs over
Σ and Γ.

If Σ is a ranked alphabet of maximal rank k, any ranked tree t over Σ
can be identified with a labeled graph over Σ and Γ = [k], such that any
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vertex labeled σ ∈ Σ(r) has exactly r outgoing edges labeled respectively 1
to r. The predicate i(x, y), 1 ≤ i ≤ r, relates any node x with its i-th child
y.

By mso[Σ,Γ] we denote all monadic second-order formulas ϕ over the
signature SΣ,Γ, that is

ϕ ::= true | σ(x) | γ(x, y) | ϕ ∨ ϕ | ¬ϕ | ∃xϕ | ∃Xϕ 1

for σ ∈ Σ and γ ∈ Γ. The semantics is as usual, in particular, x, y, z range
over nodes and X, Y, Z over sets of nodes. We write g |= φ whenever a graph
g satisfies a formula φ ∈mso[Σ,Γ]. A set of graphs G is mso[Σ,Γ]-definable
if there exists an mso[Σ,Γ]-formula φ such that G = {g | g |= φ}. When Σ is
a ranked alphabet of maximal rank k, we simply write mso[Σ] (or just mso
when it is clear from the context) to denote mso[Σ, [k]].

To define the output graph g′ of an input graph g, an MSO transducer
uses mso[Σ,∆] formulas with one or two free variables, interpreted over a
fixed number of copies of g, to define the predicates of g′. Formally,

Definition 7. Let (Σ1,Γ1) and (Σ2,Γ2) be two pairs of disjoint alphabets. A
deterministic mso graph transducer from Gr(Σ1,Γ1) to Gr(Σ2,Γ2) is a tuple

M = (C, φdom, (φ
c
σ(x))σ∈Σ2,c∈C , (φ

c,d
γ (x, y))γ∈Γ2,c,d∈C)

such that C is a finite set of copy indices, φdom is an mso[Σ1,Γ1]-sentence, φcσ
are mso[Σ1,Γ1]-formulas with one free variable x, and φc,dγ are mso[Σ1,Γ1]-
formulas with two free variables x and y.

For a graph g ∈ Gr(Σ1,Γ1), the output graph g′ by M is defined if
g |= φdom, and has domain V (g′) ⊆ V (g) × C of pairs (u, c) (denoted uc)
such that there exists a unique σ ∈ Σ2 such that g |= φcσ(u) (the node (u, c)
is then labeled σ in g′), and for all uc, vd ∈ V (g′), the edge (uc, vd) exists if
there is a unique γ ∈ Γ2 such that g |= φc,dγ (u, v) (this edge is then labeled γ
in g′).

The origin mapping o of the translation of g into g′ is the mapping defined
by o(uc) = u, for all uc ∈ V (g′). Note that, for any input node u, there are
at most |C| nodes in the output with u as origin. We denote by JMK the

1As usual, we use false, ϕ∧ϕ′, ϕ′ → ϕ, ∀xϕ and ∀Xϕ as shortcuts for ¬true, ¬(ϕ∨ϕ′),
¬ϕ ∨ ϕ′, ∀xϕ, ∀Xϕ respectively.
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translation defined by M , and by JMKo the translation with origin defined
by M . We simply write dom(M) for dom(JMK).

Let Σ,∆ be two ranked alphabets. We have seen that any ranked tree can
be identified with a labeled graph. A deterministic mso tree transducer M
(dmsot transducer for short) from TΣ to T∆ is a deterministic graph trans-
ducer such that JMK ⊆ TΣ × T∆. Note that it is easily enforcible that every
input graph of an mso transducer is a tree, by adding the MSO-definable
property of being a tree to the domain formula. For an mso transducer
M such that dom(M) ⊆ TΣ, it is decidable whether every output graph of
M is a tree: inverse mso translations preserve MSO definability, thus, we
can construct an mso sentence of input trees so that the corresponding out-
put graphs by M are not trees, and then test emptiness of this regular tree
language.

Example 8. Consider the translation τ (definable by any transducer from
dtopR) over the ranked (input and output) alphabet Σ = {f (2), a(1), b(1), e(0)},
which maps any tree f(s1, s2), where s1 is a monadic tree over Σ \ {f},
to f(s1, rev(s1)), for rev(s1) the reverse of s1 (s1 put upside down). E.g.,
f(a(a(b(e))), e) is mapped to f(a(a(b(e))), b(a(a(e)))), as illustrated on Fig-
ure 4. The translation τ is definable by the following dmsot transducer the
formulas of which are precisely given below:

Mτ = ([2], φdom, (φ
c
σ(x))c∈[2],σ∈Σ, (φ

c,d
i (x, y))i,c,d∈[2])

Since we copy s1 twice, one copy of s1 being reversed, one needs a copy set
[2]. The formula φdom is an mso[Σ]-sentence expressing that there is only
one node labeled f and it is the root:

φdom = ∃x (root(x) ∧ f(x) ∧ ∀y 6= x (¬f(y))
root(x) = ∀y

∧
i∈[2] ¬i(y, x)

In the first copy, we keep only input nodes in 1∗ (the root node and s1), and
in the second one, only input nodes in 1+ (the subtree s1). Both properties –
being in 1∗ and in 1+ for a node x – are definable in mso[Σ] by two formulas
φ1∗(x) and φ1+(x) respectively, which express the fact that every set contain-
ing the root (respectively the second-child of the root) which is closed by the
first-child relation also contains x:

φ1∗(x) = ∀X (∃y (root(y) ∧ y ∈ X) ∧ ∀y∈X∀z (1(y, z)→ z∈X))→ x∈X
φ1+(x) = φ1∗(x) ∧ ¬root(x)
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where root1(y) = ∃x (root(x) ∧ 2(x, y)) denotes the first-child y of the root.
In the two copies, nothing is changed with respect to labels:

∀σ ∈ Σ : φ1
σ(x) = φ1∗(x) ∧ σ(x) φ2

σ(x) = φ1+(x) ∧ σ(x)

For the successor predicates, in the first copy, nothing is changed:

φ1,1
1 (x, y) = 1(x, y) φ1,1

2 (x, y) = 2(x, y)

Note that by definition of the nodes that are kept in the first copy, there is no
pairs of nodes x, y such that 2(x, y), and therefore we could have equivalently
set φ1,1

2 (x, y) to false.
In the second copy, that correspond to rev(s1), first-child predicates are

reversed for all inner nodes, and the root of s1 in the second copy is connected
to the leaf of s1 (this is required because rev(s1) reverses all symbols of s1

except the leaf, which bear the only constant symbols and hence cannot be
used as the label of a root):

φ2,2
1 (x, y) = (¬leaf(x) ∧ 1(y, x)) ∨ leaf(y) ∧ root1(x)

where leaf(y) = ∀z
∧
i∈[2] ¬i(y, z) holds true if y is a leaf.

Then, it remains to connect the first copy to the second copy, i.e. the root
node labelled f to the root of rev(s1), using

φ1,2
2 (x, y) = root(x) ∧ ∃z (1(y, z) ∧ leaf(z))

Other formulas are put to false:

φ1,1
2 (x, y) = φ2,1

2 (x, y) = φ1,2
1 (x, y) = φ2,1

1 (x, y) = false

Let us describe the origin mappings defined by Mτ . It is illustrated on
Figure 4. Let (t, o) = JMτKo(s) for some input tree s ∈ TΣ. Necessarily,
s is of the form f(s1, s2) and t = f(s1, rev(s1)). Let us describe the origin
mapping o:

o : V (t) → V (s)

u 7→


1j if u = 1j for some j≥0
1j+1 if u = 2.1j for some j≥0 and u is a leaf
1height(s1)−j if u = 2.1j for some j≥0 and u is not a leaf

Finally in this example, if we restrict Σ to Σ′ = {f (2), a(1), e(0)}, then
the restriction τ ′ = τ |TΣ′

becomes dtopR-definable (reversing a monadic tree
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Figure 4: Translation of input tree f(a(a(b(e))), e) by the transducer Mτ .

over a one-letter alphabet is like doing the identity). Let M ′ be the previous
dmsot transducer M whose domain is restricted to TΣ′, i.e. JM ′K = τ ′. Even
though there is only one unary symbol a(1), the transducer M ′ still reverses
the origins, something that is not doable by a dtopR transducer. Therefore
we have that JM ′K can be realized by a dtopR transducer, but we have that
JM ′Ko cannot be realized by any dtopR transducer.

MSO transducers can be extended with non-determinism [4]. The ability
of defining non-deterministic translations originates only from (free) second-
order variables and their possible valuations. Hence, all formulas φdom, φcσ
and φc,c

′
γ can use a fixed additional finite set of free second-order variables

X. Once an assignment ν of each variable of X by a set of nodes of an
input graph g is fixed, the previous formulas can be interpreted as before
with respect to this assignment, thus defining an output pair (gν , oν) (if the
domain formula holds true). The set of outputs associated with g is the set
of all such pairs (gν , oν), for all assignments ν of X. We denote by msot the
class of (non-deterministic) MSO transducers from trees to trees.

Example 9. One can modify Example 8 to define the translation which maps
any tree of the form f(s1, s2) to f(s′1, rev(s′1)) where s′1 is a subword of s1

(i.e. s′1 has been obtained by erasing some symbols of s1, except the last
one). It suffices to use a free variable X intended to define all the erased
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positions of s1. Only nodes in X are kept, by letting φ1
σ(x) = ¬leaf(x) →

(x ∈ X ∧ φ1∗(x) ∧ σ(x)), and φ2
σ(x) = ¬leaf(x)→ (x ∈ X ∧ φ1+(x) ∧ σ(x)).

3.4. Origin-Equivalence Problem

In this section, we prove that origin-equivalence is decidable for mso tree
transducers and for dtopR transducers. Two transducers M1,M2 are origin-
equivalent if JM1Ko = JM2Ko. The origin-equivalence problem for a class
C of transducers asks whether any two given transducers M1,M2 ∈ C are
origin-equivalent or not.

Theorem 10. Origin-equivalence is decidable for the classes topR and msot.

The proof of Theorem 10 (for msot) relies on the following set:

E(τ1, τ2)={t ∈ dom(τ1) ∩ dom(τ2) | τ1(t) = τ2(t)}

where, for i ∈ {1, 2}, τi(t) = {t′ | (t, t′) ∈ τi}.
We will show that this set is regular if τ1, τ2 are origin translations defined

by (1) msot transducers, and (2) topR transducers. Note that without
origins, even simple topR and msot translations yield a non-regular set:
e.g., the translations R1 : f(s1, s2) 7→ s1 and R2 : f(s1, s2) 7→ s2 are both
msot definable but their (origin-free) equality set {f(s, s) | s ∈ TΣ}, is not
regular. We first show (1), which holds more generally for graph-to-tree mso
transducers.

Proposition 11. Let Σ,Γ be two disjoint alphabets, and ∆ be a ranked al-
phabet. Let T1, T2 be non-deterministic mso graph-to-tree transducers from
Gr(Σ,Γ) to T∆. Then E(JT1Ko, JT2Ko) is (effectively) mso[Σ1,Γ1]-definable.

Proof. We first assume that T1 and T2 are deterministic, the non-deterministic
case is treated afterwards. We let ` be the maximal rank of ∆-symbols. Let

T1 = (C1, φdom, (φ
c
δ(x))δ∈∆,c∈C1 , (φ

c,c′

i (x, y))i∈[`],c,c′∈C1)

T2 = (C2, ψdom, (ψ
c
δ(x))δ∈∆,c∈C2 , (ψ

c,c′

i (x, y))i∈[`],c,c′∈C2)

We assume wlog that C = C1 = C2: if T1 has less copies than T2 then we
simply add those copies and define the corresponding formulas as false.

Intuitively, we consider, for some input graph g, JT1Ko(g) and JT2Ko(g)
in a single structure obtained from the by overlap of the two output trees.
We are going to built an MSO formula which is valid for g iff JT1Ko(g) and

16



JT1Ko(g) are actually equal. The fact that outputs are trees together with
origins is crucial for this equality test to be possible.

First, we shall make clear how the nodes of the output trees are repre-
sented. Let g be a graph and JTiKo(g) = (ti, oi) its output, i = 1, 2. Then,
t ∈ T∆ is a tree whose set of nodes V (ti) is a subset of N∗. By definition
of MSO transducers, any node of ti can be identified with a pair (v, c) such
that v ∈ V (g) and c ∈ C. We denote by addri the partial function that
associates with any pair (v, c) the node of V (ti) (if it exists) as a result of
this identification.

We will also need the notion of path labels and that of path origins. Let
u ∈ V (ti) be a node of ti. By p-labelsti(u) (resp. p-originsti(u)) we denote
the sequence ti[u0]ti[u1] . . . ti[un] ∈ ∆+ (resp. oi(u0)oi(u1) . . . oi(un) ∈ V (g)+)
where u0u1 . . . un ∈ V (ti)

+ is sequence of nodes from the root (u0 = ε) to u
(un = u).

We start by a key observation saying that if JT1Ko(g) = JT2Ko(g) = (t, o),
for an input graph g ∈ Gr(Σ,Γ), then whenever there is a “synchronized”
root-to-node path π in t then for any one-step continuation of this path by
T1 there exists a one-step continuation by T2, and vice versa.

Claim: Let g∈dom(T1)∩dom(T2), and JT1Ko(g)=(t1, o1), JT2Ko(g)=(t2, o2).
Then (t1, o1)=(t2, o2) iff

1. t1[ε] = t2[ε] and o1(ε) = o2(ε), and

2. for all u ∈ V (t1) ∩ V (t2) such that p-labelst1(u) = p-labelst2(u) and
p-originst1(u) = p-originst2(u), for all α, i ∈ [2], if ui ∈ V (tα), then
ui ∈ V (t3−α), t1[ui] = t2[ui], and o1(ui) = o2(ui).

The proof of this claim is straightforward. The formula we are going to
build is based on this claim and expresses for instance that any sequence of
input nodes u1, . . . , un that are connected with successor formulas φc,c

′

i (x, y)

by T1 are also connected with successor formulas ψd,d
′

i of T2 with the same
sequence of indices i, and conversely. It also expresses that the sequence of la-
bel formulas φcδ(x) of T1 and ψc

′

δ (x) of T2 that hold on u1, . . . , un respectively,
carry the same respective output symbols δ.
Condition 1 of the claim can be expressed by the sentence χroot that expresses
that there are a node xc1 in t1 and a node xc2 in t2 which are the root of t1
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and t2 respectively, have the same origin x, and the same label:

χroot ≡ ∃x
∨

c1,c2∈C
rootc1,c2(x)

rootc1,c2(x) ≡
∧

c∈C,i∈[`]

∀z(¬φc,c1i (z, x) ∧ ¬ψc,c2i (z, x)) ∧
∨
a∈∆

(φc1a (x) ∧ ψc2a (x))

In order to express the Condition (2) of the claim, we first define, for all
c1, c2 ∈ C, a formula Pathc1,c2(x), such that g |= Pathc1,c2(v) iff addr1(vc1)
and addr2(vc2) are both defined and equal, and:

p-labelst1(addr(vc1)) = p-labelst2(addr(vc2))
p-originst1(addr(vc1)) = p-originst2(addr(vc2))

It is obtained as the transitive closure of the formulas R(c1,c′1),(c2,c′2)(x, y) de-
fined for all c1, c2, c

′
1, c
′
2 ∈ C, and which holds true whenever there exists

i ∈ [`] such that yc
′
1 is the i-th child of addr1(xc1) in t1, yc

′
2 is the i-th child

of addr2(xc2) in t2, the nodes addr1(xc1) and addr2(xc2) have the same label,
as well as the nodes addr1(yc

′
1) and addr2(yc

′
2). Formally:

R(c1,c′1),(c2,c′2)(x, y) ≡
∨

i∈[`],a,b∈∆

φ
c1,c′1
i (x, y)∧ψc2,c

′
2

i (x, y)∧φc1a (x)∧ψc2a (x)∧φc
′
1
b (y)∧ψc

′
2
b (y)

Again, due to origin semantics, the sources (resp. the targets) of the consid-
ered edges from the output must orginate from the same input node.

Based on the latter formula, we define Pathc1,c2(x) as follows:

Pathc1,c2(x) ≡ ∃r
∨

e1,e2∈C

roote1,e2(r) ∧ ∀X1,1∀X1,2 . . . ∀X|C|,|C|(r ∈ Xe1,e2∧∧
d1,d′1,d2,d′2∈C

∀z∀z′(z ∈ Xd1,d2∧R(d1,d′1),(d2,d′2)(z, z
′)→ z′ ∈ Xd′1,d

′
2
))→ x ∈ Xc1,c2

We can finally express conditions 1 and 2 of the claim by a sentence
ΦE(T1,T2) defined as:

φdom ∧ ψdom ∧ χroot∧
(∀x

∧
c1,c2∈C Pathc1,c2(x)→

(∀x′
∧
c′1∈C,i∈[`],a∈∆ φ

c1,c′1
i (x, x′) ∧ φc

′
1
a (x′)→

∨
c′2∈C

ψ
c2,c′2
i (x, x′) ∧ ψc

′
2
a (x′))

∧ (∀x′
∧
c′2∈C,i∈[`],a∈∆ ψ

c2,c′2
i (x, x′) ∧ ψc

′
2
a (x′)→

∨
c′1∈C

φ
c1,c′1
i (x, x′) ∧ φc

′
1
a (x′)))
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It should be clear that ΦE(T1,T2) defines the set E(JT1Ko, JT2Ko).

Extension of the proof to non-deterministic transducers To extend this
proof to non-deterministic mso transducers, we now assume that all formu-
las of T1 and T2 are parameterized respectively by a tuple of second-order
variables X and Y . We can construct a formula ΦE(T1,T2)(X,Y ) exactly as
before, except that all formulas of T1 and T2 used in the definition of ΦE(T1,T2)

are, as well, parameterized respectively by X and Y . The set E(JT1Ko, JT2Ko)
is then definable by the sentence

ΦND
E(T1,T2) ≡ ∀X∃Y · ΦE(T1,T2)(X,Y ) ∧ ∀Y ∃X · ΦE(T1,T2)(X,Y ).

Indeed, g |= ΦND
E(T1,T2) iff for all interpretations of U ∈ (2V (g))|X|, there exists

an interpretation V ∈ (2V (g))|Y | such that g |= ΦE(T1,T2)(U, V ) and sym-

metrically, iff for all U ∈ (2V (g))|X|, there exists V ∈ (2V (g))|Y | such that
JT1[U ]Ko(g) = JT2[V ]Ko(g) and symmetrically, iff JT1Ko(g) ⊆ JT2Ko(g) and
JT2Ko(g) ⊆ JT1Ko(g), iff JT1Ko(g) = JT2Ko(g).

A similar result as Proposition 11 holds for dtopR transducers, as shown
below. While it immediately yields a procedure for deciding origin-equivalence
of dtopR transducers, the result of Theorem 10 also holds for (non-deterministic)
topR transducers with a different proof. However, we give the following re-
sult, as it is interesting in its own. We leave open however whether it still
holds for topR transducers.

Proposition 12. Let M1,M2 be dtopR transducers. Then E(JM1Ko, JM2Ko)
is a regular tree language.

Proof. For i ∈ [2], let Mi = (Qi,Σi,∆i, q0i, Ri). We make the following
assumptions:

• we assume M1,M2 to be trimmed is the sense that each of their tran-
sition rule appears in some computation.

• If q(f(x1, . . . , xk) : L) → C[q1(xi1), . . . , qk(xin)] is a rule of Mi (where
C is a ∆-context), then s/ij ∈ dom(JqjK) for every s ∈ L and every
j ∈ [n].

The second condition can be achieved by changing L in each rule that does
not have the property into the set of all trees σ(s1, . . . , sk) such that si is in
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the intersection of all dom(JqjK) for j ∈ [n] with ij = i, intersected with L.
This can be achieved rule by rule as it does not change the domains dom(JqK).

The semantics with origin imposes strong constraints on the shapes of
the right-hand sides of rules of M1 and M2 that can be applied in parallel:
roughly speaking when M1 and M2 process the same input node, they must
produce an output context of the same shape. Indeed, if they produce a node
with different labels then the equivalence fails obviously. But even more, if
one, say M1, produces a node that is not yet present in the output produced
by M2 then the equivalence fails also due to the semantics with origin. This
node will have for M1 the current input u node as origin whereas for M2 this
node will originate from a descendant of u.

We define the relation
o∼ over Q1 × Q2 as p

o∼ q if for all f in Σ, either
none of p, q is a left-hand side of an f -rule or for any of such two rules whose
left-hand side is p and q respectively, their respective form is

p(f(x1, . . . , xk) : L1) → C1[p1(xi1), . . . , pm(xim)]
q(f(x1, . . . , xk) : L2) → C2[q1(xj1), . . . , qn(xjn)],

with

• C1 = C2, m = n,

• iν = jν for all ν ∈ [m],

• pν
o∼ qν for all ν ∈ [m].

One can prove that for all p ∈ Q1, q ∈ Q2, for all s ∈ dom(JpKo) ∩
dom(JqKo), JpKo(s) = JqKo(s) iff p

o∼ q.
To show the only-if direction, assume that JpKo(s) = JqKo(s) = (t, o)

and let r1 ∈ R1 and r2 ∈ R2 be the rules for p and q that are applicable
to s, i.e. s ∈ L1 ∩ L2. Then V∆(C1) = V∆(C2), because they both equal
{v ∈ V (t) | o(v) = ε} by the semantics of M1 and M2. This implies that
C1 = C2 and hence m = n. Let t1, . . . , tm such that t = C1[t1, . . . , tm]. Let
ν ∈ [m], and v ∈ V (t) the node that corresponds to the root of the ν-th
subtree tν of t. By definition of the origin semantics, o(v) = i for some
i ∈ [k], and hence iν = jν = i. The third item above holds by induction

hypothesis. For the if direction, let us assume that p
o∼ q and consider some

s ∈ dom(JpKo) ∩ dom(JqKo). Depending on the symbol at the root of s, there
must be two unique rules r1 and r2 for p and q respectively. To preserve to
origin semantics, the contexts C1, C2 must be the same and hence m = n.
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Now, by definition of
o∼, we have pν

o∼ qν for all ν ∈ [m]. We can then
conclude by induction.

Let us denote by P the set of pairs (r1, r2) of rules whose left-hand sides

p, q satisfy p
o∼ q . We construct a topR transducer M such that dom(M) =

E(JM1Ko, JM2Ko). The set of states of M is Q1 × Q2, with initial states
〈q01, q02〉, and for all pairs of rules (r1, r2) ∈ P , we add to the rules of M the
following rule:

〈p, q〉(a(x1, . . . , xk) : L1 ∩ L2)→ C1[〈p1, q1〉(xi1), . . . , 〈pm, qm〉(xim)]

It is well-known that topR transducers have regular domains, hence the
result follows.

Proof of Theorem 10. Let τ1, τ2 be two origin translations defined respec-
tively by two transducers from msot. They are equivalent if and only if
they have the same domain D and D = E(τ1, τ2). Since msot translations
have effective regular domains, and E(τ1, τ2) is effectively regular by Propo-
sition 11, we get the result. The proof goes the same way for τ1, τ2 defined
by dtopR transducers using Proposition 12.

However, when τ1, τ2 are origin translations defined by topR transducers
an alternative and somehow more direct proof exists. As a first step, an
equality test of the domains is performed. This is obviously decidable due
to the effective regularity of domains of topR transducers. We then proceed
by reduction to the equivalence problem of letter-to-letter transducers as
follows. For non-deleting non-erasing top-down tree transducers without
regular look-ahead, the decidability of origin-equivalence follows directly from
the decidability of equivalence for non-deterministic non-deleting top-down
letter-to-letter tree transducers [1].

Indeed, the origin semantics forces for all input trees s ∈ dom(M1), for all
(t, o) ∈ JM1Ko(s), M2 must produce, in a successful execution, the symbols of
t exactly at the same moment as M1, and conversely for all (t, o) ∈ JM2Ko(s).
When considering non-erasing top, this property has a nice consequence:
both M1 and M2 can be seen as symbol-to-symbol transducers: each – nec-
essarily non-empty – ∆-context in the right-hand side of a rule can be con-
sidered as one letter having for rank the number of occurrences of qj(xij) in
this right-hand side. For instance, if ζ = f(q1(x1), h(q2(x1)), q3(x2)), then
f(., h(.), .) is seen as a single symbol of rank 3.

We now show how to reduce the equivalence problem of origin translations
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realized by dtopR transducers to the one of non-deleting non-erasing top-
down tree transducers without regular look-ahead.

Consider a topR tranducer M . Here we assume that the look-ahead is
given as states of a single non-deterministic top-down tree automaton. For
each rule of the following form

q(a(x1, . . . , xk) : p)→ C[q1(xi1), . . . , qk(xin)]

and for each rule of the look-ahead automaton (p, a)→ (p1, . . . , pk) we con-
struct the following rule:

q(a(x1, . . . , xk))→ C ′[p1(x1), . . . , pk(xk), q1(xi1), . . . , qk(xin)]

where C ′ = $(a(⊥, . . . ,⊥), C) and $ is a new binary symbol.
In addition, we have to define rules for look-ahead states. For each rule

(p, a) → (p1, . . . , pk) of the look-ahead automaton (with a ∈ Σ(k)), we con-
struct the following rule:

p(a(x1, . . . , xk)) → a(p1(x1), . . . , pk(xk))

Intuitively, for each transition applied in the original transducer, a new thread
is started which checks the look-ahead, and produces as output a copy of the
input subtree. Observe that this does not depend on M . We systematically
add such an output. Observe that the new transducer is non-deleting and
non-erasing.

Let us point out that regarding origins, this reduction yields a conserva-
tive extension: nodes in the output shared by the old and new transducers
have the same origin. Now let us assume that we apply this reduction to
two transducers T1 and T2, yielding T ′1 and T ′2. It is important to notice that
when processing the same input, the new nodes in the output of T ′1 (those
obtained from look-ahead elimination) and the new ones in the output of T ′2
will be by construction the same and moreover, will share the same origin.

Given two topR transducers M1,M2, we denote by M ′
1,M

′
2 the non-

deleting and non-erasing top transducers (without look-ahead) obtained
by this construction. It is easy to show that JM1Ko = JM2Ko iff JM ′

1Ko =
JM ′

2Ko.

Note that based on Proposition 11, the decidability result of Theorem 10
can be extended to any (non-deterministic) MSO graph-to-tree transducers
over a class of graphs with decidable MSO theory. More precisely, given
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a class of graphs C with decidable MSO theory, the following problem is
decidable: given two MSO graph to tree transducers M1,M2, decide whether
dom(M1)∩C = dom(M2)∩C and for all graphs g ∈ C ∩dom(M1), JM1Ko(t) =
JM2Ko(t). For instance, by taking C the class of graphs of treewidth k, the
latter problem is decidable.

3.5. Origin-Injectivity Problem

A function τ : A → B is injective if and only if for all x, y ∈ A,
f(x) = f(y) implies that x = y. Thus, an injective function maps distinct
arguments to distinct images. It is well-known that injectivity is undecid-
able for dtop transducers, in fact, it is undecidable even already for tree
homomorphism (= DT transducers with only one state) [21]. However, tree
homomorphism are not definable by dmsot transducers in general therefore,
we give a simple proof of undecidability for dtopR and dmsot transducers,
based on a reduction from the Post correspondence problem (PCP). In this
reduction, the fact that the transducers can copy subtrees is crucial.

Proposition 13. Injectivity is undecidable for tree translations defined by
dtopR and dmsot transducers.

Proof. The proof is by reduction from PCP. Let ∆ = {a, b} be an alpha-
bet. An instance of PCP is a finite sequence of pairs I = (u1, v1) . . . (un, vn)
such that ui, vi ∈ ∆∗. It has a solution if there exists a sequence of in-
dices i1, . . . , ik ∈ {1, . . . , n} such that ui1 . . . uik = vi1 . . . vik . For all in-
stances I of PCP we define a tree translation τI from TΣ to TΣ, where Σ =
{U (1), V (1),#(2), a(1), b(1), 1(1), . . . , n(1), e(0)}. For a word u = σ1 . . . σk ∈ (∆ ∪
{1, . . . , n})∗ and a tree t ∈ TΣ, we write u(t) for the tree σ1(σ2(. . . σk(t) . . . )).

The translation τI is defined on trees of the form Z(i1i2 . . . ik(e)) where
Z ∈ {U, V }, as follows:

τI : TΣ → TΣ

Z(i1i2 . . . ik(e)) 7→
{

#(i1i2 . . . ik(e), ui1ui2 . . . uik(e)) if Z = U
#(i1i2 . . . ik(e), vi1vi2 . . . vik(e)) if Z = V

We claim that τI is not injective iff I has a solution. Indeed, if I has a
solution i1 . . . ik, then let u = U(i1 . . . ik(e)) and v = V (i1 . . . ik(e)). Then
clearly τI(u) = τI(v) but u 6= v. Conversely, if τI is not injective, then
there exist u 6= v ∈ TΣ such that τI(u) = τI(v). The trees u and v are
necessarily of the form u = Z1(i1 . . . ik(e)) and v = Z2(j1 . . . jp(e)) for some
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Z1 6= Z2, say Z1 = U and Z2 = V . Then the equality τI(u) = τI(v)
implies ui1 . . . uik = vj1 . . . vjp , but also i1 . . . ik = j1 . . . jp, and hence there is
a solution to PCP.

The translation τI is easily implemented by dtopR and dmsot transduc-
ers, but they need to copy the input tree, in order to produce, on the output,
the subtree i1 . . . ik(e), and the subtree ui1 . . . uik(e) (or vi1 . . . vik(e)).

Now, we show that in presence of origin, the injectivity problem becomes
decidable. Origin-injectivity asks whether the origin translation JMKo of
a given transducer M is injective, i.e. for all trees s1, s2, t1, t2 and origin
mappings o1, o2 such that JMKo(s1) = (t1, o1) and JMKo(s2) = (t2, o2), if
t1 = t2 and o1 = o2, then s1 = s2. We now prove that origin-injectivity is
decidable for dmso and dtopR transducers.

Theorem 14. Origin-injectivity is decidable for dmsot transducers and for
dtopR transducers.

The proof of Theorem 14 relies on the framework of recognizable trans-
lations that we recall first: let Σ,Σ′ be ranked alphabets and let ⊥(0) be a
special symbol not in Σ ∪ Σ′. We define Σ⊗ Σ′ as

{(f, g)(max(m,n)) | f ∈ (Σ ∪ {⊥})(m), g ∈ (Σ′ ∪ {⊥})(n)} − {(⊥,⊥)(0)}

Given a tree t1 ∈ TΣ and a tree t2 ∈ TΣ′ , the overlap of t1 and t2 is a
tree t1 ⊗ t2 ∈ TΣ⊗Σ′ such that V (t1 ⊗ t2) = V (t1) ∪ V (t2) and for all nodes
u ∈ V (t1 ⊗ t2),

(t1 ⊗ t2)[u] =


(t1[u], t2[u]) if u ∈ V (t1) ∩ V (t2)
(t1[u],⊥) if u ∈ V (t1) \ V (t2)
(⊥, t2[u]) otherwise.

Let L1 ⊆ TΣ and L2 ⊆ TΣ′ . We define L1 ⊗ L2 = {t1 ⊗ t2 | t1 ∈ L1, t2 ∈ L2}.
A tree translation τ ⊆ TΣ × TΣ′ is recognizable if {t1 ⊗ t2 | (t1, t2) ∈ τ} is
regular [7]. Note that if both L1 and L2 are regular, then so is L1 ⊗ L2.

Definition 15. Let τ1, τ2 be binary relations We define the set

R(τ1, τ2) = {(t1, t2) ∈ dom(τ1)× dom(τ2) | τ1(t1) = τ2(t2)}

We will show that these sets are recognizable if τ1, τ2 are origin transla-
tions of (1) dtopR transducers, and (2) msot transducers.
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Lemma 16. Let M1,M2 be dtopR transducers. Then R(JM1Ko, JM2Ko) is
recognizable.

Proof. For i = 1, 2 we construct the dtopR transducer M̃i so that for all
input trees t1, t2 of M1,M2: JM̃iKo(t1 ⊗ t2) = JMiKo(ti). The transducer M̃i

has the same states as Mi. The input alphabet of M̃i is Σ = Σ1⊗Σ2 where Σi

is the input alphabet of Mi. If q(f(x1, . . . , xk) : L)→ C[q1(xi1), . . . , qk(xin)]
is a rule of M1 then for every g, k′ such that (f, g) ∈ Σ(k′) the transducer
M̃1 has the rule q((f, g)(x1, . . . , xk′) : L̃) → C[q1(xi1), . . . , qk(xin)] where
L̃ = L⊗ TΣ2 . Remind that L⊗ TΣ2 is regular. The rules for M̃2 are defined
similarly. It now holds R(JM1Ko, JM2Ko) = E(JM̃1Ko, JM̃2Ko) and hence the
result follows by Lemma 12.

Lemma 17. Let T1, T2 be dmsot transducers. Then R(JT1Ko, JT2Ko) is rec-
ognizable.

Proof. It follows from Lemma 11 that E(JT1Ko, JT2Ko) is regular. Then, the
result can then be shown similarly to Lemma 16.

Proof of Theorem 14. An origin translation τ is injective if and only if R6= ∩
R(τ, τ) = ∅ where R6= = {(t1, t2) | t1 6= t2}. Clearly, R6= is a recognizable
translation, and by Lemmas 16 and 17, R(τ, τ) is recognizable for the origin
translations realized by dmsot and dtopR transducers.

3.6. Query Determinacy

Let τQ be a functional tree translation and let τV be a functional origin
tree translation. We will call τQ the “query”, and τV the “view”. We say
that τQ is determined by τV if for all trees s1, s2 ∈ dom(τV ), if τV (s1) =
τV (s2) then τQ(s1) = τQ(s2). Clearly, the notion of being determined is a
generalization of injectivity: the identity tree translation is determined by a
view τV iff τV is injective. The query-determinacy problem, i.e., to decide for
given τQ, τV whether or not τQ is determined by τV has been studied in the
database community [34]. It was recently considered for tree transducers [2];
as mentioned in the Introduction, they can only decide determinacy for very
limited classes of views, in particular, these classes do not allow copying. We
now show that in the presence of origin, this restriction can be lifted and
indeed determinacy can be decided for views that do allow copying.

Corollary 18. Let τQ be a tree translation and let τV be an origin tree
translation so that both τQ, τV are defined by two given dtopR transducers or
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two given dmsot transducers. It is decidable whether or not τQ is determined
by τV .

Proof. Let τQ1 , τQ2 be tree translations with ranked alphabets of input and
output symbols Σ⊗ Σ and ∆, respectively defined by τQi

(s1 ⊗ s2) = τQ(si),
for all s1, s2 ∈ TΣ. Note that the τQi

are effectively definable by dtopR

transducers (resp. dmsot transducers ) if τQ is. Let r(τV ) be the set of
trees s1 ⊗ s2 such that s1, s2 ∈ dom(τV ) and τV (s1) = τV (s2). Then τQ
is determined by τV iff τQ1(s) = τQ2(s) for all s in r(τV ), iff τQ1 and τQ2

are equivalent on r(τV ). As seen before to solve the injectivity problem, we
show that the pairs (s1, s2) such that τV (s1) = τV (s2) form a recognizable
relation, for transducers in dtopR or dmsot. So, r(τV ) is regular. The
result follows because equivalence is decidable for dtopR transducers and
for dmsot transducers, see [31].

For instance, query determinacy is decidable for queries defined by dmsot
or dtopR transducers, and views with origin defined by dmsot or dtopR

transducers.

4. Tree-to-String Translations with Origin

In this section we consider top-down tree-to-string transducers. Such
transducers generalize top-down tree transducers by outputting arbitrary
strings by a rule (instead of well-bracketed strings, in the case of tree trans-
ducer). Naturally, decision problems become harder for tree-to-string trans-
ducers: origin-equivalence of non-deterministic such transducers is undecid-
able, and origin-injectivity for deterministic such transducers is undecidable.
This is in contrast to top-down tree transducers, where both problems are
decidable (Theorems 10 and 14). On the positive side, the main result of
this section is that origin-equivalence is decidable for deterministic top-down
tree-to-string transducers. The proof uses a reduction to the hdt0l sequence
equivalence problem. Without origin, this equivalence problem had been a
famous open problem, already stated by Engelfriet [12]; it was solved very
recently by Seidl, Maneth, and Kemper [36]

4.1. Top-down tree-to-string transducers

A top-down tree-to-string transducer (ytop transducer for short) M is a
tuple (Q,Σ, ∆, q0, R) where Q is a finite set of states, Σ is a ranked alphabet
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7→ b a a

Figure 5: Translation of the input tree a(a(b(e))) by the transducer M5.

of input symbols, ∆ is an alphabet of output symbols, q0 ∈ Q is the initial
state, and R is a finite set of rules of the form

q(σ(x1, . . . , xk))→ w,

where w is a (possibly empty) string over ∆ and symbols q′(xi) with q′ ∈ Q
and i ∈ [k]. The definition of JqKo is similar as for top transducers (only
that the trees t and tv are now strings over ∆). In this way we obtain
JMKo and JMK. ytop transducers generalize top transducers, as right-hand
sides of rules of a top transducer can be encoded as well-bracketed strings.
The converse is false: even considering strings as monadic trees, a ytop
transducer can for instance easily implement string reversal (see Example 19),
which is not possible using top transducers. As for top transducers, we
can equip this model with regular look-ahead, and consider deterministic
machines. This defines the classes of deterministic top-down tree-to-string
transducers (with regular look-ahead): ydtop (ydtopR).

Example 19. Let M5 = (Q,Σ,∆, q0, R) by the ydtop transducer with Q =
{q, qa, qb}, Σ = {a(1), b(1), e(0)}, ∆ = {a, b}, and R consisting of the following
rules.

q(σ(x1)) → q(x1)qσ(x1)
q(e) → ε
qσ(σ′(x1)) → qσ(x1) for σ, σ′ ∈ Σ(1)

qσ(e) → ε for σ ∈ Σ(1).

The transducer M5 implements string reversal with respect to its monadic
input tree. For instance, the input tree s = a(a(b(e))) is translated to the
string JMK(s) = baa = w, as illustrated in Figure 5. Note that the origin
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of each letter of w is the unique leaf of s (here, the node 111). Hence, the
origin translation JMKo is not mso definable: there may be unboundedly
many letters having such a leaf as origin. In contrast, the translation JMK is
mso definable, as tree-to-string mso transducers are equivalent to ydtopR

transducers of linear size increase [14, 13]. In Section 5 we show how to
decide whether the origin translation defined by a ydtopR transducer is mso
definable.

4.2. Undecidability Results

A finite-state string transducer (also known as “generalized sequential ma-
chine” or as “rational string relation”) can be seen as a linear ytop trans-
ducer with monadic input, i.e., a ytop transducer with rules of the form
q(ax)→ vq′(x), where v ∈ ∆∗. Similar to Example 19, instead of outputting
in a rule the string v = a1 · · · an with a1, . . . , an ∈ ∆, we may replace each ai
by a state call qai(x). These states ignore the unary input nodes via rules of
the form qa(bx)→ qa(x), and produce their output symbol a the unique input
leaf. This shows that origin-equivalence of ytop transducers can be reduced
to equivalence of finite-state string transducers, a problem well-known to be
undecidable [24, 26]. In a similar way it can be shown that origin-injectivity
of ydtop transducers is also undecidable, by giving a direct encoding of the
Post Correspondence Problem. This contrasts with the positive results pre-
sented in Section 3. There, decidability of origin-equivalence relied on the
regularity of the set E(JM1Ko, JM2Ko) of input trees s for which JM1Ko(s)
equals JM2Ko(s). As the reader may verify, it is easy to come up with two
ydtop transducers M1,M2 such that E(JM1Ko, JM2Ko) is not regular. For
instance, take the transducer M1 = M for string reversal of before, and M2

the identity with rules q(σ(x1)) → qσ(x1)q(x1) and qσ(σ′(x1)) → qσ(x1) for
σ, σ′ ∈ Σ(1), and leaf rules as for M . Now E(JM1Ko, JM2Ko) is the set of
palindromes on ∆∗ (seen as monadic trees), which is not regular.

Theorem 20. Origin-equivalence is undecidable for ytop transducers.

Proof. The proof proceeds by a reduction from undecidability of equivalence
of non-deterministic string-to-string transducers [24, 26]. As explained above,
one can simulate such a transducer by forcing the non-deterministic top-
down monadic tree-to-string transducer to produce output at the unique leaf
only.

Theorem 21. Origin-injectivity is undecidable for ydtop transducers.
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Proof. Let A be a finite alphabet such that A ∩ N = ∅. We consider an
instance of the Post Correspondence Problem (PCP)

I = {(u1, v1), . . . , (un, vn)},

where ui, vi ∈ A∗. Recall that I has a solution iff there exist i1, . . . , ik ∈
{1, . . . , n} such that ui1 . . . uik = vi1 . . . vik . We construct a ydtop transducer
M such that JMKo is not injective iff I has a solution.

We define Σ a ranked alphabet as follows: Σ(0) = {e}, and Σ(1) =
{1, . . . , n} ∪ {$1, $2}. The output alphabet is ∆ = A. The transducer M
reads monadic trees of the form $(i1(i2(. . . (ik(e)) . . . ))), where $ ∈ {$1, $2}.
Its semantics is:

JMKo($(i1(i2(. . . (ik(e)) . . . )))) =

{
(i1 . . . ikuik . . . ui1 , o) if $ = $1

(i1 . . . ikvik . . . vi1 , o) if $ = $2

where o is the constant function that maps any output position to the input
node 1k+1, i.e., all output positions have the same origin, which is the input
position labeled e.

Before showing how to construct M , let us show that JMKo is not injective
iff I has a solution. Suppose that JMKo is not injective. Then here exist two
input trees t1 = $a(i1(. . . (ik(e)) . . . )) and t2 = $b(j1(. . . (j`(e)) . . . )) such that
t1 6= t2 and JMKo(t1) = JMKo(t2). By definition of JMKo, since JMKo(t1) =
JMKo(t2) and A ∩ N = ∅, we necessarily get that i1 . . . ik = j1 . . . j`. Since
t1 6= t2, we get that a 6= b. If a = 1 and b = 2, then uik . . . ui1 = vik . . . vi1 ,
and therefore I has a solution (and similarly if a = 2 and b = 1). Conversely,
if I as a solution i1, . . . , ik, then by taking t1 = $1(i1(. . . (ik(e)) . . . )) and
t2 = $2(i1(. . . (ik(e)) . . . )), we get JMKo(t1) = JMKo(t2) and t1 6= t2.

The transducer M is constructed as follows: its set of states is Q =
{q0, q1, q2}∪ {pj | 1 ≤ j ≤ n}∪Q′ with Q′ = {pw | ∃1 ≤ i ≤ n, w = ui ∨w =
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vi}, initial state q0, and set of rules consisting of the following.

q0($1(x)) → q1(x)
q0($2(x)) → q2(x)
q1(i(x)) → pi(x)q1(x)pui(x)
q1(e) → ε
q2(i(x)) → pi(x)q2(x)pvi(x)
q2(e) → ε
pj(i(x)) → pj(x) for 3 ≤ j ≤ n
pj(e) → j for 3 ≤ j ≤ n
pw(i(x)) → pw(x) for pw ∈ Q′
pw(e) → w for pw ∈ Q′

4.3. Equivalence of ydtopR transducers

Though it is not possible to obtain decidability results by regular sets (or
recognizable relations), we can prove, using more involved techniques, that
origin-equivalence of ydtopR transducers is decidable.

Theorem 22. Origin-equivalence is decidable for ydtopR transducers.

Proof. Let M1,M2 be two ydtopR transducers for which we want to test
whether JM1Ko = JM2Ko. The procedure is divided into several steps and
based on several intermediate lemmas that are proved later on.

Step 1. We first check whether M1 and M2 have the same domain D. If not
we output “not equivalent”. Otherwise, we build ydtop transducers without
look-ahead M ′

1, M ′
2, and a regular tree language D′ such that JM1Ko = JM2Ko

iff M ′
1 and M ′

2 are origin-equivalent on D′. To this end, we extend the
input alphabet with look-ahead labeling of both transducers, and compute a
language of interest D′ from D (Lemma 23).

Step 2. Then, as shown in Lemma 27, we reduce the origin-equivalence
problem of M ′

1 and M ′
2 on D′ to the (origin-free) equivalence problem of

monadic ydtop transducrs, where ‘monadic’ means that every input symbol
has rank 0 or 1. The latter problem is known to be decidable, see [31], based
on the hdt0l sequence equivalence problem [9]. The reduction of origin-
equivalence of M ′

1 and M ′
2 on D′, to equivalence of ydtop transducers on

monadic trees, explained in Lemma 27, is based on the following idea. To
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check origin-equivalence of M ′
1 and M ′

2 on D′, one only needs to consider their
behaviours on paths, i.e., the partial output strings produced on root-to-node
paths of the input tree (called string abstractions). This latter observation
is formalised in Lemma 26.

4.4. Lemmas used in the proof of Theorem 22

The proof of Theorem 22 is based on several key lemmas.

Lemma 23. Let M1,M2 be two ydtopR transducers. One can compute two
ydtop transducers M ′

1 and M ′
2 and a regular tree language E, such that M1

and M2 are origin-equivalent iff M ′
1 and M ′

2 are origin-equivalent on E.

Proof. Let Pi be the set of states of the look-ahead automaton Ai of Mi

(assumed to be non-deterministic top-down tree automata). Without loss of
generality we assume that every rule q(a(. . . ) : p)→ w of Mi is such that the
language of Ai from initial state p is non-empty (otherwise we remove such
a useless rule).

Then, the idea is to extend the alphabet of the transducers Mi with look-
ahead states, and delegate the look-ahead tests to the regular language E.
More precisely, if M1 has a rule q(a(. . . ) : p1) → w then M ′

1 has, for every
p2 ∈ P2, the rule q(〈a, p1, p2〉(. . . ))→ w. Similarly, if M2 has a rule q(a(. . . ) :
p2)→ w then M ′

2 has for every p1 ∈ P1 the rule q(〈a, p1, p2〉(. . . ))→ w. The
resulting transducers M ′

1 and M ′
2 are both deterministic. Suppose it is not the

case, then it implies that there are two rules of the form q(〈a, p1, p2〉(. . . ))→
w and q(〈a, p1, p2〉(. . . )) → w′ with w 6= w′, say in M ′

1. By definition of
M ′

1, we get that there are two rules of the form q(a(. . . ) : p1) → w and
q(a(. . . ) : p1) → w′ in M1. Since M1 is deterministic, it implies that the
language of A1 from initial state p1 is empty. This contradicts the fact that
M1 does not contain such rules by our initial assumption.

The language E accepts a tree t over the extended alphabet iff for all
nodes u of t with label 〈a, p1, p2〉, for all i ∈ {1, 2}, the projection of the
subtree t/u on the first component is accepted by Ai from initial state pi.
The language E can be defined by an alternating top-down tree automaton:
when reading a label 〈a, p1, p2〉, two universal transitions are triggered to
two automata A′1 and A′2 respectively, which simulate A1 and A2 on the first
projection. Alternating top-down tree automata are no more expressive than
regular tree languages [7], hence the result follows.
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String abstractions. Towards our goal (prove Step 2), we will need the notion
of string abstraction. Let A,B two alphabets (not necessarily finite). Let
w ∈ (A×B)∗ and U ⊆ B. The U-abstraction of w is the word obtained from
U by keeping only those letters (a, b) such that b ∈ U . Formally, it is the
image µU(w) of w by the morphism µU defined by µU((a, b)) = ε if b 6∈ U and
µU((a, b)) = (a, b) if b ∈ U . The next lemma shows that a word is uniquely
determined by its U -abstractions such that U has cardinality one or two.

Lemma 24. For all w1, w2 ∈ (A×B)∗, w1 = w2 iff for all U ⊆ B such that
|U | ∈ {1, 2}, µU(w1) = µU(w2).

Proof. The only if direction is trivial. Let us show the if direction. Suppose
that w1 6= w2. We consider two cases:

• if |w1| = |w2|. Let i be the first position such that w1[i] 6= w2[i].
Let (a1, b1) = w1[i] and (a2, b2) = w2[i]. By definition of i, there ex-
ist α, β1, β2 ∈ (A × {b1, b2})∗ such that µ{b1,b2}(w1) = α(a1, b1)β1 and
µ{b1,b2}(w2) = α(a2, b2)β2. Since (a1, b1) 6= (a2, b2), we get µ{b1,b2}(w1) 6=
µ{b1,b2}(w1). Note that we may have b1 = b2 therefore we also need to
consider singleton sets U in the lemma.

• if |w1| 6= |w2|. Observe that |wj| =
∑

b∈B |µ{b}(wj)| for j = 1, 2. Since
|w1| 6= |w2|, there exists b ∈ B such that |µ{b}(w1)| 6= |µ{b}(w2)|, and so
µ{b}(w1) 6= µ{b}(w2).

String abstractions modulo origins. Let s be a tree, w = a1 . . . an ∈ ∆∗ a
string with ai ∈ ∆ for all i, and o : V (w) → V (s) an origin mapping.
We denote by w ⊗ o ∈ (∆ × V (s))∗ the word w whose labels are extended
with origins, i.e. |w ⊗ o| = |w| and for all i ∈ {1, . . . , |w|}, (w ⊗ o)[i] =
(w[i], o(i)). Let U ⊆ V (s). The U -abstraction of w modulo o is defined as
ΠU(w, o) = µU(w ⊗ o). A direct consequence of Lemma 24 is that a word
with origins is uniquely determined by the set of its U -abstractions modulo
origin, with |U | ∈ {1, 2}. The following example shows that considering sets
U of cardinality 2 is necessary.

Example 25. Consider the string w = aaaa and the two origin mappings

o1 = {(1, u), (2, v), (3, x), (4, u)}
o2 = {(1, u), (2, x), (3, v), (4, u)}
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where u, v, x refer to three distinct nodes in some input tree. By putting
origin information in w, one gets

w ⊗ o1 = (a, u)(a, v)(a, x)(a, u)
w ⊗ o2 = (a, u)(a, x)(a, v)(a, u)

Then we have:
Π{u}(w, o1) = (a, u)(a, u)
Π{u}(w, o2) = (a, u)(a, u)
Π{v}(w, o1) = (a, v)
Π{v}(w, o2) = (a, v)
Π{x}(w, o1) = (a, x)
Π{x}(w, o2) = (a, x)
Π{v,x}(w, o1) = (a, v)(a, x)
Π{v,x}(w, o2) = (a, x)(a, v)

Note that the U-abstractions of w⊗o1 and w⊗o2 are equal for |U | = 1, while
w ⊗ o1 6= w ⊗ o2. They are distinguished by {v, x}, |{v, x}| = 2.

As a direct consequence of Lemma 24 we obtain the following lemma.

Lemma 26. Let τ1, τ2 be two functional tree-to-string origin translations.
Let s ∈ dom(τ1)∩ dom(τ2). Then τ1(s) = τ2(s) iff ΠU(τ1(s)) = ΠU(τ2(s)) for
all U ⊆ V (s) such that |U | ∈ {1, 2}.

Based on Lemma 26, the next lemma shows origin-equivalence can be
decided for ydtop transducers.

Lemma 27. Let M1,M2 be two ydtop transducers and let D be a regular
tree language. It is decidable whether or not JM1Ko(s) = JM2Ko(s) for all
s ∈ D.

Proof. We may assume that the input and output alphabets of M1 and M2

coincide. Thus Mi = (Qi,Σ,∆, ri, Ri). In order to prove this decidability
result, we apply Lemma 26 to τi = JMiKo for i = 1, 2. Without loss of
generality, we may assume that D ⊆ dom(τ1) ∩ dom(τ2).

We now explain how to decide the characterization of Lemma 26 for
singleton sets U . Note that for singleton sets, since the symbols of the U -
abstraction of a word always have the same second component, we can ignore
it. More precisely, if one denotes by π1 the first projection on pairs, we have
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ΠU(τ1(s)) = ΠU(τ2(s)) iff π1(ΠU(τ1(s))) = π1(ΠU(τ2(s))) for all s ∈ D. We
show how to check the latter equality.

To this end, we build deterministic top-down monadic tree-to-string trans-
ducers M̂i, i = 1, 2 that will run on paths of trees and will simulate Mi

on this path: only the symbols whose origin correspond to the leaf of the
considered path are produced. Their input ranked alphabet is defined as
π(Σ) = Σ(0) ∪

⋃
k≥1{σ

(1)
` | σ ∈ Σ(k), ` ∈ [k], k ≥ 1}. That is, all symbols from

Σ are in π(Σ) and their arity is set to 0, and all symbols from Σ which are
not constant are augmented with a direction ` and their arity is set to 1.

Given a tree s on Σ, and a node u ∈ V (s), we introduce the notion of
label path lpaths(u), as the monadic tree representing the labeled path in s
from the root to the leaf u. Formally:

• if s = σ(s1, . . . , sk), k ≥ 0 and u = ε, then lpaths(u) = σ(0),

• if s = σ(s1, . . . , sk), k ≥ 1, and u = `u′, ` ∈ [k], then lpaths(u) =

σ
(1)
` (lpaths`(u

′)).

First define the intermediate deterministic top-down monadic tree-to-
string transducer Mi = (Qi, π(Σ),∆, ri, Ri). If q(σ(x1, . . . , xk)) → w is a
rule of Mi with k ≥ 0, then Mi has the following rules for every ` ∈ [k]:

q(σ(0))→ w[q′(xj)← ε | q′ ∈ Qi, j ∈ [k]]

q(σ
(1)
` (x1))→ w[q′(x`)← q′(x1), q′(xj)← ε | q′ ∈ Qi, j ∈ [k] \ {`}] if k ≥ 1

Roughly speaking, this new transducer processes paths of the input tree
and produces for a given path only elements whose origin lies on this path.

Claim. For every s ∈ dom(τi) and every u ∈ V (s), JMiK(lpaths(u)) =
π1(Π{u}(τi(s))).

We define now LPath(D) = {lpaths(u) | s ∈ D, u ∈ V (s)}. As D is a
regular tree language on Σ, LPath(D) is a regular monadic tree language on
π(Σ). It is thus recognized by a deterministic top-down finite tree automa-
ton. The transducer M̂i is defined as the product of Mi with this finite tree
automaton.

Claim. Π{u}(τ1(s)) = Π{u}(τ2(s)) for all s ∈ D and u ∈ V (s) iff JM̂1K =

JM̂2K.

As the equivalence of deterministic top-down monadic tree-to-string trans-
ducers is decidable (see [31]), so is the characterization of Lemma 26 for
singleton sets U .
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For sets U = {u1, u2} of cardinality 2, the equalities Π{u1,u2}(τ1(s)) =
Π{u1,u2}(τ2(s)) can be checked similarly with two additional modifications:

(i) instead of running on paths, the transducers M̂i run on products of two
paths that can be embedded in a same tree of D, (ii) one cannot consider
the first projection π1 any more, and instead one colours the symbols whose
origin is the leaf of the first path by 1, and those whose origin is the leaf of the
second path by 2. More precisely, inputs of M̂i are monadic trees of the form
p1 ⊗ p2, where pj = lpaths(uj) for j ∈ [2] for some tree s ∈ dom(τi) and two
nodes u1 6= u2 ∈ V (s). The tree p1⊗ p2 is obtained by overlapping the paths
p1 and p2, with a product alphabet and a padding symbol in case they do
not have the same length, as defined in Section 3.4. The transducer M̂i then
simulates Mi on the two paths (with a construction similar to the singleton
case) and produce only the symbols produced by Mi at the respective leaves
of these two paths (coloured respectively by 1 or 2 to distinguish their origin).
Moreover, the order in which those symbols appear in the output string τi(s)
is kept. More precisely, the set of states of M̂i is Qi ∪ Qi × {1, 2}: as long
as the two paths coincide, we stay in Qi, and when they diverge, one goes
to Qi × {1} or to Qi × {2} depending on whether one evaluates the first the
second path. Let us describe some of the important rules of M̂i that are
created from a rule of the form q(σ(x1, . . . , xk))→ w in Mi:

1. As long as the two paths coincide, it works as in the singleton case. We
create the following rules in M̂i:

q((σ`, σ`)(x1))→ w[a ∈ ∆←ε, q′(xj 6=`)←ε, q′(x`)←q′(x`)]where ` ∈ [k]

2. The first time the two paths diverge, i.e. when a symbol of the form
(σ`, σ`′) with ` 6= `′ is met, M̂i sends copies to Qi × {1} and Qi × {2}
respectively, by rules of the form, for `, `′ ∈ [k]: q((σ`, σ`′)(x1))→

w[a ∈ ∆←ε, q′(x`′ 6=j 6=`)←ε, q′(x`)←(q′, 1)(x`), q
′(x`′)←(q′, 2)(x`′)]

3. In a copy Qi×{c}, for c ∈ {1, 2}, the c′-th path is ignored (it becomes
inactive), where c 6= c′ ∈ {1, 2}. This is for instance achieved by rules
of the form:

(q, 1)((σ`, β`′)(x1))→ w[a ∈ ∆←ε, q′(xj 6=`)←ε, q′(x`)←(q′, 1)(x`)] or

(q, 2)((β`′ , σ`)(x1))→ w[a ∈ ∆←ε, q′(xj 6=`)←ε, q′(x`)←(q′, 2)(x`)].
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4. when some active path reaches a leaf, the rules output symbols that
are produced in the rhs w, augmented with the colour 1 or 2 depending
on whether the first or second path is active. For instance, one may
add the following rules:

(q, 1)((σ(0), z)(x1))→ w[a ∈ ∆←(a, 1), q′(xj)←ε, j ∈ [k]] or

(q, 2)((z, σ(0))(x1))→ w[a ∈ ∆←(a, 2), q′(xj)←ε, j ∈ [k]]

where z can be any symbol of the form β`′ or β ∈ Σ.

We have presented the essential rules of this construction. As for the
singleton case, we also need to restrict the domain of M̂i to path products
that can be embedded into trees s of D. This is again a regular property.

Finally, checking whether or not Π{u1,u2}(τ1(s)) = Π{u1,u2}(τ2(s)) for all

s ∈ D and all u1 6= u2 ∈ V (s) reduces to checking equivalence of M̂1 and M̂2,
which is decidable.

5. Subclass Definability Problems

5.1. From ydtopR Transducers to mso Transducers

Deterministic MSO tree-to-string transducers (dmsots transducers for
short) can be defined as a particular case of dmsot transducers (their origin-
equivalence is thus decidable by Theorem 10). While dmsots transducers
are equivalent to ydtopR transducers of linear size increase [14, 13], this is
not true in the presence of origin; there is a ydtopR transducer for which no
origin-equivalent dmsots transducer exists (e.g. Example 19 of string rever-
sal). However, every dmsots transducer effectively has an origin-equivalent
ydtopR transducer (obtained by following the respective constructions for
origin-less transducers). It raises the question whether one can decide for
a given ydtopR transducer whether its origin translation is definable by a
dmsots transducer. In Theorem 30 we give an affirmative answer to this
question.

The proof of the theorem is based on the notion of “bounded origin”.
An origin translation τ is of bounded origin if there exists a number k such
that for every (s, (w, o)) ∈ τ and u ∈ V (s): |{v ∈ V (w) | o(v) = u}| ≤ k,
i.e., every input node can be the origin of only a bounded number of output
positions. By their definition, origin translations of mso transducers have
bounded origin. We will prove in Lemma 29 that the ydtopR transducers of
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bounded origin are effectively MSO definable. First, let us prove in Lemma 28
that the bounded origin property is decidable for ydtopR transducers.

The proof of Lemma 28 is similar to the proof of Lemma 4.10 in [14],
where it is proved that the finite copying restriction is decidable for macro
tree transducers (this property means that every input node is translated
only a bounded number of times).

Lemma 28. Let M by a ydtopR transducer. It is decidable whether or not
M has bounded origin; if it does, then a bound can be computed.

Proof. Let M = (Q,Σ,∆, q0, R) and let A = (P,Σ, δ) be its look-ahead
automaton. Let Σ̂ = {σ̂(k) | σ ∈ Σ(k), k ≥ 0}. We construct the ydtopR

transducer M̂ that mimics the state behavior of M , but does not produce any
output on input trees in TΣ. The new transducer M̂ produces outputs only on
hatted symbols in Σ̂. Let M̂ = (Q,Σ∪ Σ̂,∆, q0, R

′) and Â = (P,Σ∪ Σ̂, δ∪ δ̂).
For every rule q(σ(x1 : p1, . . . , xk : pk))→ w in R we let the rules

q(σ̂(x1 : p1, . . . , xk : pk)) → w[q′(xi)← ε | q′ ∈ Q, i ∈ [k]]
q(σ(x1 : p1, . . . , xk : pk)) → w[d← ε | d ∈ ∆]

be in R′. For every look-ahead transition δ(σ, p1, . . . , pk) = p we define
δ̂(σ̂, p1, . . . , pk) = p. We now consider input trees over Σ ∪ Σ̂ with exactly
one node labeled by a hatted symbol. Let (t, (ξ, o)) ∈ JMKo and let u ∈ V (t)
with t[u] = σ. Let t̂ be the tree obtained from t by changing the label at
node u to σ̂. Then

|JM̂K(t̂)| = |{v ∈ V (ξ) | o(v) = u}|.

Thus, JMK has bounded origin if and only if JM̂K(D̂) is finite, where

D̂ = {t[u← σ̂(t1, . . . , tk)] | t ∈ D, ∃u ∈ V (t), t/u = σ(t1, . . . , tk)}

and D is the domain of M . Since the domains of ydtopR transducers are
effectively regular, so is D̂. Finiteness of JM̂K(D̂) is decidable by Theorem 6.2
of [10]. In case of finiteness, the theorem provides an algorithm that computes
the elements of JM̂K(D̂). Thus, to compute an origin bound, we determine
the maximal size of the elements in JM̂K(D̂).

In the next lemma it is shown that origin translations of (total) ydtopR

transducers with bounded origin are effectively MSO definable. This is done
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by verifying that various constructions of the literature (that are proved for
ordinary semantics) also hold true with respect to origin semantics. Note
that the proof of Lemma 29 makes use of macro tree transducers, which are
formally defined and explained only in Section 5.2.

Lemma 29. Let M be a total ydtopR transducer that has bounded origin.
There effectively exists a dmsots transducer N that is origin-equivalent to
M .

Proof. Let M = (Q,Σ,∆, q0, R) with look-ahead automaton A = (P,Σ, δ),
and let k be an origin bound of M . In this proof, we assume that right-hand
sides of rules of M are non-empty words. Observe that this assumption can
be made without loss of generality as inverse images of regular languages
by ydtopR transducers are regular, and thus input trees that are translated
into ε can be filtered out using regular look-aheads.

We first transform M into the total mac transducer M ′; see Section 5.2
for the formal definition of mac transducers. LetM ′ = (Q′,Σ,∆′, q0, R

′) with
same look-ahead automaton A and with Q′ = {q(1) | q ∈ Q}∪{(q′)(2) | q ∈ Q}
and ∆′ = {⊥(0)} ∪ {a(1) | a ∈ ∆}. For every rule q(σ(x1 : p1, . . . , xk : pk))→
w of M , the transducer M ′ has rules

q(σ(x1 : p1, . . . , xk : pk)) → mon(w)
q′(σ(x1 : p2, . . . , xk : pk), y1) → mon(wy1).

For a non-empty word w, a ∈ ∆, q ∈ Q, and i ∈ N, the tree mon(w) is defined
as: mon(a) = a(⊥), mon(aw) = a(mon(w)), mon(y1) = y1, mon(q(xi)) =
q(xi), and mon(q(xi)w) = q′(xi,mon(w)). Note that the parameter y1 appears
exactly once in the right-hand side of every rule of a state of rank two of M ′.
A mac transducer with this property is called “linear and nondeleting (in
the parameters)”. Moreover, since every right-hand side of the rules of M
is a non-empty word, M ′ does not have a right-hand side of the form y1. A
mac transducer with this property is called “nonerasing”.

The construction from M to M ′ preserves origin in the following sense.
If JMKo(s) equals (w, o) with V (w) = [n], then JM ′Ko(s) equals (mon(w), o′)
where o′(1i−1) = o(i) for every i ∈ [n], and o′(1n) = o(n). Hence k + 1
is an origin bound for M ′. Note that if M ′ has an origin-equivalent dmso
transducer N , then so does M , because it is straightforward to remove ⊥
from the output of the transducer.

For a macR transducer that is linear, nondeleting, nonerasing, and “fi-
nite copying in the input” (fci), it is shown in Lemma 6.10 of [13] that an
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equivalent “single use restricted” (sur) macR transducer can be constructed.
It can be verified that the corresponding construction produces a transducer
that is origin-equivalent. In order to apply this construction we need to show
that M ′ is fci.

Intuitively, fci means that there is a bound on the number of times that
the transducer translates any given input subtree. Technically this is achieved
by marking an arbitrary input node and having the transducer “stop” at this
node and output as a terminal nodes the occurrences of the particular states
that translate this input node. These numbers of state occurrences need to
be globally bounded. Formally, fci means that there is a number β such that
for every input tree s and node u of s: the number of occurrences of states
in the tree JM̂ ′K(s[u ← δ(s/u)]) is at most β, where M̂ ′ is the extension of

M ′ to input trees over Σ ∪ {p(0) | p ∈ P}. The transducer M̂ ′ extends the
rules of M ′ by q(p)→ p for every state q of M ′ and look-ahead state p of M ′,
and extends the transition function δ of the look-ahead automaton of M ′ by
δ(p) = p for all p ∈ P . Assume now by contradiction that M ′ is not fci. For
every p ∈ P , let sp ∈ TΣ be a fixed (but arbitrary) tree such that δ(sp) = p.
Let the integer m be max{|V (sp)| | p ∈ P}. Note that in particular we can
choose sp to be a tree of minimal size such that δ(sp) = p. We claim that M ′

is fci with bound β = (k+1) ·m. Suppose not. Then there exist s and u such

that the number of occurrences of states in ζ = JM̂ ′K(s[u← δ(s/u)]) is larger

than (k + 1) ·m. Let p = δ(s/u). Since M ′ is total, t = JM̂ ′K(s[u ← sp]) is
defined. Since M ′ is non-erasing, every occurrence of a state in ζ contributes
at least one output symbol to t. Thus, t contains > (k + 1) ·m nodes with
their origin in the subtree sp (i.e., such that u is a prefix of their origin).
Since m > |V (sp)|, there is a node uv in s[u ← sp] such that t contains
strictly more than k+ 1 nodes with origin uv. This contradicts the bounded
origin property of M ′.

In [13] it is shown how to construct for a total sur macR transducer an
equivalent sur attribute tree transducer with look-ahead (attR transducer
for short). The construction consists of three steps. First in Lemma 5.9
of [13], the sur macR transducer M is decomposed into a particular relabel-
ing ρ, followed by a more restricted mac transducer M ′, namely one that
is “strongly single use restricted” (ssur for short). The rules of M ′ are es-
sentially the same as those of M , only that the input symbols have changed
(intuitively, the relabeled input symbols contain more information, such as
the look-ahead states, and information related to the sur property). Thus,

39



M ′ generates output at precisely the same input nodes as M , and hence the
composition of ρ followed by JM ′K is origin-equivalent to JMK. In the second
step (Lemma 5.12 of [13]) the ssur mac M ′ transducer is transformed into
an equivalent sur attR transducer A. This is done in such a way that parts
of a rule of M ′ are represented by several rules of A. Intuitively, the trees tj
of a state call q′(xi, t1, . . . , tm) in a rule are realized by inherited attributes
of A, which are evaluated at the i-th child of the current node. As a conse-
quence, the origin (by A) of output nodes generated in a tj is different than
the origin with respect to M ′: they are now at node u.j instead of node
u. It is straightforward to alter the construction in such a way that origin
is preserved. This is done by adding new synthesized attributes at node u
which obtain the right-hand sides of the rules of those inherited attributes.
The values of these new synthesized attributes are then simply copied over
to new extra inherited attributes (by rules of the parent node of u) and are
passed down to the inherited attributes of the j-th child node of u (which
are the ones of construction of Lemma 5.12 of [13]). In the third step, the
relabeling ρ is represented as a “attributed relabeling” (Lemma 4.1 of [13]),
which gives the desired attR transducer A′ that is origin-equivalent to M .

Next, we transform A′ into an origin equivalent MSO tree transducer.
This construction is given in Section 5 of [3]. Technically speaking, the trans-
ducer is first changed into “operator normal form”, by adding additionally
special output symbols (which represent identity). The new attR transducer
A′′ followed by the pruning of the inserted new symbols is origin equivalent
to A′. Now an MSO tree transducer N is constructed; its copy names are
the attributes of A′′, and it produces output in the same way as A′, i.e., it
is clear that N is origin-equivalent to A′′. Finally, by simply removing the
inserted new symbols from before in the rules of N , an MSO tree transducer
is obtained that is origin-equivalent to M .

Theorem 30. For a given ydtopR transducer M , it is decidable whether or
not there exists an origin-equivalent dmsots transducer. If so, then such a
dmsots transducer can be constructed.

Proof. We first check if M has bounded origin, using Lemma 28. If not,
then we return “no”, because by their definition, all translations of dmsots
transducers have bounded origin. Otherwise let m be the origin bound com-
puted according to Lemma 28. Let M = (Q,Σ,∆, q0, R) with look-ahead
automaton A = (P,Σ, δ). We now construct a total version M ′ of M with
the following properties. For every t ∈ D = dom(M), JM ′Ko(t) = JMKo(t).
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For every t ∈ TΣ \ D, JM ′Ko(t) = (#, o) where o maps the unique output
position to the root node of t, and # is a new symbol not in ∆. Thus, M ′

has bounded origin with bound m. The domain D is effectively given by
a non-deterministic tree automaton A′ = (P ′,Σ, δ′, Pf ). We construct the
look-ahead automaton of M ′ as the product of A and A′ (where we forget
about the final states). Let q(σ(x1 : p1, . . . , xk : pk)) → w be in R and
let p′1, . . . , p

′
k ∈ P ′. If q 6= q0 or δ′(σ, p′1, . . . , p

′
k) 6∈ Pf then we let the rule

q(σ(x1 : (p1, p
′
1), . . . , xk : (pk, p

′
k)))→ w be in R′. Otherwise, we let the rule

q0(σ(x1 : (p1, p
′
1), . . . , xk : (pk, p

′
k)))→ # be in R′.

We apply Lemma 29 and construct a dmsots transducer N ′ that is origin
equivalent to M ′. Finally, we construct an mso formula φ which holds for a
tree t ∈ TΣ if and only if t ∈ D. The dmsots transducer N is obtained from
N ′ by changing its domain formula to φ.

5.2. From Macro Tree Transducers to ydtopR Transducers

At last we consider a type of transducer that is expressively more powerful
than the models considered so far: the macro tree transducer (mac trans-
ducer for short) [18]. For simplicity, we only consider total deterministic mac
transducers.

Definition of Macro Tree Transducers

A mac transducer extends a top-down tree transducer by nesting of re-
cursive state calls. Thus, a state q is now of rank m + 1 and takes, besides
the input tree (as its first argument), m arguments of type output tree. In
the rules, these arguments are denoted by parameters y1, . . . , ym. Thus, a
rule of a mac transducer is of the form

q(σ(x1, . . . , xk), y1, . . . , ym)→ ζ,

where ζ is a tree over (nested) states, output symbols, and the parameters
y1, . . . , ym which may occur at leaves. As an example, consider a mac trans-
ducer with these rules:

q0(h(x1)) → q(x1, a)
q(h(x1), y1) → q(x1, q(x1, y1))
q(a, y1) → b(y1, y1)

For a monadic input tree h(. . . h(a) . . . ) with n occurrences of h, it produces
a full binary tree of height 2n. Thus, mac transducers can have double-
exponential size increase (and exponential height increase). The models dis-
cussed so far have at most exponential size increase (and at most linear
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height increase). Formally, a (total deterministic) macro tree transducer
is a tuple M = (Q,Σ,∆, q0, R) where Σ, ∆ are ranked alphabets of in-
put and output symbols, Q is a ranked alphabet of states with Q(0) = ∅,
q0 ∈ Q(1) is the initial state, and R is the set of rules. For every q ∈
Q(m+1), m ≥ 0, σ ∈ Σ(k), and k ≥ 0, the set R contains exactly one
rule of the form q(σ(x1, . . . , xk), y1, . . . , ym) → ζ, where ζ is a tree over
Q ∪∆ ∪ {x1, . . . , xk, y1, . . . , ym} such that xi occurs in ζ at a node u if and
only if u is a leaf and is the first child of a Q-labeled node (and symbols yj
are of rank zero). We denote ζ by rhs(q, σ). Every state q ∈ Q(m+1) of M
induces a total function JqK : TΣ×Tm∆ → T∆. Let s = σ(s1, . . . , sk) ∈ TΣ and
t1, . . . , tm ∈ T∆. Then JqK(s, t1, . . . , tm) = [ζ] where ζ = rhs(q, σ) and [ζ] is
defined recursively as follows. If ζ = yj then [ζ] = tj. If ζ = d(ζ1, . . . , ζ`) with
d ∈ ∆(`), then [ζ] = d([ζ1], . . . , [ζ`]). If ζ = q′(xi, ζ1, . . . , ζ`) with q′ ∈ Q(`+1)

and i ∈ [k], then [ζ] = Jq′K(si, [ζ1], . . . , [ζ`]).
A mac transducer can be equipped with regular look-ahead in a similar

way as a top-down tree transducer. A macR transducer consists of a mac
transducer M = (Q,Σ,∆, q0, R) and look-ahead automaton A = (P,Σ, δ).
For every q ∈ Q, σ ∈ Σ(k), and p1, . . . , pk ∈ P , R contains a rule of the form
q(σ(x1 : p1, . . . , xk : pk), y1, . . . , ym)→ ζ. Such a rule is applicable to an input
tree σ(s1, . . . , sk) if δ(si) = pi for i ∈ [k]. We denote ζ by rhs(q, σ, p1, . . . , pk).

Origin Semantics of Macro Tree Transducers

We define the origin semantics of a macR transducer M for a particular
input tree s, using the macR transducer M s and the decorated version dec(s)
of s (see Definition 4.15 of [14]). The tree dec(s) is obtained from s by
relabeling every node u by 〈s[u], u〉. For a state q and input symbol 〈σ, u〉 (of
rank k), the macR transducer M s applies the (q, σ, δ(s/u.1), . . . , δ(s/u.k))-
rule of M , but with every output symbol d replaced by 〈d, u〉. The origin
of an output node then simply is the second component of the label of that
node. Intuitively, when a macR transducer applies a rule at input node u
and generates output inside of parameter positions, then all these outputs
have origin u. Note that such nodes may be duplicated later and appear
unboundedly often (at arbitrary positions of the output tree).

Example 31. We consider an origin translation of a mac transducer that
cannot be defined by the previous models. On the other hand, the correspond-
ing origin-less translation can be defined by the previous models: it is merely
the identity on trees over Σ = {f (2), a(0)}. Let M be the mac transducer with
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the following rules:

q0(a) → a
q0(f(x1, x2)) → f(q(x1, a), q(x2, a))
q(f(x1, x2), y1) → f(q(x1, y1), q(x2, y1))
q(a, y1) → y1.

For every tree s ∈ TΣ, JMKo(s) = (s, o) where o(u) = u if u is an internal
node, and o(u) = ε if u is a leaf. Thus, all leaves of an output tree have the
input root node as origin. Clearly, the previous models can not realize this
origin translation: for mso transducers this follows because JMKo is not of
bounded origin. For top-down tree transducer it follows because the origin of
a leaf node u is not a descendant of the origin of the parent of u (see the
“order-preserving” property, discussed in this Section, after Lemma 32).

Definability Problem

Deciding whether the translation of a mac transducer can be defined by
a dtopR transducer is a difficult open problem: a mac transducer can use its
parameters in complex ways, but still be definable by a dtopR transducer.
In contrast, in the presence of origin we are able to prove decidability. Before
we dwell on this proof, let us extend a useful normal form, from the origin-
less semantics of macR transducers to the semantics with origin. Let M be
a macR transducer. Then M is nondeleting, if for every q ∈ Q(m+1) and
j ∈ [m], yj occurs in the right-hand side of every q-rule. A q-rule is a rule
with q in its left-hand side. Further, M is nonerasing, if the right-hand side
ζ of every q-rule with q ∈ Q(2) is not equal to y1, i.e., ζ 6= y1.

It is shown in Lemma 6.6 of [13] how to construct for a given macR

transducer M , a macR transducer M ′ such that JM ′K = JMK and M ′ is non-
deleting. The idea is to determine via look-ahead the parameters of a state
that are deleted; in the corresponding rules, the corresponding arguments of
the state are removed, and the state is changed to one of smaller rank (and
appropriate rules are added). It should be clear that this construction does
not alter the generation of output symbols. Thus, the origin semantics of M ′

and M coincide: JM ′Ko = JMKo.
In Lemma 7.11 of [13] it is shown how to construct for a given nondeleting

macR transducer M , a macR transducer M ′ such that JM ′K = JMK and M ′

is nondeleting and nonerasing. The idea is to determine via look-ahead the
states q for which JqK(si) = y1, and to accordingly replace in right-hand sides
all occurrences of such states by their first parameter argument. It should
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be clear that this construction does not influence the generation of output
symbols. Thus, JM ′Ko = JMKo.

Lemma 32. Let M be a macR transducer. An origin-equivalent macR trans-
ducer M ′ can be constructed so that M ′ is nondeleting and nonerasing. Let q
be a state of M ′ of rank m+ 1, s ∈ TΣ, and ξ = JM ′K(s). Then (i) yj occurs
in ξ for every j ∈ [m], and (ii) ξ[ε] ∈ ∆.

Note that Point (ii) in Lemma 32 implies that the origin of ξ[ε] is neces-
sarily a node of the input tree s.

Let us now turn to the proof that in the presence of origin, dtopR-
definability of a given mac transducer is decidable. The proof is based on the
two notions “order-preserving” and “path-wise bounded origin”. Let τ be a
functional tree translation with origin. The translation τ is order-preserving,
if for all nodes u, v in an output tree of τ such that v is a descendant of u, it
holds that the origin of v is a descendant of the origin of u. It is well-known
that the origin translations of top-down tree transducers are order-preserving,
see Lemma 19 of [28]. The origin translation τ is path-wise bounded origin
if there exists a number β such that for every (s, (t, o)) ∈ τ , every u ∈ V (s),
and every leaf x in V (t), |{v ∈ V (t, x) | o(v) = u}| ≤ β, where V (t, x) is
the set of ancestors of x in t. The property says that there are at most β
output nodes with the same origin on each path of the output tree. It should
be clear that origin translations of top-down tree transducers are path-wise
bounded origin: a bound is given by the maximal height of the right-hand
side of any rule of the transducer.

Lemma 33. Let M be a macR transducer. It is decidable (i) whether or not
JMKo is order-preserving and (ii) whether or not JMKo is path-wise bounded
origin. If JMKo is path-wise bounded origin, then a bound can be computed.

Proof. Let M = (Q,Σ,∆, q0, R) with look-ahead automaton A = (P,Σ, δ).
(i) The order-preserving property is decided by considering input trees with
two marked nodes, marked 1 and 2, such that node 2 is not a descendant of
node 1. Let Σ′ = Σ ∪ Σ1 ∪ Σ2 and ∆′ = ∆ ∪∆1 ∪∆2 where, for i ∈ {1, 2},
Σi = {σ(k)

i | σ ∈ Σ(k)} and ∆i = {d(k)
i | d ∈ ∆(k)}. We construct a tree

automaton A1 that recognizes the trees in TΣ′ that contain exactly one node
u with label in Σ1 and exactly one node v with label in Σ2, so that v is
not a descendant of u. We now change the macR transducer M so that
for an i-marked input node it produces i-marked output nodes: let M ′ =
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(Q,Σ′,∆′, q0, R∪R′) with look-ahead automatonA′ = (P,Σ′, δ∪δ′). For every
transition δ(σ, p1, . . . , pk) = p and i ∈ {1, 2} we let δ′(σi, p1, . . . , pk) = p. For
every rule q(σ(x1 : p1, . . . , xk : pk))→ ζ in R and i ∈ {1, 2}, we let the rules

q(σi(x1 : p1, . . . , xk : pk)) → ζi

be in R′, where ζi is obtained from ζ by changing the label of every d ∈ ∆ into
di. The transducer M is order-preserving if and only if there does not exist
an input tree s ∈ L(A1) such that JMK(s) contains a 2-marked descendant
of a 1-marked node. We construct a tree automaton A2 that recognizes the
trees in T∆′ that contain a 2-marked descendant of a 1-marked node. It now
holds that M is order-preserving if and only if JM ′K−1(L(A2)) ∩ L(A1) = ∅.
The latter is decidable because inverse macR translations effectively preserve
regularity (Theorem 7.4(1) of [18]).

For (ii), let A3 be a tree automaton for all trees in TΣ∪Σ1 with exactly
one node labeled by a symbol in Σ1 and all other nodes labeled by symbols
in Σ. Let s ∈ L(A3) = L, s[u] ∈ Σ1, and t = JM ′K(s). The ∆1-nodes in t are
exactly those nodes that have origin u. Thus, we need to check if there are
only boundedly many such nodes on any path in t. For this, we construct a
ytopR transducer T , that on input t nondeterministically chooses a root-to-
leaf path in t, and outputs all ∆1-nodes on this path. Let Γ be the alphabet
of all symbols in ∆. We define T = ({q},∆∪∆1,Γ, q, U). For every d ∈ ∆(0)

we let the rules q(d) → ε and q(d1) → d be in U . For all d ∈ ∆(k), k ≥ 1,
and i ∈ [k] let the rules

q(d(x1, . . . , xk)) → q(xi)
q(d1(x1, . . . , xk)) → d(q(xi))

be in U . It now holds that O = JT K(JM ′K(L)) is finite if and only if M is path-
wise bounded origin. Finiteness of O is decidable by Theorem 6.2 of [10],
and in case of finiteness the elements can be computed by that theorem, thus
giving us a path-wise origin bound.

We know that the origin translation of a dtopR transducer is order-
preserving and path-wise bounded origin. In the next lemma we show that
if the origin translation JMKo of a macR transducer M is order-preserving
and path-wise bounded origin, then JMKo is effectively definable by a dtopR

transducer. By Lemma 32 we may assume that M is nondeleting and non-
erasing. Let M = (Q,Σ,∆, q0, R) and let (P,Σ, δ) be its look-ahead automa-
ton. As it turns out, the fact that JMKo is order-preserving and path-wise

45



bounded origin severely restricts the way in which M can use its parameters.
A rule q(σ(x1 : p1, . . . , xk : pk), y1, . . . , ym) → ζ of M is useful if there exist

s ∈ TΣ and u ∈ V (s) such that q occurs in JM̂K(s[u← δ(s/u)]) and s[u] = σ;

here M̂ is the extension of M , as defined in the proof of Lemma 29. Consider
now the right-hand side ζ of a useful rule r of M . Let q(xi, ζ1, . . . , ζm) be a
subtree of ζ and let v be a node of a ζi, i ∈ [m]. We claim that

(P1) ζi[v] is not in ∆

(P2) ζi[v] is not in {x1, . . . , xk} − {xi}

To prove P1, assume ζi[v] ∈ ∆. Since r is useful, q occurs in JM̂K(s[u ←
δ(s/u)]) for some s ∈ TΣ and u ∈ V (s) with s[u] = σ. Thus, JMK(s) contains
the subtree JqK(s/ui)[yj ← JζjK | j ∈ [m]]. By Lemma 32, the origin of
the root node of this subtree is of the form u.i.u′. Since M is nondeleting,
JMK(s) contains, as a descendant of this root node, a node corresponding to
the node ζi[v]. This latter node has origin u, which is not a descendant of
u.i.u′. This contradicts the order-preserving property of M . Similarly for P2
we assume that ti[v] = xj with j 6= i. This implies the existence of a node in
JMK(s) with origin u.i.u′ having a descendant with origin u.j.u′′. Again the
order-preserving property is contradicted.

Properties P1 and P2 say that in a parameter tree ζj of a state call
q(xi, ζ1, . . . , ζm) appearing in the right-hand side of a useful rule, only other
state calls to xi may appear and parameters yj. Thus, ζj is of the form

q1(xi, q2(xi, q3(xi, . . . ), . . . ), q
′(xi, . . . ), . . . ),

where parameters may appear at the leaves. Consider now the application
of such a rule where an input tree si is substituted for xi. Let σ be the root
symbol of si, and let us apply the σ-rule of each state appearing. For the
same reasons as before, any subtree of state calls in the resulting tree must
contain state calls that are all on the same input node. What is the maximal
depth of any such subtree of state calls? Clearly, this equals the path-wise
origin bound β of JMKo.

The origin-equivalent dtopR transducer T that we construct keeps in its
states trees of states of M , of depth at most β. Whenever such a state tree
becomes deeper than β, then we know that a non-useful rule has been applied;
therefore we may define the corresponding rule of the dtopR transducer
as a dummy-rule. Similarly, whenever an output symbol or different input
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variable xj appears under a state call on xi (with i 6= j), then we know that
a non-useful rule has been applied and define a dummy rule for T .

Example 34. For n ≥ 1 we define a mac transducer Mn such that Mn is
nondeleting, nonerasing, and JMKo is order-preserving and path-wise bounded
origin. The transducer takes as input monadic trees over Σ = {a(1), e(0)} and
produces ternary trees over ∆ = {f (3), e(0)}. The rules of Mn are as follows.

q0(a(x1)) → q1(x1, q1(x1, q(x1)))
q0(e) → e
qi(a(x1), y1) → qi+1(x1, qi+1(x1, y1)) for i ∈ [n− 1]
qi(e, y1) → f(y1, e, y1) for i ∈ [n]
qn(a(x1), y1) → f(y1, q0(x1), y1)
qn(e, y1) → f(y1, e, y1)
q(a(x1)) → q(x1)
q(e) → e

As an example, let n = 10 and consider the input tree s = a10(a(s′)) with
s′ ∈ TΣ. We have

JMK(s) = Jq1K(a9(a(s′)), Jq1K(a9(a(s′)), JqK(a9(a(s′)))))
= Jq2K(a8(a(s′)), Jq2K(a8(a(s′)), Jq2K(a8(a(s′)), Jq2K(a8(a(s′)), JqK(a9(a(s′)))))))
= Jq10K(a(s′), Jq10K(a(s′), . . . , Jq10K(a(s′), JqK(a(s′))))) = ξ

where the tree ξ has 2n = 1024 occurrences of Jq10K. We now apply the fifth
rule to each of these occurrences. We obtain a tree of the form

f(f(. . . ), JqK(s′), f(. . . )).

If we ignore the second subtree of each f -node, then this is a full (complete)
binary tree of height 2n. If s′ = e, then the second subtree of each f -node is
equal to e, otherwise, these subtrees equal JMK(s′). Thus, each sequence of
n-many input a-nodes is translated to such a full tree of height 2n, where the
second subtrees of each internal node contain the translation of the following
sequence of input a-nodes.

Lemma 35. Let M be a nondeleting nonerasing macR transducer. If JMK
is order-preserving and path-wise bounded origin then an origin-equivalent
dtopR transducer can be constructed.
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Proof. Assume that τ = JMKo is path-wise bounded origin with bound β.
Let M = (Q,Σ,∆, q0, R) and let (P,Σ, δ) be its look-ahead automaton. We
construct the dtopR transducer M ′ = (Q′,Σ,∆, 〈q0〉, R′) with look-ahead
automaton (P,Σ, δ). Let U be the ranked alphabet {q(m−1) | q ∈ Q(m),m ≥
1}. The set of states Q′ of M ′ is defined as

Q′ = {〈ζ〉(1) | ζ ∈ TU , height(ζ) ≤ β}.

Let 〈ζ〉 ∈ Q′ and σ ∈ Σ(k). We let the rule 〈ζ〉(σ(x1 : p1, . . . , xk : pk)) → t
be in R′, where the right-hand side t is defined as follows. Let ζ ′ be the
tree obtained from ζ by changing every subtree q(ζ1, . . . , ζm) into the tree
rhsM(q, σ, p1, . . . , pk)[yj ← ζj | j ∈ {1, . . . ,m}].

Let v be a top-most node in ζ ′ so that ζ ′[v] ∈ Q, i.e., ζ ′/v = q′(xi, ζ
′
1, . . . , ζ

′
n).

We check the properties P1, P2, and the path-wise bounded origin property:
if ζ ′ contains a ∆-node, or, if ζ ′ contains an occurrence of xj with j 6= i,
or if height(ζ ′) > β, then let t = e where e is an arbitrary symbol in ∆(0).
Otherwise, replace v in ζ ′ by the tree 〈ζ ′′〉(xi) where ζ ′′ is obtained from ζ ′

by removing the first subtree of every Q-labeled node (i.e., by removing all
subtrees consisting of the single node xi). If we are able to proceed until all
top-most Q-labeled nodes in ζ ′ are replaced by state calls of M ′, then the
resulting tree ζ ′ defines the right-hand side t of the rule of M ′.

It should be clear that every useful rule of M gives rise to a well-defined
(non-dummy) rule of M ′ and that JM ′Ko(s) = JMKo(s) for every s ∈ TΣ.

Theorem 36. For a given macR transducer M , it is decidable whether or
not there exists an origin-equivalent dtopR transducer. If so, then such a
dtopR transducer can be constructed.

Proof. Using Lemma 33 we check if JMK is order-preserving. If it is not, then
we return “no”, because by Lemma 18 of [28], every translation realized by
a top-down tree transducer is order-preserving. Otherwise, we check with
Lemma 33 whether JMK is path-wise bounded origin. If it is not, then we
return “no”, because it is easily seen that every translation realized by a
top-down tree transducer T is path-wise bounded origin with constant β,
where β is the maximal size of the right-hand side of any rule of T . We
make M nondeleting and nonerasing, according to Lemma 32. According to
Lemma 35 we construct the dtopR transducer T such that JT Ko = JMKo.

Example 37. We apply the construction of Lemma 35 to the mac transducer
Mn of Example 34. Note that Mn is path-wise bounded origin with bound
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k = 2n. The dtopR transducer M ′
n has states 〈ζ〉 of rank one, where ζ is a

monadic tree of height ≤ 2n with internal nodes labeled by states q1, . . . , qn
and with a leaf labeled q or labeled q0. The initial state of M ′

n is 〈q0〉. Let us
consider the rules of M ′

n, for the case that n = 10:

〈q0〉(a(x1)) → 〈q1(q1(q))〉(x1)
〈q0〉(e) → e
〈q1(q1(q))〉(a(x1)) → 〈q4

2(q)〉(x1)
〈q1(q1(q))〉(e) → f(f(e, e, e), e, f(e, e, e)) = t1
〈q4

2(q)〉(a(x1)) → 〈q8
3(q)〉(x1)

〈q4
2(q)〉(e) → f(f(t1, e, t1), e, f(t1, e, t1)) = t2

...
〈q1024

10 (q)〉(a(x1)) → f(t9, 〈q0〉(x1), t9)
〈q1024

10 (q)〉(e) → f(t9, e, t9)
〈q〉(a(x1)) → 〈q〉(x1)
〈q〉(a(x1)) → e

It should be clear that JM ′
nKo = JMnKo. The mac transducers Mn form

a family of transducers of size O(n), with a size of O(22n) for the dtopR

transducer constructed in the proof of Lemma 35.

6. Conclusions and Future Work

The origin semantics of a tree transducer contains the information which
input node is responsible for generating any given output node. Thus, for
the same tree translation (without origin) there are, in general, infinitely
many tree translations with origin, corresponding to the distinct transducers
realizing the translation.

The status of decidability for many important problems changes drasti-
cally, when moving from conventional to the origin semantics. For instance,
equivalence is undecidable for nondeterministic top-down and MSO tree
transducers. With origin, however, both of these problems become decidable.
The reason for this is that origin semantics adds a rigid synchronicity between
output and input nodes. Using this synchronicity we proved decidability of
equivalence for deterministic top-down tree-to-string transducers under ori-
gin semantics. In the conventional semantics, decidability of equivalence for
this class has been a long standing open problem. For nondeterministic top-
down tree-to-string transducers, equivalence remains undecidable, even in
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the presence of origin, and, even for monadic input trees. Such transducers
can simulate string transducers by producing output only at the unique in-
put leaf, thus loosing all origin synchronicity. In the future we would like to
generalize these results to more powerful models of tree transducers. For in-
stance, for both, attributed [8] and deterministic macro tree transducers [12],
it is an open question whether equivalence is decidable. Can equivalence be
shown decidable for these transducers, in the presence of origin? Note that in
the meantime (during the writing of this paper), equivalence for deterministic
macro tree-to-string transducers over one-letter output alphabets has been
shown decidable [36]; using that result they prove decidability of equivalence
for deterministic top-down tree-to-string transducers thus solving the long
standing open problem.

Besides equivalence, we also considered injectivity and query determi-
nacy. Our main result is that with origin semantics, injectivity is decid-
able for deterministic MSO transducers and for deterministic top-down tree
transducers. Both problems are undecidable in the conventional non-origin
setting. For deterministic top-down tree-to-string transducers the problem
remains undecidable even in the presence of origin. The injectivity results
can be generalized to query determinacy: for views with origin and queries
without origin (in both above decidable classes), query determinacy is decid-
able. This poses several interesting questions for future work. Is it possible
to reduce the amount of retained origin information, without losing query
determinacy? Possible reductions of origins are to represent them by Dewey
paths (without input node labels), or to represent them by pre-order numbers
of input nodes.

Finally, we also considered two subclass definability questions: is it de-
cidable (1) for a given deterministic top-down tree-to-string transducer with
regular look-ahead whether there exists an origin-equivalent MSO tree-to-
string transducer, and (2) for a given total deterministic macro tree trans-
ducer, whether there exists an origin-equivalent deterministic top-down tree
transducer with regular look-ahead. Both problems are decidable, and trans-
ducers in the subclass can be constructed if they exist. These problems are
not known to be decidable in the origin-less setting. There are many inter-
esting definability questions to be considered in the future. For instance, how
about the non-deterministic version of (1) and (2) above? Is it decidable for
a (deterministic) top-down tree transducer, under origin semantics, whether
it can be realized by a (deterministic) bottom-up tree transducer, and, vice
versa? Can it be decided for deterministic top-down tree transducer with
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regular look-ahead, under origin semantics, whether it can be realized by
a deterministic top-down tree transducer (without look-ahead)? The latter
question is still open in the origin-less setting, but has recently been shown
decidable for a restricted case [16].
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