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A tree transducer with origin translates an input tree into a pair of output tree and origin information. The origin information maps each node in the output tree to the unique node in the input tree that created it. In this way, the implementation of the transducer becomes part of its semantics. We show that the landscape of decidable properties changes drastically when origin information is added. For instance, equivalence of nondeterministic topdown and MSO transducers with origin becomes decidable. Both problems are undecidable without origin. The equivalence of deterministic top-down tree-to-string transducers is decidable with origin, while without origin it has (until very recently) been a long standing open problem. With origin, we can decide if a deterministic macro tree transducer can be realized by a deterministic top-down tree transducer; without origin this is an open problem.

Introduction

Tree transducers were invented in the early 1970's as a formal model for compilers and linguistics by Thatcher [START_REF] Thatcher | Generalized sequential machine maps[END_REF] and Rounds [START_REF] Rounds | Mappings and grammars on trees[END_REF]. They are being applied in many fields of computer science, such as syntax-directed translation [START_REF] Fülöp | Syntax-Directed Semantics -Formal Models Based on Tree Transducers[END_REF], databases [START_REF] Milo | Typechecking for XML transformers[END_REF][START_REF] Hakuta | XQuery streaming by forest transducers[END_REF], linguistics [START_REF] Maletti | The power of extended top-down tree transducers[END_REF][START_REF] Braune | Shallow local multi-bottom-up tree transducers in statistical machine translation[END_REF], programming languages [START_REF] Voigtländer | Composition of functions with accumulating parameters[END_REF][START_REF] Matsuda | Polynomial-time inverse computation for accumulative functions with multiple data traversals[END_REF], and security analysis [START_REF] Küsters | Transducer-based analysis of cryptographic protocols[END_REF]. The most essential feature of tree transducers is their good balance between expressive power and decidability.

top-down tree-to-tree top-down tree-to-string mso tree-to-string det nd det nd det nd no + -[36] -+ origin [START_REF] Ésik | Decidability results concerning tree transducers I[END_REF] [24]

[24] [START_REF] Engelfriet | The equivalence problem for deterministic MSO tree transducers is decidable[END_REF] with Bojańczyk [START_REF] Bojanczyk | Transducers with origin information[END_REF] introduces (string) transducers with origin. For "regular" string-to-string transducers with origin he presents a machine independent characterization which admits Angluin-style learning and the decidability of natural subclasses. These results indicate that classes of translations with origin are mathematically even better behaved than their origin-less counter parts.
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We initiate a rigorous study of tree transducers with origin by investigating the decidability of equivalence, injectivity, and query determinacy on the following models:

• top-down tree-to-tree transducers [START_REF] Thatcher | Generalized sequential machine maps[END_REF][START_REF] Rounds | Mappings and grammars on trees[END_REF],

• top-down tree-to-string transducers [START_REF] Engelfriet | Tree transducers, L systems, and two-way machines[END_REF], and

• mso definable tree-to-string transducers, see, e.g., [START_REF] Engelfriet | The equivalence problem for deterministic MSO tree transducers is decidable[END_REF].

Unlike the string transducers of Bojańczyk [START_REF] Bojanczyk | Transducers with origin information[END_REF], we will see that equivalent models of tree-to-string transducers do not remain equivalent in the presence of origin. This motivates the study of subclass definability problems (definability of a translation from a class in a subclass) when considering the origin semantics.

Table 1 summarizes our results on equivalence; the words non-/deterministic are abbreviated by nd/det and decidable/undecidable by +/-. The first change from -to + is the equivalence of nondeterministic top-down tree transducers. In the non-origin case this problem is already undecidable for restricted string-to-string transducers, as shown by Griffith [START_REF] Griffiths | The unsolvability of the equivalence problem for lambdafree nondeterministic generalized machines[END_REF]. In the presence of origin it becomes decidable for tree transducers, because origin implies that any connected region of output nodes with the same origin is generated by one single rule. Hence, the problem reduces to letter-to-letter transducers as studied by Andre and Bossut [START_REF] Andre | On the equivalence problem for letter-toletter top-down tree transducers[END_REF]. What about nondeterministic top-down tree-to-string transducers (column four in Table 1)? Here output patterns cannot be treated as letters. By deferring output generation to a leaf they can simulate non-origin translations with undecidable equivalence (i.e., finite-state string transducers) [START_REF] Griffiths | The unsolvability of the equivalence problem for lambdafree nondeterministic generalized machines[END_REF]. Finally, let us discuss column three.

Here the origin information induces a structure on the output strings: recursive calls of origin-equivalent transducers must occur in similar "blocks", so that the same children of the current input node are visited in the same order (but possibly with differing numbers of recursive calls). This block structure allows to reason over single input paths, and to reduce the problem to deterministic tree-to-string transducers with monadic input. The latter can be reduced [START_REF] Maneth | Equivalence problems for tree transducers (survey)[END_REF] to the famous hdt0l sequence equivalence problem.

Injectivity for deterministic transducers is undecidable for all origin-free models of Table 1. With origin, we prove undecidability in the tree-to-string case and decidability in the mso and top-down tree cases. The latter is again due to the rigid structure implied by origins. We can track if two different inputs, over the same input nodes, produce the same output tree. We use the convenient framework of recognizable relations to show that the set of trees for which a transducer with origin produces the same output can be recognized by a tree automaton.

We present two results on subclass definability. Recall from [START_REF] Engelfriet | Macro tree translations of linear size increase are MSO definable[END_REF] that a deterministic top-down tree-to-string translation is mso definable if and only if it is of linear size increase. As mentioned above, a top-down tree-to-string transducer can defer its output generation to the leaves of the input tree. For instance, it can realize the identity on monadic input trees, by producing a state call for each input node; each such state call ignores the rest of the tree until it reaches the unique input leaf. Thus, even for a translation of linear size increase, the number of output nodes with same origin can be unbounded. In contrast, for an mso transducer the number of nodes with same origin is always bounded ("bounded origin property"). Thus, origin translations of deterministic top-down tree-to-string transducers form a strict superclass of those of mso transducers (the same holds for the string-to-string "regular" translations studied by Bojańczyk [START_REF] Bojanczyk | Transducers with origin information[END_REF]). We prove that for a given deterministic top-down tree-to-string transducer it is decidable whether an origin-equivalent mso transducer exists; this is done by deciding the bounded origin property.

The second subclass definability result concerns a more powerful model of tree transducer: the macro tree transducer [START_REF] Engelfriet | Macro tree transducers[END_REF]. This model can be seen as a generalization of top-down tree transducers by adding context-parameters (of type output tree) to the states. We show that, under origin semantics, it is decidable for a given total deterministic macro tree transducer, whether it can be realized by a top-down tree transducer. This is an open problem in the non-origin setting. The proof relies on two properties: [START_REF] Andre | On the equivalence problem for letter-toletter top-down tree transducers[END_REF] the origin translation must be order-preserving, i.e., the origins of output descendant nodes must be descendants, and (2) on each path of the output tree, the number of nodes with same origin must be bounded.

Motivation

Clearly, the more information we include in a translation, the more properties become decidable. Consider invertability: on the one extreme, if all reads and writes are recorded (under acid), then any computation becomes invertible. The question then arises, how much information needs to be included in order to be invertible. This problem has recently deserved much attention in the programming language community, see, e.g., [START_REF] Voigtländer | Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins[END_REF]. Our work here was inspired by the very similar view/query determinacy problem. This problem asks for a given view and query, whether the query can be answered on the output of the view. It was shown decidable by Benedikt, Engelfriet, and Maneth [START_REF] Benedikt | Determinacy and rewriting of top-down and MSO tree transformations[END_REF] for views that are linear extended tree transducers, and queries that are deterministic mso or top-down transducers. For views that include copying, the problem quickly becomes undecidable [START_REF] Benedikt | Determinacy and rewriting of top-down and MSO tree transformations[END_REF]. Our results show that such views can be supported, if origin is included. Consider for instance a view that regroups a list of publications into sublists of books, articles, etc. A tree transducer realizing this view needs copying (i.e., needs to process the original list multiple times). Without origin, we do not know a procedure that decides determinacy for such a view. With origin, We prove that determinacy is decidable for views with origin and (origin-less) queries, where the view and query are either given by deterministic top-down transducers or by deterministic mso transducers. As expected: the world becomes safer with origin, but more restrictive (e.g., the query "is book X before article Y in the original list?" becomes determined when origin is added to the above view).

The tracking of origin information was studied in the programming language community, see the e.g. Deursen, Klint, and Tip [START_REF] Van Deursen | Origin tracking[END_REF]. As a technical tool it was used by Engelfriet and Maneth [START_REF] Engelfriet | Macro tree translations of linear size increase are MSO definable[END_REF] to characterize the MSO definable macro tree translations, and, by Lemay, Maneth, and Niehren [START_REF] Lemay | A learning algorithm for top-down XML transformations[END_REF] to give a Myhill-Nerode theorem for deterministic top-down tree transducers. From a linguistic point of view, origin mappings on their own are subject of interest and are called "dependencies" or "links". Maletti [START_REF] Maletti | Tree transformations and dependencies[END_REF] shows that dependencies (i.e., origins) give "surprising insights" into the structure of tree translations: many separation results concerning expressive power can be obtained on the level of dependencies. Further such linking theorems are given by Fülöp and Maletti [START_REF] Fülöp | Linking theorems for tree transducers[END_REF] and are used to prove that certain tree relations cannot be computed by multi bottom-up tree transducers.

A preliminary version of this paper was presented at ICALP [START_REF] Filiot | Decision problems of tree transducers with origin[END_REF].

Preliminaries

For a nonnegative integer k we denote by [k] the set {1, . . . , k}.

Strings, ranked trees, and contexts

Let A be an alphabet. We denote by A * the set of strings over A, and by ε the empty string. Let w ∈ A * . The length of a w is denoted by |w|. The set of positions of w is the set

V (w) = [|w|]. For j ∈ [|w|], w[j] denotes the j-th symbol of w.
A ranked alphabet Σ is a finite set of symbols σ each with an associated natural number k called its rank. We write σ (k) to denote that σ has rank k, and denote by Σ (k) the set of all symbols in Σ of rank k.

The set T Σ of trees over Σ is the smallest set T so that if k ≥ 0, t 1 , . . . , t k ∈ T , and σ ∈ Σ (k) , then σ(t 1 , . . . , t k ) ∈ T . For the tree σ() we simply write σ. The set V (t) of nodes of tree t ∈ T Σ is the subset of N * defined as k) . Thus ε denotes the root node, and ui denotes the i-th child of a node u. For clarity we often write u.i instead of ui. The height of t, denoted height(t), is defined as one plus the maximum length of any node in V (t). Two nodes u, v are incomparable if there does not exists w such that either u = vw or v = uw.

{ε} ∪ {iu | i ∈ [k], u ∈ V (t i )} if t = σ(t 1 , . . . , t k ) and σ ∈ Σ (
For a tree t and u ∈ V (t) we denote by t[u] the label of node u in t, and by t/u the subtree of t rooted at u. For a tree t , we denote by t[u ← t ] the tree obtained from t by replacing the subtree rooted at node u by the tree t . We extend this notation to parallel replacement: let t 1 , . . . , t n be trees and u 1 , . . . , u n be nodes from t that are pairwise incomparable. Then

t[u 1 ← t 1 , . . . , u n ← t n ] stands for (. . . ((t[u 1 ← t 1 ])[u 2 ← t 2 ]) . . . [u n ← t n ]). Given ∆ ⊆ Σ, V ∆ (t) denotes the set of nodes u ∈ V (t) such that t[u] ∈ ∆.
A Σ-context is a tree C over Σ ∪ {⊥ (0) } where ⊥ is a special symbol not in Σ. Let u 1 , . . . , u k be all ⊥-nodes of C in preorder. Given trees t 1 , . . . , t k , we denote by

C[t 1 , . . . , t k ] the tree C[u i ← t i | i ∈ [k]] obtained from C by replacing u i by t i for i ∈ [k].

Translations

Let Σ, ∆ be two ranked alphabets. A tree translation (from

T Σ to T ∆ ) is a relation R ⊆ T Σ × T ∆ . Let A be an alphabet. A tree-to-string translation is a relation R ⊆ T Σ × A * . The domain of a translation R, denoted dom(R), is defined as the projection of R on its first component. A translation R is functional if R is a function.

Origin translations

Let s 1 , s 2 be two structures (strings or trees). An origin mapping of s 2 in s 1 is a mapping o : V (s 2 ) → V (s 1 ). An origin translation is a set of pairs (s 1 , (s 2 , o)) such that o is an origin mapping of s 2 in s 1 . Given v ∈ V (s 2 ) and u ∈ V (s 1 ), if o(v) = u then we say that "v has origin u" or that "the origin of v is u".

Tree Translations with Origin

Top-down Tree Transducers

A top-down tree transducer (top transducer for short) is a rule-based finite-state device that translates ranked trees to ranked trees. Definition 1. A top-down tree transducer is a tuple (Q, Σ, ∆, q 0 , R) where Q is a finite set of states, Σ is a ranked alphabet of input symbols, ∆ is a ranked alphabet of output symbols, q 0 ∈ Q is the initial state, and R is a set of rules of the form q(σ(x 1 , . . . , x k )) → ζ, where q ∈ Q, σ ∈ Σ (k) , and ζ is a tree over ∆ ∪ {q (x i ) | q ∈ Q, i ∈ [k]}, where each symbol q (x i ) has rank 0.

Intuitively, applying the rule q(σ(x 1 , . . . , x k )) → ζ to an input tree tree s = σ(s 1 , . . . , s k ) produces the output tree t obtained by replacing in ζ all symbols q (x i ) by trees over ∆, themselves obtained by evaluating s i in state q . The origin of all ∆-nodes in ζ is the root node of s. Since rules are nondeterministic, there might be several different ways of replacing the subtrees q (x i ) and therefore several output trees t can be associated with a single input tree s.

Formally, every state q ∈ Q realizes an origin translation q o defined recursively as follows. Let s = σ(s 1 , . . . , s k ) be a tree and let q(σ(x 1 , . .

. , x k )) → ζ be a rule of M . Let V = V (ζ) \ V ∆ (ζ) be the set of nodes in ζ with a label of the form q (x i ). For each v ∈ V , let ζ[v] = q v (x iv ) where q v ∈ Q and i v ∈ [k]. For all v ∈ V and (s iv , (t v , o v )) ∈ q v o , it holds that (s, (t, o)) ∈ q o where • t = ζ[v ← t v | v ∈ V ], • o(v ) = ε for v ∈ V ∆ (ζ) and o(vv ) = i v o v (v ) for v ∈ V and v ∈ V (t v ).
The tree translation realized by q is defined as q = {(s, t) | ∃o : (s, (t, o)) ∈ q o }. The origin (tree) translation realized by M is M o = q 0 o , and the (tree) translation realized by M is M = q 0 . For a top transducer M , we often write dom(M ) for dom( M ).

Example 2. Consider the top transducer M 1 = (Q, Σ, ∆, q 0 , R) with Q = {q}, Σ = {h (1) , a (0) }, ∆ = {f (2) , a (0) }, and R consisting of the following rules.

q(h(x 1 )) → f (q(x 1 ), q(x 1 )) q(a) → a.

The transducer M 1 translates a monadic input tree of height n into a balanced binary tree of height n. The origin of a node u in the output tree is the unique node of the input tree at the same depth as u. Hence, the origin of u is the input node 1 |u| . This translation is illustrated in Figure 1 for input tree h(h(h(a))).

Example 3. Consider the top transducer M 2 = (Q, Σ, ∆, q 0 , R) with Q = {q 0 , q}, Σ = {h (1) , a (0) }, ∆ = {f (2) , h (1) , a (0) }, and R consisting of the following rules. q 0 (h(x 1 )) → f (q 0 (x 1 ), q(x 1 ))

q 0 (a) → a q(h(x 1 )) → h(q(x 1 )) q(a) → a.
This transducer translates a monadic input tree of height n into a left-comb of monadic subtrees of decreasing height. Thus, h(h(h(a))) is translated into f (f (f (a, a), h(a)), h(h(a))). Again, the origin of node u is the node 1 |u| . This translation is illustrated in Figure 2.

Let M be a top-down tree transducer. Then M is deterministic if for any two of its rules q(σ(x 1 , . . . , x k )) → ζ and q(σ(x 1 , . . . , x i that occurs in the left-hand side of a rule also appears in the right-hand side of that rule. It is non-erasing if no rule has a right-hand side of the form q (x i ), and thus, each rule contains at least one symbol from ∆. Finally, it is trimmed if for any transducer M obtained from M by removing one of its rules, it holds that

x k )) → ζ from M , h h h a → f f f f f f f a a a a
M o = M o .
Example 4. Consider the top transducer M 3 = (Q, Σ, ∆, q 0 , R) with Σ = ∆ = {f (2) , g (3) , a (0) , b (0) }, Q = {q 0 , q a , q b }, and R consisting of the following rules.

q 0 (f (x 1 , x 2 )) → f (q a (x 1 ), q 0 (x 2 )) q 0 (f (x 1 , x 2 )) → g(q 0 (x 2 ), q b (x 1 ), q 0 (x 2 )) q 0 (a) → a q 0 (b) → b q a (a) → a q b (b) → b
The domain dom(M ) of M are trees of the form where c 1 . . . , c n ∈ {a, b}. Note that (a, (t, o)) (resp. (b, (t, o))) does not belong to q b o (resp. q a o ) for any t and o. Figure 3 shows the unique output tree for the input tree s = f (a, f (b, a)). Note that M is non-deterministic, but at the same time M is a function. Indeed, it can be shown that M cannot be realized by a dtop transducer. This is because at an f -input node u the transducer has to output either an f or a g, depending on the first subtree of u. Since the transducer has no way of checking the first subtree of an f -input node, it has to guess non-deterministically and then verify the guess using the states q a and q b . Note that in the presence of look-ahead, such a situation cannot occur: every functional non-deterministic top-down tree translation can (effectively) be realized by a dtop transducer with look-ahead, as proven by Engelfriet [START_REF] Engelfriet | On tree transducers for partial functions[END_REF].

f (c 1 , f (c 2 , . . . f (c n-1 , c n ) . . . )) h h h a → f f f a h h a h a a

Top-Down Transducers with Look-Ahead

Note that top transducers are forced to produce at least one output symbol when they translate the leaf of an input tree. To inspect parts of the input tree without producing output, a top transducer can be equipped with regular look-ahead, leading to top-down tree transducers with regular look-ahead (top R transducers for short). This is achieved by changing the rules so that each left-hand side is of the form q(σ(x 1 , . . . , x k ) : L) where L is a regular tree language. Such a rule can be applied only if the input tree σ(s 1 , . . . , s k ) is in L. A top R transducer M is deterministic if for any two rules with left-hand sides q(σ(x 1 , . . . , x k ) : L 1 ) and q(σ(x 1 , . . . , x k ) : L 2 ), we have L 1 ∩ L 2 = ∅. Note that any top transducer M can be transformed into a top R transducer M R by adding universal look-ahead languages. The classes of deterministic top-down tree transducers with regular look-ahead is denoted by dtop R . As for dtop, transducers from dtop R realize only functional translations and functional origin translations.

Example 5. Recall the non-deterministic top-down tree transducer M 3 from Example 4. Its input and output alphabets are Σ = ∆ = {f (2) , g (3) , a (0) , b (0) }. Let L a be the regular tree language consisting of all trees f (a, t) with t ∈ T Σ , and let L b = {f (b, t) | t ∈ T Σ }. Then M 3 is realized by a deterministic top-down tree transducer with look-ahead M 4 . The transducer M 4 has the unique state q 0 and the following rules.

q 0 (f (x 1 , x 2 ) : L a ) → f (a, q 0 (x 2 )) q 0 (f (x 1 , x 2 ) : L b ) → g(q 0 (x 2 ), b, q 0 (x 2 )) q 0 (a) → a q 0 (b) → b
A (top-down) tree automaton is a triple (P, Σ, δ) where P is a finite set of states, Σ is a ranked alphabet, and δ is the transition function. The rules in δ are of the form (p, a) → (p 1 , . . . , p k ) where a ∈ Σ (k) and p, p 1 , . . . , p k ∈ P . The tree language L(p) induced by state p is defined recursively as

L(p) = (p,a)→(p 1 ,...,p k ) {a(t 1 , . . . , t k ) | t 1 ∈ L(p 1 ), . . . , t k ∈ L(p k )}.
To define look-ahead of a top-down transducer M with input alphabet Σ, one can assume a tree automaton (P, Σ, δ) and replace in the left-hand side of transitions q(σ(x 1 , . . . , x k ) : L) of M the language L by some state p such that L(p) = L. Equivalently, one can replace the left-hand side by q(σ(x 1 : p 1 , . . . , x k : p k )) where p 1 , . . . , p k ∈ P so that σ(L(p 1 ), . . . , L(p k )) = L. We will later make use of these different ways of defining top-down tree transducers with look-ahead.

Example 6. As an example of the notation of look-ahead just defined, we present an equivalent dtop R for the transducer M 4 of Example 5. Let Σ = {f (2) , g (3) , a (0) , b (0) }. We define the look-ahead automaton (P, Σ, δ) with P = {p a , p b , p} and δ consisting of these rules:

(a) → p a (b) → p b (a) → p (b) → p (z, f ) → p for every z ∈ P.
The rules of the transducer are now written as follows.

q 0 (f (x 1 : p a , x 2 : p)) → f (a, q 0 (x 2 )) q 0 (f (x 1 : p b , x 2 : p)) → g(q 0 (x 2 ), b, q 0 (x 2 )) q 0 (a) → a q 0 (b) → b

mso Transducers

In this section we define deterministic mso tree transducers as a restriction of deterministic mso graph transducers, a logic-based transducer model defined using monadic second-order logic (mso).

Let Σ, Γ be two disjoint alphabets, and let S Σ,Γ = {(σ(x)) σ∈Σ , (γ(x, y)) γ∈Γ } be a signature with unary and binary predicate symbols. A labeled graph g is a structure over S Σ,Γ , i.e. a domain V (g) of vertices, together with an interpretation of the predicates σ and γ (denoted σ g and γ g ) such that every vertex is labeled by a unique symbol from Σ, and every edge is labeled by a unique symbol from Γ. We denote by Gr(Σ, Γ) the set of labeled graphs over Σ and Γ.

If Σ is a ranked alphabet of maximal rank k, any ranked tree t over Σ can be identified with a labeled graph over Σ and Γ = [k], such that any vertex labeled σ ∈ Σ (r) has exactly r outgoing edges labeled respectively 1 to r. The predicate i(x, y), 1 ≤ i ≤ r, relates any node x with its i-th child y.

By mso[Σ, Γ] we denote all monadic second-order formulas ϕ over the signature S Σ,Γ , that is

ϕ ::= true | σ(x) | γ(x, y) | ϕ ∨ ϕ | ¬ϕ | ∃xϕ | ∃Xϕ 1
for σ ∈ Σ and γ ∈ Γ. The semantics is as usual, in particular, x, y, z range over nodes and X, Y, Z over sets of nodes. We write g |= φ whenever a graph g satisfies a formula φ ∈mso[Σ, Γ]. A set of graphs G is mso[Σ, Γ]-definable if there exists an mso[Σ, Γ]-formula φ such that G = {g | g |= φ}. When Σ is a ranked alphabet of maximal rank k, we simply write mso[Σ] (or just mso when it is clear from the context) to denote mso[Σ, [k]].

To define the output graph g of an input graph g, an MSO transducer uses mso[Σ, ∆] formulas with one or two free variables, interpreted over a fixed number of copies of g, to define the predicates of g . Formally, Definition 7. Let (Σ 1 , Γ 1 ) and (Σ 2 , Γ 2 ) be two pairs of disjoint alphabets. A deterministic mso graph transducer from Gr(Σ 1 , Γ 1 ) to Gr(Σ 2 , Γ 2 ) is a tuple

M = (C, φ dom , (φ c σ (x)) σ∈Σ 2 ,c∈C , (φ c,d γ (x, y)) γ∈Γ 2 ,c,d∈C )
such that C is a finite set of copy indices, φ dom is an mso[Σ 1 , Γ 1 ]-sentence, φ c σ are mso[Σ 1 , Γ 1 ]-formulas with one free variable x, and φ c,d γ are mso[Σ 1 , Γ 1 ]formulas with two free variables x and y.

For a graph g ∈ Gr(Σ 1 , Γ 1 ), the output graph g by M is defined if g |= φ dom , and has domain V (g ) ⊆ V (g) × C of pairs (u, c) (denoted u c ) such that there exists a unique σ ∈ Σ 2 such that g |= φ c σ (u) (the node (u, c) is then labeled σ in g ), and for all

u c , v d ∈ V (g ), the edge (u c , v d ) exists if there is a unique γ ∈ Γ 2 such that g |= φ c,d γ (u, v) (this edge is then labeled γ in g ).
The origin mapping o of the translation of g into g is the mapping defined by o(u c ) = u, for all u c ∈ V (g ). Note that, for any input node u, there are at most |C| nodes in the output with u as origin. We denote by M the translation defined by M , and by M o the translation with origin defined by M . We simply write dom(M ) for dom( M ).

Let Σ, ∆ be two ranked alphabets. We have seen that any ranked tree can be identified with a labeled graph. A deterministic mso tree transducer M (dmsot transducer for short) from T Σ to T ∆ is a deterministic graph transducer such that M ⊆ T Σ × T ∆ . Note that it is easily enforcible that every input graph of an mso transducer is a tree, by adding the MSO-definable property of being a tree to the domain formula. For an mso transducer M such that dom(M ) ⊆ T Σ , it is decidable whether every output graph of M is a tree: inverse mso translations preserve MSO definability, thus, we can construct an mso sentence of input trees so that the corresponding output graphs by M are not trees, and then test emptiness of this regular tree language.

Example 8. Consider the translation τ (definable by any transducer from dtop R ) over the ranked (input and output) alphabet Σ = {f (2) , a (1) , b (1) , e (0) }, which maps any tree f (s 1 , s 2 ), where s 1 is a monadic tree over Σ \ {f }, to f (s 1 , rev(s 1 )), for rev(s 1 ) the reverse of s 1 (s 1 put upside down). E.g., f (a(a(b(e))), e) is mapped to f (a(a(b(e))), b(a(a(e)))), as illustrated on Figure 4. The translation τ is definable by the following dmsot transducer the formulas of which are precisely given below:

M τ = ([2], φ dom , (φ c σ (x)) c∈[2]
,σ∈Σ , (φ c,d i (x, y)) i,c,d∈ [START_REF] Benedikt | Determinacy and rewriting of top-down and MSO tree transformations[END_REF] )

Since we copy s 1 twice, one copy of s 1 being reversed, one needs a copy set [START_REF] Benedikt | Determinacy and rewriting of top-down and MSO tree transformations[END_REF]. The formula φ dom is an mso[Σ]-sentence expressing that there is only one node labeled f and it is the root:

φ dom = ∃x (root(x) ∧ f (x) ∧ ∀y = x (¬f (y)) root(x) = ∀y i∈[2] ¬i(y, x)
In the first copy, we keep only input nodes in 1 * (the root node and s 1 ), and in the second one, only input nodes in 1 + (the subtree s 1 ). Both propertiesbeing in 1 * and in 1 + for a node x -are definable in mso[Σ] by two formulas φ 1 * (x) and φ 1 + (x) respectively, which express the fact that every set containing the root (respectively the second-child of the root) which is closed by the first-child relation also contains x:

φ 1 * (x) = ∀X (∃y (root(y) ∧ y ∈ X) ∧ ∀y∈X∀z (1(y, z) → z∈X)) → x∈X φ 1 + (x) = φ 1 * (x) ∧ ¬root(x)
where root 1 (y) = ∃x (root(x) ∧ 2(x, y)) denotes the first-child y of the root.

In the two copies, nothing is changed with respect to labels:

∀σ ∈ Σ : φ 1 σ (x) = φ 1 * (x) ∧ σ(x) φ 2 σ (x) = φ 1 + (x) ∧ σ(x)
For the successor predicates, in the first copy, nothing is changed:

φ 1,1 1 (x, y) = 1(x, y) φ 1,1 2 (x, y) = 2(x, y)
Note that by definition of the nodes that are kept in the first copy, there is no pairs of nodes x, y such that 2(x, y), and therefore we could have equivalently set φ 1,1 2 (x, y) to false. In the second copy, that correspond to rev(s 1 ), first-child predicates are reversed for all inner nodes, and the root of s 1 in the second copy is connected to the leaf of s 1 (this is required because rev(s 1 ) reverses all symbols of s 1 except the leaf, which bear the only constant symbols and hence cannot be used as the label of a root):

φ 2,2 1 (x, y) = (¬leaf(x) ∧ 1(y, x)) ∨ leaf(y) ∧ root 1 (x)
where leaf(y) = ∀z i∈ [START_REF] Benedikt | Determinacy and rewriting of top-down and MSO tree transformations[END_REF] ¬i(y, z) holds true if y is a leaf. Then, it remains to connect the first copy to the second copy, i.e. the root node labelled f to the root of rev(s 1 ), using

φ 1,2 2 (x, y) = root(x) ∧ ∃z (1(y, z) ∧ leaf(z))
Other formulas are put to false:

φ 1,1 2 (x, y) = φ 2,1 2 (x, y) = φ 1,2 1 (x, y) = φ 2,1 1 (x, y) = false
Let us describe the origin mappings defined by M τ . It is illustrated on 

4. Let (t, o) = M τ o (s) for some input tree s ∈ T Σ . Necessarily, s is of the form f (s 1 , s 2 ) and t = f (s 1 , rev(s 1 )). Let us describe the origin mapping o: o : V (t) → V (s) u →    1 j if u = 1 j for some j≥0 1 j+1
if u = 2.1 j for some j≥0 and u is a leaf 1 height(s 1 )-j if u = 2.1 j for some j≥0 and u is not a leaf Finally in this example, if we restrict Σ to Σ = {f (2) , a (1) , e (0) }, then the restriction τ = τ | T Σ becomes dtop R -definable (reversing a monadic tree over a one-letter alphabet is like doing the identity). Let M be the previous dmsot transducer M whose domain is restricted to T Σ , i.e. M = τ . Even though there is only one unary symbol a (1) , the transducer M still reverses the origins, something that is not doable by a dtop R transducer. Therefore we have that M can be realized by a dtop R transducer, but we have that M o cannot be realized by any dtop R transducer.

MSO transducers can be extended with non-determinism [START_REF] Blumensath | On the monadic second-order transduction hierarchy[END_REF]. The ability of defining non-deterministic translations originates only from (free) secondorder variables and their possible valuations. Hence, all formulas φ dom , φ c σ and φ c,c γ can use a fixed additional finite set of free second-order variables X. Once an assignment ν of each variable of X by a set of nodes of an input graph g is fixed, the previous formulas can be interpreted as before with respect to this assignment, thus defining an output pair (g ν , o ν ) (if the domain formula holds true). The set of outputs associated with g is the set of all such pairs (g ν , o ν ), for all assignments ν of X. We denote by msot the class of (non-deterministic) MSO transducers from trees to trees.

Example 9. One can modify Example 8 to define the translation which maps any tree of the form f (s 1 , s 2 ) to f (s 1 , rev(s 1 )) where s 1 is a subword of s 1 (i.e. s 1 has been obtained by erasing some symbols of s 1 , except the last one). It suffices to use a free variable X intended to define all the erased positions of s 1 . Only nodes in X are kept, by letting φ

1 σ (x) = ¬leaf(x) → (x ∈ X ∧ φ 1 * (x) ∧ σ(x)), and φ 2 σ (x) = ¬leaf(x) → (x ∈ X ∧ φ 1 + (x) ∧ σ(x)).

Origin-Equivalence Problem

In this section, we prove that origin-equivalence is decidable for mso tree transducers and for dtop R transducers. Two transducers

M 1 , M 2 are origin- equivalent if M 1 o = M 2 o .
The origin-equivalence problem for a class C of transducers asks whether any two given transducers M 1 , M 2 ∈ C are origin-equivalent or not.

Theorem 10. Origin-equivalence is decidable for the classes top R and msot.

The proof of Theorem 10 (for msot) relies on the following set:

E(τ 1 , τ 2 )={t ∈ dom(τ 1 ) ∩ dom(τ 2 ) | τ 1 (t) = τ 2 (t)} where, for i ∈ {1, 2}, τ i (t) = {t | (t, t ) ∈ τ i }.
We will show that this set is regular if τ 1 , τ 2 are origin translations defined by (1) msot transducers, and (2) top R transducers. Note that without origins, even simple top R and msot translations yield a non-regular set: e.g., the translations R 1 : f (s 1 , s 2 ) → s 1 and R 2 : f (s 1 , s 2 ) → s 2 are both msot definable but their (origin-free) equality set {f (s, s) | s ∈ T Σ }, is not regular. We first show [START_REF] Andre | On the equivalence problem for letter-toletter top-down tree transducers[END_REF], which holds more generally for graph-to-tree mso transducers.

Proposition 11. Let Σ, Γ be two disjoint alphabets, and ∆ be a ranked alphabet. Let T 1 , T 2 be non-deterministic mso graph-to-tree transducers from Gr(Σ, Γ) to

T ∆ . Then E( T 1 o , T 2 o ) is (effectively) mso[Σ 1 , Γ 1 ]-definable.
Proof. We first assume that T 1 and T 2 are deterministic, the non-deterministic case is treated afterwards. We let be the maximal rank of ∆-symbols. Let

T 1 = (C 1 , φ dom , (φ c δ (x)) δ∈∆,c∈C 1 , (φ c,c i (x, y)) i∈[ ],c,c ∈C 1 ) T 2 = (C 2 , ψ dom , (ψ c δ (x)) δ∈∆,c∈C 2 , (ψ c,c i (x, y)) i∈[ ],c,c ∈C 2 )
We assume wlog that C = C 1 = C 2 : if T 1 has less copies than T 2 then we simply add those copies and define the corresponding formulas as false. Intuitively, we consider, for some input graph g, T 1 o (g) and T 2 o (g) in a single structure obtained from the by overlap of the two output trees. We are going to built an MSO formula which is valid for g iff T 1 o (g) and T 1 o (g) are actually equal. The fact that outputs are trees together with origins is crucial for this equality test to be possible.

First, we shall make clear how the nodes of the output trees are represented. Let g be a graph and T i o (g) = (t i , o i ) its output, i = 1, 2. Then, t ∈ T ∆ is a tree whose set of nodes V (t i ) is a subset of N * . By definition of MSO transducers, any node of t i can be identified with a pair (v, c) such that v ∈ V (g) and c ∈ C. We denote by addr i the partial function that associates with any pair (v, c) the node of V (t i ) (if it exists) as a result of this identification.

We will also need the notion of path labels and that of path origins. Let u ∈ V (t i ) be a node of t i . By p-labels t i (u) (resp. p-origins t i (u)) we denote the sequence

t i [u 0 ]t i [u 1 ] . . . t i [u n ] ∈ ∆ + (resp. o i (u 0 )o i (u 1 ) . . . o i (u n ) ∈ V (g) + ) where u 0 u 1 . . . u n ∈ V (t i ) + is sequence of nodes from the root (u 0 = ) to u (u n = u).
We start by a key observation saying that if

T 1 o (g) = T 2 o (g) = (t, o)
, for an input graph g ∈ Gr(Σ, Γ), then whenever there is a "synchronized" root-to-node path π in t then for any one-step continuation of this path by T 1 there exists a one-step continuation by T 2 , and vice versa.

Claim: Let g∈dom(T 1 )∩dom(T 2 ), and

T 1 o (g)=(t 1 , o 1 ), T 2 o (g)=(t 2 , o 2 ). Then (t 1 , o 1 )=(t 2 , o 2 ) iff 1. t 1 [ε] = t 2 [ε] and o 1 (ε) = o 2 (ε), and 2. for all u ∈ V (t 1 ) ∩ V (t 2 ) such that p-labels t 1 (u) = p-labels t 2 (u) and p-origins t 1 (u) = p-origins t 2 (u), for all α, i ∈ [2], if ui ∈ V (t α ), then ui ∈ V (t 3-α ), t 1 [ui] = t 2 [ui], and o 1 (ui) = o 2 (ui).
The proof of this claim is straightforward. The formula we are going to build is based on this claim and expresses for instance that any sequence of input nodes u 1 , . . . , u n that are connected with successor formulas φ c,c i (x, y) by T 1 are also connected with successor formulas ψ d,d i of T 2 with the same sequence of indices i, and conversely. It also expresses that the sequence of label formulas φ c δ (x) of T 1 and ψ c δ (x) of T 2 that hold on u 1 , . . . , u n respectively, carry the same respective output symbols δ. Condition 1 of the claim can be expressed by the sentence χ root that expresses that there are a node x c 1 in t 1 and a node x c 2 in t 2 which are the root of t 1 and t 2 respectively, have the same origin x, and the same label:

χ root ≡ ∃x c 1 ,c 2 ∈C root c 1 ,c 2 (x) root c 1 ,c 2 (x) ≡ c∈C,i∈[ ] ∀z(¬φ c,c 1 i (z, x) ∧ ¬ψ c,c 2 i (z, x)) ∧ a∈∆ (φ c 1 a (x) ∧ ψ c 2 a (x))
In order to express the Condition (2) of the claim, we first define, for all

c 1 , c 2 ∈ C, a formula Path c 1 ,c 2 (x), such that g |= Path c 1 ,c 2 (v) iff addr 1 (v c 1 )
and addr 2 (v c 2 ) are both defined and equal, and:

p-labels t 1 (addr(v c 1 )) = p-labels t 2 (addr(v c 2 )) p-origins t 1 (addr(v c 1 )) = p-origins t 2 (addr(v c 2 ))
It is obtained as the transitive closure of the formulas R (c 1 ,c 1 ),(c 2 ,c 2 ) (x, y) defined for all c 1 , c 2 , c 1 , c 2 ∈ C, and which holds true whenever there exists i ∈ [ ] such that y c 1 is the i-th child of addr 1 (x c 1 ) in t 1 , y c 2 is the i-th child of addr 2 (x c 2 ) in t 2 , the nodes addr 1 (x c 1 ) and addr 2 (x c 2 ) have the same label, as well as the nodes addr 1 (y c 1 ) and addr 2 (y c 2 ). Formally:

R (c 1 ,c 1 ),(c 2 ,c 2 ) (x, y) ≡ i∈[ ],a,b∈∆ φ c 1 ,c 1 i (x, y)∧ψ c 2 ,c 2 i (x, y)∧φ c 1 a (x)∧ψ c 2 a (x)∧φ c 1 b (y)∧ψ c 2 b (y)
Again, due to origin semantics, the sources (resp. the targets) of the considered edges from the output must orginate from the same input node.

Based on the latter formula, we define Path c 1 ,c 2 (x) as follows:

Path c 1 ,c 2 (x) ≡ ∃r e 1 ,e 2 ∈C root e 1 ,e 2 (r) ∧ ∀X 1,1 ∀X 1,2 . . . ∀X |C|,|C| (r ∈ X e 1 ,e 2 ∧ d 1 ,d 1 ,d 2 ,d 2 ∈C ∀z∀z (z ∈ X d 1 ,d 2 ∧R (d 1 ,d 1 ),(d 2 ,d 2 ) (z, z ) → z ∈ X d 1 ,d 2 )) → x ∈ X c 1 ,c 2
We can finally express conditions 1 and 2 of the claim by a sentence Φ E(T 1 ,T 2 ) defined as:

φ dom ∧ ψ dom ∧ χ root ∧ (∀x c 1 ,c 2 ∈C Path c 1 ,c 2 (x) → (∀x c 1 ∈C,i∈[ ],a∈∆ φ c 1 ,c 1 i (x, x ) ∧ φ c 1 a (x ) → c 2 ∈C ψ c 2 ,c 2 i (x, x ) ∧ ψ c 2 a (x )) ∧ (∀x c 2 ∈C,i∈[ ],a∈∆ ψ c 2 ,c 2 i (x, x ) ∧ ψ c 2 a (x ) → c 1 ∈C φ c 1 ,c 1 i (x, x ) ∧ φ c 1 a (x ))) It should be clear that Φ E(T 1 ,T 2 ) defines the set E( T 1 o , T 2 o ).
Extension of the proof to non-deterministic transducers To extend this proof to non-deterministic mso transducers, we now assume that all formulas of T 1 and T 2 are parameterized respectively by a tuple of second-order variables X and Y . We can construct a formula Φ E(T 1 ,T 2 ) (X, Y ) exactly as before, except that all formulas of T 1 and T 2 used in the definition of Φ E(T 1 ,T 2 ) are, as well, parameterized respectively by X and Y . The set E( T 1 o , T 2 o ) is then definable by the sentence

Φ N D E(T 1 ,T 2 ) ≡ ∀X∃Y • Φ E(T 1 ,T 2 ) (X, Y ) ∧ ∀Y ∃X • Φ E(T 1 ,T 2 ) (X, Y ). Indeed, g |= Φ N D E(T 1 ,T 2 ) iff for all interpretations of U ∈ (2 V (g) ) |X| , there exists an interpretation V ∈ (2 V (g) ) |Y | such that g |= Φ E(T 1 ,T 2 ) (U , V ) and sym- metrically, iff for all U ∈ (2 V (g) ) |X| , there exists V ∈ (2 V (g) ) |Y | such that T 1 [U ] o (g) = T 2 [V ] o (g) and symmetrically, iff T 1 o (g) ⊆ T 2 o (g) and T 2 o (g) ⊆ T 1 o (g), iff T 1 o (g) = T 2 o (g).
A similar result as Proposition 11 holds for dtop R transducers, as shown below. While it immediately yields a procedure for deciding origin-equivalence of dtop R transducers, the result of Theorem 10 also holds for (non-deterministic) top R transducers with a different proof. However, we give the following result, as it is interesting in its own. We leave open however whether it still holds for top R transducers.

Proposition 12. Let M 1 , M 2 be dtop R transducers. Then E( M 1 o , M 2 o ) is a regular tree language. Proof. For i ∈ [2], let M i = (Q i , Σ i , ∆ i , q 0i , R i ).
We make the following assumptions:

• we assume M 1 , M 2 to be trimmed is the sense that each of their transition rule appears in some computation.

• If q(f (x 1 , . . . , x k ) : L) → C[q 1 (x i 1 ), . . . , q k (x in )] is a rule of M i (where C is a ∆-context), then s/i j ∈ dom( q j ) for every s ∈ L and every j ∈ [n].
The second condition can be achieved by changing L in each rule that does not have the property into the set of all trees σ(s 1 , . . . , s k ) such that s i is in the intersection of all dom( q j ) for j ∈ [n] with i j = i, intersected with L. This can be achieved rule by rule as it does not change the domains dom( q ). The semantics with origin imposes strong constraints on the shapes of the right-hand sides of rules of M 1 and M 2 that can be applied in parallel: roughly speaking when M 1 and M 2 process the same input node, they must produce an output context of the same shape. Indeed, if they produce a node with different labels then the equivalence fails obviously. But even more, if one, say M 1 , produces a node that is not yet present in the output produced by M 2 then the equivalence fails also due to the semantics with origin. This node will have for M 1 the current input u node as origin whereas for M 2 this node will originate from a descendant of u.

We define the relation

o ∼ over Q 1 × Q 2 as p o ∼ q if for
all f in Σ, either none of p, q is a left-hand side of an f -rule or for any of such two rules whose left-hand side is p and q respectively, their respective form is

p(f (x 1 , . . . , x k ) : L 1 ) → C 1 [p 1 (x i 1 ), . . . , p m (x im )] q(f (x 1 , . . . , x k ) : L 2 ) → C 2 [q 1 (x j 1 ), . . . , q n (x jn )], with • C 1 = C 2 , m = n, • i ν = j ν for all ν ∈ [m], • p ν o ∼ q ν for all ν ∈ [m]. One can prove that for all p ∈ Q 1 , q ∈ Q 2 , for all s ∈ dom( p o ) ∩ dom( q o ), p o (s) = q o (s) iff p o ∼ q.
To show the only-if direction, assume that p o (s) = q o (s) = (t, o) and let r 1 ∈ R 1 and r 2 ∈ R 2 be the rules for p and q that are applicable to s, i.e.

s ∈ L 1 ∩ L 2 . Then V ∆ (C 1 ) = V ∆ (C 2 ), because they both equal {v ∈ V (t) | o(v) = } by the semantics of M 1 and M 2 . This implies that C 1 = C 2 and hence m = n. Let t 1 , . . . , t m such that t = C 1 [t 1 , . . . , t m ]. Let ν ∈ [m]
, and v ∈ V (t) the node that corresponds to the root of the ν-th subtree t ν of t. By definition of the origin semantics, o(v) = i for some i ∈ [k], and hence i ν = j ν = i. The third item above holds by induction hypothesis. For the if direction, let us assume that p o ∼ q and consider some s ∈ dom( p o ) ∩ dom( q o ). Depending on the symbol at the root of s, there must be two unique rules r 1 and r 2 for p and q respectively. To preserve to origin semantics, the contexts C 1 , C 2 must be the same and hence m = n. Let us denote by P the set of pairs (r 1 , r 2 ) of rules whose left-hand sides p, q satisfy p o ∼ q . We construct a top R transducer M such that dom(M

) = E( M 1 o , M 2 o ). The set of states of M is Q 1 × Q 2 ,
with initial states q 01 , q 02 , and for all pairs of rules (r 1 , r 2 ) ∈ P , we add to the rules of M the following rule:

p, q (a(x 1 , . . . , x k ) : L 1 ∩ L 2 ) → C 1 [ p 1 , q 1 (x i 1 ), . . . , p m , q m (x im )]
It is well-known that top R transducers have regular domains, hence the result follows.

Proof of Theorem 10. Let τ 1 , τ 2 be two origin translations defined respectively by two transducers from msot. They are equivalent if and only if they have the same domain D and D = E(τ 1 , τ 2 ). Since msot translations have effective regular domains, and E(τ 1 , τ 2 ) is effectively regular by Proposition 11, we get the result. The proof goes the same way for τ 1 , τ 2 defined by dtop R transducers using Proposition 12.

However, when τ 1 , τ 2 are origin translations defined by top R transducers an alternative and somehow more direct proof exists. As a first step, an equality test of the domains is performed. This is obviously decidable due to the effective regularity of domains of top R transducers. We then proceed by reduction to the equivalence problem of letter-to-letter transducers as follows. For non-deleting non-erasing top-down tree transducers without regular look-ahead, the decidability of origin-equivalence follows directly from the decidability of equivalence for non-deterministic non-deleting top-down letter-to-letter tree transducers [START_REF] Andre | On the equivalence problem for letter-toletter top-down tree transducers[END_REF].

Indeed, the origin semantics forces for all input trees s ∈ dom(M 1 ), for all (t, o) ∈ M 1 o (s), M 2 must produce, in a successful execution, the symbols of t exactly at the same moment as M 1 , and conversely for all (t, o) ∈ M 2 o (s). When considering non-erasing top, this property has a nice consequence: both M 1 and M 2 can be seen as symbol-to-symbol transducers: each -necessarily non-empty -∆-context in the right-hand side of a rule can be considered as one letter having for rank the number of occurrences of q j (x i j ) in this right-hand side. For instance, if ζ = f (q 1 (x 1 ), h(q 2 (x 1 )), q 3 (x 2 )), then f (., h(.), .) is seen as a single symbol of rank 3.

We now show how to reduce the equivalence problem of origin translations realized by dtop R transducers to the one of non-deleting non-erasing topdown tree transducers without regular look-ahead. Consider a top R tranducer M . Here we assume that the look-ahead is given as states of a single non-deterministic top-down tree automaton. For each rule of the following form

q(a(x 1 , . . . , x k ) : p) → C[q 1 (x i 1 ), . . . , q k (x in )]
and for each rule of the look-ahead automaton (p, a) → (p 1 , . . . , p k ) we construct the following rule:

q(a(x 1 , . . . , x k )) → C [p 1 (x 1 ), . . . , p k (x k ), q 1 (x i 1 ), . . . , q k (x in )]
where C = $(a(⊥, . . . , ⊥), C) and $ is a new binary symbol.

In addition, we have to define rules for look-ahead states. For each rule (p, a) → (p 1 , . . . , p k ) of the look-ahead automaton (with a ∈ Σ (k) ), we construct the following rule:

p(a(x 1 , . . . , x k )) → a(p 1 (x 1 ), . . . , p k (x k ))
Intuitively, for each transition applied in the original transducer, a new thread is started which checks the look-ahead, and produces as output a copy of the input subtree. Observe that this does not depend on M . We systematically add such an output. Observe that the new transducer is non-deleting and non-erasing.

Let us point out that regarding origins, this reduction yields a conservative extension: nodes in the output shared by the old and new transducers have the same origin. Now let us assume that we apply this reduction to two transducers T 1 and T 2 , yielding T 1 and T 2 . It is important to notice that when processing the same input, the new nodes in the output of T 1 (those obtained from look-ahead elimination) and the new ones in the output of T 2 will be by construction the same and moreover, will share the same origin.

Given two top R transducers M 1 , M 2 , we denote by M 1 , M 2 the nondeleting and non-erasing top transducers (without look-ahead) obtained by this construction. It is easy to show that

M 1 o = M 2 o iff M 1 o = M 2 o .
Note that based on Proposition 11, the decidability result of Theorem 10 can be extended to any (non-deterministic) MSO graph-to-tree transducers over a class of graphs with decidable MSO theory. More precisely, given a class of graphs C with decidable MSO theory, the following problem is decidable: given two MSO graph to tree transducers M 1 , M 2 , decide whether dom(M 1 ) ∩ C = dom(M 2 ) ∩ C and for all graphs g ∈ C ∩ dom(M 1 ), M 1 o (t) = M 2 o (t). For instance, by taking C the class of graphs of treewidth k, the latter problem is decidable.

Origin-Injectivity Problem

A function τ : A → B is injective if and only if for all x, y ∈ A, f (x) = f (y) implies that x = y. Thus, an injective function maps distinct arguments to distinct images. It is well-known that injectivity is undecidable for dtop transducers, in fact, it is undecidable even already for tree homomorphism (= DT transducers with only one state) [START_REF] Fülöp | On injectivity of deterministic top-down tree transducers[END_REF]. However, tree homomorphism are not definable by dmsot transducers in general therefore, we give a simple proof of undecidability for dtop R and dmsot transducers, based on a reduction from the Post correspondence problem (PCP). In this reduction, the fact that the transducers can copy subtrees is crucial.

Proposition 13. Injectivity is undecidable for tree translations defined by dtop R and dmsot transducers.

Proof. The proof is by reduction from PCP. Let ∆ = {a, b} be an alphabet. An instance of PCP is a finite sequence of pairs I = (u 1 , v 1 ) . . . (u n , v n ) such that u i , v i ∈ ∆ * . It has a solution if there exists a sequence of indices i 1 , . . . , i k ∈ {1, . . . , n} such that u i 1 . . . u i k = v i 1 . . . v i k . For all instances I of PCP we define a tree translation τ I from T Σ to T Σ , where Σ = {U (1) , V (1) , # (2) , a (1) , b (1) , 1 (1) , . . . , n (1) , e (0) }. For a word u = σ 1 . . . σ k ∈ (∆ ∪ {1, . . . , n}) * and a tree t ∈ T Σ , we write u(t) for the tree σ 1 (σ 2 (. . . σ k (t) . . . )).

The translation τ I is defined on trees of the form Z(i 1 i 2 . . . i k (e)) where Z ∈ {U, V }, as follows:

τ I : T Σ → T Σ Z(i 1 i 2 . . . i k (e)) → #(i 1 i 2 . . . i k (e), u i 1 u i 2 . . . u i k (e)) if Z = U #(i 1 i 2 . . . i k (e), v i 1 v i 2 . . . v i k (e)) if Z = V We claim that τ I is not injective iff I has a solution. Indeed, if I has a solution i 1 . . . i k , then let u = U (i 1 . . . i k (e)) and v = V (i 1 . . . i k (e)). Then clearly τ I (u) = τ I (v) but u = v. Conversely, if τ I is not injective, then there exist u = v ∈ T Σ such that τ I (u) = τ I (v).
The trees u and v are necessarily of the form u = Z 1 (i 1 . . . i k (e)) and v = Z 2 (j 1 . . . j p (e)) for some

Z 1 = Z 2 , say Z 1 = U and Z 2 = V . Then the equality τ I (u) = τ I (v) implies u i 1 . . . u i k = v j 1 .
. . v jp , but also i 1 . . . i k = j 1 . . . j p , and hence there is a solution to PCP. The translation τ I is easily implemented by dtop R and dmsot transducers, but they need to copy the input tree, in order to produce, on the output, the subtree i 1 . . . i k (e), and the subtree

u i 1 . . . u i k (e) (or v i 1 . . . v i k (e)).
Now, we show that in presence of origin, the injectivity problem becomes decidable. Origin-injectivity asks whether the origin translation M o of a given transducer M is injective, i.e. for all trees s 1 , s 2 , t 1 , t 2 and origin mappings

o 1 , o 2 such that M o (s 1 ) = (t 1 , o 1 ) and M o (s 2 ) = (t 2 , o 2 ), if t 1 = t 2 and o 1 = o 2 , then s 1 = s 2 .
We now prove that origin-injectivity is decidable for dmso and dtop R transducers.

Theorem 14. Origin-injectivity is decidable for dmsot transducers and for dtop R transducers.

The proof of Theorem 14 relies on the framework of recognizable translations that we recall first: let Σ, Σ be ranked alphabets and let ⊥ (0) be a special symbol not in Σ ∪ Σ . We define Σ ⊗ Σ as

{(f, g) (max(m,n)) | f ∈ (Σ ∪ {⊥}) (m) , g ∈ (Σ ∪ {⊥}) (n) } -{(⊥, ⊥) (0) }
Given a tree t 1 ∈ T Σ and a tree t 2 ∈ T Σ , the overlap of t 1 and t 2 is a tree [START_REF] Comon | Tree automata techniques and applications[END_REF]. Note that if both L 1 and L 2 are regular, then so is

t 1 ⊗ t 2 ∈ T Σ⊗Σ such that V (t 1 ⊗ t 2 ) = V (t 1 ) ∪ V (t 2 ) and for all nodes u ∈ V (t 1 ⊗ t 2 ), (t 1 ⊗ t 2 )[u] =    (t 1 [u], t 2 [u]) if u ∈ V (t 1 ) ∩ V (t 2 ) (t 1 [u], ⊥) if u ∈ V (t 1 ) \ V (t 2 ) (⊥, t 2 [u]) otherwise. Let L 1 ⊆ T Σ and L 2 ⊆ T Σ . We define L 1 ⊗ L 2 = {t 1 ⊗ t 2 | t 1 ∈ L 1 , t 2 ∈ L 2 }. A tree translation τ ⊆ T Σ × T Σ is recognizable if {t 1 ⊗ t 2 | (t 1 , t 2 ) ∈ τ } is regular
L 1 ⊗ L 2 .
Definition 15. Let τ 1 , τ 2 be binary relations We define the set

R(τ 1 , τ 2 ) = {(t 1 , t 2 ) ∈ dom(τ 1 ) × dom(τ 2 ) | τ 1 (t 1 ) = τ 2 (t 2 )}
We will show that these sets are recognizable if τ 1 , τ 2 are origin translations of (1) dtop R transducers, and (2) msot transducers.

Lemma 16. Let M 1 , M 2 be dtop R transducers. Then R( M 1 o , M 2 o ) is recognizable.
Proof. For i = 1, 2 we construct the dtop R transducer Mi so that for all input trees t 1 , t

2 of M 1 , M 2 : Mi o (t 1 ⊗ t 2 ) = M i o (t i ).
The transducer Mi has the same states as 

M i . The input alphabet of Mi is Σ = Σ 1 ⊗Σ 2 where Σ i is the input alphabet of M i . If q(f (x 1 , . . . , x k ) : L) → C[q 1 (x i 1 ), . . . , q k (x in )] is a rule of M 1 then for every g, k such that (f, g) ∈ Σ (k ) the transducer M1 has the rule q((f, g)(x 1 , . . . , x k ) : L) → C[q 1 (x i 1 ), . . . , q k (x in )] where L = L ⊗ T Σ 2 . Remind that L ⊗ T Σ 2 is
if R = ∩ R(τ, τ ) = ∅ where R = = {(t 1 , t 2 ) | t 1 = t 2 }.
Clearly, R = is a recognizable translation, and by Lemmas 16 and 17, R(τ, τ ) is recognizable for the origin translations realized by dmsot and dtop R transducers.

Query Determinacy

Let τ Q be a functional tree translation and let τ V be a functional origin tree translation. We will call τ Q the "query", and τ V the "view". We say that τ Q is determined by τ

V if for all trees s 1 , s 2 ∈ dom(τ V ), if τ V (s 1 ) = τ V (s 2 ) then τ Q (s 1 ) = τ Q (s 2 ).
Clearly, the notion of being determined is a generalization of injectivity: the identity tree translation is determined by a view τ V iff τ V is injective. The query-determinacy problem, i.e., to decide for given τ Q , τ V whether or not τ Q is determined by τ V has been studied in the database community [START_REF] Nash | Views and queries: Determinacy and rewriting[END_REF]. It was recently considered for tree transducers [START_REF] Benedikt | Determinacy and rewriting of top-down and MSO tree transformations[END_REF]; as mentioned in the Introduction, they can only decide determinacy for very limited classes of views, in particular, these classes do not allow copying. We now show that in the presence of origin, this restriction can be lifted and indeed determinacy can be decided for views that do allow copying.

Corollary 18. Let τ Q be a tree translation and let τ V be an origin tree translation so that both τ Q , τ V are defined by two given dtop R transducers or two given dmsot transducers. It is decidable whether or not τ Q is determined by τ V .

Proof. Let τ Q 1 , τ Q 2 be tree translations with ranked alphabets of input and output symbols Σ ⊗ Σ and ∆, respectively defined by

τ Q i (s 1 ⊗ s 2 ) = τ Q (s i ), for all s 1 , s 2 ∈ T Σ . Note that the τ Q i are effectively definable by dtop R transducers (resp. dmsot transducers ) if τ Q is. Let r(τ V ) be the set of trees s 1 ⊗ s 2 such that s 1 , s 2 ∈ dom(τ V ) and τ V (s 1 ) = τ V (s 2 ). Then τ Q is determined by τ V iff τ Q 1 (s) = τ Q 2 (s) for all s in r(τ V ), iff τ Q 1 and τ Q 2 are equivalent on r(τ V ).
As seen before to solve the injectivity problem, we show that the pairs (s 1 , s 2 ) such that τ V (s 1 ) = τ V (s 2 ) form a recognizable relation, for transducers in dtop R or dmsot. So, r(τ V ) is regular. The result follows because equivalence is decidable for dtop R transducers and for dmsot transducers, see [START_REF] Maneth | Equivalence problems for tree transducers (survey)[END_REF].

For instance, query determinacy is decidable for queries defined by dmsot or dtop R transducers, and views with origin defined by dmsot or dtop R transducers.

Tree-to-String Translations with Origin

In this section we consider top-down tree-to-string transducers. Such transducers generalize top-down tree transducers by outputting arbitrary strings by a rule (instead of well-bracketed strings, in the case of tree transducer). Naturally, decision problems become harder for tree-to-string transducers: origin-equivalence of non-deterministic such transducers is undecidable, and origin-injectivity for deterministic such transducers is undecidable. This is in contrast to top-down tree transducers, where both problems are decidable (Theorems 10 and 14). On the positive side, the main result of this section is that origin-equivalence is decidable for deterministic top-down tree-to-string transducers. The proof uses a reduction to the hdt0l sequence equivalence problem. Without origin, this equivalence problem had been a famous open problem, already stated by Engelfriet [START_REF] Engelfriet | Some open questions and recent results on tree transducers and tree languages[END_REF]; it was solved very recently by Seidl, Maneth, and Kemper [START_REF] Seidl | Equivalence of deterministic topdown tree-to-string transducers is decidable[END_REF] 

Top-down tree-to-string transducers

A top-down tree-to-string transducer (ytop transducer for short) M is a tuple (Q, Σ, ∆, q 0 , R) where Q is a finite set of states, Σ is a ranked alphabet of input symbols, ∆ is an alphabet of output symbols, q 0 ∈ Q is the initial state, and R is a finite set of rules of the form

q(σ(x 1 , . . . , x k )) → w,
where w is a (possibly empty) string over ∆ and symbols q (x i ) with q ∈ Q and i ∈ [k]. The definition of q o is similar as for top transducers (only that the trees t and t v are now strings over ∆). In this way we obtain M o and M . ytop transducers generalize top transducers, as right-hand sides of rules of a top transducer can be encoded as well-bracketed strings.

The converse is false: even considering strings as monadic trees, a ytop transducer can for instance easily implement string reversal (see Example 19), which is not possible using top transducers. As for top transducers, we can equip this model with regular look-ahead, and consider deterministic machines. This defines the classes of deterministic top-down tree-to-string transducers (with regular look-ahead): ydtop (ydtop R ).

Example 19. Let M 5 = (Q, Σ, ∆, q 0 , R) by the ydtop transducer with Q = {q, q a , q b }, Σ = {a (1) , b (1) , e (0) }, ∆ = {a, b}, and R consisting of the following rules. q(σ(x 1 )) → q(x 1 )q σ (x 1 ) q(e) → ε q σ (σ (x 1 )) → q σ (x 1 )

for σ, σ ∈ Σ (1) q σ (e) → ε for σ ∈ Σ (1) .

The transducer M 5 implements string reversal with respect to its monadic input tree. For instance, the input tree s = a(a(b(e))) is translated to the string M (s) = baa = w, as illustrated in Figure 5. Note that the origin of each letter of w is the unique leaf of s (here, the node 111). Hence, the origin translation M o is not mso definable: there may be unboundedly many letters having such a leaf as origin. In contrast, the translation M is mso definable, as tree-to-string mso transducers are equivalent to ydtop R transducers of linear size increase [START_REF] Engelfriet | Macro tree translations of linear size increase are MSO definable[END_REF][START_REF] Engelfriet | Macro tree transducers, attribute grammars, and MSO definable tree translations[END_REF]. In Section 5 we show how to decide whether the origin translation defined by a ydtop R transducer is mso definable.

Undecidability Results

A finite-state string transducer (also known as "generalized sequential machine" or as "rational string relation") can be seen as a linear ytop transducer with monadic input, i.e., a ytop transducer with rules of the form q(ax) → vq (x), where v ∈ ∆ * . Similar to Example 19, instead of outputting in a rule the string v = a 1 • • • a n with a 1 , . . . , a n ∈ ∆, we may replace each a i by a state call q a i (x). These states ignore the unary input nodes via rules of the form q a (bx) → q a (x), and produce their output symbol a the unique input leaf. This shows that origin-equivalence of ytop transducers can be reduced to equivalence of finite-state string transducers, a problem well-known to be undecidable [START_REF] Griffiths | The unsolvability of the equivalence problem for lambdafree nondeterministic generalized machines[END_REF][START_REF] Ibarra | The unsolvability of the equivalence problem for -free NGSM's with unary input (output) alphabet and applications[END_REF]. In a similar way it can be shown that origin-injectivity of ydtop transducers is also undecidable, by giving a direct encoding of the Post Correspondence Problem. This contrasts with the positive results presented in Section 3. There, decidability of origin-equivalence relied on the regularity of the set E( M 1 o , M 2 o ) of input trees s for which M 1 o (s) equals M 2 o (s). As the reader may verify, it is easy to come up with two ydtop transducers M 1 , M 2 such that E( M 1 o , M 2 o ) is not regular. For instance, take the transducer M 1 = M for string reversal of before, and M 2 the identity with rules q(σ(x 1 )) → q σ (x 1 )q(x 1 ) and q σ (σ (x 1 )) → q σ (x 1 ) for σ, σ ∈ Σ (1) , and leaf rules as for M . Now E( M 1 o , M 2 o ) is the set of palindromes on ∆ * (seen as monadic trees), which is not regular.

Theorem 20. Origin-equivalence is undecidable for ytop transducers.

Proof. The proof proceeds by a reduction from undecidability of equivalence of non-deterministic string-to-string transducers [START_REF] Griffiths | The unsolvability of the equivalence problem for lambdafree nondeterministic generalized machines[END_REF][START_REF] Ibarra | The unsolvability of the equivalence problem for -free NGSM's with unary input (output) alphabet and applications[END_REF]. As explained above, one can simulate such a transducer by forcing the non-deterministic topdown monadic tree-to-string transducer to produce output at the unique leaf only.

Theorem 21. Origin-injectivity is undecidable for ydtop transducers.

Proof. Let A be a finite alphabet such that A ∩ N = ∅. We consider an instance of the Post Correspondence Problem (PCP)

I = {(u 1 , v 1 ), . . . , (u n , v n )},
where u i , v i ∈ A * . Recall that I has a solution iff there exist i 1 , . . . , i k ∈ {1, . . . , n} such that

u i 1 . . . u i k = v i 1 . . . v i k . We construct a ydtop transducer M such that M o is not injective iff I has a solution.
We define Σ a ranked alphabet as follows: Σ (0) = {e}, and Σ (1) = {1, . . . , n} ∪ {$ 1 , $ 2 }. The output alphabet is ∆ = A. The transducer M reads monadic trees of the form $(i 1 (i 2 (. . (i k (e)) . . . ))), where $ ∈ {$ 1 , $ 2 }. Its semantics is:

M o ($(i 1 (i 2 (. . . (i k (e)) . . . )))) = (i 1 . . . i k u i k . . . u i 1 , o) if $ = $ 1 (i 1 . . . i k v i k . . . v i 1 , o) if $ = $ 2
where o is the constant function that maps any output position to the input node 1 k+1 , i.e., all output positions have the same origin, which is the input position labeled e.

Before showing how to construct M , let us show that M o is not injective iff I has a solution. Suppose that M o is not injective. Then here exist two input trees t 1 = $ a (i 1 (. . . (i k (e)) . . . )) and t 2 = $ b (j 1 (. . . (j (e)) . . . )) such that t 1 = t 2 and M o (t 1 ) = M o (t 2 ). By definition of M o , since M o (t 1 ) = M o (t 2 ) and A ∩ N = ∅, we necessarily get that i 1 . . . i k = j 1 . . . j . Since

t 1 = t 2 , we get that a = b. If a = 1 and b = 2, then u i k . . . u i 1 = v i k . . . v i 1 ,
and therefore I has a solution (and similarly if a = 2 and b = 1). Conversely, if I as a solution i 1 , . . . , i k , then by taking t 1 = $ 1 (i 1 (. . . (i k (e)) . . . )) and

t 2 = $ 2 (i 1 (. . . (i k (e)) . . . )), we get M o (t 1 ) = M o (t 2 ) and t 1 = t 2 .
The transducer M is constructed as follows: its set of states is

Q = {q 0 , q 1 , q 2 } ∪ {p j | 1 ≤ j ≤ n} ∪ Q with Q = {p w | ∃1 ≤ i ≤ n, w = u i ∨ w = v i }, initial state q 0 ,
and set of rules consisting of the following.

q 0 ($ 1 (x)) → q 1 (x) q 0 ($ 2 (x)) → q 2 (x) q 1 (i(x)) → p i (x)q 1 (x)p u i (x) q 1 (e) → q 2 (i(x)) → p i (x)q 2 (x)p v i (x) q 2 (e) → p j (i(x)) → p j (x) for 3 ≤ j ≤ n p j (e) → j for 3 ≤ j ≤ n p w (i(x)) → p w (x) for p w ∈ Q p w (e) → w for p w ∈ Q 4.3. Equivalence of ydtop R transducers
Though it is not possible to obtain decidability results by regular sets (or recognizable relations), we can prove, using more involved techniques, that origin-equivalence of ydtop R transducers is decidable.

Theorem 22. Origin-equivalence is decidable for ydtop R transducers.

Proof. Let M 1 , M 2 be two ydtop R transducers for which we want to test whether M 1 o = M 2 o . The procedure is divided into several steps and based on several intermediate lemmas that are proved later on.

Step 1. We first check whether M 1 and M 2 have the same domain D. If not we output "not equivalent". Otherwise, we build ydtop transducers without look-ahead M 1 , M 2 , and a regular tree language D such that M 1 o = M 2 o iff M 1 and M 2 are origin-equivalent on D . To this end, we extend the input alphabet with look-ahead labeling of both transducers, and compute a language of interest D from D (Lemma 23).

Step 2. Then, as shown in Lemma 27, we reduce the origin-equivalence problem of M 1 and M 2 on D to the (origin-free) equivalence problem of monadic ydtop transducrs, where 'monadic' means that every input symbol has rank 0 or 1. The latter problem is known to be decidable, see [START_REF] Maneth | Equivalence problems for tree transducers (survey)[END_REF], based on the hdt0l sequence equivalence problem [START_REF] Culik | The equivalence of finite valued transducers (on HDT0L languages) is decidable[END_REF]. The reduction of originequivalence of M 1 and M 2 on D , to equivalence of ydtop transducers on monadic trees, explained in Lemma 27, is based on the following idea. To where u, v, x refer to three distinct nodes in some input tree. By putting origin information in w, one gets

w ⊗ o 1 = (a, u)(a, v)(a, x)(a, u) w ⊗ o 2 = (a, u)(a, x)(a, v)(a, u)
Then we have:

Π {u} (w, o 1 ) = (a, u)(a, u) Π {u} (w, o 2 ) = (a, u)(a, u) Π {v} (w, o 1 ) = (a, v) Π {v} (w, o 2 ) = (a, v) Π {x} (w, o 1 ) = (a, x) Π {x} (w, o 2 ) = (a, x) Π {v,x} (w, o 1 ) = (a, v)(a, x) Π {v,x} (w, o 2 ) = (a, x)(a, v) Note that the U -abstractions of w ⊗ o 1 and w ⊗ o 2 are equal for |U | = 1, while w ⊗ o 1 = w ⊗ o 2 . They are distinguished by {v, x}, |{v, x}| = 2.
As a direct consequence of Lemma 24 we obtain the following lemma.

Lemma 26. Let τ 1 , τ 2 be two functional tree-to-string origin translations. Let s ∈ dom(τ 1 ) ∩ dom(τ 2 ). Then τ

1 (s) = τ 2 (s) iff Π U (τ 1 (s)) = Π U (τ 2 (s)) for all U ⊆ V (s) such that |U | ∈ {1, 2}.
Based on Lemma 26, the next lemma shows origin-equivalence can be decided for ydtop transducers. Lemma 27. Let M 1 , M 2 be two ydtop transducers and let D be a regular tree language. It is decidable whether or not M 1 o (s) = M 2 o (s) for all s ∈ D.

Proof. We may assume that the input and output alphabets of M 1 and M 2 coincide. Thus M i = (Q i , Σ, ∆, r i , R i ). In order to prove this decidability result, we apply Lemma 26 to τ i = M i o for i = 1, 2. Without loss of generality, we may assume that D ⊆ dom(τ 1 ) ∩ dom(τ 2 ).

We now explain how to decide the characterization of Lemma 26 for singleton sets U . Note that for singleton sets, since the symbols of the Uabstraction of a word always have the same second component, we can ignore it. More precisely, if one denotes by π 1 the first projection on pairs, we have

Π U (τ 1 (s)) = Π U (τ 2 (s)) iff π 1 (Π U (τ 1 (s))) = π 1 (Π U (τ 2 (s)
)) for all s ∈ D. We show how to check the latter equality.

To this end, we build deterministic top-down monadic tree-to-string transducers Mi , i = 1, 2 that will run on paths of trees and will simulate M i on this path: only the symbols whose origin correspond to the leaf of the considered path are produced. Their input ranked alphabet is defined as

π(Σ) = Σ (0) ∪ k≥1 {σ (1) | σ ∈ Σ (k) , ∈ [k], k ≥ 1}.
That is, all symbols from Σ are in π(Σ) and their arity is set to 0, and all symbols from Σ which are not constant are augmented with a direction and their arity is set to 1.

Given a tree s on Σ, and a node u ∈ V (s), we introduce the notion of label path lpath s (u), as the monadic tree representing the labeled path in s from the root to the leaf u. Formally:

• if s = σ(s 1 , . . . , s k ), k ≥ 0 and u = , then lpath s (u) = σ (0) , • if s = σ(s 1 , . . . , s k ), k ≥ 1, and u = u , ∈ [k], then lpath s (u) = σ (1) (lpath s (u )).
First define the intermediate deterministic top-down monadic tree-tostring transducer

M i = (Q i , π(Σ), ∆, r i , R i ). If q(σ(x 1 , . . . , x k ))
→ w is a rule of M i with k ≥ 0, then M i has the following rules for every ∈ [k]:

q(σ (0) ) → w[q (x j ) ← ε | q ∈ Q i , j ∈ [k]] q(σ (1) (x 1 )) → w[q (x ) ← q (x 1 ), q (x j ) ← ε | q ∈ Q i , j ∈ [k] \ { }] if k ≥ 1
Roughly speaking, this new transducer processes paths of the input tree and produces for a given path only elements whose origin lies on this path.

Claim. For every s ∈ dom(τ i ) and every u ∈ V (s), M i (lpath s (u)) = π 1 (Π {u} (τ i (s))).

We define now LPath(D) = {lpath s (u) | s ∈ D, u ∈ V (s)}. As D is a regular tree language on Σ, LPath(D) is a regular monadic tree language on π(Σ). It is thus recognized by a deterministic top-down finite tree automaton. The transducer Mi is defined as the product of M i with this finite tree automaton.

Claim. Π {u} (τ 1 (s)) = Π {u} (τ 2 (s)) for all s ∈ D and u ∈ V (s) iff M1 = M2 .
As the equivalence of deterministic top-down monadic tree-to-string transducers is decidable (see [START_REF] Maneth | Equivalence problems for tree transducers (survey)[END_REF]), so is the characterization of Lemma 26 for singleton sets U .

For sets U = {u 1 , u 2 } of cardinality 2, the equalities Π {u 1 ,u 2 } (τ 1 (s)) = Π {u 1 ,u 2 } (τ 2 (s)) can be checked similarly with two additional modifications: (i) instead of running on paths, the transducers Mi run on products of two paths that can be embedded in a same tree of D, (ii) one cannot consider the first projection π 1 any more, and instead one colours the symbols whose origin is the leaf of the first path by 1, and those whose origin is the leaf of the second path by 2. More precisely, inputs of Mi are monadic trees of the form p 1 ⊗ p 2 , where p j = lpath s (u j ) for j ∈ [2] for some tree s ∈ dom(τ i ) and two nodes u 1 = u 2 ∈ V (s). The tree p 1 ⊗ p 2 is obtained by overlapping the paths p 1 and p 2 , with a product alphabet and a padding symbol in case they do not have the same length, as defined in Section 3.4. The transducer Mi then simulates M i on the two paths (with a construction similar to the singleton case) and produce only the symbols produced by M i at the respective leaves of these two paths (coloured respectively by 1 or 2 to distinguish their origin). Moreover, the order in which those symbols appear in the output string τ i (s) is kept. More precisely, the set of states of Mi is Q i ∪ Q i × {1, 2}: as long as the two paths coincide, we stay in Q i , and when they diverge, one goes to Q i × {1} or to Q i × {2} depending on whether one evaluates the first the second path. Let us describe some of the important rules of Mi that are created from a rule of the form q(σ(x 1 , . . . , x k )) → w in M i :

1. As long as the two paths coincide, it works as in the singleton case. We create the following rules in Mi :

q((σ , σ )(x 1 )) → w[a ∈ ∆← , q (x j = )← , q (x )←q (x )]where ∈ [k]
2. The first time the two paths diverge, i.e. when a symbol of the form (σ , σ ) with = is met, Mi sends copies to Q i × {1} and Q i × {2} respectively, by rules of the form, for ,

∈ [k]: q((σ , σ )(x 1 )) → w[a ∈ ∆← , q (x =j = )← , q (x )←(q , 1)(x ), q (x )←(q , 2)(x )]
3. In a copy Q i × {c}, for c ∈ {1, 2}, the c -th path is ignored (it becomes inactive), where c = c ∈ {1, 2}. This is for instance achieved by rules of the form:

(q, 1)((σ , β )(x 1 )) → w[a ∈ ∆← , q (x j = )← , q (x )←(q , 1)(x )] or (q, 2)((β , σ )(x 1 )) → w[a ∈ ∆← , q (x j = )← , q (x )←(q , 2)(x )].
4. when some active path reaches a leaf, the rules output symbols that are produced in the rhs w, augmented with the colour 1 or 2 depending on whether the first or second path is active. For instance, one may add the following rules:

(q, 1)((σ (0) , z)(x 1 )) → w[a ∈ ∆←(a, 1), q (x j )← , j ∈ [k]] or (q, 2)((z, σ (0) )(x 1 )) → w[a ∈ ∆←(a, 2), q (x j )← , j ∈ [k]]
where z can be any symbol of the form β or β ∈ Σ.

We have presented the essential rules of this construction. As for the singleton case, we also need to restrict the domain of Mi to path products that can be embedded into trees s of D. This is again a regular property.

Finally, checking whether or not Π {u 1 ,u 2 } (τ 1 (s)) = Π {u 1 ,u 2 } (τ 2 (s)) for all s ∈ D and all u 1 = u 2 ∈ V (s) reduces to checking equivalence of M1 and M2 , which is decidable.

Subclass Definability Problems

From ydtop R Transducers to mso Transducers

Deterministic MSO tree-to-string transducers (dmsots transducers for short) can be defined as a particular case of dmsot transducers (their originequivalence is thus decidable by Theorem 10). While dmsots transducers are equivalent to ydtop R transducers of linear size increase [START_REF] Engelfriet | Macro tree translations of linear size increase are MSO definable[END_REF][START_REF] Engelfriet | Macro tree transducers, attribute grammars, and MSO definable tree translations[END_REF], this is not true in the presence of origin; there is a ydtop R transducer for which no origin-equivalent dmsots transducer exists (e.g. Example 19 of string reversal). However, every dmsots transducer effectively has an origin-equivalent ydtop R transducer (obtained by following the respective constructions for origin-less transducers). It raises the question whether one can decide for a given ydtop R transducer whether its origin translation is definable by a dmsots transducer. In Theorem 30 we give an affirmative answer to this question.

The proof of the theorem is based on the notion of "bounded origin". An origin translation τ is of bounded origin if there exists a number k such that for every (s, (w, o)) ∈ τ and u ∈ V (s): |{v ∈ V (w) | o(v) = u}| ≤ k, i.e., every input node can be the origin of only a bounded number of output positions. By their definition, origin translations of mso transducers have bounded origin. We will prove in Lemma 29 that the ydtop R transducers of bounded origin are effectively MSO definable. First, let us prove in Lemma 28 that the bounded origin property is decidable for ydtop R transducers.

The proof of Lemma 28 is similar to the proof of Lemma 4.10 in [START_REF] Engelfriet | Macro tree translations of linear size increase are MSO definable[END_REF], where it is proved that the finite copying restriction is decidable for macro tree transducers (this property means that every input node is translated only a bounded number of times).

Lemma 28. Let M by a ydtop R transducer. It is decidable whether or not M has bounded origin; if it does, then a bound can be computed.

Proof. Let M = (Q, Σ, ∆, q 0 , R) and let A = (P, Σ, δ) be its look-ahead automaton. Let Σ = {σ (k) | σ ∈ Σ (k) , k ≥ 0}. We construct the ydtop R transducer M that mimics the state behavior of M , but does not produce any output on input trees in T Σ . The new transducer M produces outputs only on hatted symbols in Σ. Let M = (Q, Σ ∪ Σ, ∆, q 0 , R ) and  = (P, Σ ∪ Σ, δ ∪ δ). For every rule q(σ(x 1 : p 1 , . . . , x k : p k )) → w in R we let the rules

q(σ(x 1 : p 1 , . . . , x k : p k )) → w[q (x i ) ← ε | q ∈ Q, i ∈ [k]] q(σ(x 1 : p 1 , . . . , x k : p k )) → w[d ← ε | d ∈ ∆]
be in R . For every look-ahead transition δ(σ, p 1 , . . . , p k ) = p we define δ(σ, p 1 , . . . , p k ) = p. We now consider input trees over Σ ∪ Σ with exactly one node labeled by a hatted symbol. Let (t, (ξ, o)) ∈ M o and let u ∈ V (t) with t[u] = σ. Let t be the tree obtained from t by changing the label at node u to σ. Then

| M ( t)| = |{v ∈ V (ξ) | o(v) = u}|.
Thus, M has bounded origin if and only if M ( D) is finite, where

D = {t[u ← σ(t 1 , . . . , t k )] | t ∈ D, ∃u ∈ V (t), t/u = σ(t 1 , . . . , t k )}
and D is the domain of M . Since the domains of ydtop R transducers are effectively regular, so is D. Finiteness of M ( D) is decidable by Theorem 6.2 of [START_REF] Drewes | Decidability of the finiteness of ranges of tree transductions[END_REF]. In case of finiteness, the theorem provides an algorithm that computes the elements of M ( D). Thus, to compute an origin bound, we determine the maximal size of the elements in M ( D).

In the next lemma it is shown that origin translations of (total) ydtop R transducers with bounded origin are effectively MSO definable. This is done by verifying that various constructions of the literature (that are proved for ordinary semantics) also hold true with respect to origin semantics. Note that the proof of Lemma 29 makes use of macro tree transducers, which are formally defined and explained only in Section 5.2. Lemma 29. Let M be a total ydtop R transducer that has bounded origin. There effectively exists a dmsots transducer N that is origin-equivalent to M .

Proof. Let M = (Q, Σ, ∆, q 0 , R) with look-ahead automaton A = (P, Σ, δ), and let k be an origin bound of M . In this proof, we assume that right-hand sides of rules of M are non-empty words. Observe that this assumption can be made without loss of generality as inverse images of regular languages by ydtop R transducers are regular, and thus input trees that are translated into ε can be filtered out using regular look-aheads.

We first transform M into the total mac transducer M ; see Section 5.2 for the formal definition of mac transducers. Let M = (Q , Σ, ∆ , q 0 , R ) with same look-ahead automaton A and with Q = {q (1) | q ∈ Q}∪{(q ) (2) | q ∈ Q} and ∆ = {⊥ (0) } ∪ {a (1) | a ∈ ∆}. For every rule q(σ(x 1 : p 1 , . . . , x k : p k )) → w of M , the transducer M has rules q(σ(x 1 : p 1 , . . . , x k : p k ))

→ mon(w) q (σ(x 1 : p 2 , . . . , x k : p k ), y 1 ) → mon(wy 1 ).

For a non-empty word w, a ∈ ∆, q ∈ Q, and i ∈ N, the tree mon(w) is defined as: mon(a) = a(⊥), mon(aw) = a(mon(w)), mon(y 1 ) = y 1 , mon(q(x i )) = q(x i ), and mon(q(x i )w) = q (x i , mon(w)). Note that the parameter y 1 appears exactly once in the right-hand side of every rule of a state of rank two of M . A mac transducer with this property is called "linear and nondeleting (in the parameters)". Moreover, since every right-hand side of the rules of M is a non-empty word, M does not have a right-hand side of the form y 1 . A mac transducer with this property is called "nonerasing".

The construction from M to M preserves origin in the following sense.

If M o (s) equals (w, o) with V (w) = [n], then M o (s) equals (mon(w), o ) where o (1 i-1 ) = o(i) for every i ∈ [n], and o (1 n ) = o(n). Hence k + 1
is an origin bound for M . Note that if M has an origin-equivalent dmso transducer N , then so does M , because it is straightforward to remove ⊥ from the output of the transducer.

For a mac R transducer that is linear, nondeleting, nonerasing, and "finite copying in the input" (fci), it is shown in Lemma 6.10 of [START_REF] Engelfriet | Macro tree transducers, attribute grammars, and MSO definable tree translations[END_REF] that an equivalent "single use restricted" (sur) mac R transducer can be constructed. It can be verified that the corresponding construction produces a transducer that is origin-equivalent. In order to apply this construction we need to show that M is fci.

Intuitively, fci means that there is a bound on the number of times that the transducer translates any given input subtree. Technically this is achieved by marking an arbitrary input node and having the transducer "stop" at this node and output as a terminal nodes the occurrences of the particular states that translate this input node. These numbers of state occurrences need to be globally bounded. Formally, fci means that there is a number β such that for every input tree s and node u of s: the number of occurrences of states in the tree M (s[u ← δ(s/u)]) is at most β, where M is the extension of M to input trees over Σ ∪ {p (0) | p ∈ P }. The transducer M extends the rules of M by q(p) → p for every state q of M and look-ahead state p of M , and extends the transition function δ of the look-ahead automaton of M by δ(p) = p for all p ∈ P . Assume now by contradiction that M is not fci. For every p ∈ P , let s p ∈ T Σ be a fixed (but arbitrary) tree such that δ(s p ) = p. Let the integer m be max{|V (s p )| | p ∈ P }. Note that in particular we can choose s p to be a tree of minimal size such that δ(s p ) = p. We claim that M is fci with bound β = (k + 1) • m. Suppose not. Then there exist s and u such that the number of occurrences of states in ζ = M (s[u ← δ(s/u)]) is larger than (k + 1) • m. Let p = δ(s/u). Since M is total, t = M (s[u ← s p ]) is defined. Since M is non-erasing, every occurrence of a state in ζ contributes at least one output symbol to t. Thus, t contains > (k + 1) • m nodes with their origin in the subtree s p (i.e., such that u is a prefix of their origin). Since m > |V (s p )|, there is a node uv in s[u ← s p ] such that t contains strictly more than k + 1 nodes with origin uv. This contradicts the bounded origin property of M .

In [START_REF] Engelfriet | Macro tree transducers, attribute grammars, and MSO definable tree translations[END_REF] it is shown how to construct for a total sur mac R transducer an equivalent sur attribute tree transducer with look-ahead (att R transducer for short). The construction consists of three steps. First in Lemma 5.9 of [START_REF] Engelfriet | Macro tree transducers, attribute grammars, and MSO definable tree translations[END_REF], the sur mac R transducer M is decomposed into a particular relabeling ρ, followed by a more restricted mac transducer M , namely one that is "strongly single use restricted" (ssur for short). The rules of M are essentially the same as those of M , only that the input symbols have changed (intuitively, the relabeled input symbols contain more information, such as the look-ahead states, and information related to the sur property). Thus, M generates output at precisely the same input nodes as M , and hence the composition of ρ followed by M is origin-equivalent to M . In the second step (Lemma 5.12 of [START_REF] Engelfriet | Macro tree transducers, attribute grammars, and MSO definable tree translations[END_REF]) the ssur mac M transducer is transformed into an equivalent sur att R transducer A. This is done in such a way that parts of a rule of M are represented by several rules of A. Intuitively, the trees t j of a state call q (x i , t 1 , . . . , t m ) in a rule are realized by inherited attributes of A, which are evaluated at the i-th child of the current node. As a consequence, the origin (by A) of output nodes generated in a t j is different than the origin with respect to M : they are now at node u.j instead of node u. It is straightforward to alter the construction in such a way that origin is preserved. This is done by adding new synthesized attributes at node u which obtain the right-hand sides of the rules of those inherited attributes. The values of these new synthesized attributes are then simply copied over to new extra inherited attributes (by rules of the parent node of u) and are passed down to the inherited attributes of the j-th child node of u (which are the ones of construction of Lemma 5.12 of [START_REF] Engelfriet | Macro tree transducers, attribute grammars, and MSO definable tree translations[END_REF]). In the third step, the relabeling ρ is represented as a "attributed relabeling" (Lemma 4.1 of [START_REF] Engelfriet | Macro tree transducers, attribute grammars, and MSO definable tree translations[END_REF]), which gives the desired att R transducer A that is origin-equivalent to M .

Next, we transform A into an origin equivalent MSO tree transducer. This construction is given in Section 5 of [START_REF] Bloem | A comparison of tree transductions defined by monadic second order logic and by attribute grammars[END_REF]. Technically speaking, the transducer is first changed into "operator normal form", by adding additionally special output symbols (which represent identity). The new att R transducer A followed by the pruning of the inserted new symbols is origin equivalent to A . Now an MSO tree transducer N is constructed; its copy names are the attributes of A , and it produces output in the same way as A , i.e., it is clear that N is origin-equivalent to A . Finally, by simply removing the inserted new symbols from before in the rules of N , an MSO tree transducer is obtained that is origin-equivalent to M . Theorem 30. For a given ydtop R transducer M , it is decidable whether or not there exists an origin-equivalent dmsots transducer. If so, then such a dmsots transducer can be constructed.

Proof. We first check if M has bounded origin, using Lemma 28. If not, then we return "no", because by their definition, all translations of dmsots transducers have bounded origin. Otherwise let m be the origin bound computed according to Lemma 28. Let M = (Q, Σ, ∆, q 0 , R) with look-ahead automaton A = (P, Σ, δ). We now construct a total version M of M with the following properties. For every t ∈ D = dom(M ), M o (t) = M o (t).

For every t ∈ T Σ \ D, M o (t) = (#, o) where o maps the unique output position to the root node of t, and # is a new symbol not in ∆. Thus, M has bounded origin with bound m. The domain D is effectively given by a non-deterministic tree automaton A = (P , Σ, δ , P f ). We construct the look-ahead automaton of M as the product of A and A (where we forget about the final states). Let q(σ(x 1 : p 1 , . . . , x k : p k )) → w be in R and let p 1 , . . . , p k ∈ P . If q = q 0 or δ (σ, p 1 , . . . , p k ) ∈ P f then we let the rule q(σ(x 1 : (p 1 , p 1 ), . . . , x k : (p k , p k ))) → w be in R . Otherwise, we let the rule q 0 (σ(x 1 : (p 1 , p 1 ), . . . , x k : (p k , p k ))) → # be in R .

We apply Lemma 29 and construct a dmsots transducer N that is origin equivalent to M . Finally, we construct an mso formula φ which holds for a tree t ∈ T Σ if and only if t ∈ D. The dmsots transducer N is obtained from N by changing its domain formula to φ.

From Macro Tree Transducers to ydtop R Transducers

At last we consider a type of transducer that is expressively more powerful than the models considered so far: the macro tree transducer (mac transducer for short) [START_REF] Engelfriet | Macro tree transducers[END_REF]. For simplicity, we only consider total deterministic mac transducers.

Definition of Macro Tree Transducers

A mac transducer extends a top-down tree transducer by nesting of recursive state calls. Thus, a state q is now of rank m + 1 and takes, besides the input tree (as its first argument), m arguments of type output tree. In the rules, these arguments are denoted by parameters y 1 , . . . , y m . Thus, a rule of a mac transducer is of the form q(σ(x 1 , . . . , x k ), y 1 , . . . , y m ) → ζ, where ζ is a tree over (nested) states, output symbols, and the parameters y 1 , . . . , y m which may occur at leaves. As an example, consider a mac transducer with these rules: q 0 (h(x 1 )) → q(x 1 , a) q(h(x 1 ), y 1 ) → q(x 1 , q(x 1 , y 1 )) q(a, y 1 ) → b(y 1 , y 1 )

For a monadic input tree h(. . . h(a) . . . ) with n occurrences of h, it produces a full binary tree of height 2 n . Thus, mac transducers can have doubleexponential size increase (and exponential height increase). The models discussed so far have at most exponential size increase (and at most linear height increase). Formally, a (total deterministic) macro tree transducer is a tuple M = (Q, Σ, ∆, q 0 , R) where Σ, ∆ are ranked alphabets of input and output symbols, Q is a ranked alphabet of states with Q (0) = ∅, q 0 ∈ Q (1) is the initial state, and R is the set of rules. For every q ∈ Q (m+1) , m ≥ 0, σ ∈ Σ (k) , and k ≥ 0, the set R contains exactly one rule of the form q(σ(x 1 , . . . , x k ), y 1 , . . . , y m ) → ζ, where ζ is a tree over Q ∪ ∆ ∪ {x 1 , . . . , x k , y 1 , . . . , y m } such that x i occurs in ζ at a node u if and only if u is a leaf and is the first child of a Q-labeled node (and symbols y j are of rank zero). We denote ζ by rhs(q, σ). Every state q ∈ Q (m+1) of M induces a total function q :

T Σ × T m ∆ → T ∆ . Let s = σ(s 1 , . . . , s k ) ∈ T Σ and t 1 , . . . , t m ∈ T ∆ . Then q (s, t 1 , . . . , t m ) = [ζ] where ζ = rhs(q, σ) and [ζ] is defined recursively as follows. If ζ = y j then [ζ] = t j . If ζ = d(ζ 1 , . . . , ζ ) with d ∈ ∆ ( ) , then [ζ] = d([ζ 1 ], . . . , [ζ ]). If ζ = q (x i , ζ 1 , . . . , ζ ) with q ∈ Q ( +1) and i ∈ [k], then [ζ] = q (s i , [ζ 1 ], . . . , [ζ ]).
A mac transducer can be equipped with regular look-ahead in a similar way as a top-down tree transducer. A mac R transducer consists of a mac transducer M = (Q, Σ, ∆, q 0 , R) and look-ahead automaton A = (P, Σ, δ). For every q ∈ Q, σ ∈ Σ (k) , and p 1 , . . . , p k ∈ P , R contains a rule of the form q(σ(x 1 : p 1 , . . . , x k : p k ), y 1 , . . . , y m ) → ζ. Such a rule is applicable to an input tree σ(s 1 , . . . , s k ) if δ(s i ) = p i for i ∈ [k]. We denote ζ by rhs(q, σ, p 1 , . . . , p k ).

Origin Semantics of Macro Tree Transducers

We define the origin semantics of a mac R transducer M for a particular input tree s, using the mac R transducer M s and the decorated version dec(s) of s (see Definition 4.15 of [START_REF] Engelfriet | Macro tree translations of linear size increase are MSO definable[END_REF]). The tree dec(s) is obtained from s by relabeling every node u by s[u], u . For a state q and input symbol σ, u (of rank k), the mac R transducer M s applies the (q, σ, δ(s/u.1), . . . , δ(s/u.k))rule of M , but with every output symbol d replaced by d, u . The origin of an output node then simply is the second component of the label of that node. Intuitively, when a mac R transducer applies a rule at input node u and generates output inside of parameter positions, then all these outputs have origin u. Note that such nodes may be duplicated later and appear unboundedly often (at arbitrary positions of the output tree).

Example 31. We consider an origin translation of a mac transducer that cannot be defined by the previous models. On the other hand, the corresponding origin-less translation can be defined by the previous models: it is merely the identity on trees over Σ = {f (2) , a (0) }. Let M be the mac transducer with be clear that this construction does not influence the generation of output symbols. Thus, M o = M o . Lemma 32. Let M be a mac R transducer. An origin-equivalent mac R transducer M can be constructed so that M is nondeleting and nonerasing. Let q be a state of M of rank m + 1, s ∈ T Σ , and ξ = M (s). Then (i) y j occurs in ξ for every j ∈ [m], and (ii) ξ[ε] ∈ ∆.

Note that Point (ii) in Lemma 32 implies that the origin of ξ[ε] is necessarily a node of the input tree s.

Let us now turn to the proof that in the presence of origin, dtop Rdefinability of a given mac transducer is decidable. The proof is based on the two notions "order-preserving" and "path-wise bounded origin". Let τ be a functional tree translation with origin. The translation τ is order-preserving, if for all nodes u, v in an output tree of τ such that v is a descendant of u, it holds that the origin of v is a descendant of the origin of u. It is well-known that the origin translations of top-down tree transducers are order-preserving, see Lemma 19 of [START_REF] Lemay | A learning algorithm for top-down XML transformations[END_REF]. The origin translation τ is path-wise bounded origin if there exists a number β such that for every (s, (t, o)) ∈ τ , every u ∈ V (s), and every leaf x in V (t), |{v ∈ V (t, x) | o(v) = u}| ≤ β, where V (t, x) is the set of ancestors of x in t. The property says that there are at most β output nodes with the same origin on each path of the output tree. It should be clear that origin translations of top-down tree transducers are path-wise bounded origin: a bound is given by the maximal height of the right-hand side of any rule of the transducer. Lemma 33. Let M be a mac R transducer. It is decidable (i) whether or not M o is order-preserving and (ii) whether or not M o is path-wise bounded origin. If M o is path-wise bounded origin, then a bound can be computed.

Proof. Let M = (Q, Σ, ∆, q 0 , R) with look-ahead automaton A = (P, Σ, δ). (i) The order-preserving property is decided by considering input trees with two marked nodes, marked 1 and 2, such that node 2 is not a descendant of node

1. Let Σ = Σ ∪ Σ 1 ∪ Σ 2 and ∆ = ∆ ∪ ∆ 1 ∪ ∆ 2 where, for i ∈ {1, 2}, Σ i = {σ (k) i | σ ∈ Σ (k) } and ∆ i = {d (k) i | d ∈ ∆ (k) }.
We construct a tree automaton A 1 that recognizes the trees in T Σ that contain exactly one node u with label in Σ 1 and exactly one node v with label in Σ 2 , so that v is not a descendant of u. We now change the mac R transducer M so that for an i-marked input node it produces i-marked output nodes: let M = (Q, Σ , ∆ , q 0 , R∪R ) with look-ahead automaton A = (P, Σ , δ∪δ ). For every transition δ(σ, p 1 , . . . , p k ) = p and i ∈ {1, 2} we let δ (σ i , p 1 , . . . , p k ) = p. For every rule q(σ(x 1 : p 1 , . . . , x k : p k )) → ζ in R and i ∈ {1, 2}, we let the rules q(σ i (x 1 : p 1 , . . . , x k : p k )) → ζ i be in R , where ζ i is obtained from ζ by changing the label of every d ∈ ∆ into d i . The transducer M is order-preserving if and only if there does not exist an input tree s ∈ L(A 1 ) such that M (s) contains a 2-marked descendant of a 1-marked node. We construct a tree automaton A 2 that recognizes the trees in T ∆ that contain a 2-marked descendant of a 1-marked node. It now holds that M is order-preserving if and only if M -1 (L(A 2 )) ∩ L(A 1 ) = ∅. The latter is decidable because inverse mac R translations effectively preserve regularity (Theorem 7.4(1) of [START_REF] Engelfriet | Macro tree transducers[END_REF]).

For (ii ), let A 3 be a tree automaton for all trees in T Σ∪Σ 1 with exactly one node labeled by a symbol in Σ 1 and all other nodes labeled by symbols in Σ. Let s ∈ L(A 3 ) = L, s[u] ∈ Σ 1 , and t = M (s). The ∆ 1 -nodes in t are exactly those nodes that have origin u. Thus, we need to check if there are only boundedly many such nodes on any path in t. For this, we construct a ytop R transducer T , that on input t nondeterministically chooses a root-toleaf path in t, and outputs all ∆ 1 -nodes on this path. Let Γ be the alphabet of all symbols in ∆. We define T = ({q}, ∆ ∪ ∆ 1 , Γ, q, U ). For every d ∈ ∆ (0) we let the rules q(d) → ε and q(d 1 ) → d be in U . For all d ∈ ∆ (k) , k ≥ 1, and i ∈ [k] let the rules q(d(x 1 , . . . , x k )) → q(x i ) q(d 1 (x 1 , . . . , x k )) → d(q(x i )) be in U . It now holds that O = T ( M (L)) is finite if and only if M is pathwise bounded origin. Finiteness of O is decidable by Theorem 6.2 of [START_REF] Drewes | Decidability of the finiteness of ranges of tree transductions[END_REF], and in case of finiteness the elements can be computed by that theorem, thus giving us a path-wise origin bound.

We know that the origin translation of a dtop R transducer is orderpreserving and path-wise bounded origin. In the next lemma we show that if the origin translation M o of a mac R transducer M is order-preserving and path-wise bounded origin, then M o is effectively definable by a dtop R transducer. By Lemma 32 we may assume that M is nondeleting and nonerasing. Let M = (Q, Σ, ∆, q 0 , R) and let (P, Σ, δ) be its look-ahead automaton. As it turns out, the fact that M o is order-preserving and path-wise bounded origin severely restricts the way in which M can use its parameters. A rule q(σ(x 1 : p 1 , . . . , x k : p k ), y 1 , . . . , y m ) → ζ of M is useful if there exist s ∈ T Σ and u ∈ V (s) such that q occurs in M (s[u ← δ(s/u)]) and s[u] = σ; here M is the extension of M , as defined in the proof of Lemma 29. Consider now the right-hand side ζ of a useful rule r of M . Let q(x i , ζ 1 , . . . , ζ m ) be a subtree of ζ and let v be a node of a

ζ i , i ∈ [m]. We claim that (P1) ζ i [v] is not in ∆ (P2) ζ i [v] is not in {x 1 , . . . , x k } -{x i } To prove P1, assume ζ i [v] ∈ ∆. Since r is useful, q occurs in M (s[u ← δ(s/u)]) for some s ∈ T Σ and u ∈ V (s) with s[u] = σ. Thus, M (s) contains the subtree q (s/ui)[y j ← ζ j | j ∈ [m]]
. By Lemma 32, the origin of the root node of this subtree is of the form u.i.u . Since M is nondeleting, M (s) contains, as a descendant of this root node, a node corresponding to the node ζ i [v]. This latter node has origin u, which is not a descendant of u.i.u . This contradicts the order-preserving property of M . Similarly for P2 we assume that t i [v] = x j with j = i. This implies the existence of a node in M (s) with origin u.i.u having a descendant with origin u.j.u . Again the order-preserving property is contradicted.

Properties P1 and P2 say that in a parameter tree ζ j of a state call q(x i , ζ 1 , . . . , ζ m ) appearing in the right-hand side of a useful rule, only other state calls to x i may appear and parameters y j . Thus, ζ j is of the form q 1 (x i , q 2 (x i , q 3 (x i , . . . ), . . . ), q (x i , . . . ), . . . ), where parameters may appear at the leaves. Consider now the application of such a rule where an input tree s i is substituted for x i . Let σ be the root symbol of s i , and let us apply the σ-rule of each state appearing. For the same reasons as before, any subtree of state calls in the resulting tree must contain state calls that are all on the same input node. What is the maximal depth of any such subtree of state calls? Clearly, this equals the path-wise origin bound β of M o .

The origin-equivalent dtop R transducer T that we construct keeps in its states trees of states of M , of depth at most β. Whenever such a state tree becomes deeper than β, then we know that a non-useful rule has been applied; therefore we may define the corresponding rule of the dtop R transducer as a dummy-rule. Similarly, whenever an output symbol or different input variable x j appears under a state call on x i (with i = j), then we know that a non-useful rule has been applied and define a dummy rule for T .

Example 34. For n ≥ 1 we define a mac transducer M n such that M n is nondeleting, nonerasing, and M o is order-preserving and path-wise bounded origin. The transducer takes as input monadic trees over Σ = {a (1) , e (0) } and produces ternary trees over ∆ = {f (3) , e (0) }. The rules of M n are as follows.

q 0 (a(x 1 ))

→ q 1 (x 1 , q 1 (x 1 , q(x 1 ))) q 0 (e) → e q i (a(x 1 ), y 1 ) → q i+1 (x 1 , q i+1 (x 1 , y 1 )) for i ∈ [n -1] q i (e, y 1 )

→ f (y 1 , e, y 1 ) for i ∈ [n] q n (a(x 1 ), y 1 ) → f (y 1 , q 0 (x 1 ), y 1 ) q n (e, y 1 )

→ f (y 1 , e, y 1 ) q(a(x 1 ))

→ q(x 1 ) q(e) → e

As an example, let n = 10 and consider the input tree s = a 10 (a(s )) with s ∈ T Σ . We have M (s) = q 1 (a 9 (a(s )), q 1 (a 9 (a(s )), q (a 9 (a(s ))))) = q 2 (a 8 (a(s )), q 2 (a 8 (a(s )), q 2 (a 8 (a(s )), q 2 (a 8 (a(s )), q (a 9 (a(s ))))))) = q 10 (a(s ), q 10 (a(s ), . . . , q 10 (a(s ), q (a(s ))))) = ξ where the tree ξ has 2 n = 1024 occurrences of q 10 . We now apply the fifth rule to each of these occurrences. We obtain a tree of the form f (f (. . . ), q (s ), f (. . . )).

If we ignore the second subtree of each f -node, then this is a full (complete) binary tree of height 2 n . If s = e, then the second subtree of each f -node is equal to e, otherwise, these subtrees equal M (s ). Thus, each sequence of n-many input a-nodes is translated to such a full tree of height 2 n , where the second subtrees of each internal node contain the translation of the following sequence of input a-nodes. Lemma 35. Let M be a nondeleting nonerasing mac R transducer. If M is order-preserving and path-wise bounded origin then an origin-equivalent dtop R transducer can be constructed. k = 2 n . The dtop R transducer M n has states ζ of rank one, where ζ is a monadic tree of height ≤ 2 n with internal nodes labeled by states q 1 , . . . , q n and with a leaf labeled q or labeled q 0 . The initial state of M n is q 0 . Let us consider the rules of M n , for the case that n = 10: q 0 (a(x 1 ))

→ q 1 (q 1 (q)) (x 1 ) q 0 (e) → e q 1 (q 1 (q)) (a(x 1 )) → q 4 2 (q) (x 1 ) q 1 (q 1 (q)) (e) → f (f (e, e, e), e, f (e, e, e)) = t 1 q 4 2 (q) (a(x 1 )) → q 8 3 (q) (x 1 ) q 4 2 (q) (e) → f (f (t 1 , e, t 1 ), e, f (t 1 , e, t 1 )) = t 2 . . . q 1024 10 (q) (a(x 1 )) → f (t 9 , q 0 (x 1 ), t 9 ) q 1024 10 (q) (e) → f (t 9 , e, t 9 ) q (a(x 1 ))

→ q (x 1 ) q (a(x 1 ))

→ e

It should be clear that M n o = M n o . The mac transducers M n form a family of transducers of size O(n), with a size of O(2 2 n ) for the dtop R transducer constructed in the proof of Lemma 35.

Conclusions and Future Work

The origin semantics of a tree transducer contains the information which input node is responsible for generating any given output node. Thus, for the same tree translation (without origin) there are, in general, infinitely many tree translations with origin, corresponding to the distinct transducers realizing the translation.

The status of decidability for many important problems changes drastically, when moving from conventional to the origin semantics. For instance, equivalence is undecidable for nondeterministic top-down and MSO tree transducers. With origin, however, both of these problems become decidable. The reason for this is that origin semantics adds a rigid synchronicity between output and input nodes. Using this synchronicity we proved decidability of equivalence for deterministic top-down tree-to-string transducers under origin semantics. In the conventional semantics, decidability of equivalence for this class has been a long standing open problem. For nondeterministic topdown tree-to-string transducers, equivalence remains undecidable, even in the presence of origin, and, even for monadic input trees. Such transducers can simulate string transducers by producing output only at the unique input leaf, thus loosing all origin synchronicity. In the future we would like to generalize these results to more powerful models of tree transducers. For instance, for both, attributed [START_REF] Courcelle | On the equivalence problem for attribute systems[END_REF] and deterministic macro tree transducers [START_REF] Engelfriet | Some open questions and recent results on tree transducers and tree languages[END_REF],

it is an open question whether equivalence is decidable. Can equivalence be shown decidable for these transducers, in the presence of origin? Note that in the meantime (during the writing of this paper), equivalence for deterministic macro tree-to-string transducers over one-letter output alphabets has been shown decidable [START_REF] Seidl | Equivalence of deterministic topdown tree-to-string transducers is decidable[END_REF]; using that result they prove decidability of equivalence for deterministic top-down tree-to-string transducers thus solving the long standing open problem.

Besides equivalence, we also considered injectivity and query determinacy. Our main result is that with origin semantics, injectivity is decidable for deterministic MSO transducers and for deterministic top-down tree transducers. Both problems are undecidable in the conventional non-origin setting. For deterministic top-down tree-to-string transducers the problem remains undecidable even in the presence of origin. The injectivity results can be generalized to query determinacy: for views with origin and queries without origin (in both above decidable classes), query determinacy is decidable. This poses several interesting questions for future work. Is it possible to reduce the amount of retained origin information, without losing query determinacy? Possible reductions of origins are to represent them by Dewey paths (without input node labels), or to represent them by pre-order numbers of input nodes.

Finally, we also considered two subclass definability questions: is it decidable (1) for a given deterministic top-down tree-to-string transducer with regular look-ahead whether there exists an origin-equivalent MSO tree-tostring transducer, and (2) for a given total deterministic macro tree transducer, whether there exists an origin-equivalent deterministic top-down tree transducer with regular look-ahead. Both problems are decidable, and transducers in the subclass can be constructed if they exist. These problems are not known to be decidable in the origin-less setting. There are many interesting definability questions to be considered in the future. For instance, how about the non-deterministic version of (1) and ( 2) above? Is it decidable for a (deterministic) top-down tree transducer, under origin semantics, whether it can be realized by a (deterministic) bottom-up tree transducer, and, vice versa? Can it be decided for deterministic top-down tree transducer with regular look-ahead, under origin semantics, whether it can be realized by a deterministic top-down tree transducer (without look-ahead)? The latter question is still open in the origin-less setting, but has recently been shown decidable for a restricted case [START_REF] Engelfriet | Look-ahead removal for total deterministic top-down tree transducers[END_REF].
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 1 Figure 1: Translation of input tree h(h(h(a))) by the transducer M 1 . Dashed arrows depict the origin translation.

Figure 2 :

 2 Figure 2: Translation of the input tree h(h(h(a))) by the transducer M 2 . Dashed arrows depict the origin translation.
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 3 Figure 3: Translation of input tree f (a, f (b, a)) by the transducer M 3 .
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 4 Figure 4: Translation of input tree f (a(a(b(e))), e) by the transducer M τ .

  Now, by definition of o ∼, we have p ν o ∼ q ν for all ν ∈ [m]. We can then conclude by induction.

Figure 5 :

 5 Figure 5: Translation of the input tree a(a(b(e))) by the transducer M 5 .
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 1 Decidability of equivalence

  regular. The rules for M2 are defined similarly. It now holds R( M 1 o , M 2 o ) = E( M1 o , M2 o ) and hence the result follows by Lemma 12. Lemma 17. Let T 1 , T 2 be dmsot transducers. Then R( T 1 o , T 2 o ) is recognizable. Proof. It follows from Lemma 11 that E( T 1 o , T 2 o ) is regular. Then, the result can then be shown similarly to Lemma 16. Proof of Theorem 14. An origin translation τ is injective if and only

As usual, we use false, ϕ ∧ ϕ , ϕ → ϕ, ∀xϕ and ∀Xϕ as shortcuts for ¬true, ¬(ϕ ∨ ϕ ), ¬ϕ ∨ ϕ , ∀xϕ, ∀Xϕ respectively.
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check origin-equivalence of M 1 and M 2 on D , one only needs to consider their behaviours on paths, i.e., the partial output strings produced on root-to-node paths of the input tree (called string abstractions). This latter observation is formalised in Lemma 26.

Lemmas used in the proof of Theorem 22

The proof of Theorem 22 is based on several key lemmas.

Lemma 23. Let M 1 , M 2 be two ydtop R transducers. One can compute two ydtop transducers M 1 and M 2 and a regular tree language E, such that M 1 and M 2 are origin-equivalent iff M 1 and M 2 are origin-equivalent on E.

Proof. Let P i be the set of states of the look-ahead automaton A i of M i (assumed to be non-deterministic top-down tree automata). Without loss of generality we assume that every rule q(a(. . . ) : p) → w of M i is such that the language of A i from initial state p is non-empty (otherwise we remove such a useless rule).

Then, the idea is to extend the alphabet of the transducers M i with lookahead states, and delegate the look-ahead tests to the regular language E. More precisely, if M 1 has a rule q(a(. . . ) : p 1 ) → w then M 1 has, for every p 2 ∈ P 2 , the rule q( a, p 1 , p 2 (. . . )) → w. Similarly, if M 2 has a rule q(a(. . . ) : p 2 ) → w then M 2 has for every p 1 ∈ P 1 the rule q( a, p 1 , p 2 (. . . )) → w. The resulting transducers M 1 and M 2 are both deterministic. Suppose it is not the case, then it implies that there are two rules of the form q( a, p 1 , p 2 (. . . )) → w and q( a, p 1 , p 2 (. . . )) → w with w = w , say in M 1 . By definition of M 1 , we get that there are two rules of the form q(a(. . . ) : p 1 ) → w and q(a(. . . ) : p 1 ) → w in M 1 . Since M 1 is deterministic, it implies that the language of A 1 from initial state p 1 is empty. This contradicts the fact that M 1 does not contain such rules by our initial assumption.

The language E accepts a tree t over the extended alphabet iff for all nodes u of t with label a, p 1 , p 2 , for all i ∈ {1, 2}, the projection of the subtree t/u on the first component is accepted by A i from initial state p i . The language E can be defined by an alternating top-down tree automaton: when reading a label a, p 1 , p 2 , two universal transitions are triggered to two automata A 1 and A 2 respectively, which simulate A 1 and A 2 on the first projection. Alternating top-down tree automata are no more expressive than regular tree languages [START_REF] Comon | Tree automata techniques and applications[END_REF], hence the result follows.

String abstractions. Towards our goal (prove Step 2), we will need the notion of string abstraction. Let A, B two alphabets (not necessarily finite). Let w ∈ (A × B) * and U ⊆ B. The U -abstraction of w is the word obtained from U by keeping only those letters (a, b) such that b ∈ U . Formally, it is the image µ U (w) of w by the morphism µ U defined by µ

The next lemma shows that a word is uniquely determined by its U -abstractions such that U has cardinality one or two.

Proof. The only if direction is trivial. Let us show the if direction. Suppose that w 1 = w 2 . We consider two cases:

). Note that we may have b 1 = b 2 therefore we also need to consider singleton sets U in the lemma. String abstractions modulo origins. Let s be a tree, w = a 1 . . . a n ∈ ∆ * a string with a i ∈ ∆ for all i, and o : V (w) → V (s) an origin mapping. We denote by w ⊗ o ∈ (∆ × V (s)) * the word w whose labels are extended with origins, i.e. |w ⊗ o| = |w| and for all i ∈ {1, . . . , |w|},

A direct consequence of Lemma 24 is that a word with origins is uniquely determined by the set of its U -abstractions modulo origin, with |U | ∈ {1, 2}. The following example shows that considering sets U of cardinality 2 is necessary.

Example 25. Consider the string w = aaaa and the two origin mappings

the following rules:

→ f (q(x 1 , a), q(x 2 , a)) q(f (x 1 , x 2 ), y 1 ) → f (q(x 1 , y 1 ), q(x 2 , y 1 )) q(a, y 1 ) → y 1 .

For every tree s ∈ T Σ , M o (s) = (s, o) where o(u) = u if u is an internal node, and o(u) = ε if u is a leaf. Thus, all leaves of an output tree have the input root node as origin. Clearly, the previous models can not realize this origin translation: for mso transducers this follows because M o is not of bounded origin. For top-down tree transducer it follows because the origin of a leaf node u is not a descendant of the origin of the parent of u (see the "order-preserving" property, discussed in this Section, after Lemma 32).

Definability Problem

Deciding whether the translation of a mac transducer can be defined by a dtop R transducer is a difficult open problem: a mac transducer can use its parameters in complex ways, but still be definable by a dtop R transducer. In contrast, in the presence of origin we are able to prove decidability. Before we dwell on this proof, let us extend a useful normal form, from the originless semantics of mac R transducers to the semantics with origin. Let M be a mac R transducer. Then M is nondeleting, if for every q ∈ Q (m+1) and j ∈ [m], y j occurs in the right-hand side of every q-rule. A q-rule is a rule with q in its left-hand side. Further, M is nonerasing, if the right-hand side ζ of every q-rule with q ∈ Q (2) is not equal to y 1 , i.e., ζ = y 1 .

It is shown in Lemma 6.6 of [START_REF] Engelfriet | Macro tree transducers, attribute grammars, and MSO definable tree translations[END_REF] how to construct for a given mac R transducer M , a mac R transducer M such that M = M and M is nondeleting. The idea is to determine via look-ahead the parameters of a state that are deleted; in the corresponding rules, the corresponding arguments of the state are removed, and the state is changed to one of smaller rank (and appropriate rules are added). It should be clear that this construction does not alter the generation of output symbols. Thus, the origin semantics of M and M coincide:

In Lemma 7.11 of [START_REF] Engelfriet | Macro tree transducers, attribute grammars, and MSO definable tree translations[END_REF] it is shown how to construct for a given nondeleting mac R transducer M , a mac R transducer M such that M = M and M is nondeleting and nonerasing. The idea is to determine via look-ahead the states q for which q (s i ) = y 1 , and to accordingly replace in right-hand sides all occurrences of such states by their first parameter argument. It should Proof. Assume that τ = M o is path-wise bounded origin with bound β. Let M = (Q, Σ, ∆, q 0 , R) and let (P, Σ, δ) be its look-ahead automaton. We construct the dtop R transducer M = (Q , Σ, ∆, q 0 , R ) with look-ahead automaton (P, Σ, δ). Let U be the ranked alphabet {q (m-1) | q ∈ Q (m) , m ≥ 1}. The set of states Q of M is defined as

Let ζ ∈ Q and σ ∈ Σ (k) . We let the rule ζ (σ(x 1 : p 1 , . . . , x k : p k )) → t be in R , where the right-hand side t is defined as follows. Let ζ be the tree obtained from ζ by changing every subtree q(ζ 1 , . . . , ζ m ) into the tree rhs M (q, σ, p 1 , . . . , p k )[y j ← ζ j | j ∈ {1, . . . , m}].

Let v be a top-most node in

We check the properties P1, P2, and the path-wise bounded origin property: if ζ contains a ∆-node, or, if ζ contains an occurrence of x j with j = i, or if height(ζ ) > β, then let t = e where e is an arbitrary symbol in ∆ (0) . Otherwise, replace v in ζ by the tree ζ (x i ) where ζ is obtained from ζ by removing the first subtree of every Q-labeled node (i.e., by removing all subtrees consisting of the single node x i ). If we are able to proceed until all top-most Q-labeled nodes in ζ are replaced by state calls of M , then the resulting tree ζ defines the right-hand side t of the rule of M .

It should be clear that every useful rule of M gives rise to a well-defined (non-dummy) rule of M and that M o (s) = M o (s) for every s ∈ T Σ .

Theorem 36. For a given mac R transducer M , it is decidable whether or not there exists an origin-equivalent dtop R transducer. If so, then such a dtop R transducer can be constructed.

Proof. Using Lemma 33 we check if M is order-preserving. If it is not, then we return "no", because by Lemma 18 of [START_REF] Lemay | A learning algorithm for top-down XML transformations[END_REF], every translation realized by a top-down tree transducer is order-preserving. Otherwise, we check with Lemma 33 whether M is path-wise bounded origin. If it is not, then we return "no", because it is easily seen that every translation realized by a top-down tree transducer T is path-wise bounded origin with constant β, where β is the maximal size of the right-hand side of any rule of T . We make M nondeleting and nonerasing, according to Lemma 32. According to Lemma 35 we construct the dtop R transducer T such that T o = M o .

Example 37. We apply the construction of Lemma 35 to the mac transducer M n of Example 34. Note that M n is path-wise bounded origin with bound