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Abstract 

The preclinical drug screening of pancreatic cancer treatments suffers from the absence of 

appropriate models capable to reproduce in vitro the heterogeneous tumor microenvironment 

and its stiff desmoplasia. Driven by this pressing need, we describe in this paper the conception 

and the characterization of a novel 3D tumor model consisting of a triple co-culture of 

pancreatic cancer cells (PANC-1), fibroblasts (MRC-5) and endothelial cells (HUVEC), which 

assembled to form a hetero-type multicellular tumor spheroid (MCTS). By histological analyses 

and Selective Plain Illumination Microscopy (SPIM) we have monitored the spatial distribution 

of each cell type and the evolution of the spheroid composition. Results revealed the presence 

of a core rich in fibroblasts and fibronectin in which endothelial cells were homogeneously 

distributed. The integration of the three cell types enabled to reproduce in vitro with fidelity the 

influence of the surrounding environment on the sensitivity of cancer cells to chemotherapy. 

To our knowledge, this is the first time that a scaffold-free pancreatic cancer spheroid model 

combining both tumor and multiple stromal components has been designed. It holds the 

possibility to become an advantageous tool for a pertinent assessment of the efficacy of various 

therapeutic strategies. 

 

  

 

Keywords 

Multicellular tumor spheroids; pancreatic cancer; 3D models; tumor microenvironment; layer-

by-layer coating 

 

 

 



3 
 

1. Introduction  

In vitro models capable to faithfully mimic the complex cancer physiopathology represent an 

unmet need to improve the significance of preclinical research data in the early phase of drug 

development. It is well known that the tumor biology results from a mutual interaction between 

cancer cells and the surrounding microenvironment [1]. For instance, extracellular matrix 

(ECM) proteins, such as fibronectin (FN), are actively involved in tumor stiffness regulation 

[2, 3] as well as in promotion of tumor growth [4, 5] and drug resistance [6, 7]. Moreover, the 

intricate cross-talking between cancer cells and stroma components (e.g., fibroblasts, immune 

and endothelial cells) regulates different features related to tumor progression [8-10]. 

Fibroblasts influence both the tumor development and the metastatic potential of cancer cells 

through direct heterotypic cell-to-cell contacts and paracrine factors [11-14]. Interactions with 

cancer cells, fibroblasts and ECM proteins are required to allow the migration and the 

proliferation of endothelial cells during tumor vascularization [15, 16].  

Multicellular tumor spheroids (MCTS) are the most widely used 3D in vitro model in oncology 

preclinical research and their power of prediction of the in vivo efficacy of various 

chemotherapeutic agents has been clearly evidenced [17, 18]. MCTS reproduce some important 

key factors of real tumors such as: (i) the formation of nutrients, oxygen and metabolic waste 

diffusive gradients, (ii) the organization of cells in layers with different proliferation rates, (iii) 

the presence of cell-to-cell interactions and signalling, (iv) the expression of specific gene 

patterns and (v) the chemoresistance [19, 20]. Still, conventional MCTS consisting exclusively 

of cancer cells mimic only partially the real tumors as consequence of an insufficient 

extracellular matrix deposition and the absence of other cell types, which compose the tumor 

microenvironment. With the aim to overcome these limitations hetero-type MCTS consisting 

of 3D co-cultures of cancer cells and stroma cells have been proposed [21-24]. In addition, the 

embedding of mono- and hetero-type MCTS in exogenous 3D matrices has been extensively 
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used, creating a cell-supportive environment and reproducing the cell-to-matrix interactions 

[25, 26]. Undoubtedly, the use of matrices, such as natural hydrogels (Matrigel® and collagen 

I, mainly) or synthetic polymers (e.g., poly(ethylene glycol), poly(lactide-co-glycolide) and 

poly(N-isopropylacrylamide)), enhanced the structural stability of 3D MCTS and endowed 

them with higher biological relevance [27].  

However, several disadvantages characterize these approaches. They include: (i) the unknown 

composition of natural hydrogels and the batch-to-batch variability responsible for a lack of 

reproducibility [21], (ii) the difficulty to harvest single spheroids once embedded in synthetic 

biomaterials and the need to apply experimental procedures (chemical or physical) often toxic 

and/or detrimental for the cells [28], (iii) the restricted accessibility of embedded spheroids, 

which often makes time-consuming the set-ups to carry out quantitative measurements [23, 27]. 

In this context, it is evident that the in vitro assessment of the role of the microenvironment on 

the malignant behaviour of tumors and the response to treatments is still a challenge.  

Aiming to face this issue, we describe here a novel hetero-type 3D spheroid model integrating 

cancer cells together with cellular and acellular stroma components (i.e., fibroblasts, endothelial 

cells, ECM), focusing our attention on the pancreatic ductal adenocarcinoma (PDAC). PDAC 

belongs to the first five most lethal type of cancers in the western world and the progress in its 

treatment remains too slow as a consequence of the complex physiopathology of this tumor 

characterized by a heterogeneous cellular composition and the accumulation of a very dense 

fibrotic tissue (i.e., desmoplasia) [29]. In PDAC, the crosstalk between cancer and stroma cells 

leads to a dramatic increase in FN and collagen deposition [10, 14, 30], which causes the 

collapse of the tumor vessels and the formation of an aberrant and disorganised vascular 

network [31]. The consequent oxygen and nutrients deficiency induces the secretion of pro-

angiogenic molecules that, in turn, increase the aggressiveness and the invasiveness of cancer 

cells [31-33]. Currently available hetero-type MCTS of PDAC are better representative of the 
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pathological condition in comparison with 2D monolayer cultures, however they often lack an 

accurate characterization [34, 35] or consist of no more than two cell types [36-41]. For 

instance, MCTS made of cancer cells and fibroblasts have been proposed to mimic in vitro the 

molecular cross-talk which characterize the PDAC desmoplasia [36-38, 40, 41]. Similarly, 

cancer and endothelial cells were assembled in MCTS to reproduce the tumor angiogenesis and 

its influence on cancer cell invasiveness [39]. However, to the best of our knowledge, hetero-

type pancreatic tumor spheroids including fibroblasts and endothelial cells, both essential 

components of the PDAC microenvironment, have not been previously reported. This was 

likely due to the difficulty to find the experimental conditions required to obtain viable three-

cell-type PDAC multicellular spheroids. In this context, we herein report on the step-by-step 

construction and detailed characterization of a scaffold-free multicellular tumor spheroid 

consisting of a triple co-culture of pancreatic cancer cells (PANC-1), fibroblasts (MRC-5) and 

endothelial cells (HUVEC). Importantly, we demonstrated that the presence of a complex 

microenvironment reduced the sensitivity of cancer cells to chemotherapy thus closely 

mimicking the resistance to treatments observed in vivo. Overall, this original scaffold-free 

MCTS represents a pertinent and easy-to-handle tool, which could be readily introduced in 

routine preclinical screening of therapeutic strategies for pancreatic cancer treatment. 

 

2. Materials and methods  

2.1. Cell lines 

Human pancreatic cancer cells (PANC-1), human lung fibroblasts (MRC-5) and human 

umbilical vein endothelial cells (HUVEC) were purchased from ATCC (France) and 

maintained as recommended. Briefly, PANC-1 cells were maintained in Dulbecco’s Modified 

Eagle Medium-high glucose (DMEM, Sigma Aldrich, France) supplemented with 10% heat-

inactivated fetal bovine serum (FBS, Gibco, France). MRC-5 cells were cultured in Eagle's 
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Minimum Essential Medium (EMEM, Sigma Aldrich, France) supplemented with 10% heat-

inactivated FBS and 1% of 200 mM L-Glutamine solution (Sigma Aldrich, France). The 

luciferase-expressing human pancreatic cell line (BxPC-3-luc2) was obtained from 

PerkinElmer (Roissy, France) and maintained in Roswell Park Memorial Institute medium 

(RPMI, Sigma Aldrich, France) supplemented with 10% heat-inactivated FBS. All media were 

further supplemented with penicillin (50 U.mL-1) and streptomycin (0.05 mg.mL-1) (Sigma 

Aldrich, France). HUVEC cells were maintained in endothelial growth medium (EGM-2) 

consisting of endothelial basal medium (EBM-2) in which supplements and growth factors have 

been added according to manufacturer instruction (EGM-2 BulletKit Lonza, France). Cells 

were maintained in a humid atmosphere at 37 °C with 5% CO2. Cells were used below passage 

8 after thawing and harvested at a confluence of 70-80%. 

 

2.2. Cell transfection 

Luciferase- and fluorescent protein-expressing cells were created by stable lentiviral 

transduction according to manufacturer protocols.  

For the luciferase-transduction, PANC-1 cells (2.5 x 104 cells.mL-1) were seeded in 24-well 

plates (1 mL/well) and incubated for 24 h in a humid atmosphere at 37 °C with 5% CO2. 

Transduction was performed by addition of RediFect™ Red-FLuc-Puromycin lentiviral 

particles (Perkin-Elmer, France) to cells. For green fluorescent protein (GFP)-transduction, 

MRC-5 fibroblasts (9 x 104 cells.mL-1) were seeded in 24-well plates (1 mL/well) and incubated 

for 24 h in a humid atmosphere at 37 °C with 5% CO2. Transduction was performed by addition 

of pLenti-C-mGFP-P2A-Puro particles (Origene, Germany) to cells. For both cell types, a 

polybrene (8 µg.mL-1)-containing medium and a multiplicity of infection (MOI) of 10 were 

used. 
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For red fluorescent protein (RFP)-transduction, HUVEC cells (5 x 103 cells.mL-1) were seeded 

in 24-well plates (1 mL/well) and incubated for 24 h in a humid atmosphere at 37 °C with 5% 

CO2. Transduction was performed by adding pLenti-C-mRFP-P2A-Puro particles (Origene, 

Germany) to cells. In this case a MOI 100 in polybrene-free medium was used. 

For each experiment, transduction particle-containing medium was removed after 24 h and 

replaced with fresh medium containing puromycin (Thermo Fisher Scientific, France) as 

selection antibiotic. According to the specific cell sensitivity, puromycin was used at a 

concentration of 2, 1 and 0.5 µg.mL-1 for PANC-1, MRC-5 and HUVEC cells, respectively. 

Puromycin-containing medium was replaced every 3 days until resistant colonies could be 

identified. Cell bioluminescence and fluorescence were measured 48 h after infection and prior 

to the cryopreservation of selected cells. 

 

2.3. Construction of 3D MCTS  

2.3.1. Liquid overlay technique  

Mono-type and hetero-type MCTS were constructed according to the liquid overlay 

technique [42] using 96 round-bottomed well plates (CELLSTAR®, Sigma Aldrich, France). 

Before use, 50 µL of 1.2 % (w/v) poly-2-hydroxyethyl methacrylate (poly-HEMA, Sigma 

Aldrich, France) ethanolic solution was added to each well, and solvent was evaporated in 

sterile conditions.  

For the construction of the mono-type PANC-1 spheroids, cell suspensions (2.5, 5, 12.5 or 25 

x 103 cells.mL-1) were prepared in DMEM complete medium and 200 µL of the cell suspensions 

(corresponding to 500, 1000, 2500 and 5000 cells, respectively) was transferred into each well.  

For the construction of the hetero-type PANC-1:MRC-5 spheroids, suspensions of each cell 

type were prepared in DMEM complete medium and then 200 µL of their opportune mixture 
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was transferred into each well. The number of PANC-1 cells was fixed at 500 cells per well. 

Four PANC-1:MRC-5 ratios have been studied (i.e., 1:1; 1:2; 1:4 and 1:9).  

For the construction of the hetero-type PANC-1:MRC-5:HUVEC spheroids, suspensions of 

each cell type were prepared in DMEM complete medium and then 200 µL of their opportune 

mixture was transferred into each well. The number of PANC-1 was fixed at 500 cells per well. 

A ratio of 1:9:4 among PANC-1:MRC-5:HUVEC has been studied. Optimization of the 

experimental protocol included (i) construction of a nanofilm of fibronectin-gelatin (FN-G) at 

the MRC-5 surface before seeding (see 2.3.2) and (ii) addition of human VEGF (50 ng.mL-1) 

(Thermo Fisher Scientific, France) to the culture medium. 

Cell dispersions at different densities were prepared after automatic cell counting (Countess II, 

Thermo Fisher Scientific, France), according to manufacturer instructions. After cell seeding, 

plates were centrifuged (1100 rpm, 5 minutes, 20 °C) and then incubated in a humidified 

atmosphere with 5% CO2 at 37 °C for a minimum of 48 h. For long term culture, half of the 

medium was replaced every 3 days. 

MCTS constructed with luciferase-expressing cells were prepared according to the same 

protocols except for the use of phenol red-free DMEM (Sigma Aldrich, France) supplemented 

with 10% heat-inactivated FBS, 1% of 200 mM L-Glutamine solution, 1% of 100 mM sodium 

pyruvate solution (Sigma Aldrich, France), penicillin (50 U.mL-1) and streptomycin (0.05 

mg.mL-1). Fluorescently-labelled spheroids were prepared using GFP-expressing MRC-5 

fibroblasts and RFP-expressing HUVEC cells. 
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2.3.2. Fibronectin-gelatin coating of MRC-5 

A fibronectin-gelatin nanometer sized film was constructed at the MRC-5 surface according to 

the previously validated Layer-by-Layer (LbL) method [43]. Briefly, after trypsinization, 

fibroblasts were suspended in 1 mL of Tris-HCl buffer (50 mM, pH 7.4) (Sigma Aldrich, 

France), centrifuged (2500 rpm, 1 minute, room temperature) and then alternatively incubated 

for 1 minute using a Microtube Rotator (VWR, France) in 1 mL of 0.04 mg.mL-1 Human 

fibronectin or gelatin (Sigma Aldrich, France) Tris-HCl solutions (50 mM, pH 7.4). Each 

incubation was followed by a centrifugation (2500 rpm, 1 minute, room temperature) and a 

washing step with Tris-HCl buffer (1 mL, 50 mM, pH 7.4). A total of 9 coating steps were 

performed. Then, fibroblasts were suspended in cell culture medium and used to construct the 

triple co-culture, as above described. 

 

2.4. Spheroid characterization 

2.4.1. Optical imaging  

Routine spheroid monitoring was performed using the AxioObserver Z1 (Carl Zeiss, Germany) 

inverted microscope equipped with a Peltier cooled (- 40 °C) CoolSnap HQ2 CCD camera 

(Photometrics,Tucson, USA) and a XL incubator thermostated at 37 °C providing 5% CO2. 

Transmitted light images of spheroids were collected directly from the poly-HEMA coated 

plates with a Plan-Apochromat 2.5x dry objective lens, a halogen lamp and a motorized stage 

used on an automated mode (AxioVision software / high content acquisitions).  

By using an image-processing macro, specifically created with the Image-J® software, 

morphometric parameters such as spheroid area, perimeter, minimum diameter, major diameter, 

aspect ratio and circularity were obtained. Spheroid volume (V) was calculated according to 

the formula V = [(a²)x(b)]/2, in which a and b represent the minor and major diameter, 
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respectively. For the growth profile characterization, images of 128 spheroids per condition 

have been collected at each time point. 

 

2.4.2. Spheroid dissociation and single cell counting 

To assess the number of cells per spheroid over time, six-to-eight MCTS were harvested using 

a p5000 pipette to preserve their integrity, and then pooled in a microtube. Culture medium was 

carefully removed and spheroids were washed with 200 µL of phosphate buffered saline (PBS, 

Sigma Aldrich, France). After addition of 50 µL of trypsin (Sigma Aldrich, France), samples 

were incubated at 37 °C for 30 minutes and pipetted every 5 minutes with a p200 pipette to 

facilitate the dissociation of spheroids into a single-cell suspension. The enzyme action was 

stopped by the addition of 50 µL of FBS-containing culture medium. The total cell number per 

sample was measured using the Countess II Automated Cell Counter (Thermo Fisher Scientific, 

France) and the average cell number per spheroid was calculated dividing it by the number of 

used spheroids. Experiments have been performed in triplicate. 

 

2.4.3. Adenosine Triphosphate (ATP) cell viability assay 

Individual MCTS (n=6) were harvested from the round bottom wells and transferred in a 

microtube using a p5000 pipette. Culture medium was carefully removed, spheroids were 

washed with PBS (200 µL) to remove any extracellular ATP and then redispersed in 50 µL of 

phenol red-free DMEM. The spheroid suspension (50 µL) was then transferred into white-

opaque 96-well plates (Corning®, Sigma Aldrich, France) and 50 µL of CellTiter-Glo® 3D 

reagent (Promega, France) was added into each well. Plates were protected from light and 

gently shaken for 10 minutes (room temperature) to induce spheroid lysis. Samples were 

incubated for additional 20 minutes in the dark, at room-temperature, to stabilize the 

bioluminescent signal, which was then recorded using a benchtop plate reader (EnSpire Alpha 
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2390; Perkin-Elmer, USA). The ATP concentration in each sample was quantified by using a 

calibration curve based on rATP standards (Promega, France) according to the manufacturer 

instructions.  

Assessment of cell viability after exposure to doxorubicin was carried out according to the same 

protocol with a slight modification. Briefly, spheroids were cultured in 96 round-bottom well 

plates in 200 µL of medium. At determined time points, 150 µL of medium was carefully 

removed and 50 µL of CellTiter-Glo® 3D Reagent was added to each well (total final volume 

100 µL). Plates were gently shaken in the dark for 10 minutes to lyse the samples and incubated 

for additional 20 minutes at room-temperature to stabilize the bioluminescent signal. Then, 

samples were individually transferred into white-opaque 96-well plates and the signal was 

measured using a benchtop plate reader (EnSpire Alpha 2390; Perkin-Elmer, USA) (8 replicates 

per condition, n=2). 

 

2.4.4. In vitro luciferase assay 

The bioluminescence signal produced by luciferase-expressing PANC-1 or BxPC-3 cells was 

measured using the Neolite Reporter Gene Assay System (Perkin-Elmer, France) according to 

manufacturer instructions. Briefly, spheroids were cultured in 96 round-bottom well plates in 

200 µL of medium. At determined time points, 150 µL of medium was carefully removed and 

50 µL of Neolite reagent was added to each well (total final volume 100 µL). Plates were 

protected from light and gently shaken for 10 minutes (room temperature) to induce spheroid 

lysis. Samples were incubated for additional 20 minutes in the dark at room-temperature to 

stabilize the bioluminescent signal. Samples (100 µL) were individually transferred into white-

opaque 96-well plates and the signal was measured using a benchtop plate reader (EnSpire 

Alpha 2390; Perkin-Elmer, USA) (6 or 8 replicates per condition, at least n=3). 
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In another set of experiments, samples (100 µL) were individually transferred to a black-opaque 

96-well plate (Corning®, Sigma Aldrich, France) and plate images were acquired using the IVIS 

Lumina® LT Series III (PerkinElmer, USA) (at least 3 replicates per condition, n=3). Images 

were processed using the Living Image software (PerkinElmer, USA).  

 

2.4.5. Histology and immunohistochemistry  

MCTS were fixed for 2 hours in 500 µL of 4% paraformaldehyde (Roti®-Histofix 4%, Roth 

Sochiel EURL, France) at room temperature. After inclusion in 4% low-melting agarose 

(Thermo Fisher Scientific, France), spheroids were embedded in paraffin and sectioned (Plate-

Forme HistIM, Institut Cochin, Paris France). Sections (5 µm) were stained with haematoxylin 

and eosin (H&E) according to standard protocols. For immunohistochemical staining, the heat-

mediated antigen retrieval of antibodies was carried out in citrate buffer at different pH 

(according to manufacturer protocols) and sections (5 µm) were then incubated with 

monoclonal antibody to cytokeratin AE1/AE3 (mouse, dil 1:50; M351501-2 Dako, France), 

fibronectin (rabbit, dil 1:250; ab2413 Abcam, UK) or CD-31 (mouse, dil 1:20; M082301-2 

Dako, France). Primary antibodies were detected with peroxidase-conjugated secondary 

antibodies by using diaminobenzidine (DAB) as chromogen and haematoxylin as counterstain. 

 

2.4.6.  Selective Plane Illumination Microscopy (SPIM) 

4-days old fluorescently-labelled spheroids were fixed in 500 µL of 4% paraformaldehyde 

(Roti®-Histofix 4%) (1 h, room temperature) and then permeabilized with 500 µL of 0.1% 

Triton X-100 (Sigma Aldrich, France) in PBS (1 h, room temperature). Then, Triton solution 

was replaced with 200 µL of PBS and cell nuclei were stained overnight with Hoechst 33342 

(NucBlue™ Reagent, Thermo Fisher Scientific, France) in the dark at room temperature. 

MCTS were imaged with the Lightsheet Z.1 Microscope (Carl Zeiss, Germany) equipped with 
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a Plan-Apochromat 20x 1NA water-immersion objective lens with left and right illumination. 

Hoechst, GFP and RFP fluorescent signals were recorded after sample excitation at 405, 488 

and 561 nm, respectively. Samples were scanned using the Zen 2014 SP1 Black-Edition 

software (Carl Zeiss, Germany) and optical slices of 1 µm thickness were processed for the 3D 

reconstruction of each sample with the Image-J® software.  

 

2.4.7. MCTS embedding in fibrin matrix 

PANC 1:MRC-5:HUVEC (ratio 1:9:4, LbL, VEGF) spheroids were prepared by using RFP-

expressing HUVEC cells and cultured for 4 days before the embedding in a fibrin matrix. 

Individual MCTS were harvested from the round bottom wells and transferred in a microtube 

using a p5000 pipette. Culture medium was carefully removed and spheroids were redispersed 

in 250 µL of bovine fibrinogen (Sigma Aldrich, France) solution (2.5 mg.mL-1) in PBS with 

aprotinin (0.15 U. mL-1 Sigma Aldrich, France) and type I collagen (0.2 mg.mL-1 , Gibco, 

France) [44]. After addition of 2.5 µL of thrombin (final concentration 0.5 U/ml, Sigma, 

France), single spheroids were transferred into the wells of a Lab-Tek®II Chamber SlideTM 

(Thermo Fisher Scientific, France). The chamber slide was placed at room temperature for 5 

minutes to allow fibrin polymerization and then 400 µL of EGM-2 medium was added. 

Embedded MCTS were maintained in a humid atmosphere at 37 °C with 5% CO2 for three days 

before to perform confocal imaging. Samples were imaged with an inverted Leica TCS SP8 

microscope gated-STED (Leica, Germany) using a HC PL Fluotar CS2 10x/0.30 dry objective 

lens. The instrument was equipped with a WLL Laser (587 nm excitation wavelength for RFP). 

Red fluorescence emission was collected with a 597-800 nm wide emission slits. Transmission 

images were acquired with the same laser line and a PMT-trans detector. The pinhole was set 

at 1.0 Airy unit giving 4.29 µm optical slice thickness. 12 bit numerical images were done with 

Leica SP8 LAS X software (Version 2.0.1; Leica, Germany). 



14 
 

2.4.8. Cytotoxicity evaluation 

PANC-1 or BxPC-3 (seeding density 500 cells/well) spheroids (indicated as MCTS_#1 and 

MCTS_#1BxPC-3, respectively) and PANC-1:MRC-5:HUVEC or BxPC-3:MRC-5:HUVEC 

(ratio 1:9:4, LbL, VEGF) spheroids (indicated as MCTS_#3 and MCTS_#3BxPC-3, respectively) 

were prepared and cultured for 4 days before treatment with a series of concentrations of drugs 

(doxorubicin (doxo) and gemcitabine (gem)) in culture medium. At the end of the incubation 

period (48 h and/or 72 h), cytotoxicity assessment was performed by (i) optical imaging (see 

2.4.1); (ii) ATP quantification (see 2.4.3) and/or (iii) qualitative and quantitative measurements 

of the bioluminescent signal (see 2.4.4). Untreated spheroids were used as control. The viability 

was calculated according to the ratio of the signal of the well containing treated spheroids versus 

the average signal of control wells (i.e., untreated spheroids). 

 

2.4.9. Statistical analysis 

Data are presented as mean values with standard error of mean (s.e.m). Statistical analysis was 

performed with the Prism GraphPad 7.0 software and the significance was calculated using a 

two-way Anova method, with a Sidak's multiple comparison post-test in which p < 0.05 was 

considered statistically significant (*p < 0.05, **p < 0.005, *** p < 0.0005, **** p < 0.0001).  
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3. Results and discussion  

3.1. Construction and characterization of multicellular tumor spheroids 

Mono-type multicellular tumor spheroids 

MCTS consisting of cancer cells only have been constructed according to the liquid overlay 

technique. We have used the PANC-1 cell line, reported as aggressive and poorly differentiated 

[45, 46], and whose capacity to form multicellular spheroids had been previously described [47-

53]. However, to our knowledge no comprehensive characterization of the growth profile of 

these spheroids was available. Hence, we have prepared PANC-1 spheroids by seeding cancer 

cells in non-adherent poly-HEMA-coated round-bottom plates at different densities 

(corresponding to 500, 1000, 2500 and 5000 cells per well) and carried out a broad analysis. 

Optical imaging at day 4 post seeding revealed the formation of uniform and reproducible 3D 

structures, whose volume, ATP content and cell number have been monitored over time for a 

period of 17 days. Representative images of spheroids made with 500 cells (Fig. 1a), showed 

the spontaneous assembly of cancer cells in compact spheroids with only few surrounding 

scattered isolated cells (day 4). Spheroid size increased over time and a dark central region was 

observed at days 13 and 17 post seeding. Similar behaviour was observed for spheroids 

prepared by seeding higher cell numbers (Fig. S1).  

The follow up of the spheroid volume clearly revealed a variation rate inversely proportional to 

the number of seeded cells per well (Fig. 1b). The lowest cell density (500 cells/well) resulted 

in the formation of spheroids characterized by the fastest proliferation rate with the major 

diameter that rapidly increased from 400-500 μm (day 4) to 800-900 μm (day 17), 

corresponding to a 10-times increase of the volume (from 0.03 to 0.3 mm3). On the contrary, 

only a 2-fold increase was observed for spheroids prepared by seeding 5000 cells/well. 

The number of cells per spheroid, representative of the proliferation capacity of PANC-1 cell 

in 3D conditions, followed a similar profile (Fig. 1c). Seeding of 500 and 5000 cells/well led to 
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spheroids containing at day 4, an average of 2000 (increment by a factor of 4) and 14000 cells 

(increment by a factor of 2.7), respectively. The delayed proliferation of spheroids prepared at 

the highest cells density was also confirmed by a less rapid variation of the ATP content over 

time (Fig. 1d). 

On the basis of these results, we have chosen for further studies spheroids made by seeding 500 

cells/well. These spheroids will be from now indicated as MCTS_#1. Histological analysis of 

these spheroids by H&E and cytokeratin staining, at day 4 from seeding, revealed a uniform 

cell distribution and a compact core in which cells tightly adhered to each other (Fig. 1e, f). 

However, MCTS_#1 did not stain for fibronectin (Fig. 1g), clearly revealing the lack of 

deposition of this ECM component. The histological analysis at day 17 post seeding was in 

agreement with these results and no fibronectin staining was detectable (Fig. S2). According to 

the upregulation of FN in PDAC stroma and its crucial involvement in cancer cells survival, 

invasion and drug resistance [54-56], it was evident that these spheroids made of PANC-1 cells 

only did not allow to appropriately mimic the in vivo complexity of the PDAC. 
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Fig. 1. Mono-type PANC-1 spheroid characterization. (a) Representative optical imaging of 

MCTS_#1 (seeding density of 500 cells per well) at days 4, 7, 13 and 17 post seeding. Scale 

bars: 200 µm. Evolution over time of (b) volume, (c) cell number and (d) ATP content per 

spheroid as function of the initial seeding density. Values represent mean ± s.e.m. *p < 0.05 

**p < 0.005, *** p < 0.0005 **** p < 0.0001 by a two-way Anova method, with a Sidak’s post-

test at days 4, 7 and 17 post seeding, chosen as representative time points. Histological analysis 

of 5 µm sections of MCTS_#1 at day 4 post seeding: (e) haematoxylin eosin staining, (f) 

cytokeratin AE1/AE3 and (g) fibronectin immunostaining. Scale bars: 50 µm. 

 

 

Hetero-type multicellular spheroids: co-culture of cancer cells and fibroblasts  

To mimic the tumor-stroma interactions we further gradually increased the complexity of our 

model and we moved to the construction of an intermediate hetero-type MCTS consisting of 

cancer cells and fibroblasts. We used MRC-5 fibroblasts, previously reported as a valid 

alternative to pancreatic stromal cells thanks to their capacity to promote the invasive phenotype 

of pancreatic cancer cells and to modulate the expression of cell adhesion markers as efficiently 
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as PDAC patient-derived fibroblasts and pancreatic stellate cells [57, 58]. Noteworthy is that 

this cell line has already been used in different multicellular pancreatic tumor models and it 

offered the possibility to study the tumor microenvironment and investigate the cross-talk 

between cancer cells and stromal ones [40, 59-61]. In addition, successful reconstruction of the 

interaction between cancer cells and the microenvironment using fibroblasts derived from 

healthy tissues has also been described for breast cancer 3D models [37, 62, 63]. 

By keeping constant the number of PANC-1 (i.e., 500 cells per spheroid at day 0), we 

investigated co-cultures with fibroblasts at different ratios (1:1, 1:2, 1:4 and 1:9). In all tested 

conditions the two cell types spontaneously self-assembled without the need of supporting 

material and the size of spheroids progressively increased over time (from day 4 to day 17) 

(Fig. 2a, b and Fig S3). Whatever the tested ratio, the number of cells per spheroid at day 4 was 

lower than expected according to the seeding density, thus clearly showing that a loss of cells 

occurred during the first steps of the co-culture assembly (Fig. 2c). Nevertheless, once formed, 

all spheroids continued to grow regularly as also confirmed by the evolution of the volume and 

the ATP content (Fig. 2b, d). Note that co-culture with fibroblasts enhanced the metabolic 

activity of cancer cells compared to spheroids made of PANC-1 only, resulting in a comparable 

effect to that induced by primary tumor-associated fibroblasts in Transwell® co-cultures [35]. 

The ratio PANC-1:MRC-5 1:9, which allowed, at day 4, to construct spheroids with the highest 

cell number was selected for further studies. These spheroids will be from now indicated as 

MCTS_#2.  

H&E staining at day 4 of MCTS_#2 showed the assembly of the two cell types and the 

predominant localization in the core of elongated cells surrounded by a population of round 

cells (Fig. 2e). The latter was positively stained for the cytokeratin AE1/AE3 marker (specific 

for the detection of epithelial cells of neoplastic origin) thus revealing the peripheral 

localization of the PANC-1 cells. On the contrary, the core was characterized by 



19 
 

cytokeratin-negative cells and was positively stained for the fibronectin, thus suggesting the 

accumulation in this area of fibroblasts responsible for the secretion of the ECM component 

(Fig. 2f, g). 

Nevertheless, at day 7 post seeding (Fig. 2h-l) all cells positively stained for the cytokeratin 

marker revealing the infiltration of cancer cells in the core of the spheroid previously filled by 

fibroblasts. The disappearance of the MRC-5 cells well correlated with the negligible 

fibronectin staining (Fig. 2i, l). Same results were obtained at day 17 post seeding. (Fig. S4) 

Cell spatial distribution at day 4 was assessed also by Selective Plane Illumination Microscopy 

(SPIM) imaging of MCTS_#2 constructed using GFP-expressing MRC-5 fibroblasts (Fig. S5a-

c). SPIM allowed to observe the spheroid mass in the whole and to collect high resolution 

images, bypassing the limitations in terms of depth of laser penetration of traditional imaging 

methods such as the confocal microscopy [64-66]. The blue staining of nuclei (Hoechst 33342) 

showed the distribution of cells in the 3D structure (Fig. S5b) and the green fluorescence in the 

core confirmed the presence of fibroblasts in this region at day 4 post seeding (Fig. S5c). 

However, in agreement with the histological characterization, at day 7 post seeding (Fig. S5d-

f), the reduction of the green signal indicated the progressive loss of fibroblasts and their gradual 

replacement by rapidly proliferating cancer cells (Fig. S5f). 

These results showed that the tumor microenvironment was not static and a progressive 

transformation occurred over time leading to the integration of cancer cells and components of 

the microenvironment (i.e., fibroblasts and fibronectin) for up to 4 days. A progressive loss of 

fibroblasts had been previously observed in lung [67] and prostate [68] MCTS as well as in 

spheroid co-cultures of fibroblasts and endothelial cells. [69, 70] However, to the best of our 

knowledge, this is the first time that modifications of the composition of long-term cultured 

MCTS have been precisely assessed by histological and microscopic analysis in a hetero-type 

pancreatic tumor model. 
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Fig. 2. Hetero-type PANC-1: MRC-5 spheroid characterization. (a) Representative optical 

imaging of MCTS_#2 (PANC-1:MRC-5 seeding ratio 1:9) at days 4, 7, 13 and 17 post seeding. 

Scale bars: 200 µm. Evolution over time of (b) volume, (c) cell number and (d) ATP content 

per spheroid as function of the initial seeding density (PANC-1:MRC-5 ratio 1:1, 1:2, 1:4 and 

1:9). Values represent mean ± s.e.m. Histological analysis of 5 µm sections of MCTS_#2 at day 

4 (e, f, g) and day 7 (h, i, l) post seeding: (e, h) haematoxylin eosin staining, (f, i) cytokeratin 

AE1/AE3 and (g, l) fibronectin immunostaining. Scale bars: 50 µm. 
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Hetero-type multicellular spheroids: triple co-culture of cancer cells, fibroblasts and 

endothelial cells 

The last step in the construction of a new model consisted in the introduction of HUVEC 

endothelial cells and the establishment of a triple co-culture. Note that hetero-type pancreatic 

tumor spheroids including fibroblast and endothelial components have not been previously 

reported. The choice of the HUVEC has been driven by their large availability and stable 

features compared to tumor-derived endothelial cells, whose wide application in routine in vitro 

studies is still hindered by several obstacles. They include, for instance, the scarce availability 

of fresh tumor sample, the difficulty to isolate tumor endothelial cells with high degree of 

purity, the lack of well-defined culture conditions with consequent phenotype mutation, their 

short life span and thus the possibility to use them for a limited number of passages only [71]. 

Firstly, PANC-1 cancer cells (500 cells per spheroid at day 0) were mixed with MRC-5 

fibroblasts and HUVEC at 1:9:4 ratio and seeded on poly-HEMA-coated plates according to 

the liquid overlay technique already used for MCTS_#1 and MCTS_#2. Cell assembly and 

spatial organization of the three cellular components were regularly monitored as early as 2 

days after seeding. Also in this case, immunostaining revealed a peripheral localization of the 

cytokeratin-positive cells (i.e., PANC-1 cells) while the cytokeratin-negative ones and 

fibronectin were localised in the core of the spheroid (Fig. S6a, b). However, this assembly was 

characterized by weak hetero-type cell-to-cell contacts as attested by the frequent loss of 

PANC-1 cells during sample preparation. In addition, CD31 immunostaining, used as a marker 

of the endothelial cells, highlighted only a feeble presence of HUVEC cells (Fig. S6c); 

MCTS_#1 and MCTS_#2 spheroids at day 4 post seeding were used as negative controls (Fig. 

S7). Two days after (day 4), spheroids were more compact (Fig. S6d-f) but the CD31 staining 

was negligible (Fig. S6f). As we evidenced above, a reorganisation of the cell composition with 
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time was observed also in these spheroids, with a progressive accumulation of PANC-1 cells in 

the core of the spheroids together with a decrease of the fibronectin content (Fig. S6d, e). 

To promote integration and residence of endothelial cells within the spheroid, the preparation 

method was slightly modified. Briefly, before mixing with PANC-1 and HUVEC, a Layer-by-

Layer (LbL) nanofilm of fibronectin and gelatin (FN-G) was constructed at the surface of the 

MRC-5 fibroblasts, according to a previously validated technique [72]. The FN-G coating on 

the cell membrane, which mimicked the natural ECM [73-75], had already been successfully 

applied to the construction of stable multilayer multicellular tissues on Transwell® inserts [43, 

76-80]. Such coating was capable of promoting cell adhesion into the spheroids, facilitating the 

triple co-culture with the HUVEC cells. Compared to the traditional protocol, this approach 

allowed to increase the number of CD31-positive cells, which after two days of culture formed 

a discontinuous layer at the fibroblasts/cancer cells interface. However, the latter were only 

loosely attached to the external spheroid boundaries (Fig. S8a-c). At day 4, spheroids were more 

compact, but also in this case the presence of endothelial cells was strongly reduced (Fig. S8d-

f). As expected, the FN-G nanofilm supported a better assembly of the three cell types in the 

spheroid, but it was not enough to ensure their prolonged 3D co-culture. Of note, because of 

the presence of the adhesive FN-G layer, these spheroids were less fragile and could be more 

easily handled, thus facilitating their routinely use at day 4. Accordingly, this preparation 

method was maintained for all the successive experiences. Although collagen, rather than 

gelatin, is the main component of the pancreatic tumor ECM, the latter has been chosen for the 

cell coating due to its solubility in neutral medium, which ensures a higher cytocompatibility. 

On the contrary, the acidic solution of collagen is not well suitable for the culture condition due 

to the low pH value. Moreover, being the gelatin obtained by collagen denaturation, it maintains 

a chemical composition very similar to that of the parent molecule. 
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Significant improvement was then obtained by culturing the LbL-assembled spheroids in 

medium supplemented with VEGF (50 ng.mL-1), a well-known endothelial survival factor [81] 

and angiogenesis inducer [82]. In addition, VEGF already showed a beneficial effect on the 

viability and sprouting of HUVEC spheroids [34, 83, 84]. In these experimental conditions, at 

day 2, a thick layer of endothelial cells was observed around the fibronectin-rich 

cytokeratin-negative core (Fig. S9c). On the contrary, no stable adhesion of cancer cells 

occurred, and they could be easily lost during sample preparation (Fig. S9). A more compact 

spheroid was, instead, obtained after a culture period of 4 days (Fig. 3a). PANC-1 cancer cells, 

that are cytokeratin-positive cells, mostly organized in an external layer surrounding 

cytokeratin-negative cells with which cell-to-cell hetero contacts were established (Fig. 3b). 

Fibronectin staining revealed the homogenous distribution of this ECM protein in the core (Fig. 

3c) in which a network of CD31-positive endothelial cells was also well visible (Fig. 3d). The 

latter closely resembled to the collapsed vessels observed in PDAC [31, 33]. Thus, after 

opportune optimization of the experimental conditions (that is, LbL coating and VEGF 

supplement) we successfully constructed a hetero-type pancreatic MCTS based on a triple co-

culture of cancer cells, fibroblasts and endothelial cells. These spheroids (PANC-1:MRC-

5:HUVEC, LbL, VEGF) will be from now indicated as MCTS_#3.  

Histological analysis showed that the optimal triple co-culture was achieved at day 4. At day 7, 

all cells were positively stained for the cytokeratin (Fig. 4a), as previously observed also for 

MCTS_#2 (Fig. 2h-l), and no more fibronectin and HUVEC were detectable (Fig. 4b, c).  

The spatial distribution of the three cell types at day 4 was assessed in detail by SPIM imaging 

of MCTS_#3 constructed using GFP-expressing MRC-5 fibroblasts and RFP-expressing 

HUVEC cells (Fig. 5). The uniform blue staining revealed a homogeneous distribution of cells 

in the 3D structure (Fig. 5b). The green fluorescence confirmed the presence of fibroblasts in 

the core (Fig. 5c), which correlated with histology images showing a core made of cytokeratin-
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negative cells and rich in fibronectin (Fig. 3b, c). Red-fluorescent HUVECs were also visible 

in the centre of the spheroid confirming their strong association with the fibroblasts (Fig. 5d). 

The slightly elongated shape of HUVEC suggested their potential capacity, in opportune 

conditions to develop vessel-like networks (Fig S10), as previously observed by Boutin and co-

workers in their imaging analysis of rat cortical spheroids [85].  

In agreement with the histological characterization, SPIM imaging of MCTS_#3 spheroids at 

day 7 showed the progressive loss of the stromal cells. (Fig. 5e-h). 

 

 

Fig. 3. Hetero-type PANC-1:MRC-5:HUVEC spheroid characterization. Histological 

analysis of 5 µm sections of MCTS_#3 (PANC-1:MRC-5:HUVEC, LbL, VEGF) at day 4 post 

seeding: (a) haematoxylin eosin staining, (b) cytokeratin AE1/AE3, (c) fibronectin and (d) 

CD31 immunostaining. Scale bars: 50 µm.  

 

 

 

 

 

Fig. 4. Hetero-type PANC-1:MRC-5:HUVEC spheroid characterization. Histological 

analysis of 5 µm sections of hetero-type PANC-1:MRC-5:HUVEC MCTS_#3 (ratio 1:9:4) at 

day 7 post seeding: (a) cytokeratin AE1/AE3, (b) fibronectin and (c) CD31 immunostaining. 

Scale bars: 50 µm.  
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Fig. 5. SPIM 3D topography of MCTS_#3 (PANC-1:MRC-5:HUVEC, LbL, VEGF) at 

day 4 and day 7. (a, e) Overlay of blue (Hoechst 33342, nuclei), green (GFP-expressing MRC-

5 fibroblasts) and red (RFP-expressing HUVECs) fluorescence; (b, f) single blue channel 

(Excitation/emission 405/440 nm) showing all cell nuclei; (c, g) single green channel 

(Excitation/emission 488/525 nm) showing GFP-expressing MRC-5 fibroblasts; (d, h) single 

red channel (Excitation/emission 561/605 nm) with RFP-expressing HUVEC cells. Scale bars: 

100 µm. 

 

 

According to the stability of the triple co-culture, characterization of MCTS_#3 was carried out 

for up to 7 days from seeding. Morphology and growth kinetic were microscopically assessed 

and optical-images showed spheroids with a dense core and a ruffled peripheral cell layer whose 

compactness increased over time (Fig. 6a). Since day 2, the triple co-culture led to the formation 

of larger spheroids as compared to MCTS_#1 and MCTS_#2 (Fig. S11) and they reached a 

mean volume of 0.09 mm3 (~ 600 μm in diameter) at day 4 (Fig. 6b). At this time point, 

MCTS_#1 and MCTS_#2 showed a mean volume of 0.03 and 0.04 mm3, respectively (Fig. 1 

and 2). Variation of the number of cells over time revealed the same trend (Fig. 6c). Also in 

this case, single cell counting in MCTS_#3 evidenced that not all cells assembled to form the 

spheroids but that a certain loss occurred, and the number of cells per spheroid at day 2 was 

lower than the seeded one. This corroborated the hypothesis of the existence of a critical initial 
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number of cells for establishing heterotypic interactions and stable 3D assembly. The strong 

influence of the microenvironment on the spheroid metabolic activity was confirmed by the 

ATP content (Fig. 6d) which, at day 4, was up to two times higher than in spheroids made of 

only cancer cells (0.54 and 1.2 µM for MCTS_#1 and MCTS_#3). This influence, likely 

mediated by the direct 3D cell-to-cell contact as well as by the production of growth factors and 

cytokines [60, 86] persisted also at day 7 when spheroids where mainly composed of cancer 

cells (Fig. 4). Among the secreted soluble factors, the hepatocyte growth factor (HGF) might 

play a key role. It has been demonstrated that by binding to its transmembrane receptor c-Met, 

the HGF may activate several signaling pathways involved in pancreatic cancer cells growth 

and invasion, tumor progression, desmoplastic reaction and resistance to treatment [87-89]. In 

addition, previous studies have reported a high secretion of HGF by MRC-5 fibroblasts, which 

was responsible of an enhanced proliferation and migration of several types of cancer cells [35, 

90-92]. Thus, although further investigation would be required to confirm this hypothesis, it is 

possible that the proliferation of PANC-1 might be mediated by the HGF secreted by the MRC-

5 cells. Overall, these results demonstrated that the structural and functional interactions 

between cancer cells and several stromal components have been successfully recreated in 

MCTS_#3.  
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Fig. 6. Hetero-type PANC-1:MRC-5:HUVEC spheroid characterization. (a) 

Representative optical imaging of MCTS_#3 (PANC-1:MRC-5:HUVEC, LbL, VEGF) at days 

2, 3, 4 and 7 post seeding. Scale bars: 200 µm. Evolution over time of (b) volume, (c) cell 

number and (d) ATP content per spheroid in MCTS_#3. Values represent mean ± s.e.m. **** 

p < 0.0001 by a two-way Anova method, with a Sidak’s post-test. 

 

 

 

  

3.2. Cytotoxic studies: effect of the tumor microenvironment 

It is well known that the tumor microenvironment strongly influences the drug sensitivity of 

cancer cells and may affect the efficacy of treatments [29]. Therefore, we aimed to verify 

whether the MCTS_#3 model was capable or not to reproduce such influence. Firstly, as proof 

of concept we assessed the cell viability in MCTS_#3 and MCTS_#1 after a 48 h and 72 h 

exposure to a single dose of doxorubicin (0.5 µM, IC50 for PANC-1 cells grown in 2D 

monolayer). Because of their stability and 3D compact structure, spheroids at day 4 were used 

for the onset of the treatment. Spheroids were constructed using luciferase-expressing PANC-

1 cells, enabling to specifically monitor the cytotoxicity of doxorubicin on cancer cells by 

quantification of the luciferase activity. After 48 h of incubation, the survival of cancer cells 
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was similar in both types of spheroids and only a general decrease of ~10% could be measured 

in comparison to their respective untreated controls (Fig. 7a). However, after longer exposure 

(72 h) higher survival was observed in MCTS_#3. Sensitivity of cancer cells was influenced by 

the presence of the tumor microenvironment (Fig. 7a). Bioluminescence images of these 

spheroids were in agreement with the quantitative results. Only a weak difference of the 

pseudocolor was observed between control (untreated) and doxo-treated MCTS_#3. On the 

contrary, for MCTS_#1 the colour changed from green to light blue (lowest values) after 

treatment which underlined the higher sensitivity to doxorubicin (Fig. 7b). Accordingly, the 

overall spheroid viability, as measured by the ATP content, was also significantly different at 

72 h and confirmed the key role of the tumor microenvironment on the sensitivity of the 

spheroids to the treatment (Fig. 7c). In addition, the anti-proliferative effect of the drug has been 

also microscopically assessed by collecting bright-field images of spheroids (n=64 per 

condition). Quantitative information of the growth inhibition was provided by the variation of 

the spheroid volume after treatment [93]. Once again data revealed the lowest anticancer 

efficacy of the drug on MCTS_#3 and further corroborated the influence of the 

microenvironment on the proliferation of the tumor mass (Fig. 6d). The higher sensitivity of 

MCTS_#1 compared to MCTS_#3 was observed also after exposure of spheroids, constructed 

using luciferase-expressing PANC-1 cells, to a series of doxorubicin concentrations (Fig. 

S12a). Similar results were obtained after incubation with gemcitabine, in spite of the different 

mechanism of actions of the two anticancer drugs (Fig. S12b). Indeed, doxorubicin exerts its 

cytotoxic activity by intercalation between DNA base pairs blocking DNA replication and 

transcription, blockade of topoisomerase II activity as well as generation of free radicals, [94] 

while, on the other hand, gemcitabine acts as nucleoside analogue [95].   
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Fig. 7. (a) PANC-1 cell viability (luciferase activity) in MCTS_#1 and MCTS_#3 following 

exposure to doxorubicin (0.5 µM) for 48 h and 72 h (n=3). Spheroids have been constructed 

using luciferase-expressing PANC-1 cells. (b) Representative bioluminescence images of 

control and doxo-treated MCTS_#1 and MCTS_#3. Incubation time 72 h. (c) Spheroid viability 

(ATP quantification) following exposure to doxorubicin (0.5 µM) for 48 h and 72 h (n=2). (d) 

Spheroid growth inhibition (volume measurement) following exposure to doxorubicin (0.5 µM) 

for 48 h and 72 h. Data represents mean ± s.e.m. **** p < 0.0001 by a two-way Anova method, 

with a Sidak’s post-test. 

 

 

Noteworthy is that after exposure to doxorubicin and gemcitabine, MCTS_#3 displayed higher 

resistance to treatments also when compared to MCTS_#2, thus confirming the crucial role of 

a complex tumor microenvironment consisting of multiple cell types (Fig. S13). 

We have then modified the culture condition to assess whether similar results could be obtained 

by using another pancreatic cell line. Thus, both mono-type and hetero-type (i.e., triple co-

culture) multicellular spheroids, have been constructed replacing the PANC-1 cell line with the 
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BxPC-3 one (indicated as MCTS_#1BxPC-3 and MCTS_#3BxPC-3, respectively). However, 

exposure of these spheroids to growing concentrations of doxorubicin and gemcitabine did not 

induce a dose/effect response. In addition, for each concentration tested, we observed a higher 

viability of mono-type spheroids compared to the hetero-type triple co-culture (Fig. S14). This 

was attributed to the more compact structure of MCTS_#1BxPC-3 (Fig. S15), which artefactually 

opposed to the diffusion/penetration of the drug through the tumor mass. These results clearly 

highlight that accurate selection of the cell types used for the construction of the spheroids and 

characterization of the resulting cell assembly are a key requisite to develop valuable tools for 

accurate preclinical screening of therapeutic strategies for pancreatic cancer treatment. 

 

4. Conclusions 

The failure of treatments and the poor prognosis of pancreatic ductal adenocarcinoma are 

related to the extremely complex physio-pathology of this tumor, combining abundant fibrosis 

and collapsed vasculature, which strongly limits drugs accessibility. In this study, we reported 

on the construction and detailed characterization of a scaffold-free 3D model capable to 

integrate in a hetero-type multicellular spheroid the cancerous component of the pancreatic 

tumor as well as its microenvironment made of fibroblasts, endothelial cells and extracellular 

matrix. To our knowledge, no analogous model combining the fibrotic tissue and a collapsed 

vessel-like structure, both hallmark of the PDAC, has been previously constructed. Evaluation 

of spheroid growth and response to treatment confirmed the influence of the microenvironment 

on drug sensitivity of pancreatic cancer cells, and showed the capacity of this model to replicate 

the resistance to treatments often observed in vivo. Overall, we believe that this easy to handle 

spheroid model, reproducing crucial features of the PDAC, could find application in 

standardized drug screening protocols as well as in the assessment of cancer cells-stroma 

interactions and tumor angiogenesis.  
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