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Grammars and clique-width bounds from split decompositions

Graph decompositions are important for algorithmic purposes and for graph structure theory. We relate the split decomposition introduced by Cunnigham to vertex substitution, graph grammars and clique-width.

For this purpose, we extend the usual notion of substitution, upon which modular decomposition is based, by considering graphs with dead (or non-boundary ) vertices. We obtain a graph grammar for distancehereditary graphs consisting of four rules collected in a single equation. We also bound the clique-width of a graph in terms of those of the components of a split decomposition that need not be canonical.

For extending these results to directed graphs and their split decompositions (that we handle formally as graph-labelled trees), we need another extension of substitution : instead of two types of vertices, dead or alive as for undirected graphs, we need four types, in order to encode edge directions. We bound linearly the clique-width of a directed graph G in terms of the maximal clique-width of a component arising in a graph-labelled tree that defines G. This result concerns all directed graphs, not only the strongly connected ones considered by Cunningham.

Introduction

Hierarchical graph decompositions and the associated graph complexity measures such as tree-width and clique-width are important for algorithmic purposes and graph structure theory. Tree-width and clique-width occur as parameters 1 in many fixed-parameter tractable (FPT) algorithms [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF][START_REF] Courcelle | Linear-time solvable optimization problems on graphs of bounded clique-width[END_REF][START_REF] Downey | Fundamentals of parameterized complexity[END_REF][START_REF] Fischer | Counting truth assignments of formulas of bounded tree-width or clique-width[END_REF], in particular for the verification of monadic second-order properties of graphs. They are actually linearly related in many interesting cases [START_REF] Courcelle | From tree decompositions to clique-width terms[END_REF][START_REF] Courcelle | On quasi-planar graphs : clique-width and logical description[END_REF][START_REF] Fomin | Rank-width and tree-width of H-minor-free graphs[END_REF].

These algorithms are based on the construction of finite automata that run on algebraic terms representing tree-decompositions, or on clique-width terms in the case where the parameter is clique-width (see Definition 1.2). However, these automata cannot be implemented in the classical way because their sets of states are much to large. The notion of fly-automaton [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF][START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF] can overcome this difficulty in many cases 1 : these automata compute their transitions instead of looking into transition tables.

Even for checking properties of graphs of bounded tree-width, it is convenient to input graphs by clique-width terms, and we develop the theory and practice of fly-automata for graphs defined in this way in [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF][START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF]. As for tree-width, computing the exact clique-width of a graph is an NP-complete problem [START_REF] Fellows | Clique-width is NPcomplete[END_REF]. However, clique-width terms witnessing "good" approximations of clique-width can be used with fly-automata. Such terms can be constructed by different algorithms, and with help of modular or split decomposition 2 , in preliminary steps. Let us point a difference between the two : modular decomposition is based on a rooted tree, and is clearly hierachical. Split decomposition is based on trees without root ; by choosing a root for such a tree, one can turn the decomposition into a hierachical one, but one needs an appropriate notion of graph substitution : we define one in this article. Rank-width, in a similar way, is based on unrooted trees. However, by choosing a root and using appropriate graph operations, derived from those upon which clique-width is defined, one obtains also a hierachical decomposition [START_REF] Courcelle | Graph operations characterizing rank-width[END_REF].

Modular decomposition is related to clique-width as follows. Each undirected graph has a canonical (i.e., unique up to isomorphism) modular decomposition. Its clique-width is the maximal clique-width of a prime module of the modular decomposition (Proposition 2.112 of [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]). It has also a canonical split decomposition. Theorem 4.14 establishes that its clique-width is linearly bounded in terms of the maximal clique-width of a prime component of this decomposition 3 , the other components being stars and cliques. Theorem 5.14 shows the same for directed graphs. These theorems improve boundings based on logic or rank-width (cf. Sections 4.4 and 5.3).

Our initial motivating example was the class of distance-hereditary graphs (DH graphs in short). They are the undirected graphs G in which the distance in any connected induced subgraph is the same as in G. They are known to have clique-width at most 3 [START_REF] Golumbic | On the clique-width of some perfect graph classes[END_REF][START_REF] Meister | Clique-width with an inactive label[END_REF][START_REF] Oum | Rank-width and vertex-minors[END_REF]. However, recognizing the clique-width terms that define them is not easy. For the purpose of testing fly-automata, one may wish to generate large "random" DH graphs together with the algebraic terms of clique-width 3 that denote them. A good tool consists in using a context-free graph grammar, built from clique-width operations that use three labels 4 . The characterization of DH graphs from [START_REF] Bandelt | Distance-hereditary graphs[END_REF], based on the addition of pendant edges and twins (see Definition 1.1), uses rewriting rules that are not those of a context-free graph grammar appropriate for using fly-automata intended to run on their derivation trees or on the equivalent clique-width terms. However, from this characterization, we can construct such a context-free grammar based on vertex-replacement, a notion developped in [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF] and in [START_REF] Courcelle | An axiomatic definition of context-free rewriting and its application to NLC graph grammars[END_REF], where an axiomatic definition of context-free graph grammars is given.

This construction uses a generalization of the standard notion of substitution of a graph for a vertex, that underlies the theory of modular decomposition. We distinguish in a graph H some vertices as alive and the others as dead. Dead vertices will not be linked to any others in case H is substituted into another graph 5 . We use this notion of substitution to define an associated notion of context-free vertex-replacement grammar (see [START_REF] Courcelle | An axiomatic definition of context-free rewriting and its application to NLC graph grammars[END_REF][START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF] for these graph grammars defined in a more general setting). We obtain a very simple grammar for DH graphs. Distance-hereditary graphs are also easily characterized in terms of their canonical split decompositions, and our grammar is based on these decompositions.

Generalizing this observation, we use grammars to generate the graphs whose components relative to split decomposition belong (up to isomorphism) to a fixed finite set M. We bound their clique-width in terms of the maximal clique-width of a graph in M, in a better way than what is known from [START_REF] Courcelle | The monadic second-order logic of graphs XVI : Canonical graph decompositions[END_REF].

Split decomposition 6 for strongly connected (directed) graphs has also been studied in [START_REF] Courcelle | The monadic second-order logic of graphs XVI : Canonical graph decompositions[END_REF][START_REF] Cunningham | Decomposition of directed graphs[END_REF]. We extend to directed graphs our results for undirected graphs. For expressing split decompositions in terms of graph substitution, we need a more involved notion of substitution. Whereas for undirected graphs, we distinguish dead vertices from live ones (the others), for directed graphs, we need three types of live vertices, in order to encode three types of connections between two vertices u and v : from u to v (only), from v to u (only) or in both directions.

We consider split decompositions of directed graphs that need not be strongly connected, and we handle them formally as graph-labelled trees, a notion used in [START_REF] Courcelle | The monadic second-order logic of graphs XVI : Canonical graph decompositions[END_REF][START_REF] Gioan | Split decomposition and graph-labelled trees: Characterizations and fully dynamic algorithms for totally decomposable graphs[END_REF]. We prove that the clique-width of a directed graph G is bounded by 8k +1, where k is the maximum clique-width of a component of a graph-labelled tree that defines G. Some properties of undirected graphs do not extend immediately to directed ones. Each component of a graph-labelled tree that defines an undirected graph G is isomorphic to an induced subgraphs of G, hence has no larger clique-width.

For strongly connected directed graphs, each such component H is isomorphic to a minor of the considered graph G. We obtain a bounding of the form7 cwd(H) ≤ f(cwd(G)) where f is a fixed exponential function. Improving this bound is an open problem.

To summarize, the purpose of this article is to clarify the close relationships between split decomposition, clique-width and vertex-replacement graph grammars based on vertex substitutions. In particular, we translate split decompositions of undirected graphs into graph grammars and we bound linearly the clique-width of a decomposed graph, either directed or not, in terms of those of the components. Our graph grammars can be used for counting graphs of special types and for random generation, along the lines of, e.g., [START_REF] Chauve | An exact enumeration of distancehereditary graphs[END_REF][START_REF] Flajolet | A calculus for the random generation of labelled combinatorial structures[END_REF][START_REF] Ravelomanana | Asymptotic enumeration of cographs[END_REF].

Section 1 is devoted to basic definitions. In particular, we present our view of context-free graph grammars in terms of equation systems by using the example of cographs. Section 2 introduces vertex substitutions for undirected graphs with dead vertices, and the corresponding grammars. Section 3 relates clique-width and substitutions. Section 4 studies split decomposition of undirected graphs in this perspective, with the help of graph-labelled trees. Section 5 develops the case of directed graphs.

Trees

The set of nodes of a tree T is denoted by N T , and its set of leaves, i.e., of nodes of degree 1, by L T . A node that is not a leaf is internal.

If T has a root, then < T denotes the corresponding ancestor relation, a strict partial order on N T (a node is not an ancestor of itself). The root, denoted by root T , is the unique maximal element and the leaves different from the root are the minimal ones. A star S n is a tree with n -1 leaves linked to a single node called its center, where n ≥ 3.

Graphs

We consider finite simple graphs, i.e., that are loop-free and without parallel edges. Graphs8 are directed or not. Directed edges are called arcs. A graph G has a vertex set V G included in a fixed countably infinite set V. Its set of edges or arcs is denoted by E G . The corresponding binary adjacency relation is denoted by edg G (even if G is directed). If G is undirected, we denote by uv, equvalently by vu, an edge linking vertices u and v. If G is directed, we denote by uv an arc from u to v. We also write uv or u → v to indicate that uv is, respectively, an edge or an arc.

We denote by

H ⊆ i G that H is an induced subgraph of G, by G[X] the induced subgraph of G with vertex set X ⊆ V G , by G -X the graph G[V G -X] and by G -x the graph G[V G -{x}] where x ∈ V G .
Definition 1.1 : Distance-hereditary graph An undirected graph G is distance-hereditary (DH in short) if the distance of two vertices in every connected induced subgraph is the same as in G. For an example, the cycle C 4 (with 4 vertices) is DH whereas C 5 is not. The DH graphs are characterized as follows 9 : a DH graph is an isolated vertex, or the disjoint union of two DH graphs or is obtained from a DH graph by the addition of a pendant edge to a vertex x, or of a true or false twin to x. Adding to x a true twin is adding a new vertex y linked to x and to the neighbours of x. Adding a false twin is similar with y not linked to x.

Clique-width

Clique-width is based on operations that modify or combine vertex-labelled graphs. There will be some restrictions regarding the special label ⊥ to be used in Section 3. Definition 1.2 : Labelled graphs and clique-width (a) Let C be a finite set of labels. A C-labelled graph, or simply, a C-graph,

is a triple G = (V G , E G , π G ) where π G is a mapping : V G → C. Its type, denoted by τ (G), is π G (V G ), i.e.
, the finite set of labels from C that label some vertex of G.

We denote by ≃ the isomorphism of C-graphs up to vertex labels, i.e., the isomorphism of the underlying unlabelled graphs, and by ≡ the existence of an isomorphism that respects labels. An abstract C-graph (resp. abstract graph) is an equivalence class of ≡ (resp. of ≃).

(b) We define operations on C-graphs :

-the union of two disjoint C-graphs ; it is denoted by the binary infix function symbol 10 -for each a ∈ C, the nullary symbol a(x) denotes the isolated vertex x (x ∈ V) labelled by a.

Hence, τ (G ⊕ H) = τ(G) ∪ τ (H), τ (add a,b (G)) = τ ( --→ add a,b (G)) = τ (G), τ(relab h (G)) = h ′ (τ (G))
where h ′ is the total mapping such that : h ′ (a) := if h(a) is defined then h(a) else a. We have τ (a(x)) = {a}.

(c) We denote by F C the countable set of these operations. A term over F C is well-formed if no two occurrences of nullary symbols denote the same vertex; in particular, the graphs defined by the two arguments of ⊕ are disjoint. We denote by T (F C ) the set of well-formed terms, that we will call the clique-width terms. Each such term t denotes a C-graph val(t) whose vertices are those specified by the nullary symbols of t. Its width is the number of labels that occur in t.

Using a standard convention, we will denote in the same way a function symbol and the graph operation it defines. Hence, relab h (t) is a term if t is a term in T (F C ), and relab h (G) denotes a C-graph if G denotes a C-graph.

(d) The clique-width of a C-graph 12 G, denoted by cwd(G), is the least width of a term t such that G ≃ val(t). We denote by cwd * (G) the least width of a term t such that G ≡ val(t). Hence, cwd(G) ≤ cwd * (G). Clearly, cwd(G) = cwd * (G ′ ) where G ′ is obtained from G by relabelling all its vertices in the same way.

(e) If G and H are not disjoint, we define G ⊕ H as the union of two disjoint isomorphic copies of G and H. The resulting C-graph is well-defined up to isomorphism, hence as an abstract C-graph.

Here are some examples (cf. [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]). The clique-width of a tree is at most 3, that of the clique K n is 2 for n ≥ 2. The undirected cycles C 3 , C 4 have cliquewidth 2, C 5 , C 6 have clique-width 3, and C n has clique-width 4 for n ≥ 7. For directed cycles

-→ C n , we have cwd( -→ C 3 ) = 3 and cwd( -→ C n ) = 4 if n ≥ 4.
Lemma 1.3 : For every C-graph G, we have :

max{|τ (G)| , cwd(G)} ≤ cwd * (G) ≤ |τ (G)| • cwd(G).
Proof: The first inequality is clear from definitions. To prove the second one, we assume without loss of generality, that the type of G is [p]. Let H be G with all vertices labelled in the same way. Let C be the set of k labels of a term t that defines H. For each a in C and i ∈ [p], we define a new label (a, i) that will only label the vertices x such that π G (x) = i.

Consider in t a nullary symbol a(x). If π G (x) = i, we replace it by (a, i)(x).

Each relabelling relab h is replaced by relab h ′ where h ′ maps (a, i) to (b, i) whenever h maps a to b. Similarly, we replace add a,b by the composition of the operations add (a,i),(b,j) for i, j ∈ [p]. We obtain in this way a term 13 t ′ over the set of labels

[p] ⊎ (C × [p]). We let h ′′ : C ×[p] → [p] map (a, i) to i for a ∈ C and i ∈ [p]. Then G = relab h ′′ (val(t ′ )) = val(relab h ′′ (t ′ )).
The term relab h ′′ (t ′ ) uses at most p(1 + k) labels. However, we can fix some a ∈ C and replace everywhere (a, i) by i, for each i. We obtain a term of width at most pk that defines G.

Hence if the type of G consists of p labels and k is the clique-width of the corresponding unlabelled graph, then one can define G, with its labelling, by a term with at most pk labels. This lemma implies that cwd(G) ≤ 2cwd(Gx) if x is a vertex of G. This bound is proved in [START_REF] Gurski | The behavior of clique-width under graph operations and graph transformations[END_REF].

Questions 1.4 : Can one improve the bounds 14 

cwd(G) ≤ 2cwd(G -x) and |τ(G)| • cwd(G) (of Lemma 1.3) ?
Definition 1.5 : Abstract graphs We will also use nullary "generic" symbols a that do not denote any particular vertex. The vertex defined by an occurrence 15 u of a in a term t is u itself. We will also consider that a term written with such nullary symbols denotes an abstract C-graph (cf. Definition 1.2(a,e)). See [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF], Section 2.52.

We will denote by F C the signature F C where each symbol a(x) is replaced by a, and by t the term in T (F C ) obtained from a term t ∈ T (F C ) by replacing each a(x) by a. Then val(t) ≡ val(t).

Example 1.6 : The grammar for cographs. We present context-free graph grammars, defined as equation systems whose unknowns are sets of abstract graphs, by using the example of cographs.

(1) One characterization of cographs is the following recursive one. Graphs are simple and undirected. The join of two disjoint undirected graphs G and H, denoted by G ⊗ H, is defined as their union augmented with edges between any vertex of G and any vertex of H.

A cograph is either an isolated vertex, G⊕H or G⊗H for disjoint cographs G and H. Hence, the set C of abstract cographs is the least set (least for inclusion) that satisfies the recursive equation :

C = { * } ∪ (C ⊕ C) ∪ (C ⊗ C)
where * denotes an isolated vertex (up to isomorphism), D ⊕ E := {G ⊕ H | G ∈ D, H ∈ E} and similarly for ⊗.

We call such a description a (context-free) graph grammar.

Each cograph has thus a hierchical description, in terms of smaller cographs and the two operations ⊕ and ⊗. Hence, it is defined by, or more formally, is the value of a term in T ({⊕, ⊗, * }), i.e., a term written with ⊕, ⊗ and * . For example the term t := (( * ⊕ * ) ⊕ * ) ⊗ ( * ⊕ * ) defines the complete bipartite graph K 3,2 .

A fundamental property ([14], Proposition 3.23) states that the same recursive equation in sets of terms X ⊆ T ({⊕, ⊗, * }), hence :

X = { * } ∪ (X ⊕ X) ∪ (X ⊗ X)
defines (by taking the least solution) the terms representing cographs.

(If Y, Z ⊆ T ({⊕, ⊗, * }), then Y ⊕ Z denotes the set of terms t ⊕ t ′ such that t ∈ Y and t ′ ∈ Z.)
Actually, this equation defines the full set T ({⊕, ⊗, * }). Cographs are the graphs defined by all terms in T ({⊕, ⊗, * }). A cograph can be defined by several different terms, hence, this grammar is ambigous, which makes difficult its use for counting. However, an unambigous grammar can be used as we will see in Section 4.5.

The general notion of a grammar allows systems of mutually recursive equations that define sets of graphs or sets of terms. An example is :

D = { * ⊗ * } ∪ (D ⊕ E) ∪ (E ⊗ E), E = { * } ∪ (D ⊕ * ) ∪ (E ⊗ E).
The least sets D and E satisfying these equations are particular sets of cographs. The two sets of terms that form the least solution in T ({⊕, ⊗, * }) of the (identical) system :

Y = { * ⊗ * } ∪ (Y ⊕ Z) ∪ (Z ⊗ Z), Z = { * } ∪ (Y ⊕ * ) ∪ (Z ⊗ Z).
define the sets D and E.

To simplify notation, we will write * instead of { * } and * ⊗ * instead of { * ⊗ * } in such equations, and similarly for terms without unknowns. The same letters X, Y, Z... will be used for sets of terms and the sets of graphs they denote.

(2) Systems of recursive set equations, written with set union and the extensions of functions to sets, make sense in any F -algebra M = (M, (f M ) f ∈F ) where M is a set equipped with functions f M indexed by a functional signature F . Take for example F consisting of a, b, f, g, h of respective arities 0,0,1,2,3. Then a system of equations like :

D = a ∪ f (b) ∪ f (D) ∪ g(E, E), E = b ∪ h(D, E, E) ∪ g(E, D),
where D, E ⊆ M has a least solution. Its least solution in subsets of T (a, b, f, g, h) consists of two sets whose sets of values in M are D and E.

Such sets are the equational sets of the algebra M. This notion is relative to the algebraic structure specified by the operations (f M ) f ∈F , cf. [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF], Chapter 3.

Substitution to vertices

In this section, we consider undirected graphs. We will adapt the definitions to directed graphs in Section 5.

Let C be a set of labels containing ⊥ . The vertices of a graph G labelled by ⊥ will be said to be dead ; they form the set V dead G . The others, said to be alive form the set V live G . The unary operation κ, read kill, relabels all vertices by ⊥, hence makes them dead. Definition 2.1 : Substitution. Let K be a C-graph and x 1 , . . . , x p be pairwise distinct vertices. Let H 1 , . . . , H p be pairwise disjoint C-graphs, that are disjoint 16 , n ≥ 3, from K. We define a C-graph G := K[x 1 ← H 1 , . . . , x p ← H p ] as follows 17 :

V G := (V K -{x 1 , . . . , x p }) ⊎ V H 1 ⊎ . . . ⊎ V H p , π G (v) := π K (v) if v ∈ V K -{x 1 , . . . , x p }, π G (v) := π K (x i ) if v ∈ V live Hi , π G (v) := ⊥ if v ∈ V dead H i . Its edges are as follows, for u, v in V G :
uv ∈ E G if and only if : either uv ∈ E K and neither u nor v is in {x 1 , . . . , x p }, or uv ∈ E Hi for some i,

or u ∈ V K , ux i ∈ E K and v ∈ V live
Hi (or vice-versa by exchanging u and v since we define undirected graphs, so that uv and vu designate the same edge), or u ∈ V live Hi , v ∈ V live Hj and x i x j ∈ E K (so that i = j).

The type of G is thus that of K, possibly augmented with ⊥ if some H i has dead vertices : these vertices are dead in G. The labels of K have no influence on the definition of the edges of G, they only specify, together with the labels of the graphs H i , those of the resulting graph G. The labels of the H i 's other than ⊥ do not contribute to the labelling of G : if for each i, a mapping h i : C → C satisfies h i (a) = ⊥ if and only if a = ⊥, then :

K[x 1 ← H 1 , . . . , x p ← H p ] = K[x 1 ← relab h 1 (H 1 ), . . . , x p ← relab h p (H p )].
If all vertices of H p are dead, then

K[x 1 ← H 1 , . . . , x p ← H p ] = (K -x p )[x 1 ← H 1 , . . . , x p-1 ← H p-1 ] ⊕H p .
Because of dead vertices, this notion of substitution differs from the classical one, used in particular in the theory of modular decomposition (see the survey [START_REF] Habib | A survey of the algorithmic aspects of modular decomposition[END_REF]). If K, H 1 , . . . , H p have no dead vertices, then K[x 1 ← H 1 , . . . , x p ← H p ] is the usual substitution, as in [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF], Section 2.5.

Proposition 2.2 : Let K, H 1 , H 2 be pairwise disjoint C-graphs and x 1 ∈ V K . (1) If x 2 is another vertex of K, then K[x 1 ← H 1 ][x 2 ← H 2 ] = K[x 1 ← H 1 , x 2 ← H 2 ]. (2) If x 2 ∈ V H1 , then K[x 1 ← H 1 ][x 2 ← H 2 ] = K[x 1 ← H 1 [x 2 ← H 2 ]].
Proof : (1) Straightforward verification from the definitions.

(

) Let G := K[x 1 ← H 1 ][x 2 ← H 2 ] and G ′ := K[x 1 ← H 1 [x 2 ← H 2 ]].Clearly, V G = V G ′ . 2 
(2.1) We now compare edges. Let u, v belong to V G . If u and v are both, either in V K , or in V H1 or in V H2 , then uv ∈ E G if and only if uv ∈ E G ′ . Otherwise we distinguish three cases.

(i

) u ∈ V K and v ∈ V H 1 ; then, uv ∈ E G if and only if ux 1 ∈ E K and v is live in H 1 , if and only if uv ∈ E G ′ . (ii) u ∈ V K and v ∈ V H2 ; then, uv ∈ E G if and only if ux 2 ∈ E K[x1←H1] and v is live in H 2 . The condition ux 2 ∈ E K[x1←H1] is equivalent to : ux 1 ∈ E K and x 2 is live in H 1 . Now uv ∈ E G ′ if and only if ux 1 ∈ E K and v is live in H 1 [x 2 ← H 2 ] which is true if and only if v is live in H 2 and x 2 is live in H 1 . Hence, uv ∈ E G if and only if uv ∈ E G ′ . (iii) u ∈ V H 1 -{x 2 } and v ∈ V H 2 ; then uv ∈ E G if and only if ux 2 ∈ E H 1 and v is live in H 2 , if and only if uv ∈ E H 1 [x 2 ←H 2 ] , if and only if uv ∈ E G ′ .
Hence, G and G ′ have the same edges.

(2.

2) It remains to verify that

π G = π G ′ . If u ∈ (V K -{x 1 }) ⊎ (V H1 -{x 2 }), then π G (u) = π G ′ (u) because u is not affected by the substitutions to x 2 . If u ∈ V H2 , then π G (u) = ⊥ if u is dead in H 2 ; it is π K[x1←H1] (x 2 ) otherwise. We have π K[x 1 ←H 1 ] (x 2 ) = ⊥ if x 2 is dead in H 1 , and otherwise, it is π K (x 1 ). Now, π G ′ (u) = ⊥ if u is dead in H 1 [x 2 ← H 2 ] and it is π K (x 1 ) otherwise; observe that u is dead in H 1 [x 2 ← H 2 ] if and only if it is dead in H 2 or x 2 is dead in H 1 . We obtain π G (u) = π G ′ (u) in this case; this value is either π K (x 1 ) or ⊥ (if u is dead in H 2 or x 2 is dead in H 1 ).
This completes the proof.

Properties ( 1) and ( 2) are called respectively commutativity and associativity of substitution in [START_REF] Courcelle | An axiomatic definition of context-free rewriting and its application to NLC graph grammars[END_REF]. They are axioms for the definition of context-free graph grammars based on an abstract notion of substitution and on equation systems, as explained in Example 1.6. These grammars are particular vertex replacement grammars [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF].

Definition 2.3 : Graph operations based on substitution. (a) For each C-graph K with vertex set enumerated as {x 1 , . . . , x p }, we define as follows a p-ary graph operation 18 on C-graphs denoted by σ[K, x 1 , . . . , x p ] :

σ[K, x 1 , . . . , x p ](H 1 , . . . , H p ) := K[x 1 ← H 1 , . . . , x p ← H p ] (1) 
where H 1 , . . . , H p are pairwise disjoint C-graphs that are disjoint from K. Note that the vertex set of σ

[K, x 1 , . . . , x p ](H 1 , . . . , H p ) is V H1 ⊎ . . . ⊎ V Hp .
If H 1 , . . . , H p are not pairwise disjoint, we replace them by isomorphic copies in a standard way (cf. Definitions 1.2(e) and 1.5, and Chapter 2 of [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]), so that σ[K, x 1 , . . . , x p ] becomes a p-ary operation on abstract C-graphs.

(b) We denote by Σ C the countable set of these operations together with the nullary symbols a(x) (this symbol denote the a-labelled vertex x ∈ V, as in Definition 1.2(b)). A term t ∈ T (Σ C ) is well-formed if each vertex x occurs at most once in some symbol a(x). It defines a C-graph val(t) where ( 1) is used to evaluate σ[K, x 1 , . . . , x p ](H 1 , . . . , H p ).

(c) The signature Σ C is obtained from Σ C by replacing, for each a, each symbol a(x) by a. As for clique-width terms in T (F C ), each term in T (Σ C ) denotes an abstract C-graph.

We denote by relab a the relabelling relab h such that h(⊥) := ⊥ and h(b

) := a if b = ⊥. Proposition 2.4 : Let t, t ′ ∈ T (Σ C ) and x be a vertex in the C-graph val(t) defined in t by a(x). Let t ′ be a term such that V val(t ′ ) ∩ (V val(t) -{x}) = ∅. We have : val(t)[x ← val(t ′ )] = val(t[relab a (t ′ )/a(x)]). The C-graph val(t)[x ← val(t ′ )] is obtained by substituting in val(t) the C-graph val(t ′ ) to the vertex x. The term t[relab a (t ′ )/a(x)] is obtained by substituting in t the term relab a (t ′ ) to the unique occurrence of a(x). It is well- defined because V val(t ′ ) ∩ (V val(t) -{x}) = ∅ (cf. the first footnote in Definition 2.

1).

Proof : By induction on the structure of t.

If t = a(x), then val(t)[x ←-val(t ′ )] = a(x)[x ←-val(t ′ )] = relab a (val(t ′ )) = val(relab a (t ′ )) = val(t[relab a (t ′ )/a(x)]). Let now t = σ[K, v 1 , . . . , v p ](t 1 , . . . , t p ).
Without loss of generality and to simplify notation, we assume that a(x) occurs in t 1 . Then, for every term s :

t[s/a(x)] = σ[K, v 1 , . . . , v p ](t 1 [s/a(x)], t 2 , . . . , t p ) and so val(t[s/a(x)]) = K[v 1 ← val(t 1 [s/a(x)]), v 2 ← val(t 2 ), . . . , v p ← val(t p )].
(

) 2 
By induction :

val(t 1 [relab a (t ′ )/a(x)]) = val(t 1 )[x ← val(t ′ )],
hence, Equality (2) where s = relab a (t ′ ) yields

val(t[relab a (t ′ )/a(x)]) = K[v 1 ← val(t 1 )[x ← val(t ′ )], . . . , v p ← val(t p )] = K[v 1 ← val(t 1 ), . . . , v p ← val(t p )][x ← val(t ′ )] by Propoposition 2.2(2), = val(t)[x ← val(t ′ )].
By using these operations, one can define graph grammars, formalized by systems of recursive equations in sets of abstract C-graphs, of which one takes least solutions (cf. Example 1.6 and [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF], Chapters 3 and 4). Definitions 2.5 : Some useful operations.

Here are some operations on D-graphs, where D := {⊥, ⊤} and ⊤ labels the live vertices. The first two equalities are mere observations.

κ(H) = σ[K, x 1 ](H) where K consists of the dead vertex x 1 . H 1 ⊕H 2 = σ[K, x 1 , x 2 ](H 1 , H 2 )
where K consists of two isolated live vertices x 1 and x 2 .

We define :

H 1 ⊗ H 2 := σ[K, x 1 , x 2 ](H 1 , H 2 )
where K is the edge x 1 x 2 , and x 1 and x 2 are alive.

Λ(H 1 , H 2 ) := σ[K, x 1 , x 2 ](H 1 , H 2 ) where K is the edge x 1 x 2 , x 1 is alive and x 2 is dead.
The operations ⊕ and ⊗ are associative and commutative. Here are some other algebraic properties 19 :

κ(G⊗H) = κ(Λ(G, H)), (3) 
κ(G⊕H) = κ(G)⊕κ(H) = Λ(κ(G), H) = Λ(κ(G), κ(H)), (4) 
Λ(G, H 1 ⊕H 2 ) = Λ(Λ(G, H 1 ), H 2 ). ( 5 
)
We let Σ dh be the signature {⊕, ⊗, Λ, κ, ⊤} ⊆ Σ D . For every vertex x, we have ⊥(x) = κ(⊤(x)). Hence, we need not put the nullary symbol ⊥ in Σ dh . Actually, a vertex introduced by ⊥(x) is dead from the very beginning and is isolated in the defined graph.

Examples 2.6 : Some grammars over Σ dh . Grammars are defined as equation systems that define sets of abstract Dgraphs.

(1) The following equation for cographs that we have already seen in Example 1.6, can be solved in sets of abstract D-graphs :

X = ⊤ ∪ (X ⊕ X) ∪ (X ⊗ X).
All vertices of the generated D-graphs are labelled by ⊤ because ⊕ and ⊗ do not introduce dead vertices. We recall that X ⊕ X := {G ⊕ H | G, H ∈ X} if X is a set of labelled graphs and similarly for ⊗ and the other operations considered below.

As observed in Example 1.6, this equation can also be solved in T ({⊕, ⊗, ⊤}). Its solution is a set of terms 20 that we will denote by L(X). More generally, for a system of set equations over a functional signature F that has unknowns X, Y, Z..., we will denote by L(X), L(Y ), L(Z)... the associated sets of terms in T (F ). If the system is solved in an F -algebra M, the corresponding sets of objects X, Y, Z... are the sets of values in M of the terms in L(X), L(Y ), L(Z)....

(2) We turn a rooted tree (cf. Section 1) into a {⊤, ⊥}-graph such that the root is the only live node.

These trees are defined recursively as follows : a unique node a is a tree with root a. If A and B are disjoint rooted trees with respective roots a and b, than one obtains a rooted tree C by taking the union of A and B, linked by an edge ab, and a is taken as root of C. Then, C = Λ(A, B) if A, B, C are as above. The equation that defines the set R of rooted trees is thus :

R = ⊤ ∪ Λ(R, R).
Another grammar for trees, consisting of two equations is :

Y = ⊤ ∪ Λ(⊤, Z), Z = Y ∪ (Z ⊕ Z).
Here, Z defines the nonempty disjoint unions of rooted trees.

(3) The set T of (unrooted) trees is defined by the equation T = κ(R) or T = κ(Y ), with R, Y, Z defined as in [START_REF] Brandstädt | Structure and linear-time recognition of 3-leaf powers[END_REF]. For an example, the tree with nodes u, v, w, x, y, z, root x and edges xy, xz, xv, zu and vw is defined by the term :

Λ(Λ(Λ(⊤(x), ⊤(y)), Λ(⊤(z), ⊤(u))), Λ(⊤(v), ⊤(w)))
belonging to L(R) or by the term :

Λ(⊤(x), ⊤(y) ⊕ Λ(⊤(z), ⊤(u)) ⊕ Λ(⊤(v), ⊤(w))) that belongs to L(Y ).
The paths with one live vertex at one end are defined by the equation

P = ⊤ ∪ Λ(⊤, P ).
(4) We will prove in the next proposition that the equation

W = ⊤ ∪ (W ⊕ W ) ∪ (W ⊗ W ) ∪ Λ(W, W )
defines, up to vertex labels, the distance-hereditary graphs (cf. Definition 1.1).

From these equations, we obtain that the rooted trees are defined by all terms in T ({Λ, ⊤}) or by certain terms in T ({⊕, Λ, ⊤}), and that the distancehereditary graphs are defined by terms in T ({⊕, ⊗, Λ, ⊤}). In these equations and the generated terms, the label ⊥ for dead vertices does not appear explicily, but it is introduced by the operations Λ and κ.

In the following description of distance-hereditary (DH) graphs, all vertices are defined as dead, equivalently, unlabelled. The following recursive definition of DH graphs has been established in [START_REF] Chang | Dynamic programming on distance-hereditary graphs[END_REF], but we think interesting to prove it by using the concepts of the present article. We recall that equation systems always define abstract graphs. Proposition 2.7 : (1) The distance-hereditary graphs form the set X defined by the two equations :

X = κ(W ) and W = ⊤ ∪ (W ⊕ W ) ∪ (W ⊗ W ) ∪ Λ(W, W ).
(2) The connected distance-hereditary graphs form the set Y defined by the equation :

Y = κ(⊤) ∪ κ(W ⊗ W )
and the equation of (1) that defines W .

Proof : (1) Note that 21 L(W ) = T ({⊕, ⊗, Λ, ⊤}). For both directions we will use the characterization of DH graphs recalled in Definition 1.1.

Claim 1 : Every DH graph G is in the set val(X) = val(κ(W )).

Proof : We use induction on the number n of vertices of G.

If n = 1, then G is a single dead vertex, hence G ≡ κ(⊤) ∈ κ(W ).
Otherwise there are four cases.

(i) G is the disjoint union of two DH graphs H, H ′ . Then,

H ≡ κ(t), H ′ ≡ κ(t ′ ) for some t, t ′ ∈ W = T ({⊕, ⊗, Λ, ⊤}). Hence, G ≡ κ(t ⊕ t ′ ) where t ⊕ t ′ ∈ L(W ) because κ(t ⊕ t ′ ) ≡ κ(t) ⊕ κ(t ′ ). (ii) If G is obtained from a DH graph G ′ by adding a pendant vertex y to a vertex x of G ′ , we have G = G ′ [x ← H]
where H is the edge xy, with x alive and y dead 22 ; hence H = val(Λ(⊤(x), ⊤(y))).

We have G ′ = κ(val(t ′ )) where t ′ is a well-formed term over ⊕, ⊗, Λ and the nullaries that define vertices. It has one occurrence of ⊤(x).

We let

t := t ′ [Λ(⊤(x), ⊤(y))/⊤(x)]. By Proposition 2.4, we have val(t) = val(t ′ [Λ(⊤(x), ⊤(y))/⊤(x)]) = val(t ′ [relab ⊤ (Λ(⊤(x), ⊤(y)))/⊤(x)]) val(t ′ [x ← val(relab ⊤ (Λ(⊤(x), ⊤(y))))] = val(t ′ [x ← H]).
Hence G = κ(t), so that G ≡ κ(t) where t ∈ L(W ) is obtained from t by replacing by ⊤ the symbols ⊤(z) that define vertices.

(iii) Let G be obtained from a DH graph G ′ by adding a false twin y to a vertex x. We have G = G ′ [x ← H] where H consists of two isolated live vertices x and y. Hence H = val(⊤(x) ⊕ ⊤(y)). The proof continues as in (ii) with ⊤(x) ⊕ ⊤(y) instead of Λ(⊤(x), ⊤(y)).

(iv) Let G be obtained from a DH graph G ′ by adding a true twin y to a vertex x. Here G = G ′ [x ← H] where H consists of two live vertices x and y linked by an edge, hence H = val(⊤(x) ⊗ ⊤(y)). The proof continues as in (iii) with ⊤(x) ⊗ ⊤(y) instead of ⊤(x) ⊕ ⊤(y).

Claim 2 : If G = val(t) for some well-formed term t over ⊕, ⊗, Λ and the nullaries that define vertices, then κ(G) is DH.

Proof : By induction on the size of t.

If t = ⊤(x), the result holds because an isolated vertex is DH. Otherwise, we can find a position u in t such that t/u, the subterm of t issued from position u, is either Λ(⊤(x), ⊤(y)), ⊤(x) ⊕ ⊤(y), or ⊤(x) ⊗ ⊤(y). Then t = t ′ [(t/u)/⊤(x)] for some well-formed term t ′ (t ′ is obtained by replacing in t the subterm t/u by ⊤(x)). By induction, κ(val [START_REF] Chauve | An exact enumeration of distancehereditary graphs[END_REF], where H is respectively as in cases (ii), (iii) or (iv).

(t ′ )) is a DH graph G ′ and G = G ′ [x ← H] by Proposition 2.
(2) It is clear that a term t in L(X) defines a connected graph if and only if it is not of the form κ(t 1 ⊕ t 2 ). Hence, the connected DH graphs can be defined by the equation :

Y = κ(⊤) ∪ κ(W ⊗ W ) ∪ κ(Λ(W, W ))
where W is as in [START_REF] Bandelt | Distance-hereditary graphs[END_REF]. However, we observed in Definition 2.5 that κ(Λ(G, H)) = κ(G ⊗ H) for all D-graphs G and H. Hence, the term κ(Λ(W, W )) can be removed.

The bipartite DH graphs are built from isolated vertices by the addition of pendant edges and of false twins [START_REF] Bandelt | Distance-hereditary graphs[END_REF]. Hence, they form the set B defined by the two equations B = κ(W ′ ) and

W ′ = ⊤ ∪ (W ′ ⊕ W ′ ) ∪ Λ(W ′ , W ′ ).
3 Clique-width and substitution operations.

A derived operation 23 relative to an F -algebra M is defined by a term t in T (F, {u 1 , ..., u p }), i.e., a term over F with variables (or indeterminates, i.e, nullary symbols to which values or terms can be substituted) u 1 , ..., u p . The corresponding p-ary function t M is defined by evaluating t with p arguments from the domain of M as values of u 1 , ..., u p .

For an example using clique-width operations, the operation ⊗ on graphs of type {⊤} (cf. Definitions 1.6 and 2.5) satisfies the following equality for all D-graphs G, H :

G ⊗ H = relab a→⊤ (add ⊤,a (G ⊕ relab ⊤→a (H))).
Hence, ⊗ is a derived operation defined by the term 24 relab a→⊤ (add ⊥,a (u 1 ⊕ relab ⊤→a (u 2 ))).

Our objective is to express the operations σ[K, x 1 , . . . , x p ] as derived operations over F C , the signature upon which clique-width is based.

We let Lin(F C , {u q , ..., u p }) be the set of terms in T (F C , {u q , ..., u p }), q ≤ p, where each variable u i has a unique occurrence and no other nullary symbol occurs. Every such term defines a (pq + 1)-ary mapping on C-graphs denoted by t G . For pairwise disjoint graphs H q , . . . , H p , the vertex set of t G (H q , . . . , H p ) is V Hq ⊎ . . . ⊎ V Hp .

We define T ⊥ (F C ) as the set of terms that use none of the operations 25 add a,⊥ , add ⊥,a , --→ add a,⊥ , --→ add ⊥,a , relab h if h(⊥) = ⊥, and no nullary symbol ⊥(x). We denote by cwd ⊥ (G) the minimal cardinality of C -{⊥} such that 26 G ≡ val(t) for some term t ∈ T ⊥ (F C ). Clearly, cwd(G) ≤ cwd ⊥ (G) + 1. We have cwd(T ) = 3 and cwd ⊥ (T ) = 2 for any tree T that is not a star.

Let K be a C-graph with vertex set {x q , . . . , x p } defined by a term t in T ⊥ (F C ). Each vertex x i occurs in a nullary symbol a i (x i ) in t such that a i = ⊥. We define t := t[u q /a q (x q ), . . . , u p /a p (x p )] ∈ Lin(F C , {u q , ..., u p }). Lemma 3.1 : Let K be a C-graph with vertex set {x 1 , . . . , x p } defined by t ∈ T ⊥ (F C ). Let t := t[u 1 /a 1 (x 1 ), . . . , u p /a p (x p )]. For pairwise disjoint C-graphs H 1 , . . . , H p , we have:

σ[K, x 1 , . . . , x p ](H 1 , . . . , H p ) = t G (relab a 1 (H 1 ), . . . , relab a p (H p )).
Proof: By induction on the structure of t.We recall that relab a is the relabelling that replaces by a every label except ⊥.

If t = a 1 (x 1 ), then t = u 1 , K consists of the a 1 -vertex x 1 and σ[K, x 1 ](H 1 ) = relab a1 (H 1 ) = t G (relab a1 (H 1 )) (by the behaviour of labels in substitution).

If t = t 1 ⊕ t 2 , then, without loss of generality, we assume that the vertices of K 1 := val(t 1 ) are x 1 , . . . , x i and those of K 2 := val(t 2 ) are x i+1 , . . . , x p . We have t = t 1 ⊕ t 2 . Then, since substitution distributes over disjoint union 27 and by induction :

σ[K, x 1 , . . . , x p ](H 1 , . . . , H p ) = σ[K 1 , x 1 , . . . , x i ](H 1 , . . . , H i ) ⊕ σ[K 2 , x i+1 , . . . , x p ](H i+1 , . . . , H p ) = t 1G (relab a1 (H 1 ), . . . , relab ai (H i ))⊕ t 2G (relab ai (H i ), . . . , relab ap (H p )) = t G (relab a 1 (H 1 ), . . . , relab a p (H p )). If t = f(t 1 )
where f is relab h or add a,b , then the result holds because, for every C-graph K with vertices x 1 , . . . , x p , we have :

σ[f(K), x 1 , . . . , x p ](H 1 , . . . , H p ) = f(σ[K, x 1 , . . . , x p ](H 1 , . . . , H p )).
The equality to be proved follows then by induction.

We will denote by t K and t K terms associated with K as above. We say that an operation σ[K, x 1 , . . . , x p ] has width k if cwd ⊥ (K) = k. The operations ⊕, ⊗, Λ and κ have respective widths 2,2,2 and 1. Proof : By induction on the structure of s, we define a term s in T (F C ) such that val( s) ≡ val(s).

If s = a(w), then s := s. If s = σ[K, x 1 , . . . , x p ](s 1 , . . . , s p ), then we define :

s := t K [relab a 1 ( s 1 )/u 1 , . . . , relab a p ( s p )/u p ]. It is clear that val( s) ≡ val(s).
The set of labels used in s is the set of all those used in the terms t K where σ[K, x 1 , . . . , x p ] occurs in s. We now bound cwd ⊥ (G). Without loss of generality, we can assume that all labels of the terms t K for K occurring in s (via some σ[K, x 1 , . . . , x p ]) are in a set C such that C -{⊥} has cardinality k.

Hence cwd ⊥ (G) ≤ k and cwd(G) ≤ k + 1.
If in s, all the operations of maximal width k do not use ⊥ in their definitions by terms, then cwd(G) = cwd ⊥ (G) ≤ k. This result is known from [START_REF] Golumbic | On the clique-width of some perfect graph classes[END_REF][START_REF] Oum | Rank-width and vertex-minors[END_REF] with different proofs. As the operation Λ of width 2 needs ⊥ in its defining term, we do not have cwd(G) = cwd ⊥ (G) ≤ 2. Proposition 4.9 of [START_REF] Meister | Clique-width with an inactive label[END_REF] establishes that conversely, G is distance-hereditary if cwd ⊥ (G) ≤ 2.

Split decomposition

The split decomposition of directed and undirected graphs has been defined and studied by Cunnigham in [START_REF] Cunningham | Decomposition of directed graphs[END_REF]. We will formulate it in terms of graphlabelled trees, as in [START_REF] Gioan | Split decomposition and graph-labelled trees: Characterizations and fully dynamic algorithms for totally decomposable graphs[END_REF][START_REF] Gioan | Practical and efficient split decomposition via graph-labelled trees[END_REF], also called split-decomposition graphs in [START_REF] Courcelle | The monadic second-order logic of graphs XVI : Canonical graph decompositions[END_REF]. We only consider undirected graphs in this section. We denote by L T the set of leaves of a tree T and by Inc T (v) the set of edges incident to a node v.

Definitions and basic facts

(a) A graph-labelled tree, denoted by T , is a tree T with at least three nodes that is equipped, for each node v ∈ N T , with a connected graph H v , called a component, and a bijection ρ v :Inc T (v) → V Hv . The components are pairwise disjoint. We identify u and the unique vertex of H u if u is a leaf.

Figure 1 shows a graph-labelled tree with leaves 1, ..., 8 and internal nodes u, v, w, x. The components are surrounded by elipses. The dotted lines are the edges of the tree T . Each of them links two vertices of two different components, and each vertex x in a component H v is incident to one and only one "dotted edge", namely, ρ -1 v (x). (b) The corresponding split-graph S(T ) is the union of the components together with the edges ρ u (e)ρ v (e) for e = uv, (the "dotted edges" of Figure 1). A path in S(T ) is alternating if no two consecutive edges are in a same component 28 . Between any two vertices x, y of S(T ), there is at most one alternating path. If there is one, we say that x is accessible from y, and we precise through z (or e) to indicate that this path goes through a particular vertex z (or edge e). For a vertex w of S(T ) belonging to a component H u , we denote by A(w) (respectively by P (w)) the set of vertices accessible from w by a nonempty alternating path whose first edge is not in H u (respectively, reachable from w by a nonempty path in S(T ) whose first edge is not in H u ).

(c) The graph described by T , denoted by G(T ), has vertex set L T and an edge uv if and only if u is accessible from v. It is connected ([27], Lemma 2.3) because the components are defined as connected 29 .

We continue to examine the graph-labelled tree T of Figure 1 and the associated graph G(T ) in Figure 2. There is an alternating path between leaf 7 and leaf 1. Hence, they are adjacent vertices in G(T ). On any path between 3 and 7, there are two consecutive edges of H u , hence, 7 is not adjacent to 3.

(d) Let e = uv be an edge of T between two internal nodes. The node-joining operation (cf. [START_REF] Gioan | Split decomposition and graph-labelled trees: Characterizations and fully dynamic algorithms for totally decomposable graphs[END_REF]) contracts this edge, hence fuses u and v into a single new node say w, giving tree T ′ ; the new component H ′ w is defined as H u ⊎ H v minus the two vertices ρ u (e), ρ v (e) and augmented with an edge between any vertex x in H u and any vertex y in H v such that xρ u (e) ∈ E Hu and ρ v (e)y ∈ E Hv . This graph is connected. We obtain a graph-labelled tree T ′ (nothing else is modified from T ) that describes the same graph. If ρ u (e) has degree r in H u and ρ v (e) has degree s in H s , the resulting component H ′ w has a subgraph isomorphic to the complete bipartite graph K r,s .

The opposite transformation is called node-splitting. It preserves also the defined graph.

Remark 4.2 : A graph G consisting of a single edge is defined by a graphlabelled tree one component of which is an edge. Otherwise, a single edge compo-Figure 2: The graph G(T ) for T in Figure 1.

nent H u can be eliminated by a node-joining of u with one of its two neighbours. This elimination being done as much as possible, the resulting tree has no node of degree 2.

However in a graph-labelled tree T that defines a graph with at least 2 vertices, it may be useful to insert a component consisting of a single edge (cf. Section 4.5 below) : consider an edge uv of T , replace it by two edges uw and wv where w is new node, and define the new component corresponding to w as consisting of a single edge.

The following lemma is implicit in [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF][START_REF] Gioan | Split decomposition and graph-labelled trees: Characterizations and fully dynamic algorithms for totally decomposable graphs[END_REF]. We will generalize it for directed graphs.

If uv is an edge of a tree T , we denote by N T,u\v the set of nodes of the connected component of Tu that contains v. Notation is in Definition 4.1(b). Lemma 4.3 : Let T be a graph labelled tree and G = G(T ).

(1) For each vertex x of S(T ), the set A(x) ∩ L T is not empty.

(2) Let x, y be distinct vertices of some component H. If xy is an edge of H, there is an alternating path between any leaf in A(x) and any leaf of A(y). Conversely, if an alternating path links a leaf in A(x) and a leaf of A(y), then this path goes through H, and more precisely, through x and y, and xy ∈ E H . Each component is isomorphic to an induced subgraph of G.

(3) Let uv be an edge of T . There is an alternating path between any leaf in A(x) where x is a neighbour of ρ u (uv) in H u and any leaf in A(y) where y is a neighbour of ρ v (uv) in H v . Any such path goes through the edge ρ u (uv)ρ v (uv).

Proof: (1) Let x belong to H u . Then x = ρ u (uv) for some (unique) edge uv of T . We use induction on the cardinality of N T,u\v .

If

N T,u\v = 1, then v is a leaf in A(x) as A(x) = {v} = {ρ v (uv)}.
Otherwise, H v has an edge ρ v (uv)y and y = ρ v (vw) for some edge vw of T . Then N T,v\w ⊂ N T,u\v and A(y) ∩ L T ⊆ A(x) ∩ L T . The set A(y) ∩ L T is not empty by induction, so is A(x) ∩ L T .

(2) Let xy = ρ u (uv)ρ u (uw) be an edge of component H u . Let z ∈ A(x) ∩ L T and z ′ ∈ A(y) ∩ L T . By connecting alternating paths between z and x, and z ′ and y with the edge xy, we get an alternating path between z and z ′ . Any such path must through xy as one checks from the definitions.

For each vertex x of H u , let us choose a vertex x of G in A(x) ∩ L T . By the previous observations, the induced subgraph of G whose vertices are the x's is isomorphic to H u .

(3) The proof is similar to that of (2).

The following corollary illustrates these notions in the basic case of trees.

Corollary 4.4 : Let T be a graph-labelled tree. The graph G(T ) is a tree if and only if :

(1) each component of T is a tree, and

(2) if e = uv ∈ E T is not a pendant edge, then at least one of ρ u (e) and/or ρ v (e) is a leaf of, respectively, H u and/or H v .

Proof : Assume G(T ) is a tree. By Lemma 4.3(2), each component of T is isomorphic to an induced subgraph of G(T ), hence is a tree since components are connected. For Property (2), if none of ρ u (e) and ρ v (e) is a leaf, then the nodejoining of u and v (Definition 4.1(d)) merges H u and H v into a component that contains a complete bipartite graph K r,s such that r, s ≥ 2. This component has a cycle and G(T ) is not a tree by [START_REF] Bandelt | Distance-hereditary graphs[END_REF].

Conversely, let T satisfy (1) and [START_REF] Brandstädt | Structure and linear-time recognition of 3-leaf powers[END_REF]. Consider e = uv satisfying Property (2) : if we apply to it the node-joining operation, the component H ′ w created in this way is still a tree. The obtained graph-labelled tree T ′ satisfies (1) and ( 2) and describes G(T ). By repeating this operation until all edges are pendant, we obtain a graph-labelled tree that defines G(T ) and that has one component that is a tree, all others being leaves. Hence G(T ) is a tree.

A tree may be defined from several nonisomorphic graph-labelled trees. A stronger condition than (2) of Corollary 4.4, namely Condition (2) of Theorem 4.6, yields unicity, up to isomorphism, of the graph-labelled trees that define connected graphs. Definition 4.5 : Split decompositions.

(1) A split of a graph G is a bipartition of V G into two sets V 1 and V 2 having each at least 2 vertices, such that the edges between V 1 and V 2 induce a complete bipartite graph with at least one edge. These edges link any vertex of some set

A 1 ⊆ V 1 and any vertex of some A 2 ⊆ V 2 . Hence, G is κ(G 1 ⊗ G 2 ) where the induced subgraphs G 1 := G[V 1 ] and G 2 := G[V 1 ]
have labels in D := {⊤, ⊥} in such a way that the vertices in A 1 ∪ A 2 are labelled by ⊤ and the others by ⊥.

(2) A graph is defined as prime 30 if it has at least 4 vertices and no split. The connected graphs with 3 vertices are the stars S 3 and the triangles, i.e., the graphs isomorphic to K 3 . A star S n , n ≥ 3, has a center and n -1 adjacent vertices that are leaves: S n is a tree. Stars and cliques are not prime. No prime graph has less than 5 vertices. The cycles C n for n ≥ 5 are prime. Theorem 3 of [START_REF] Cunningham | Decomposition of directed graphs[END_REF], also proved as Theorem 2.9 in [START_REF] Gioan | Split decomposition and graph-labelled trees: Characterizations and fully dynamic algorithms for totally decomposable graphs[END_REF], states the following existence and unicity theorem.

Theorem 4.6 : Every connected graph with at least 3 vertices is G(T ) for a unique graph-labelled tree T such that :

(1) each component H v is singleton, or prime, or is a clique K n or a star S n , for some n ≥ 3,

(2) if e = uv ∈ E T , then H u and H v are not both cliques, and, if they are both stars, then ρ u (e) and ρ v (e) are both centers or both leaves.

Unicity is understood up to isomorphism.

Such a graph-labelled tree is called split decomposition of G. It is canonical because of its unicity, up to isomorphism. It can be obtained from an arbitrary graph-labelled tree that defines G by the node-splittings and the node-joinings of Definition 4.1(d) (see [START_REF] Gioan | Split decomposition and graph-labelled trees: Characterizations and fully dynamic algorithms for totally decomposable graphs[END_REF] for details). The resulting tree has no node of degree 2 (cf. Remark 4.2). We will also consider graph-labelled trees that need not be canonical. Remarks 4.7 : (1) The split decomposition of a clique K n , n ≥ 3, has a unique component that is a clique. But any graph-labelled tree all components of which are cliques defines a clique. A clique K n , n ≥ 3 can be defined by a graph labelled tree all components of which are triangles or isolated vertices. By using node splitting, we can replace a component K r+s+2 where r, s > 1 by two components K r+1 and K s+1 .

(2) In the split decomposition of a tree, all components are stars, and if e = uv ∈ E T , then ρ u (e) and ρ v (e) are both leaves of H u and H v by Corollary 4.5 and Theorem 4.7. Every tree with at least 3 nodes can be defined by a graph-labelled tree all components of which are stars S 3 or isolated vertices. As above, this can be achieved by node-splitting.

Examples 4.8 : Distance-hereditary (DH) graphs and 3-leaf powers.

A graph-labelled tree defines a distance-hereditary graph if and only if all its components are stars and cliques, as proved in [START_REF] Gioan | Split decomposition and graph-labelled trees: Characterizations and fully dynamic algorithms for totally decomposable graphs[END_REF], Section 3.1. This article also studies particular DH graphs called 3-leaf powers. A 3-leaf power G is defined as follows from a tree S : V G is L S and two vertices are adjacent if and only if they are at distance at most 3 in S. A graph is a 3-leaf power if and only if it is obtained from a tree by substitutions of cliques to its vertices [START_REF] Brandstädt | Structure and linear-time recognition of 3-leaf powers[END_REF]. It follows that a graph is a 3-leaf power if and only if it is a clique or is G(T ) for some graph-labelled tree T having one component, say H 0 , that is a tree whereas all others are cliques (an isolated vertex is a clique K 1 ). Hence, the set L of 3-leaf powers is defined, up to labels, by the two equations:

L = K ∪ Λ(L, L), K = ⊤ ∪ (K ⊗ K).
The set K is that of cliques where all vertices are alive. The equation for L is derived from the first equation for rooted trees in Example 2.6(2). In the characterization of 3-leaf powers of [START_REF] Gioan | Split decomposition and graph-labelled trees: Characterizations and fully dynamic algorithms for totally decomposable graphs[END_REF], the component H 0 that is a tree is decomposed in the canonical way of Theorem 4.7.

Graph-labelled trees and substitution operations.

We will use D-graphs, where D := {⊤, ⊥}. Definitions 4.9 : Rooted graph-labelled trees and related notions. (a) Let T be a graph-labelled tree, with underlying tree T , not reduced to a single node. Let us select a node r ∈ N T and make it a root for T . We call then T a rooted graph-labelled tree. If r is a leaf, we call it a leaf-rooted graph-labelled tree, and otherwise, a non-leaf-rooted graph-labelled tree.

(b) If u ∈ N T , we let 31 

N u := {x ∈ N T | x ≤ T u} and V u := {x ∈ L T | x ≤ T u}. Hence, V r = L T = V G and V u = {u} if u ∈ L T -{r}.
(c) If u ∈ N T -L T has father w, we say that ρ u (uw) is the leader of H u , denoted by u, and we define H u \u as the D-graph H uu (possibly not connected) where a vertex x is alive (labelled by ⊤) if it is adjacent to u in H u and is dead (labelled by ⊥) otherwise. We define also H r \r := H r , all its vertices being defined as dead. If r is a leaf, then H r \r is undefined.

(d) If u ∈ N T , we define G u as G[V u ] labelled as follows :

(d.1) if u = r, then every vertex of G u = G is labelled by ⊥, (d.2) if u = r, a vertex y of G u is labelled by ⊤ if it is in A(z)
for some neighbour z (in H u ) of the leader of H u ; otherwise, it is labelled by ⊥.

Note that if r is a leaf and u is its neighbour in T , then G = G r = κ(Λ(⊤(r), G u ).

For an example, consider the graph-labelled tree of Figure 1 in Section 4.1 with root x. The vertices 4 and 5 are alive in G v , but not in G u . The vertices 2,6,7 are alive in G u .

The following lemma relates graph-labelled trees and substitution operations. Note that the graphs H u \u depend on the root r that is chosen for T . Lemma 4.10 : Let T be a rooted graph-labelled tree that defines G. If u in N T -L T has sons u 1 , ..., u p , and the corresponding p vertices of H u \u are x 1 , ..., x p (that is, x i := ρ u (uu i ) ), then we have :

G u = (H u \u)[x 1 ← G u1 , ..., x p ← G up ]. Proof : Let K := (H u \u)[x 1 ← G u1 , ..., x p ← G up ]. 1) The vertex set of G u is V u := {x ∈ V G | x ≤ T u} (V G = L T ) hence, is the union the sets V u i := {x ∈ V G | x ≤ T u i } that
are the vertex sets of the graphs G ui . Hence, G u and K have the same vertices.

2) As the graphs G w are induced subgraphs of G, two vertices of G ui are adjacent in G u if and only if they are in G as well as in G ui , hence also in K.

Consider vertices x of G ui and y of G uj , j = i. If they are adjacent in G u , hence in G, they are linked by an alternating path, that must go through H u , and not through its leader u, and use its edge ρ u (u i u)ρ u (u j u) = x i x j , an edge of H u \u. This path goes through the leader ρ ui (u i u) of H ui . Hence, x is alive in G u i . Similarly, y is alive in G u j . Hence xy is an edge of K.

Conversely, if xy ∈ E K , then x i x j is an edge of H u \u, the vertex x is alive in G ui and y is alive in G uj . Going back to definitions, we have an alternating path between x and y. Hence, xy is a edge of G hence of G u .

3) If u is the root r and is not a leaf, then all vertices of H u \u are dead, hence, so are those of K, as well as those of G = G r .

Otherwise, let x be a vertex of G ui that is alive. Hence, there an alterning path P between x and the leader ρ ui (u i u) of H ui . If ρ u (u i u) = x i is a neighbour of the leader u of H u , then x is alive in K. It is also in G u because P can be extended into an alterning path from x to u. If ρ u (u i u) = x i is not a neighbour of u, then x is dead in K. It is also in G u because P cannot be extended into an alterning path from x to u.

If x is dead in G ui , then it is also in K and in G u , because otherwise, the alternating path between x and u would give a path P as above.

From graph-labelled trees to grammars

If M is a finite set of connected (unlabelled) graphs having at least 2 vertices, we define G(M) as the set of graphs described by graph-labelled trees whose components are in M. These graphs are connected (Definition 4.1(c)).

As before, D := {⊤, ⊥}. For each H ∈ M, we define H ⊥ as H with all vertices labelled by ⊥. We denote by Σ M the set of operations σ[H ⊥ , x 1 , ..., x p ] for H ∈ M and by Σ ′ M the set of operations σ[H\x, x 1 , ..., x p ] for H ∈ M and x ∈ V H (cf. Definition 4.9(c) for the notation H\x).

Theorem 4.11 : If M is a finite set of connected graphs having at least 2 vertices, then G(M) is the set S defined by the two equations :

S = κ(⊤) ∪ ∪ σ∈Σ M σ(U, ..., U ) and U = ⊤ ∪ ∪ σ∈Σ ′ M σ(U, ..., U ).
Another grammar for G(M) consists of :

S ′ = κ(⊤) ∪ κ(Λ(⊤, U ))
and the above equation that defines U .

Proof : Let G belong to S. If it is a dead isolated vertex κ(⊤), it is in G(M).
Otherwise, it is defined by a finite term t = σ(t 1 , ..., t p ) where σ ∈ Σ M and t 1 , ..., t p are terms in T (Σ ′ M ∪ {⊤}). By Lemma 4.10, this term represents a non-leaf-rooted graph-labelled tree T . The component at the root is isomorphic to H such that σ = σ[H, x 1 , ..., x p ]. The terms t 1 , ..., t p represent the subtrees of T issued from the p sons of the root. Hence, G is described by a rooted graph-labelled tree with components in M, and so, G ∈ G(M).

Let conversely G ∈ G(M). If it is a dead isolated vertex, then it is in S, defined by κ(⊤). Otherwise it is defined by a non-leaf rooted graph-labelled tree T , hence, by a term t = σ(t 1 , ..., t p ) as above. The subtrees of T issued from the sons of the root are defined by the terms t 1 , ..., t p .

The second grammar is based on leaf-rooted graph-labelled trees. The proof is similar, by the remark in Definition 4.9(d).

The equation W = ⊤ ∪ Λ(⊤, U ) with U as above defines the rooted graphs in G(M) defined as those having exactly one live vertex (labelled by ⊤). We will apply this remark to DH graphs in Section 4.5.

Clique-width bounds from graph-labelled trees

Theorem 4.12 : Let G be a connected graph defined by a rooted graph-labelled tree T such that each operation σ[H u \u, x 1 , ..., x p ] has width at most k ≥ 2.

Then cwd ⊥ (G) ≤ k and cwd(G) ≤ k + 1.
Proof: Immediate consequence of Proposition 3.2 and Theorem 4.11.

The next lemma gives an upper-bound to the widths of the terms in T ⊥ (F C ) that define the D-graphs H u \u.

Lemma 4.13 : Let H be a D-graph such that cwd(H) = k. Then cwd ⊥ (H) ≤ k + min{k, V live H , V dead H }. Proof: We have cwd ⊥ (H) ≤ cwd * (H) ≤ 2k by Lemma 1.3 (with |τ (G)| ≤ 2).
For proving that cwd ⊥ (H) ≤ k + V live H , we consider a term that defines H with a set C ′ of k labels different from ⊥. Assume that V live H = {x 1 , ..., x p }. We add new labels c 1 , ..., c p to C ′ so that c i will only label x i . We transform t into t ′ accordingly. In particular, to take a typical case, if at some position in t the operation add a,b adds edges between x i , labelled at this point by a (there may be other a-labelled vertices) and b-labelled vertices, then we replace it by

add c i ,b • add a,b .
Hence, we can use p + k labels different from ⊥.

If V dead H = {x 1 , ..., x p }.
We do a similar construction.

Theorem 4.14 : Let G be defined by a graph-labelled tree T whose components have maximal clique-width m and maximal degree d, then m ≤ cwd(G) ≤ m + min{m, d} + 1 ≤ 2m + 1.

Proof : The inequality m ≤ cwd(G) follows from Lemma 4.3(2) since cliquewidth is monotone with respect to the induced subgraph relation.

We now prove the other inequality 32 . For each component H u , the number of live vertices in H u \u is at most d. Hence, Lemma 4.13 gives cwd ⊥ (H u \u) ≤ m + min{m, d} and Theorem 4.12 gives cwd ⊥ (G) ≤ m + min{m, d}, so that cwd(G) ≤ m + min{m, d} + 1 ≤ 2m + 1.

For an example, if G is a tree that is not a star and is defined by T whose components are stars with three nodes, hence of clique-width 2, we have m = 2 and cwd(G) = 3.

Remark 4.15 :

A bound based on rank-width. Rank-width is another graph complexity measure initially defined for undirected graphs 33 , denoted by rwd. It is based on ternary trees (without root) that define layouts of the considered graphs. The DH graphs are those of rank-width 1, as proved in [START_REF] Oum | Rank-width and vertex-minors[END_REF].

Rank-width is related to clique-width by the inequalities rwd(G) ≤ cwd(G) ≤ 2 rwd(G)+1 -1, cf. [START_REF] Oum | Rank-width and vertex-minors[END_REF]. Furthermore, if G = G(T ) for some graph-labelled tree T , and m is the maximal rank-width of a component H u , then rwd(G) = m (Theorem 4.3 of [START_REF] Hlinený | Width parameters beyond tree-width and their applications[END_REF]). Hence, if cwd(H u ) ≤ m for all u, we get rwd(G) ≤ m and cwd(G) ≤ 2 m+1 -1.

Example 4.16 : Parity graphs.

3 2 By using monadic second-order transductions [START_REF] Courcelle | The monadic second-order logic of graphs XVI : Canonical graph decompositions[END_REF] proves that cwd(G) is bounded in terms of m by a superexponential function. 3 3 The extension to directed graphs is in [START_REF] Kanté | The rank-width of edge-coloured graphs[END_REF].

A graph is a parity graph if for any two vertices, the induced paths joining them have the same parity. Bipartite graphs and DH graphs are parity graphs. The article [START_REF] Cicerone | On the extension of bipartite to parity graphs[END_REF] establishes that the parity graphs are the graphs having a split decomposition whose components are cliques and bipartite graphs. We do not obtain a finite grammar as bipartite graphs, whence also parity graphs, have unbounded clique-width.

Unambigous grammars for cographs and distance-hereditary graphs

We first examine some of the operations σ[H, x 1 , ..., x p ] that arise in split decompositions.

Observation 4.17 : Substitution operations related to split decompositions. Case 1 : H is a clique K p , p ≥ 2 whose vertices x 1 , ..., x p are all alive. We have :

σ[K p , x 1 , ..., x p ](G 1 , ...., G p ) = G 1 ⊗ ... ⊗ G p .
Case 2 : H = S p \x p where p ≥ 3 and S p has center x 1 that is alive, all other vertices being dead. We have :

σ[S p \x p , x 1 , ..., x p-1 ](G 1 , ...., G p-1 ) = Λ(Λ(...Λ(G 1 , G 2 ), G 3 ), ..., G p-1 ))...)) = Λ(G 1 , G 2 ⊕ G 3 ⊕ ... ⊕ G p-1
) by Equality (5) of Definition 2.5.

Case 3 : H = S p \x p where p ≥ 3, S p has center x p and all vertices of S p \x p are alive. Then we have :

σ[S p \x p , x 1 , ..., x p-1 ](G 1 , ...., G p-1 ) = G 1 ⊕ ... ⊕ G p-1 .
Constructions 4.18 : Grammars for DH graphs revisited. A connected DH graph without live vertices is defined by a graph-labelled tree T whose components are stars, cliques and single vertices. By rooting T at a leaf, we obtain from Theorem 4.11 the following grammar, where S defines the connected DH graphs :

S = κ(⊤) ∪ κ(Λ(⊤, U )), U = ⊤ ∪ (U ⊕ U) ∪ (U ⊗ U ) ∪ Λ(U, U ).
Here is an alternative construction, where the chosen root is not a leaf. By means of node splittings (Definition 4.1(d)), we can transform T as above into a graph-labelled tree whose components are stars S 3 , triangles K 3 , together with one component 34 K 2 : for n ≥ 4, a component (isomorphic to) K n can be split into K 3 and K n-1 , and a component S n can be split into S 3 and S n-1 where the center of S 3 is linked to a leaf of S n-1 .

Let us take as root the component K 2 . We obtain from Theorem 4.11 the following equations :

S = κ(⊤) ∪ κ(U ⊗ U ), U = ⊤ ∪ (U ⊕ U ) ∪ (U ⊗ U ) ∪ Λ(U, U ),
that are the two equations of Proposition 2.7(2). The equations of Proposition 2.7 can be used to generate DH graphs having a given number n of vertices, but not, at least immediately, with equal probability for each fixed n. The reason is that because of the associativity and commuttivity of ⊕ and ⊗, and also because of Equality (5) of Definition 2.5, this grammar is ambigous. For the same reason, it cannot be used for counting 35 the number of DH graphs having n vertices. However, it can be transformed so as to allow that.

Construction 4.19 : An unambigous grammar for cographs. Cographs are DH and defined by the equation :

C = ⊤ ∪ (C ⊕ C) ∪ C ⊗ C.
They have a canonical description as follows, where C ⊗ (resp. C ⊕ ) denotes the set of connected (resp. disconnected) cographs with at least two vertices. A (⊤-labelled, abstract) cograph G is : a single vertex ⊤, or it is connected and of the form

G 1 ⊗ ... ⊗ G p , p ≥ 2, where G 1 , ..., G p ∈ C ⊕ ⊎ {⊤},
or it is disconnected and of the form

G 1 ⊕ ... ⊕ G p , p ≥ 2, where G 1 , ..., G p ∈ C ⊗ ⊎ {⊤}.
The corresponding term is (or represents) the (canonical) modular decomposition of G [START_REF] Habib | A survey of the algorithmic aspects of modular decomposition[END_REF]. For a finite or countable set L of labelled graphs, we define: ⊕ ≥2 (L) as the set of labelled graphs G 1 ⊕ ... ⊕ G p and ⊗ ≥2 (L) as the set of labelled graphs G 1 ⊗ ... ⊗ G p , where, in both cases, p ≥ 2 and G 1 , ..., G p ∈ L.

With these "metaoperations", we can define cographs by the three equations:

C = ⊤ ∪ C ⊕ ∪ C ⊗ , C ⊕ = ⊕ ≥2 (⊤ ∪ C ⊗ ), C ⊗ = ⊗ ≥2 (⊤ ∪ C ⊕ ).
These three equations form an unambigous grammar because of the unicity of the decomposition recalled above, and because G 1 ⊕...⊕G p = G π(1) ⊕...⊕G π(p) for any permutation π of the indices, and similarly for ⊗. Hence, ⊕ ≥2 can be seen as an operation of variable arity extended to sets. One obtains a bijection of the set connected (abstract) cographs with the rooted trees whose internal nodes have at least two sons. The sons of a node form a set and not a sequence. These trees, called hierarchies, have been used in [START_REF] Ravelomanana | Asymptotic enumeration of cographs[END_REF] to evaluate the number of cographs of a given size. Construction 4.20 : An unambigous grammar for DH graphs. For distance-hereditary graphs, the situation is similar, by using canonical split decompositions. The grammars given in Construction 4.18 are ambigous. We can obtain an unambigous one for rooted and connected DH graphs. Rooted means that one vertex is distinguished as alive and all others are dead. We only generate such graphs having at least 3 vertices. Theorem 4.6 and Example 4.8 yield the following description that we give as a grammar written with the two above metaoperations:

D = Λ(⊤, D ⊗ ∪ D ⊕ ∪ D Λ ), D ⊗ = ⊗ ≥2 (⊤ ∪ D ⊕ ∪ D Λ ), D ⊕ = ⊕ ≥2 (⊤ ∪ D ⊗ ∪ D Λ ), D Λ = Λ(J, D ⊕ ) ∪ Λ(J, ⊤ ∪ D ⊗ ∪ D Λ ), J = ⊤ ∪ D ⊕ ∪ D ⊗ .
The equation D = Λ(⊤, D ⊗ ∪D ⊕ ∪D Λ ) defines the root by ⊤ and D ⊗ ∪D ⊕ ∪ D Λ correspond to the three types of components H u of its son u, respectively Cases 1,3 and 2 in Observations 4.17.

The equation D ⊗ = ⊗ ≥2 (⊤ ∪ D ⊕ ∪ D Λ ) corresponds to a component that is a clique (cf. Case 1). The righthand side does not include D ⊗ because two clique components cannot be neighbour in a canonical split decomposition.

The equation D ⊕ = ⊕ ≥2 (⊤ ∪ D ⊗ ∪ D Λ ) corresponds to a star component whose center is the leader. The righthand side does not include D ⊕ because two star components cannot be linked by their centers.

The rules for D Λ correspond a star component H u whose center is not the leader. The set J corresponds to the son of u linked to the center. It does not does not include D Λ because two star components cannot be linked by two leaves. The term Λ(J, ⊤ ∪ D ⊗ ∪ D Λ ) corresponds to a star S 3 = H u , and the term Λ(J, D ⊕ ) to larger stars.

In this grammar, an equation like D ⊗ = ⊗ ≥2 (⊤∪D ⊕ ∪D Λ ) creates no ambiguity because the three sets {⊤}, D ⊕ and D Λ are disjoint and the metaoperation ⊗ ≥2 avoids the ambiguities created by the associativity and commutativity of ⊗. That the full grammar is unambigous follows from the unicity part of Theorem 4.6.

These rules appear in Appendix A of [START_REF] Chauve | An exact enumeration of distancehereditary graphs[END_REF], written so as to yield corresponding generating functions. We recall that unambiguity is essential for counting purposes, and also for random generation (cf. [START_REF] Flajolet | A calculus for the random generation of labelled combinatorial structures[END_REF]).

Distance-hereditary graphs without root (without any vertex distinguished as the unique live one) are obtained by adding the rule E = κ(D), but the resulting grammar becomes ambigous because the derivation trees corresponding to different roots are different. A more complex grammar that is appropriate for counting the DH graphs without root is given in [START_REF] Chauve | An exact enumeration of distancehereditary graphs[END_REF]. It uses rules with substractions so as to avoid double counting. (They apply the equality |A ∪ B| = |A| + |B| -|A ∩ B| .) This article also handles 3-leaf powers (cf. Example 4.8) in a similar way.

Directed graphs

We now extend our results to directed graphs. Cunnigham defines a canonical split decomposition for the directed graphs that are strongly connected (Theorem 1 in [START_REF] Cunningham | Decomposition of directed graphs[END_REF]). An undirected graph can be seen as a directed one where each arc (directed edge) has an opposite one. It is connected if and only if the corresponding directed graph is strongly connected. Hence, Theorem 4.7 is a special case of a more general one for directed graphs 36 .

We will use graph-labelled trees and split decomposition graphs as in [START_REF] Courcelle | The monadic second-order logic of graphs XVI : Canonical graph decompositions[END_REF]. In order to extend to directed graphs the results of Section 4, we will revise the notion of substitution of Section 2 for graphs with labels that encode the directions of arcs. The set of live vertices is partitioned into three sets, designated by the tags ⊤, +, -, attached to the labels of the sets C used to construct graphs with the clique-width operations of Definition 1.2.

We study directed graphs. However, the graphs representing graph-labelled trees will have undirected edges as well as arcs.

Substitution Definition : Substitutions of directed graphs to vertices

We let D := {⊥, +, -, ⊤} be ordered in such a way that ⊥ < + < ⊤, ⊥ < -< ⊤, and + andare incomparable. Let K be a D-graph with vertex set {x 1 , . . . , x p } and H 1 , . . . , H p be pairwise disjoint D-graphs, that are disjoint from K. We define a D-graph G := K[x 1 ← H 1 , . . . , x p ← H p ] :

V G := V H1 ⊎ . . . ⊎ V Hp , π G (v) := inf{π Hi (v), π K (x i )} if v ∈ V Hi .
Its arcs are as follows, for u, v ∈ V G (they do not depend on π K ) : uv ∈ E H i for some i, or π Hi (u) ∈ {⊤, +}, π Hj (v) ∈ {⊤, -} and x i x j ∈ E K (and so i = j). We obtain graph operations, as in Section 2, that we will use to describe the directed graphs defined by graph-labelled trees. where H 1 , . . . , H p are pairwise disjoint and disjoint from K. If they are not, we replace them by isomorphic copies, so that σ[K, x 1 , . . . , x p ] becomes a p-ary operation on abstract D-graphs.

If we extend Definition 5.1, so that K can have other vertices than x 1 , . . . , x p , then Proposition 2.2 is still valid.

We will express substitutions in terms of clique-width operations. For directed graphs, we use the operations --→ add a,b that create arcs from a-labelled vertices to b-labelled ones. Our objective is to bound the clique-width of G := K[x 1 ← H 1 , . . . , x p ← H p ] as O(max{cwd(K), cwd(H 1 ), . . . , cwd(H p )}). We assume that the graphs K, H 1 , . . . , H p are defined, up to their labels in D, by terms in T (F C ) where C ∩ D = ∅. We define

C # := {(a, α, β) | a ∈ C, α, β ∈ D, β ≤ α} and f : C # → D such that f ((a, α, β)) := β for all (a, α, β) in C # .
We will define the D-graph G by a term t G in T (F C # ) in such a way that G = relab f (val(t G )).

Assume that K = val(t K ) for t K ∈ T (F C ). Let x 1 , . . . , x p be the vertices of K. Each vertex x i is defined by a nullary symbol a i (x i ) in t K . We construct a term t K in T (F C # , {u 1 , . . . , u p }) as follows :

-we replace each a i (x i ) by the variable u i , -we replace each operation relab h by relab h where h((a, α, β)) := (h(a), α, β) for all (a, α, β) ∈ C # , (a, ⊤, ⊤), (a, ⊤, +), (a, ⊤, -), (a, ⊤, ⊥), (a, +, +), (a, +, ⊥), (a, -, -), (a, -, ⊥) for all a ∈ C and (c, ⊥, ⊥).

By using this remark, we obtain: Proposition 5.6 : If a graph G is defined up to vertex labels by a composition of operations σ[K, x 1 , . . . , x p ] such that each graph K has clique-width at most k, then, cwd(G) ≤ 8k + 1.

Proof : Let G be defined by a term over nullary symbols and operations σ[K, x 1 , . . . , x p ] such that cwd(K) ≤ k. The terms t K can be written with the labels of a set C of k labels. By composing the terms t K and the relabellings h i according to Lemma 5.5, we obtain a term in T (F C # ) that defines G by using at most 8k + 1 labels. Hence, cwd(G) ≤ 8k + 1.

Directed graph-labelled trees.

Definition 5.7 : Graph-labelled trees describing directed graphs.

In the following definition, unspecified notions and notation are as in Definition 4.1. Graph labelled-trees will be represented by graphs with (directed) arcs and (undireceted) edges. Let us consider an edge as a pair of opposite arcs. Then a directed path or walk 37 can go through an edge, that is, through one of the two arcs of this edge.

(a) A directed graph-labelled tree, denoted by T is an undirected tree T with at least 3 nodes, that is equipped, for each node v ∈ N T , with a directed graph H v , called a component, and a bijection ρ v : Inc T (v) → V Hv . Components are pairwise disjoint and need not be connected, see Example 5.8(2) below. If v is a leaf, then H v has a single vertex that we identify with v.

(b) We define S(T ) as the graph consisting of the union of the components augmented with the (undirected) edges ρ u (e)ρ v (e) for e = uv, (cf. Figure 5, where the edges ρ u (e)ρ v (e) are shown by dotted lines). The arcs are inside the components. A directed path or walk in S(T ) is alternating if no two consecutive arcs are in a same component. Hence, in a directed path, arcs alternate with edges. In a directed walk, an edge can be traversed consecutively several times.

There is at most one alternating path from a vertex x to a vertex y, but there may also exist one from y to x. This is the case if and only if each arc zz ′ on this path inside a component has an opposite arc z ′ z (we are considering paths, not walks).

In view of Proposition 5.9, for a vertex x in a component H u , we define A -(x) as the set of vertices y of S(T ) accessible from x by an alternating path (from x to y) whose first edge or arc is not in H u , and A + (x) as the set of vertices w of S(T ) such that there is an alternating path from w to x whose last edge or arc is not in H u . (c) The graph described by T , denoted by G(T ), has vertex set L T (the set of leaves of T ) and an arc uv if and only if there is an alternating path from u to v. If there is a directed path u 1 → u 2 ... → u p in G(T ), the concatenation of the alternating paths corresponding to the arcs u i u i+1 forms an alternating walk from u 1 to u p .

(d) The node-joining operation 38 (called elimination of an edge e of T in [START_REF] Courcelle | The monadic second-order logic of graphs XVI : Canonical graph decompositions[END_REF]) is defined as follows. If e = uv is an edge between two internal nodes of T , its contraction fuses u and v into a single node say w, giving tree T ′ , and replaces the graphs H u and H v by H ′ w := (H u ⊎ H v ) -{ρ u (e), ρ v (e)} augmented with an arc from any vertex x in H u to any vertex y in H v such that xρ u (e) ∈ E H u and ρ v (e)y ∈ E Hv . We obtain a directed graph-labelled tree T ′ that describes the same graph : this is easy to check by considering alternating paths. By iterating as much as possible this elimination step, we obtain a star whose central component is isomorphic to G(T ).

The opposite transformation called node-splitting also preserves the defined graph.

Theorem 2 of [START_REF] Cunningham | Decomposition of directed graphs[END_REF] defines canonical decompositions for strongly connected graphs whose components are cliques, stars and particular graphs called cycles of transitive tournaments that have clique-width at most 4 by Proposition 4.16 of [START_REF] Courcelle | The monadic second-order logic of graphs XVI : Canonical graph decompositions[END_REF]. We will not use this difficult notion. We will describe directed, possibly disconnected graphs by directed graph-labelled trees, either canonical or not. indicate pairs of opposite arcs. For a comparison with Figure 1, there is here no alternating path between 2 and 7, in either direction. Hence, these two vertices are not adjacent in G(T ).

(2) A directed graph-labelled tree may define a disconnected graph although its components are connected. As a small example, consider S(T ) defined as xz ′ -→ zu ←u ′y, whose internal components are z ′ -→ z and u ←u ′ . (The undirected edges between components are xz ′ , zu and u ′y). Then G(T ) consists of the two isolated vertices x and y. Eliminating the edge zu yields a component consisting of two isolated vertices u ′ and z ′ . Because of this observation, it is pointless to require that components be connected.

Proposition 5.9 : Let G be defined by a directed graph-labelled tree T whose components are strongly connected.

(1) For each vertex x of S(T ), we have

A + (x) ∩ L T = ∅ and A -(x) ∩ L T = ∅. ( 2 
) If xy is an arc of H u , then zz ′ ∈ E G for all z ∈ A + (x) ∩ L T and z ′ ∈ A _ (y) ∩ L T . Conversely, if x = ρ u (uv) and y = ρ u (uw) are distinct vertices of H u , if z ∈ L T ∩ N T,u\v , z ′ ∈ L T ∩ N T,u\w and zz ′ ∈ E G , then z ∈ A + (x) ∩ L T , z ′ ∈ A -(y) ∩ L T and xy is an arc of H u .
(3) G is strongly connected.

Note that T has at least two leaves and so, that G has at least two vertices.

Proof : (1) Let x be a vertex of a component H u . Hence, x = ρ u (uv) for some node v. We use induction on the cardinality of N T,u\v (the set nodes of T reachable from by a path going through v; cf. Lemma 4.3). If it is 1, then v is a leaf and

A + (x) ∩ L T = A -(x) ∩ L T = {v}.
Otherwise, we have in H v an arc zy such that y = ρ v (uv) and z = ρ v (vw) for some edge vw of T . We have N T,v\w ⊂ N T,u\v , hence, by induction, A + (z) ∩ L T = ∅. As A + (z) ∩ L T ⊆ A + (x) ∩ L T we have A + (x) ∩ L T = ∅. The proof that A -(x) ∩ L T = ∅ is similar 39 .

(2) Just consider alternating paths, as in the proof of Lemma 4.3.

(3) The node-joining operation preserves the strong connectedness of the components as one checks from Definition 5.7(d). By repeating this operation, one obtains a directed graph-labelled tree that defines G and consists of one "central" strongly connected component and leaves. This component is isomorphic to G, hence G is strongly connected. Proposition 5.10 : Let G be defined by a directed graph-labelled tree T . Then G is strongly connected if and only if all components of T are strongly connected.

Proof : The "if" direction is proved in the previous proposition. For the converse, let x and y be distinct vertices of a component H u . Let s ∈ A + (x)∩L T and t ∈ A _ (y) ∩ L T . There is a path in G from s to t. Each arc of this path corresponds to an alternating path in S(T ). The concatenation of these paths is an alternating walk in S(T ). It is not necessarly a path because some edges of the tree may be traversed twice. (In the example of Figure 6 the path 2 -→ 6 -→ 7 -→ 4 corresponds to a walk in S(T ) (Figure 5) that traverses twice the edge between H u and H w ). This walk must enter H u first via x and exit it last via y. Its arcs belonging to H u form a directed path from x to y. Hence, H u is strongly connected. Remark 5.11 : Even if G(T ) is strongly connected, some components of T may not be isomorphic to induced subgraphs of G(T ) (by contrast with Lemma 4.3(2)). Consider for an example a directed graph-labelled tree having two internal components isomorphic to the directed cycles -→ C 3 . It defines -→ C 4 that does not contain -→ C 3 as an induced subgaph. We will compare below the clique-widths of a graph and its components.

Evaluating graph-labelled trees by means of substitu-

tions.

We will use the set of labels D := {⊥, +, -, ⊤}.

Definitions 5.12 : Rooted graph-labelled trees and related notions.

(a) Let T be a directed graph-labelled tree with underlying tree T and G := G(T ). Let us select a node r ∈ N T and make it a root for T . As in alternating path from x and y built from alternating paths from x to x i , and from x j to y, and the arc x i x j . Hence, xy is an arc of G, hence of G u .

It remains to compare the vertex labels in K and in G u . Let x be a vertex of G u i labelled by + in G u . There is an alternating path from x to the leader u of H u and no such path from u to x. Hence, there is an alternating path from x to u i and an arc in H u from ρ u (uu i ) to u. Hence the label of ρ u (uu i ) is either + or ⊤. The label of x in G u i is either either + or ⊤, hence its label in K is either + or ⊤. If it would be ⊤, we would have an arc in H u from u to ρ u (uu i ) and an alternating path from u to x and x would have label ⊤ in G u . Hence x has label + in K.

The proofs are similar for the other labels.

Theorem 5.14 : Let G be defined by directed graph-labelled tree T whose components have clique-width at most k. Then cwd(G) ≤ 8k + 1.

Proof: From Proposition 5.6 and Lemma 5.13, along the lines of Theorem 4.11.

If one chooses a leaf as root r, and its unique son is u, then G = Λ ′ (⊥, G u ) where Λ ′ (G, H) := σ[K, x 1 , x 2 ] and K consists of the the arcs x 1 x 2 and x 2 x 1 , with x 1 is labelled by ⊤ and x 2 by ⊥. Hence, Λ ′ generalizes for {⊤, ⊥, +, -}graphs the operation Λ of Definition 2.5.

Example 5.15 : There exist graph-labelled trees T that have components of arbitrary large clique-width but define graphs without arcs, hence of cliquewidth 1. For an example, we take T to be a non-leaf-rooted graph-labelled tree with any connected graph H as root component. We attach to each vertex x of H a path of the form xv x -→ v ′

xw ′ x ←w xx (cf. Example 5.8(2)). Then G(T ) consists of the isolated vertices x because there is no directed alternating path between x and any different y.

For strongly connected graphs, we have a better situation. Proposition 5.16 : There is a function f such that cwd(H) ≤ f (cwd(G)) whenever G is strongly connected and H is a component of some directed graphlabelled tree that defines it. We need some technical definitions. Definition 5.17 : Arc contractions. Contracting the edges or arcs of set F in a graph G yields a graph G\F, usually defined up to isomorphism or with vertices that are subsets of V G . This is not convenient for our proof that uses logic.

If F is a set of arcs of a directed graph G, we denote by x ∼ F y the fact that vertices x and y are linked by a path whose arcs can be traversed in either direction. If X is a set of vertices containing one and only one vertex of each equivalence class of ∼ F , we denote by G\(F, X) the directed graph H such that

Related work

Kanté and Rao have defined in [START_REF] Kanté | Directed rank-width and displit decomposition[END_REF] the displit decomposition of a directed graph. For an undirected graph, it is the same as the split decomposition. It is incomparable with the split decomposition of [START_REF] Cunningham | Decomposition of directed graphs[END_REF] because the prime components are different. However, every connected directed graph has a unique decomposition. Furthermore, for an appropriate notion of rank-width for directed graphs, they obtain that the rank-width of a graph is the least upper-bound of the rankwidths of the components of its displit decomposition (cf. Remark 4.15).

They also characterize the directed graphs of rank-width at most 1 in a way that generalizes the various characterizations of distance-hereditary graphs, in particular that of [START_REF] Oum | Rank-width and vertex-minors[END_REF].

We think that the results of this section and those of [START_REF] Courcelle | The monadic second-order logic of graphs XVI : Canonical graph decompositions[END_REF] about the existence of monadic second-order transformations between directed graphs and their canonical split decompositions can be extended to displit decompositions.

Conclusion

Our purpose was to clarify the relationships between split-decompositions for directed and undirected graphs, substitutions to vertices and the related graph grammars, and also to obtain good bounds on the clique-widths of the defined graphs. For doing that we have generalized, in Definitions 2.1 and 5.1, the notion of substitution used in the theory of modular decomposition .

One open problem is the study of the operations defined in Definition 2.5 and their equational properties.

The methods of Section 5 should help to investigate particular classes of directed graphs regarding their clique-width and their generation by unambigous grammars (if possible), along the lines of Section 4.5. Manipulating grammars so as to reach unambiguity in view of counting and random generation has proved useful in Section 4.5. It would be interesting to investigate in a similar way the undirected graphs whose prime components are cycles. These graphs have bounded clique-width by Theorem 4.14 and the upper-bound of 4 to the clique-width of cycles. This fact encourages to try to define them by grammars.

  ⊕, -the unary operation add a,b for a, b ∈ C, a = b adds an undirected edge between each a-labelled vertex x and each b-labelled vertex y (unless there is already an edge xy), -for building directed graphs, we use similarly --→ add a,b to add arcs from a-labelled to b-labelled vertices, -the unary operation 11 relab h changes every vertex label a into h(a) where h is a partial mapping : C → C (a label a is not modified if h(a) is undefined).
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 32 If G ≡ val(s) for some term s in T (Σ C ) whose operations have width at most k, then cwd ⊥ (G) ≤ k and cwd(G) ≤ k + 1.

Corollary 3 . 3 :

 33 Distance-hereditary graphs have clique-width at most 3 Proof : Distance-hereditary graphs are defined by means of the operations κ, Λ, ⊕ and ⊗ of width at most 2.
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 41 Graph-labelled trees and the graphs they describe.

Figure 1 :

 1 Figure 1: A graph-labelled tree T (cf. Definition 4.1(a).
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 3 Figure 3: Graphs from Example 5.2

Lemma 5 . 1 . 5 . 2 :

 5152 [START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF] below motivates this definition. If we consider an undirected graph as a directed graph where each arc has an opposite one, and whose vertices are labelled by ⊥ or ⊤, then, Definition 5.1 gives the same notion of substitution as Definition 2.Example Let K have vertices x, y and z, respectively labelled by +,and ⊤, and arcs xy, yz and zy. Let X be the edgeless graph with vertices 0,1,2,3 labelled respectively by ⊥, +, -, ⊤. Let similarly Y have vertices 4,5,6 labelled by +, -, ⊤ and Z, vertices 7,8,9 labelled by +, -, ⊤. The graphs K, X, Y, Z and G := K[x ← X, y ← Y, z ← Z] are shown in Figures3 and 4. The labels of vertices 0,1,5,7,8 and 9 are as in X, Y and Z. Those of 2,3,4 and 6 are respectively ⊥ = inf{+, -}, + = inf{+, ⊤}, ⊥ = inf{+, -} and -= inf{-, ⊤}, cf. Definition 5.1(a).

Definition 5 . 3 :

 53 Graph operations based on substitution.For each D-graph K with vertex set enumerated as {x 1 , . . . , x p }, we define as follows a p-ary operation on D-graphs denoted by σ[K, x 1 , . . . , x p ] :σ[K, x 1 , . . . , x p ](H 1 , . . . , H p ) := K[x 1 ← H 1 , . . . , x p ← H p ]

Figure 4 :

 4 Figure 4: Graph G of Example 5.2.

Definitions 5 . 4 :

 54 Clique-width operations and substitution. The set D := {⊥, ⊤, +, -} is ordered by Definition 5.1. Let K, H 1 , . . . , H p be D-graphs and G := K[x 1 ← H 1 , . . . , x p ← H p ].
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 5 Figure 5: The directed graph-labelled tree T of Example 5.8(1).
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 58 [START_REF] Bandelt | Distance-hereditary graphs[END_REF] Figures5shows a directed graph-labelled tree T and Figure6the graph G(T ). The double arrows in the components H x and H u

Figure 6 :

 6 Figure 6: The graph defined by T of Figure 5.

  

But we do not get an equal probability for two DH graphs of same size. See Section 4.5 for an unambigous grammar.

In[START_REF] Meister | Clique-width with an inactive label[END_REF], dead vertices are defined in clique-width terms by inactive labels. We will use ⊥ as an inactive label. Dead vertices may be called non-boundary by analogy with the case of graphs of bounded tree-width, built by gluing small graphs at boundary vertices[START_REF] Downey | Fundamentals of parameterized complexity[END_REF], also called sources in[START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF].

A different notion of split decomposition for directed graphs, that generalizes also the one for undirected graphs, has been defined in[START_REF] Kanté | The rank-width of edge-coloured graphs[END_REF]. We will say a few words about it in Section 5.4.

Although in general, edge contraction does not preserve bounded clique-width ,[START_REF] Courcelle | Clique-width and edge contraction[END_REF].

Undefined notions are as in[START_REF] Diestel | Graph theory[END_REF].

This characterization is from[START_REF] Bandelt | Distance-hereditary graphs[END_REF]. The DH graphs are also the graphs of rank-width 1[START_REF] Oum | Rank-width and vertex-minors[END_REF]. They have clique-width at most 3, as we will prove in detail.

0 As ⊕ is associative, we will write t = t 1 ⊕ t

⊕ ... ⊕ t n instead of t 1 ⊕ (t 2 ⊕ (... ⊕ t n )...) or any equivalent writing. It is also comutative.1 1 If h modifies only one label, we call relab h an elementary relabelling. By using only elementary relabellings, one obtains the same notion of clique-width ([14], Proposition 2.118).1 2 In[START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF], we denote cwd * by cwd.

[START_REF] Chang | Dynamic programming on distance-hereditary graphs[END_REF] The construction is similar for directed graphs and it needs no more labels.1 4 It not hard to prove that lcwd(G) ≤ lcwd(Gx) +

where lcwd denotes the linear cliquewidth. This variant is defined by requiring that at least one of the two arguments of ⊕ is a nullary symbol. See e.g.,[START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]

, 32].1 5 Occurrences in terms can be designated by Dewey words or by integers, cf. Definition 2.3 in[START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF],

[START_REF] Courcelle | An axiomatic definition of context-free rewriting and its application to NLC graph grammars[END_REF] It is actually enough to assume that(V K -{x 1 , . . . , x p }) ∩ (V H 1 ⊎ . . . ⊎ V H p ) = ∅. 1 7Read "H i is substituted to x i in K".

[START_REF] Courcelle | On the model-checking of monadic second-order formulas with edge set quantifications[END_REF] We use the same notation σ[K, v 1 , . . . , v p ] for the p-ary function symbol and the corresponding operation. Cf. Definition 1.2(c).

[START_REF] Courcelle | Clique-width and edge contraction[END_REF] We leave as an open problem to find a complete set of equational axioms for ⊕, ⊗, Λ, κ, ⊤.

0 We call language a set of terms, whence the notation L(X). A set of graphs is not called a language, in order to have a coherent terminology.

1 See Example 1.6 for the solution of equations in sets of terms. If t is a term, we will write G ≡ t to indicate that G ≡ val(t). 2 2 We use here the footnote in Definition 2.1.

[START_REF] Chang | Dynamic programming on distance-hereditary graphs[END_REF] See, e.g.[START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF], Section 2.1.2 4 This term uses an auxiliary label a = ⊥, ⊤. However, it defines graphs of type {⊤} from graphs of same type. The label a can be replaced by any other label different from ⊤ or ⊥.2 5 These limitations on the use of ⊥ make it an inactive label in[START_REF] Meister | Clique-width with an inactive label[END_REF].2 6 The equivalence ≡ respects vertex labels, cf. Definition 1.2(a).

[START_REF] Courcelle | The monadic second-order logic of graphs XVI : Canonical graph decompositions[END_REF] This is clear from Definition 2.1.

[START_REF] Courcelle | On the model-checking of monadic second-order formulas with edge set quantifications[END_REF] Because of the bijections ρv , no two consecutive edges in a path can be tree-edges.

[START_REF] Courcelle | Clique-width and edge contraction[END_REF] If some components are not connected, the graph defined in this way is not connected. Actually, a disconnected graph is best described as the union of its connected components. Hence, we can require that components are connected.

0 A different notion of prime graph is used in the theory of modular decomposition, cf.[START_REF] Habib | A survey of the algorithmic aspects of modular decomposition[END_REF].

1 T will denote the rooted tree, without explicit mention of r ; in particular, ≤ T depends on the choice of r.

[START_REF] Chauve | An exact enumeration of distancehereditary graphs[END_REF] By Remark

4.2. 

[START_REF] Cicerone | On the extension of bipartite to parity graphs[END_REF] The term enumerating creates confusion with the problem of listing graphs or configurations in graphs.

[START_REF] Courcelle | An axiomatic definition of context-free rewriting and its application to NLC graph grammars[END_REF] We thought better to begin with undirected graphs, because the formal setting is much simpler and most of Graph Structure Theory and Graph Algorithmics is devoted to undirected graphs.

[START_REF] Courcelle | The monadic second-order logic of graphs XVI : Canonical graph decompositions[END_REF] A walk is like a path but it can go several times through a vertex or an arc.

[START_REF] Courcelle | On the model-checking of monadic second-order formulas with edge set quantifications[END_REF] Similar to that in Definition

4.1(d).

[START_REF] Courcelle | Clique-width and edge contraction[END_REF] The sets A -(x) ∩ L T and A + (x) ∩ L T may be different. In the example of Figure7, we have A -(a) ∩ L T = {1} and A + (x) ∩ L T = {0, 1}.

0 For some sets Y 0 , Y 1 , Y 2 , Y 3 , the graph H(Y 0 , Y 1 , Y 2 , Y 3 ) may not be isomorphic to any component H u of a graph-labelled tree. Nevertheless cwd(H(Y 0 , Y 1 , Y 2 , Y 3 )) ≤ f (cwd(G))

This work has been supported by the French National Research Agency (ANR) within the IdEx Bordeaux program "Investments for the future", CPU, ANR-10-IDEX-03-02, and also within the project GraphEn started in October 2015.

-we replace each operation --→ add a,b by the composition (in any order) of the operations --→ add (a,α,β),(b,α ′ ,β ′ ) such that α ∈ {⊤, +}, α ′ ∈ {⊤, -} and β, β ′ ∈ D, β ≤ α, β ′ ≤ α ′ .

Furthermore, for each i := 1, ..., p, we define h i : C # → C # by h i ((a, α, β)) := (a i , β, inf{β, π K (x i )}) for (a, α, β) ∈ C # . Lemma 5.5 : Let K, H 1 , . . . , H p ,G, t K and t K be as in Definition 5.4. Assume that for each i, we have a term t i ∈ T (F C # ) such that H i = relab f (val(t i )). Then :

K These two graphs have the same vertex set, V H1 ⊎ . . . ⊎ V Hp . We compare their labels.

Let u ∈ V Hi and (a, α, β) be its label in val(t i ). Its label is β in H i , and it is (a i , β, inf{β, π K (x i )}) in relab hi (t i ). Its label in G ′ is thus inf{β, π K (x i )} because the relabellings in t K do not modify the third components of labels. It is the same in G by Definition 5.1.

We now compare the arcs of G and G ′ .

∈ E Hi , it is not an arc of G either. And it is not an arc of G ′ because the labels of u and v have the same first components, namely a i , in relab hi (t i ) and the relabellings in t K maintain this equality. Hence, no arc between u and v is created by the operations --→ add (a,α,β),(b,α ′ ,β ′ ) of t K (where we must have a = b).

is an arc of K and the labels of u and v in H i and H j are respectively α ∈ {⊤, +} and α ′ ∈ {⊤, -} by Definition 5.1. Let us now consider G ′ . At some position p in t K the arc x i x j is created by an operation --→ add a,b . In val(relab h i (t i )) and val(relab h j (t j )), the labels of u and v are respectively (a i , α, β) and (a j , α ′ , β ′ ) for some β and β ′ , and a i and a j are relabelled in t K into a and b at position p. The labels of u and v are thus (a, α, β) and (b, α ′ , β ′ ) in t K at the place corresponding to p in the construction of t K from t K ( --→ add a,b is replaced by a composition of arc additions). Hence, uv is an arc of G ′ , created by --→ add (a,α,β),(b,α ′ ,β ′ ) . Hence every arc of G is one of G ′ . The proof is similar in the other direction. Hence, G = G ′ .

No label (a, ⊥, ⊥) occurs in an arc addition operation of t K . Furthermore, f((a, ⊥, ⊥)) = ⊥ for each a ∈ C. Hence, all labels (a, ⊥, ⊥) can be replaced by the unique label (c, ⊥, ⊥) for some fixed c ∈ C. It follows that t K and the relabellings h i only use the following 8 |C| + 1 labels : Definition 4.9(a,b), for u in N T , we define

The leader of a component H u such that u = r is the vertex ρ u (wu) denoted by u, where w is the father of u. We define a D-graph H u \\u as the follows : if u = r and u not leaf, we define H u \\u := H uu where a vertex x is labelled as follows : its label is ⊤ if xu and ux are in E Hu , it is if u = r, we define H u \\u := H r , and all its vertices as dead (we use the notation H u \\u for uniformity, although u is not defined).

As in Definition 4.9, the graphs H u \\u depend on the chosen root r.

Otherwise, a vertex x has label ⊤ if there are alternating paths from x to u and from u to x; it has label + if there is an alternating path from x to u and no such path from u to x; it has labelif there is an alternating path from u to x and no such path from x to u and label ⊥ if there are no alternating paths between x and u.

The following lemma, stated for the objects of the previous definition, generalizes Lemma 4.10.

Lemma 5.13 : If u ∈ N T -L T has sons u 1 , ..., u p and the corresponding p vertices of H u \\u are x 1 , ..., x p (that is,

As in the proof of Lemma 4.10, the vertex sets of G u and K are the same and the arcs of G ui are the same as in G u and K.

We consider x in G ui and y in G uj , j = i. If xy is an arc of G, there is an alternating path from x to y. It must go through H u via the arc ρ u (u i u)ρ u (u j u) = x i x j in H u \\u. This path goes through the leader ρ ui (u i u) of H ui . Hence, x is alive in G ui and has label + or ⊤. Similarly, y has labelor ⊤ in G uj . Hence xy is an arc of K.

Conversely, if xy ∈ E K , then x i x j is an arc of H u \\u, x has label + or ⊤ in G ui and y has labelor ⊤ in G uj . Going back to definitions, we have an Proof of Proposition 5.16 : Let G be strongly connected and defined by a directed graph-labelled tree T . Let H u be a component not reduced to a single vertex. We will construct an induced subgraph G ′ of G such that H u is isomorphic to G ′ \F for some set of arcs F . That G ′ \F is in some sense monadic second-order definable from G yields the existence of f by Corollary 7.38(2) of [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF].

Step 1 : By performing node-joinings (cf. Definition 5.7(d)) that do not involve H u , we obtain a directed graph-labelled tree T ′ that defines G, such that u ∈ N T ′ , H ′ u = H u and all nodes that are not leaves are neighbours of u. The graph-labelled tree of Figure 7 is of this type.

Step 2 : From now on, we assume that T satisfies this condition. We recall from Definition 5.7 that we identify v and the vertex in H v if H v has only one vertex, so that L T = V G . We will define an injective mapping h :

For each x ∈ V Hu , we define h(x) and a few related objects by one of the following three cases.

Case 1 : x = ρ u (uy) where uy ∈ E T and y ∈ L T = V G . Then, we define h(x) := y. In Figure 7, we have h(b) = 2 and h(c) = 3 by these conditions. 40 Figure 8: The strongly connected graph G defined by the graph-labelled tree of Figure 7.

Case 2 : x = ρ u (uv) where v / ∈ L T and there are in H v two opposite arcs between z := ρ v (uv) and some vertex z. We choose one such z and we define h(x) as the vertex y ∈ V G = L T such that ρ v (vy) = z. In Figure 7, we have in this way h(a) = 1.

We denote by Y 0 the set of vertices h(x) obtained by these two cases.

Case 3 : x = ρ u (uv) where v / ∈ L T and the conditions of Case 2 do not hold. We let z := ρ v (uv). There is in H v a directed cycle z → z 1 → ... → z p → z with p ≥ 2 because this graph is strongly connected by Proposition 5.10. We choose one such that p is minimal. It follows that there is no arc in H v between z and any of z 2 , ..., z p-1 , and from z i to z j if j > i + 1.

Let y 1 , ..., y p be the vertices of G such that z i = ρ v (vy i ) for each i. We have a path y 1 → ... → y p such that there is no arc y i y j with j > i + 1. We define h(x) := y 1 , h ′ (x) := y p , V x := {y 2 , ..., y p-1 } and F x as the set of arcs from {h(x)} ⊎ V x to {h ′ (x)} ⊎ V x .

In Figure 7, we have in H w a minimal directed cycle ρ w (uw) → z 1 → z 2 → ρ w (uw), y 1 = h(e) = 6 and y 2 = h ′ (e) = 9.

We denote by Y 1 and Y 2 the sets of such vertices h(x) and, respectively, h ′ (x). We denote by Y 3 the union of the sets V x , and by F the union of the sets

In Figure 7, we have

The corresponding graph is in Figure 8. The set F consists of the arcs 45 and 69. The vertex set of G ′ is {1,2,3,4,5,6,9}. By contracting the arcs 45 and 69 of G ′ , we obtain a graph isomorphic to H u by :

Claim 1 : The mapping h is an isomorphism : H u → G ′ \(F, X).

Proof : By the definitions, h is a bijection :

Let xx ′ be an arc of H u . There is in T an alternating path from h(x) or h ′ (x) to h(x ′ ). For proving this, we should conider the nine cases depending on the three possible cases for defining h(x) and h(x ′ ). We only consider the following two, the others being similar or straightforward.

Case (a) : h(x) is defined by Case 2 and h(x ′ ) by Case 3. Let x, z, z and y = h(x) be as in Case 2. Let

Case (b) : h(x) and h(x ′ ) are defined by Case 3. In H v we have a minimal directed cycle z → z 1 → ... → z p → z with p ≥ 2. We let y 1 , ..., y p be the corresponding vertices of G ′ so that we have h(x) := y 1 and h ′ (x) := y p . There is an alternating path

Conversely, let yu be an arc of G ′ \(F, X). We have yu ∈ E G ′ such that y ∼ F y, u ∼ F u and there is an alternating path from y to u. As y = u, y and u are not in a same set {h(x), h ′ (x)} ⊎ V x , and so, we have y = h(x) or y = h ′ (x) and u = u = h(x ′ ) for some arc xx ′ of H u . It follows that y = h(x), hence yu = h(x)h(x ′ ), which proves that h is an isomorphism.

Step 3 : We now prove that the transformation of G into G ′ \(F, X) is monadic second-order definable. We let G and the sets Y 0 , Y 1 , Y 2 , Y 3 and F be as above in Step 2.

Claim 2 : Let x be as in Case 3. Let P be a directed path in G ′ of the form y 1 = h(x) → s 1 → s 2 → ... → s q with s 1 , ..., s q-1 in Y 3 and s q ∈ Y 2 . Then V x = {s 1 , ..., s q-1 } and s q = h ′ (x).

Proof. We use the notation of Case 3.

The arc y 1 s 1 is defined by an alternating path of the form :

By the conditions of Case 3, t 1 = z. Hence t ′ 1 = s 1 . We may have t 1 = z p . In this case s 1 = y p = h ′ (x), V x = ∅ and the assertion holds. Otherwise, t 1 is some z i . We cannot have i > 2 by the minimality of p (cf. Case 3). Hence t 1 = z 2 and s 1 = y 2 .

We now consider y 2 s 2 , the next arc on P . We have an alternating path

By the definitions, if t 2 = z p , then s 2 = y p = h ′ (x), V x = {y 2 } and the assertion holds. Otherwise, t 2 is some z i . We cannot have i = 1 or 2, otherwise P is a cycle, and neither i > 3 by the minimality of p. Hence t 2 = z 3 and s 2 = y 3 . The proof continues similarly. Considering the next arc y 3 s 3 yields that s 3 = y 4 , either in Y 2 (in that case y 4 = y p = h ′ (x)) or in Y 3 .

Finally, we can prove that the directed path y 1 = h(x) → s 1 → s 2 → ... → s q is identical to y 1 → y 2 → y 3 → ... → y p = h ′ (x). We have V x = {s 1 , ..., s q-1 } = {y 2 , y 3 , ..., y p-1 } and s q = y p = h ′ (x).

The graph G ′ \(F, X) is obtained from G by fusing the vertices h(x) and h ′ (x) for all vertices x as in Case 3, by keeping h(x) as result of such a fusion and removing all vertices not in X := Y 0 ∪ Y 1 . Our next aim is to describe the pairs (h(x), h ′ (x)) by a monadic second-order formula. Since transitive closure, whence path properties, can be expressed in monadic second-order logic (cf. [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]), we can construct such a formula θ.

To finish the proof, we define θ(Y 0 , Y 1 , Y 2 , Y 3 , y, z) as : Remark 5.18 : The special case of Proposition 5.16 where H u is a component of the canonical split-decomposition of a strongly connected graph can be derived from Theorem 4.21 in [START_REF] Courcelle | The monadic second-order logic of graphs XVI : Canonical graph decompositions[END_REF]. The proof of Proposition 4.16 of [START_REF] Courcelle | The monadic second-order logic of graphs XVI : Canonical graph decompositions[END_REF] giving that result is incorrect : Lemma A.2.3 shows correctly that cwd(H) ≤ 4cwd(G) if H is obtained from G by fusing any two vertices, but, in order to prove the statement, one must fuse the vertices of several pairs (as we do above for defining G ′ \(F, X) from G ′ ), hence, one does not obtain a bounding function f as claimed.

Given a directed graph G and pairwise disjoint sets of vertices