
HAL Id: hal-02093211
https://hal.science/hal-02093211v2

Submitted on 31 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Grammars and clique-width bounds from split
decompositions

Bruno Courcelle

To cite this version:
Bruno Courcelle. Grammars and clique-width bounds from split decompositions. Discrete Applied
Mathematics, inPress, �10.1016/j.dam.2019.07.001�. �hal-02093211v2�

https://hal.science/hal-02093211v2
https://hal.archives-ouvertes.fr

Grammars and clique-width bounds
from split decompositions

Bruno Courcelle
Labri, CNRS and Bordeaux University∗

33405 Talence, France
email: courcell@labri.fr

July 1, 2019

Abstract

Graph decompositions are important for algorithmic purposes and for
graph structure theory. We relate the split decomposition introduced by
Cunnigham to vertex substitution, graph grammars and clique-width.

For this purpose, we extend the usual notion of substitution, upon
which modular decomposition is based, by considering graphs with dead
(or non-boundary) vertices. We obtain a graph grammar for distance-
hereditary graphs consisting of four rules collected in a single equation. We
also bound the clique-width of a graph in terms of those of the components
of a split decomposition that need not be canonical.

For extending these results to directed graphs and their split decompo-
sitions (that we handle formally as graph-labelled trees), we need another
extension of substitution : instead of two types of vertices, dead or alive as
for undirected graphs, we need four types, in order to encode edge direc-
tions. We bound linearly the clique-width of a directed graph G in terms
of the maximal clique-width of a component arising in a graph-labelled
tree that defines G. This result concerns all directed graphs, not only the
strongly connected ones considered by Cunningham.

Introduction

Hierarchical graph decompositions and the associated graph complexity mea-
sures such as tree-width and clique-width are important for algorithmic purposes
and graph structure theory. Tree-width and clique-width occur as parameters

∗This work has been supported by the French National Research Agency (ANR) within
the IdEx Bordeaux program "Investments for the future", CPU, ANR-10-IDEX-03-02, and
also within the project GraphEn started in October 2015.

1

in many fixed-parameter tractable (FPT) algorithms [14, 17, 20, 24], in particu-
lar for the verification of monadic second-order properties of graphs. They are
actually linearly related in many interesting cases [10, 11, 26].

These algorithms are based on the construction of finite automata that run
on algebraic terms representing tree-decompositions, or on clique-width terms
in the case where the parameter is clique-width (see Definition 1.2). However,
these automata cannot be implemented in the classical way because their sets
of states are much to large. The notion of fly-automaton [12, 13] can overcome
this difficulty in many cases1 : these automata compute their transitions instead
of looking into transition tables.

Even for checking properties of graphs of bounded tree-width, it is convenient
to input graphs by clique-width terms, and we develop the theory and practice
of fly-automata for graphs defined in this way in [12, 13]. As for tree-width,
computing the exact clique-width of a graph is an NP-complete problem [23].
However, clique-width terms witnessing "good" approximations of clique-width
can be used with fly-automata. Such terms can be constructed by different
algorithms, and with help of modular or split decomposition2 , in preliminary
steps. Let us point a difference between the two : modular decomposition is
based on a rooted tree, and is clearly hierachical. Split decomposition is based
on trees without root ; by choosing a root for such a tree, one can turn the
decomposition into a hierachical one, but one needs an appropriate notion of
graph substitution : we define one in this article. Rank-width, in a similar way,
is based on unrooted trees. However, by choosing a root and using appropriate
graph operations, derived from those upon which clique-width is defined, one
obtains also a hierachical decomposition [16].

Modular decomposition is related to clique-width as follows. Each undirected
graph has a canonical (i.e., unique up to isomorphism) modular decomposition.
Its clique-width is the maximal clique-width of a prime module of the modular
decomposition (Proposition 2.112 of [14]). It has also a canonical split decom-
position. Theorem 4.14 establishes that its clique-width is linearly bounded in
terms of the maximal clique-width of a prime component of this decomposi-
tion3 , the other components being stars and cliques. Theorem 5.14 shows the
same for directed graphs. These theorems improve boundings based on logic or
rank-width (cf. Sections 4.4 and 5.3).

Our initial motivating example was the class of distance-hereditary graphs
(DH graphs in short). They are the undirected graphs G in which the distance in
any connected induced subgraph is the same as in G. They are known to have
clique-width at most 3 [29, 36, 37]. However, recognizing the clique-width terms
that define them is not easy. For the purpose of testing fly-automata, one may
wish to generate large "random" DH graphs together with the algebraic terms
of clique-width 3 that denote them. A good tool consists in using a context-

1A software is developped by Irène Durand [21]. Some parts of it are accessible online [22].
2See [31] and the references in that article for modular decomposition. Split decomposition

defined by Cunnigham [18] is studied in [7, 27, 28]. We give definitions in Sections 4 and 5.
Modular and split decomposition can both be computed in linear time for undirected graphs.

3Prime components cannot be split, cf. Section 4.1.

2

free graph grammar, built from clique-width operations that use three labels4 .
The characterization of DH graphs from [1], based on the addition of pendant
edges and twins (see Definition 1.1), uses rewriting rules that are not those of a
context-free graph grammar appropriate for using fly-automata intended to run
on their derivation trees or on the equivalent clique-width terms. However, from
this characterization, we can construct such a context-free grammar based on
vertex-replacement, a notion developped in [14] and in [6], where an axiomatic
definition of context-free graph grammars is given.

This construction uses a generalization of the standard notion of substitution
of a graph for a vertex, that underlies the theory of modular decomposition.
We distinguish in a graph H some vertices as alive and the others as dead.
Dead vertices will not be linked to any others in case H is substituted into
another graph5 . We use this notion of substitution to define an associated
notion of context-free vertex-replacement grammar (see [6, 14] for these graph
grammars defined in a more general setting). We obtain a very simple grammar
for DH graphs. Distance-hereditary graphs are also easily characterized in terms
of their canonical split decompositions, and our grammar is based on these
decompositions.

Generalizing this observation, we use grammars to generate the graphs whose
components relative to split decomposition belong (up to isomorphism) to a fixed
finite setM. We bound their clique-width in terms of the maximal clique-width
of a graph in M, in a better way than what is known from [7].

Split decomposition6 for strongly connected (directed) graphs has also been
studied in [7, 18]. We extend to directed graphs our results for undirected
graphs. For expressing split decompositions in terms of graph substitution, we
need a more involved notion of substitution. Whereas for undirected graphs, we
distinguish dead vertices from live ones (the others), for directed graphs, we
need three types of live vertices, in order to encode three types of connections
between two vertices u and v : from u to v (only), from v to u (only) or in both
directions.

We consider split decompositions of directed graphs that need not be strongly
connected, and we handle them formally as graph-labelled trees, a notion used
in [7, 27]. We prove that the clique-width of a directed graph G is bounded by
8k+1, where k is the maximum clique-width of a component of a graph-labelled
tree that defines G.

Some properties of undirected graphs do not extend immediately to directed
ones. Each component of a graph-labelled tree that defines an undirected graph
G is isomorphic to an induced subgraphs of G, hence has no larger clique-width.

4But we do not get an equal probability for two DH graphs of same size. See Section 4.5
for an unambigous grammar.

5 In [36], dead vertices are defined in clique-width terms by inactive labels. We will use
⊥ as an inactive label. Dead vertices may be called non-boundary by analogy with the case
of graphs of bounded tree-width, built by gluing small graphs at boundary vertices [20], also
called sources in [14].

6A different notion of split decomposition for directed graphs, that generalizes also the one
for undirected graphs, has been defined in [34]. We will say a few words about it in Section
5.4.

3

For strongly connected directed graphs, each such component H is isomorphic
to a minor of the considered graph G. We obtain a bounding of the form7

cwd(H) ≤ f(cwd(G)) where f is a fixed exponential function. Improving this
bound is an open problem.

To summarize, the purpose of this article is to clarify the close relation-
ships between split decomposition, clique-width and vertex-replacement graph
grammars based on vertex substitutions. In particular, we translate split de-
compositions of undirected graphs into graph grammars and we bound linearly
the clique-width of a decomposed graph, either directed or not, in terms of those
of the components. Our graph grammars can be used for counting graphs of
special types and for random generation, along the lines of, e.g., [4, 25, 38].

Section 1 is devoted to basic definitions. In particular, we present our view of
context-free graph grammars in terms of equation systems by using the example
of cographs. Section 2 introduces vertex substitutions for undirected graphs with
dead vertices, and the corresponding grammars. Section 3 relates clique-width
and substitutions. Section 4 studies split decomposition of undirected graphs in
this perspective, with the help of graph-labelled trees. Section 5 develops the
case of directed graphs.

Acknowledgement : I thank M. Bousquet-Mélou, I. Durand, E. Gioan, M.
Kanté, S. Oum, C. Paul and the referees for their useful comments and sug-
gestions (in particular the reference to [4]). I also thank the editors of the
special issue of Discrete Applied Mathematics relative to the GROW meeting
in Toronto, in 2017 for wellcoming this submission, and the Fields Institute for
supporting this excellent workshop.

1 Graphs and clique-width

Most definitions are well-known, we mainly review notation. We state a few
facts that are either well-known or easy to prove.

The union of two sets is denoted by ⊎ in cases where we stress they are
disjoint. The cardinality of a set X is denoted by |X| and its powerset by
P(X). The set of integers {1, ..., n} is denoted by [n].

All trees and graphs are finite.

Trees
The set of nodes of a tree T is denoted by NT , and its set of leaves, i.e., of

nodes of degree 1, by LT . A node that is not a leaf is internal.
If T has a root, then <T denotes the corresponding ancestor relation, a strict

partial order on NT (a node is not an ancestor of itself). The root, denoted by
rootT , is the unique maximal element and the leaves different from the root are

7Although in general, edge contraction does not preserve bounded clique-width , [9].

4

the minimal ones. A star Sn is a tree with n− 1 leaves linked to a single node
called its center, where n ≥ 3.

Graphs
We consider finite simple graphs, i.e., that are loop-free and without parallel

edges. Graphs8 are directed or not. Directed edges are called arcs. A graph
G has a vertex set VG included in a fixed countably infinite set V. Its set of
edges or arcs is denoted by EG. The corresponding binary adjacency relation
is denoted by edgG (even if G is directed). If G is undirected, we denote by uv,
equvalently by vu, an edge linking vertices u and v. If G is directed, we denote
by uv an arc from u to v. We also write u− v or u→ v to indicate that uv is,
respectively, an edge or an arc.

We denote by H ⊆i G that H is an induced subgraph of G, by G[X] the
induced subgraph of G with vertex set X ⊆ VG, by G−X the graph G[VG−X]
and by G− x the graph G[VG − {x}] where x ∈ VG.

Definition 1.1 : Distance-hereditary graph
An undirected graph G is distance-hereditary (DH in short) if the distance

of two vertices in every connected induced subgraph is the same as in G. For
an example, the cycle C4 (with 4 vertices) is DH whereas C5 is not. The DH
graphs are characterized as follows9 : a DH graph is an isolated vertex, or the
disjoint union of two DH graphs or is obtained from a DH graph by the addition
of a pendant edge to a vertex x, or of a true or false twin to x. Adding to x
a true twin is adding a new vertex y linked to x and to the neighbours of x.
Adding a false twin is similar with y not linked to x.

Clique-width
Clique-width is based on operations that modify or combine vertex-labelled

graphs. There will be some restrictions regarding the special label ⊥ to be used
in Section 3.

Definition 1.2 : Labelled graphs and clique-width
(a) Let C be a finite set of labels. A C-labelled graph, or simply, a C-graph,

is a triple G = (VG, EG, πG) where πG is a mapping : VG → C. Its type, denoted
by τ(G), is πG(VG), i.e., the finite set of labels from C that label some vertex
of G.

We denote by ≃ the isomorphism of C-graphs up to vertex labels, i.e., the
isomorphism of the underlying unlabelled graphs, and by ≡ the existence of an
isomorphism that respects labels. An abstract C-graph (resp. abstract graph) is
an equivalence class of ≡ (resp. of ≃).

(b) We define operations on C-graphs :

8Undefined notions are as in [19].
9This characterization is from [1]. The DH graphs are also the graphs of rank-width 1 [37].

They have clique-width at most 3, as we will prove in detail.

5

- the union of two disjoint C-graphs ; it is denoted by the binary
infix function symbol10 ⊕,

- the unary operation adda,b for a, b ∈ C, a �= b adds an undirected
edge between each a-labelled vertex x and each b-labelled vertex y
(unless there is already an edge xy),

- for building directed graphs, we use similarly
−−→
adda,b to add arcs

from a-labelled to b-labelled vertices,

- the unary operation11 relabh changes every vertex label a into h(a)
where h is a partial mapping : C → C (a label a is not modified if
h(a) is undefined).

- for each a ∈ C, the nullary symbol a(x) denotes the isolated vertex
x (x ∈ V) labelled by a.

Hence, τ(G ⊕ H) = τ(G) ∪ τ(H), τ(adda,b(G)) = τ(
−−→
adda,b(G)) = τ(G),

τ(relabh(G)) = h′(τ(G)) where h′ is the total mapping such that : h′(a) := if

h(a) is defined then h(a) else a. We have τ(a(x)) = {a}.

(c) We denote by FC the countable set of these operations. A term over FC is
well-formed if no two occurrences of nullary symbols denote the same vertex; in
particular, the graphs defined by the two arguments of ⊕ are disjoint. We denote
by T (FC) the set of well-formed terms, that we will call the clique-width terms.
Each such term t denotes a C-graph val(t) whose vertices are those specified
by the nullary symbols of t. Its width is the number of labels that occur in t.

Using a standard convention, we will denote in the same way a function
symbol and the graph operation it defines. Hence, relabh(t) is a term if t is a
term in T (FC), and relabh(G) denotes a C-graph if G denotes a C-graph.

(d) The clique-width of a C-graph12 G, denoted by cwd(G), is the least width
of a term t such thatG ≃ val(t). We denote by cwd∗(G) the least width of a term
t such that G ≡ val(t). Hence, cwd(G) ≤ cwd∗(G). Clearly, cwd(G) = cwd∗(G′)
where G′ is obtained from G by relabelling all its vertices in the same way.

(e) If G and H are not disjoint, we define G⊕H as the union of two disjoint
isomorphic copies of G and H. The resulting C-graph is well-defined up to
isomorphism, hence as an abstract C-graph. �

Here are some examples (cf. [14]). The clique-width of a tree is at most 3,
that of the clique Kn is 2 for n ≥ 2. The undirected cycles C3, C4 have clique-
width 2, C5, C6 have clique-width 3, and Cn has clique-width 4 for n ≥ 7. For
directed cycles

−→
C n, we have cwd(

−→
C 3) = 3 and cwd(

−→
C n) = 4 if n ≥ 4.

10As ⊕ is associative, we will write t = t1 ⊕ t2 ⊕ ...⊕ tn instead of t1 ⊕ (t2 ⊕ (...⊕ tn)...) or
any equivalent writing. It is also comutative.

11 If h modifies only one label, we call relabh an elementary relabelling. By using only
elementary relabellings, one obtains the same notion of clique-width ([14], Proposition 2.118).

12 In [14], we denote cwd∗ by cwd.

6

Lemma 1.3 : For every C-graph G, we have :
max{|τ(G)| , cwd(G)} ≤ cwd∗(G) ≤ |τ(G)| · cwd(G).

Proof: The first inequality is clear from definitions. To prove the second
one, we assume without loss of generality, that the type of G is [p]. Let H be
G with all vertices labelled in the same way. Let C be the set of k labels of a
term t that defines H. For each a in C and i ∈ [p], we define a new label (a, i)
that will only label the vertices x such that πG(x) = i.

Consider in t a nullary symbol a(x). If πG(x) = i, we replace it by (a, i)(x).
Each relabelling relabh is replaced by relabh′ where h′ maps (a, i) to (b, i)

whenever h maps a to b. Similarly, we replace adda,b by the composition of
the operations add(a,i),(b,j) for i, j ∈ [p]. We obtain in this way a term13 t′ over
the set of labels [p] ⊎ (C × [p]). We let h′′ : C ×[p] → [p] map (a, i) to i for
a ∈ C and i ∈ [p]. Then G = relabh′′(val(t

′)) = val(relabh′′(t
′)). The term

relabh′′(t′) uses at most p(1 + k) labels. However, we can fix some a ∈ C and
replace everywhere (a, i) by i, for each i. We obtain a term of width at most pk
that defines G. �

Hence if the type of G consists of p labels and k is the clique-width of the
corresponding unlabelled graph, then one can define G, with its labelling, by a
term with at most pk labels. This lemma implies that cwd(G) ≤ 2cwd(G− x)
if x is a vertex of G. This bound is proved in [30].

Questions 1.4 : Can one improve the bounds14 cwd(G) ≤ 2cwd(G−x) and
|τ(G)| · cwd(G) (of Lemma 1.3) ?

Definition 1.5 : Abstract graphs
We will also use nullary "generic" symbols a that do not denote any partic-

ular vertex. The vertex defined by an occurrence15 u of a in a term t is u itself.
We will also consider that a term written with such nullary symbols denotes an
abstract C-graph (cf. Definition 1.2(a,e)). See [14], Section 2.52.

We will denote by FC the signature FC where each symbol a(x) is replaced
by a, and by t the term in T (FC) obtained from a term t ∈ T (FC) by replacing
each a(x) by a. Then val(t) ≡ val(t).

Example 1.6 : The grammar for cographs.
We present context-free graph grammars, defined as equation systems whose

unknowns are sets of abstract graphs, by using the example of cographs.
(1) One characterization of cographs is the following recursive one. Graphs

are simple and undirected. The join of two disjoint undirected graphs G and

13The construction is similar for directed graphs and it needs no more labels.
14 It not hard to prove that lcwd(G) ≤ lcwd(G−x)+2 where lcwd denotes the linear clique-

width. This variant is defined by requiring that at least one of the two arguments of ⊕ is a
nullary symbol. See e.g., [14, 32].

15Occurrences in terms can be designated by Dewey words or by integers, cf. Definition 2.3
in [14],

7

H, denoted by G⊗H, is defined as their union augmented with edges between
any vertex of G and any vertex of H.

A cograph is either an isolated vertex, G⊕H or G⊗H for disjoint cographs G
and H. Hence, the set C of abstract cographs is the least set (least for inclusion)
that satisfies the recursive equation :

C = {∗} ∪ (C ⊕ C) ∪ (C ⊗ C)

where ∗ denotes an isolated vertex (up to isomorphism), D⊕E := {G⊕H |
G ∈ D,H ∈ E} and similarly for ⊗.

We call such a description a (context-free) graph grammar.
Each cograph has thus a hierchical description, in terms of smaller cographs

and the two operations ⊕ and ⊗. Hence, it is defined by, or more formally, is
the value of a term in T ({⊕,⊗,∗}), i.e., a term written with ⊕,⊗ and ∗. For
example the term t := ((∗ ⊕ ∗) ⊕ ∗) ⊗ (∗ ⊕ ∗) defines the complete bipartite
graph K3,2.

A fundamental property ([14], Proposition 3.23) states that the same recur-
sive equation in sets of terms X ⊆ T ({⊕,⊗,∗}), hence :

X = {∗} ∪ (X ⊕X) ∪ (X ⊗X)

defines (by taking the least solution) the terms representing cographs. (If
Y,Z ⊆ T ({⊕,⊗,∗}), then Y ⊕Z denotes the set of terms t⊕ t′ such that t ∈ Y
and t′ ∈ Z.)

Actually, this equation defines the full set T ({⊕,⊗,∗}). Cographs are the
graphs defined by all terms in T ({⊕,⊗,∗}). A cograph can be defined by several
different terms, hence, this grammar is ambigous, which makes difficult its use
for counting. However, an unambigous grammar can be used as we will see in
Section 4.5.

The general notion of a grammar allows systems of mutually recursive equa-
tions that define sets of graphs or sets of terms. An example is :

D = {∗⊗ ∗} ∪ (D ⊕ E) ∪ (E ⊗ E),

E = {∗} ∪ (D⊕ ∗) ∪ (E ⊗ E).

The least sets D and E satisfying these equations are particular sets of
cographs. The two sets of terms that form the least solution in T ({⊕,⊗,∗})
of the (identical) system :

Y = {∗⊗ ∗} ∪ (Y ⊕ Z) ∪ (Z ⊗ Z),

Z = {∗} ∪ (Y ⊕ ∗) ∪ (Z ⊗ Z).

define the sets D and E.

To simplify notation, we will write ∗ instead of {∗} and ∗ ⊗ ∗ instead of
{∗⊗∗} in such equations, and similarly for terms without unknowns. The same
letters X,Y,Z... will be used for sets of terms and the sets of graphs they denote.

8

(2) Systems of recursive set equations, written with set union and the ex-
tensions of functions to sets, make sense in any F -algebra M = (M, (fM)f∈F)
where M is a set equipped with functions fM indexed by a functional signature
F . Take for example F consisting of a, b, f, g, h of respective arities 0,0,1,2,3.
Then a system of equations like :

D = a ∪ f(b) ∪ f(D) ∪ g(E, E),

E = b ∪ h(D,E , E) ∪ g(E,D),

where D, E ⊆ M has a least solution. Its least solution in subsets of
T (a, b, f, g, h) consists of two sets whose sets of values in M are D and E .

Such sets are the equational sets of the algebra M. This notion is relative to
the algebraic structure specified by the operations (fM)f∈F , cf. [14], Chapter 3.

2 Substitution to vertices

In this section, we consider undirected graphs. We will adapt the definitions to
directed graphs in Section 5.

Let C be a set of labels containing ⊥ . The vertices of a graph G labelled by
⊥ will be said to be dead ; they form the set V dead

G . The others, said to be alive
form the set V live

G . The unary operation κ, read kill, relabels all vertices by ⊥,
hence makes them dead.

Definition 2.1 : Substitution.
LetK be a C-graph and x1, . . . , xp be pairwise distinct vertices. Let H1, . . . ,

Hp be pairwise disjoint C-graphs, that are disjoint16 , n ≥ 3, from K. We define
a C-graph G := K[x1 ← H1, . . . , xp ← Hp] as follows17 :

VG := (VK − {x1, . . . , xp}) ⊎ VH1
⊎ . . . ⊎ VHp

,

πG(v) := πK(v) if v ∈ VK − {x1, . . . , xp},

πG(v) := πK(xi) if v ∈ V live
Hi

,

πG(v) := ⊥ if v ∈ V dead
Hi

.

Its edges are as follows, for u, v in VG :

uv ∈ EG if and only if :

either uv ∈ EK and neither u nor v is in {x1, . . . , xp},

or uv ∈ EHi
for some i,

or u ∈ VK , uxi ∈ EK and v ∈ V live
Hi

(or vice-versa by exchanging u
and v since we define undirected graphs, so that uv and vu designate
the same edge),

or u ∈ V live
Hi

, v ∈ V live
Hj

and xixj ∈ EK (so that i �= j).

16 It is actually enough to assume that (VK − {x1, . . . , xp}) ∩ (VH1
⊎ . . . ⊎ VHp

) = ∅.
17Read "Hi is substituted to xi in K".

9

The type of G is thus that of K, possibly augmented with ⊥ if some Hi has
dead vertices : these vertices are dead in G. The labels of K have no influence
on the definition of the edges of G, they only specify, together with the labels of
the graphs Hi, those of the resulting graph G. The labels of the Hi’s other than
⊥ do not contribute to the labelling of G : if for each i, a mapping hi : C → C
satisfies hi(a) = ⊥ if and only if a = ⊥, then :

K[x1 ← H1, . . . , xp ← Hp] = K[x1 ← relabh1(H1), . . . , xp ← relabhp(Hp)].

If all vertices of Hp are dead, then

K[x1 ← H1, . . . , xp ← Hp] = (K − xp)[x1 ← H1, . . . , xp−1 ← Hp−1]
⊕Hp.

Because of dead vertices, this notion of substitution differs from the classical
one, used in particular in the theory of modular decomposition (see the survey
[31]). If K,H1, . . . ,Hp have no dead vertices, then K[x1 ← H1, . . . , xp ← Hp]
is the usual substitution, as in [14], Section 2.5.

Proposition 2.2 : Let K,H1,H2 be pairwise disjoint C-graphs and x1 ∈
VK .

(1) If x2 is another vertex of K, then K[x1 ← H1][x2 ← H2] = K[x1 ←
H1, x2 ← H2].

(2) If x2 ∈ VH1
, then K[x1 ← H1][x2 ← H2] = K[x1 ← H1[x2 ← H2]].

Proof : (1) Straightforward verification from the definitions.
(2) LetG := K[x1 ← H1][x2 ← H2] andG′ := K[x1 ← H1[x2 ← H2]].Clearly,

VG = VG′ .
(2.1) We now compare edges. Let u, v belong to VG. If u and v are both,

either in VK , or in VH1
or in VH2

, then uv ∈ EG if and only if uv ∈ EG′ .
Otherwise we distinguish three cases.

(i) u ∈ VK and v ∈ VH1
; then, uv ∈ EG if and only if ux1 ∈ EK and v is live

in H1, if and only if uv ∈ EG′ .
(ii) u ∈ VK and v ∈ VH2

; then, uv ∈ EG if and only if ux2 ∈ EK[x1←H1] and
v is live in H2. The condition ux2 ∈ EK[x1←H1] is equivalent to : ux1 ∈ EK and
x2 is live in H1.

Now uv ∈ EG′ if and only if ux1 ∈ EK and v is live in H1[x2 ← H2] which
is true if and only if v is live in H2 and x2 is live in H1. Hence, uv ∈ EG if and
only if uv ∈ EG′ .

(iii) u ∈ VH1
− {x2} and v ∈ VH2

; then uv ∈ EG if and only if ux2 ∈ EH1

and v is live in H2, if and only if uv ∈ EH1[x2←H2], if and only if uv ∈ EG′ .
Hence, G and G′ have the same edges.
(2.2) It remains to verify that πG = πG′ .
If u ∈ (VK − {x1}) ⊎ (VH1

− {x2}), then πG(u) = πG′(u) because u is not
affected by the substitutions to x2.

If u ∈ VH2
, then πG(u) = ⊥ if u is dead in H2; it is πK[x1←H1](x2) otherwise.

We have πK[x1←H1](x2) = ⊥ if x2 is dead in H1, and otherwise, it is πK(x1).

10

Now, πG′(u) = ⊥ if u is dead in H1[x2 ← H2] and it is πK(x1) otherwise;
observe that u is dead in H1[x2 ← H2] if and only if it is dead in H2 or x2 is
dead in H1. We obtain πG(u) = πG′(u) in this case; this value is either πK(x1)
or ⊥ (if u is dead in H2 or x2 is dead in H1).

This completes the proof. �

Properties (1) and (2) are called respectively commutativity and associativity
of substitution in [6]. They are axioms for the definition of context-free graph
grammars based on an abstract notion of substitution and on equation systems,
as explained in Example 1.6. These grammars are particular vertex replacement
grammars [14].

Definition 2.3 : Graph operations based on substitution.
(a) For eachC-graphK with vertex set enumerated as {x1, . . . , xp}, we define

as follows a p-ary graph operation18 on C-graphs denoted by σ[K,x1, . . . , xp] :

σ[K,x1, . . . , xp](H1, . . . ,Hp) := K[x1 ← H1, . . . , xp ← Hp] (1)

where H1, . . . ,Hp are pairwise disjoint C-graphs that are disjoint from K.
Note that the vertex set of σ[K,x1, . . . , xp](H1, . . . ,Hp) is VH1

⊎ . . . ⊎ VHp
.

If H1, . . . ,Hp are not pairwise disjoint, we replace them by isomorphic copies
in a standard way (cf. Definitions 1.2(e) and 1.5, and Chapter 2 of [14]), so that
σ[K,x1, . . . , xp] becomes a p-ary operation on abstract C-graphs.

(b) We denote by ΣC the countable set of these operations together with
the nullary symbols a(x) (this symbol denote the a-labelled vertex x ∈ V, as in
Definition 1.2(b)). A term t ∈ T (ΣC) is well-formed if each vertex x occurs at
most once in some symbol a(x). It defines a C-graph val(t) where (1) is used
to evaluate σ[K,x1, . . . , xp](H1, . . . ,Hp).

(c) The signature ΣC is obtained from ΣC by replacing, for each a, each
symbol a(x) by a. As for clique-width terms in T (FC), each term in T (ΣC)
denotes an abstract C-graph.

We denote by relaba the relabelling relabh such that h(⊥) := ⊥ and h(b) := a
if b �= ⊥.

Proposition 2.4 : Let t, t′ ∈ T (ΣC) and x be a vertex in the C-graph val(t)
defined in t by a(x). Let t′ be a term such that Vval(t′) ∩ (Vval(t) − {x}) = ∅.
We have : val(t)[x← val(t′)] = val(t[relaba(t′)/a(x)]).

The C-graph val(t)[x ← val(t′)] is obtained by substituting in val(t) the
C-graph val(t′) to the vertex x. The term t[relaba(t′)/a(x)] is obtained by
substituting in t the term relaba(t

′) to the unique occurrence of a(x). It is well-
defined because Vval(t′)∩ (Vval(t)−{x}) = ∅ (cf. the first footnote in Definition
2.1).

18We use the same notation σ[K, v1, . . . , vp] for the p-ary function symbol and the corre-
sponding operation. Cf. Definition 1.2(c).

11

Proof : By induction on the structure of t.
If t = a(x), then val(t)[x←− val(t′)] = a(x)[x←− val(t′)] = relaba(val(t

′))
= val(relaba(t

′)) = val(t[relaba(t
′)/a(x)]).

Let now t = σ[K, v1, . . . , vp](t1, . . . , tp). Without loss of generality and to
simplify notation, we assume that a(x) occurs in t1. Then, for every term s :

t[s/a(x)] = σ[K, v1, . . . , vp](t1[s/a(x)], t2, . . . , tp) and so

val(t[s/a(x)]) =

K[v1 ← val(t1[s/a(x)]), v2 ← val(t2), . . . , vp ← val(tp)]. (2)

By induction :

val(t1[relaba(t′)/a(x)]) = val(t1)[x← val(t′)],

hence, Equality (2) where s = relaba(t′) yields

val(t[relaba(t
′)/a(x)]) = K[v1 ← val(t1)[x ← val(t′)], . . . , vp ←

val(tp)]

= K[v1 ← val(t1), . . . , vp ← val(tp)][x← val(t′)] by Propoposition
2.2(2),

= val(t)[x← val(t′)]. �

By using these operations, one can define graph grammars, formalized by
systems of recursive equations in sets of abstract C-graphs, of which one takes
least solutions (cf. Example 1.6 and [14], Chapters 3 and 4).

Definitions 2.5 : Some useful operations.
Here are some operations on D-graphs, where D := {⊥,⊤} and ⊤ labels the

live vertices. The first two equalities are mere observations.

κ(H) = σ[K,x1](H) where K consists of the dead vertex x1.

H1⊕H2 = σ[K,x1, x2](H1,H2) where K consists of two isolated live
vertices x1 and x2.

We define :

H1 ⊗H2 := σ[K,x1, x2](H1,H2) where K is the edge x1x2, and x1
and x2 are alive.

Λ(H1,H2) := σ[K,x1, x2](H1,H2) where K is the edge x1x2, x1 is
alive and x2 is dead.

The operations ⊕ and ⊗ are associative and commutative. Here are some
other algebraic properties19 :

19We leave as an open problem to find a complete set of equational axioms for ⊕,⊗,Λ, κ,⊤.

12

κ(G⊗H) = κ(Λ(G,H)), (3)

κ(G⊕H) = κ(G)⊕κ(H) = Λ(κ(G),H) = Λ(κ(G), κ(H)), (4)

Λ(G,H1⊕H2) = Λ(Λ(G,H1),H2). (5)

We let Σdh be the signature {⊕,⊗,Λ, κ,⊤} ⊆ ΣD. For every vertex x, we
have ⊥(x) = κ(⊤(x)). Hence, we need not put the nullary symbol ⊥ in Σdh.
Actually, a vertex introduced by ⊥(x) is dead from the very beginning and is
isolated in the defined graph.

Examples 2.6 : Some grammars over Σdh.
Grammars are defined as equation systems that define sets of abstract D-

graphs.
(1) The following equation for cographs that we have already seen in Example

1.6, can be solved in sets of abstract D-graphs :

X =⊤ ∪ (X ⊕X) ∪ (X ⊗X).

All vertices of the generated D-graphs are labelled by ⊤ because ⊕ and ⊗
do not introduce dead vertices. We recall that X ⊕X := {G⊕H | G,H ∈ X}
if X is a set of labelled graphs and similarly for ⊗ and the other operations
considered below.

As observed in Example 1.6, this equation can also be solved in T ({⊕,⊗,⊤}).
Its solution is a set of terms20 that we will denote by L(X). More generally,
for a system of set equations over a functional signature F that has unknowns
X,Y,Z..., we will denote by L(X), L(Y), L(Z)... the associated sets of terms
in T (F). If the system is solved in an F -algebra M, the corresponding sets of
objects X,Y,Z... are the sets of values in M of the terms in L(X), L(Y), L(Z)....

(2) We turn a rooted tree (cf. Section 1) into a {⊤,⊥}-graph such that the
root is the only live node.

These trees are defined recursively as follows : a unique node a is a tree with
root a. If A and B are disjoint rooted trees with respective roots a and b, than
one obtains a rooted tree C by taking the union of A and B, linked by an edge
ab, and a is taken as root of C. Then, C = Λ(A,B) if A,B,C are as above. The
equation that defines the set R of rooted trees is thus :

R = ⊤ ∪ Λ(R,R).

Another grammar for trees, consisting of two equations is :

Y = ⊤ ∪ Λ(⊤, Z),

Z = Y ∪ (Z ⊕ Z).

20We call language a set of terms, whence the notation L(X). A set of graphs is not called
a language, in order to have a coherent terminology.

13

Here, Z defines the nonempty disjoint unions of rooted trees.

(3) The set T of (unrooted) trees is defined by the equation T = κ(R) or
T = κ(Y), with R,Y,Z defined as in (2). For an example, the tree with nodes
u, v, w, x, y, z, root x and edges xy, xz, xv, zu and vw is defined by the term :

Λ(Λ(Λ(⊤(x),⊤(y)),Λ(⊤(z),⊤(u))),Λ(⊤(v),⊤(w)))

belonging to L(R) or by the term :

Λ(⊤(x),⊤(y)⊕ Λ(⊤(z),⊤(u))⊕ Λ(⊤(v),⊤(w)))

that belongs to L(Y).

The paths with one live vertex at one end are defined by the equation

P = ⊤ ∪Λ(⊤, P).

(4) We will prove in the next proposition that the equation

W = ⊤ ∪ (W ⊕W) ∪ (W ⊗W) ∪ Λ(W,W)

defines, up to vertex labels, the distance-hereditary graphs (cf. Definition
1.1).

From these equations, we obtain that the rooted trees are defined by all
terms in T ({Λ,⊤}) or by certain terms in T ({⊕,Λ,⊤}), and that the distance-
hereditary graphs are defined by terms in T ({⊕,⊗,Λ,⊤}). In these equations
and the generated terms, the label ⊥ for dead vertices does not appear explicily,
but it is introduced by the operations Λ and κ. �

In the following description of distance-hereditary (DH) graphs, all vertices
are defined as dead, equivalently, unlabelled. The following recursive definition
of DH graphs has been established in [3], but we think interesting to prove it
by using the concepts of the present article. We recall that equation systems
always define abstract graphs.

Proposition 2.7 : (1) The distance-hereditary graphs form the set X de-
fined by the two equations :

X = κ(W) and W =⊤ ∪ (W ⊕W) ∪ (W ⊗W) ∪ Λ(W,W).

(2) The connected distance-hereditary graphs form the set Y defined by the
equation :

Y = κ(⊤) ∪ κ(W ⊗W)

14

and the equation of (1) that defines W .

Proof : (1) Note that21 L(W) = T ({⊕,⊗,Λ,⊤}). For both directions we
will use the characterization of DH graphs recalled in Definition 1.1.

Claim 1 : Every DH graph G is in the set val(X) = val(κ(W)).
Proof : We use induction on the number n of vertices of G.
If n = 1, then G is a single dead vertex, hence G ≡ κ(⊤) ∈ κ(W).
Otherwise there are four cases.
(i) G is the disjoint union of two DH graphs H,H ′. Then, H ≡ κ(t),H ′ ≡

κ(t′) for some t, t′ ∈W = T ({⊕,⊗,Λ,⊤}). Hence, G ≡ κ(t⊕ t′) where t⊕ t′ ∈
L(W) because κ(t⊕ t′) ≡ κ(t)⊕ κ(t′).

(ii) If G is obtained from a DH graph G′ by adding a pendant vertex y to a
vertex x of G′, we have G = G′[x ← H] where H is the edge xy, with x alive
and y dead22 ; hence H = val(Λ(⊤(x),⊤(y))).

We have G′ = κ(val(t′)) where t′ is a well-formed term over ⊕,⊗,Λ and the
nullaries that define vertices. It has one occurrence of ⊤(x).

We let t := t′[Λ(⊤(x),⊤(y))/⊤(x)]. By Proposition 2.4, we have val(t) =
val(t′[Λ(⊤(x),⊤(y))/⊤(x)]) = val(t′[relab⊤(Λ(⊤(x),⊤(y)))/⊤(x)])
val(t′[x← val(relab⊤(Λ(⊤(x),⊤(y))))] = val(t′[x← H]).
Hence G = κ(t), so that G ≡ κ(t) where t ∈ L(W) is obtained from t by

replacing by ⊤ the symbols ⊤(z) that define vertices.
(iii) Let G be obtained from a DH graph G′ by adding a false twin y to a

vertex x. We have G = G′[x← H] where H consists of two isolated live vertices
x and y. Hence H = val(⊤(x) ⊕⊤(y)). The proof continues as in (ii) with
⊤(x)⊕⊤(y) instead of Λ(⊤(x),⊤(y)).

(iv) Let G be obtained from a DH graph G′ by adding a true twin y to a
vertex x. Here G = G′[x ← H] where H consists of two live vertices x and y
linked by an edge, hence H = val(⊤(x)⊗⊤(y)). The proof continues as in (iii)
with ⊤(x)⊗⊤(y) instead of ⊤(x)⊕⊤(y).�

Claim 2 : If G = val(t) for some well-formed term t over ⊕,⊗,Λ and the
nullaries that define vertices, then κ(G) is DH.

Proof : By induction on the size of t.
If t = ⊤(x), the result holds because an isolated vertex is DH. Otherwise, we

can find a position u in t such that t/u, the subterm of t issued from position u,
is either Λ(⊤(x),⊤(y)), ⊤(x)⊕⊤(y), or ⊤(x)⊗⊤(y). Then t = t′[(t/u)/⊤(x)]
for some well-formed term t′ (t′ is obtained by replacing in t the subterm t/u
by ⊤(x)). By induction, κ(val(t′)) is a DH graph G′ and G = G′[x← H] by
Proposition 2.4, where H is respectively as in cases (ii), (iii) or (iv).�

(2) It is clear that a term t in L(X) defines a connected graph if and only if
it is not of the form κ(t1⊕ t2). Hence, the connected DH graphs can be defined
by the equation :

21See Example 1.6 for the solution of equations in sets of terms. If t is a term, we will write
G ≡ t to indicate that G ≡ val(t).

22We use here the footnote in Definition 2.1.

15

Y = κ(⊤) ∪ κ(W ⊗W) ∪ κ(Λ(W,W))

whereW is as in (1). However, we observed in Definition 2.5 that κ(Λ(G,H)) =
κ(G ⊗H) for all D-graphs G and H. Hence, the term κ(Λ(W,W)) can be re-
moved. �

The bipartite DH graphs are built from isolated vertices by the addition of
pendant edges and of false twins [1]. Hence, they form the set B defined by the
two equations B = κ(W ′) and W ′ = ⊤ ∪ (W ′ ⊕W ′) ∪ Λ(W ′,W ′).

3 Clique-width and substitution operations.

A derived operation23 relative to an F -algebra M is defined by a term t in
T (F, {u1, ..., up}), i.e., a term over F with variables (or indeterminates, i.e,
nullary symbols to which values or terms can be substituted) u1, ..., up. The
corresponding p-ary function tM is defined by evaluating t with p arguments
from the domain of M as values of u1, ..., up.

For an example using clique-width operations, the operation ⊗ on graphs
of type {⊤} (cf. Definitions 1.6 and 2.5) satisfies the following equality for all
D-graphs G,H :

G⊗H = relaba→⊤(add⊤,a(G⊕ relab⊤→a(H))).

Hence, ⊗ is a derived operation defined by the term24 relaba→⊤(add⊥,a(u1⊕
relab⊤→a(u2))).

Our objective is to express the operations σ[K,x1, . . . , xp] as derived opera-
tions over FC , the signature upon which clique-width is based.

We let Lin(FC , {uq, ..., up}) be the set of terms in T (FC , {uq, ..., up}), q ≤ p,
where each variable ui has a unique occurrence and no other nullary symbol
occurs. Every such term defines a (p−q+1)-ary mapping on C-graphs denoted
by tG. For pairwise disjoint graphs Hq, . . . ,Hp, the vertex set of tG(Hq, . . . ,Hp)
is VHq

⊎ . . . ⊎ VHp
.

We define T⊥(FC) as the set of terms that use none of the operations25

adda,⊥, add⊥,a,
−−→
adda,⊥,

−−→
add⊥,a, relabh if h(⊥) �= ⊥, and no nullary symbol

⊥(x). We denote by cwd⊥(G) the minimal cardinality of C − {⊥} such that26

G ≡ val(t) for some term t ∈ T⊥(FC). Clearly, cwd(G) ≤ cwd⊥(G) + 1. We
have cwd(T) = 3 and cwd⊥(T) = 2 for any tree T that is not a star.

Let K be a C-graph with vertex set {xq, . . . , xp} defined by a term t in
T⊥(FC). Each vertex xi occurs in a nullary symbol ai(xi) in t such that ai �= ⊥.
We define �t := t[uq/aq(xq), . . . , up/ap(xp)] ∈ Lin(FC , {uq, ..., up}).

23See, e.g. [14], Section 2.1.
24This term uses an auxiliary label a = ⊥,⊤. However, it defines graphs of type {⊤} from

graphs of same type. The label a can be replaced by any other label different from ⊤ or ⊥.
25These limitations on the use of ⊥ make it an inactive label in [36].
26The equivalence ≡ respects vertex labels, cf. Definition 1.2(a).

16

Lemma 3.1 : Let K be a C-graph with vertex set {x1, . . . , xp} defined
by t ∈ T⊥(FC). Let �t := t[u1/a1(x1), . . . , up/ap(xp)]. For pairwise disjoint
C-graphs H1, . . . ,Hp, we have:

σ[K,x1, . . . , xp](H1, . . . ,Hp) = �tG(relaba1(H1), . . . , relabap(Hp)).

Proof: By induction on the structure of t.We recall that relaba is the
relabelling that replaces by a every label except ⊥.

If t = a1(x1), then �t = u1, K consists of the a1-vertex x1 and σ[K,x1](H1) =
relaba1(H1) = �tG(relaba1(H1)) (by the behaviour of labels in substitution).

If t = t1 ⊕ t2, then, without loss of generality, we assume that the vertices
of K1 := val(t1) are x1, . . . , xi and those of K2 := val(t2) are xi+1, . . . , xp. We
have �t = �t1 ⊕ �t2. Then, since substitution distributes over disjoint union27 and
by induction :

σ[K,x1, . . . , xp](H1, . . . ,Hp) =

σ[K1, x1, . . . , xi](H1, . . . ,Hi)⊕ σ[K2, xi+1, . . . , xp](Hi+1, . . . ,Hp) =

�t1G(relaba1(H1), . . . , relabai(Hi))⊕�t2G(relabai(Hi), . . . , relabap(Hp)) =

�tG(relaba1(H1), . . . , relabap(Hp)).

If t = f(t1) where f is relabh or adda,b, then the result holds because, for
every C-graph K with vertices x1, . . . , xp, we have :

σ[f(K), x1, . . . , xp](H1, . . . ,Hp) = f(σ[K,x1, . . . , xp](H1, . . . ,Hp)).

The equality to be proved follows then by induction. �

We will denote by tK and �tK terms associated with K as above. We say
that an operation σ[K,x1, . . . , xp] has width k if cwd⊥(K) = k. The operations
⊕,⊗,Λ and κ have respective widths 2,2,2 and 1.

Proposition 3.2 : IfG ≡ val(s) for some term s in T (ΣC) whose operations
have width at most k, then cwd⊥(G) ≤ k and cwd(G) ≤ k + 1.

Proof : By induction on the structure of s, we define a term �s in T (FC)
such that val(�s) ≡ val(s).

If s = a(w), then �s := s.
If s = σ[K,x1, . . . , xp](s1, . . . , sp), then we define :

�s := �tK [relaba1(�s1)/u1, . . . , relabap(�sp)/up].
It is clear that val(�s) ≡ val(s).
The set of labels used in �s is the set of all those used in the terms �tK

where σ[K,x1, . . . , xp] occurs in s. We now bound cwd⊥(G). Without loss of
generality, we can assume that all labels of the terms tK for K occurring in s
(via some σ[K,x1, . . . , xp]) are in a set C such that C − {⊥} has cardinality k.
Hence cwd⊥(G) ≤ k and cwd(G) ≤ k + 1. �

27This is clear from Definition 2.1.

17

If in s, all the operations of maximal width k do not use ⊥ in their definitions
by terms, then cwd(G) = cwd⊥(G) ≤ k.

Corollary 3.3 : Distance-hereditary graphs have clique-width at most 3
Proof : Distance-hereditary graphs are defined by means of the operations

κ,Λ, ⊕ and ⊗ of width at most 2. �

This result is known from [29, 37] with different proofs. As the operation Λ of
width 2 needs ⊥ in its defining term, we do not have cwd(G) = cwd⊥(G) ≤ 2.
Proposition 4.9 of [36] establishes that conversely, G is distance-hereditary if
cwd⊥(G) ≤ 2.

4 Split decomposition

The split decomposition of directed and undirected graphs has been defined
and studied by Cunnigham in [18]. We will formulate it in terms of graph-
labelled trees, as in [27, 28], also called split-decomposition graphs in [7]. We
only consider undirected graphs in this section.

4.1 Definitions and basic facts

Definition 4.1 : Graph-labelled trees and the graphs they describe.
We denote by LT the set of leaves of a tree T and by IncT (v) the set of

edges incident to a node v.
(a) A graph-labelled tree, denoted by T , is a tree T with at least three nodes

that is equipped, for each node v ∈ NT , with a connected graph Hv, called a
component, and a bijection ρv:IncT (v) → VHv

. The components are pairwise
disjoint. We identify u and the unique vertex of Hu if u is a leaf.

Figure 1 shows a graph-labelled tree with leaves 1, ..., 8 and internal nodes
u, v, w, x. The components are surrounded by elipses. The dotted lines are the
edges of the tree T . Each of them links two vertices of two different components,
and each vertex x in a component Hv is incident to one and only one "dotted
edge", namely, ρ−1v (x).

(b) The corresponding split-graph S(T) is the union of the components to-
gether with the edges ρu(e)ρv(e) for e = uv, (the "dotted edges" of Figure 1).
A path in S(T) is alternating if no two consecutive edges are in a same compo-
nent28 . Between any two vertices x, y of S(T), there is at most one alternating
path. If there is one, we say that x is accessible from y, and we precise through
z (or e) to indicate that this path goes through a particular vertex z (or edge
e). For a vertex w of S(T) belonging to a component Hu, we denote by A(w)

28Because of the bijections ρv , no two consecutive edges in a path can be tree-edges.

18

Figure 1: A graph-labelled tree T (cf. Definition 4.1(a).

(respectively by P (w)) the set of vertices accessible from w by a nonempty al-
ternating path whose first edge is not in Hu (respectively, reachable from w by
a nonempty path in S(T) whose first edge is not in Hu).

(c) The graph described by T , denoted by G(T), has vertex set LT and an
edge uv if and only if u is accessible from v. It is connected ([27], Lemma 2.3)
because the components are defined as connected29 .

We continue to examine the graph-labelled tree T of Figure 1 and the asso-
ciated graph G(T) in Figure 2. There is an alternating path between leaf 7 and
leaf 1. Hence, they are adjacent vertices in G(T). On any path between 3 and
7, there are two consecutive edges of Hu, hence, 7 is not adjacent to 3.

(d) Let e = uv be an edge of T between two internal nodes. The node-joining
operation (cf. [27]) contracts this edge, hence fuses u and v into a single new
node say w, giving tree T ′; the new component H′

w is defined as Hu⊎Hv minus
the two vertices ρu(e), ρv(e) and augmented with an edge between any vertex x
in Hu and any vertex y in Hv such that xρu(e) ∈ EHu

and ρv(e)y ∈ EHv
. This

graph is connected. We obtain a graph-labelled tree T ′ (nothing else is modified
from T) that describes the same graph. If ρu(e) has degree r in Hu and ρv(e)
has degree s in Hs, the resulting component H ′

w has a subgraph isomorphic to
the complete bipartite graph Kr,s.

The opposite transformation is called node-splitting. It preserves also the
defined graph. �

Remark 4.2 : A graph G consisting of a single edge is defined by a graph-
labelled tree one component of which is an edge. Otherwise, a single edge compo-

29 If some components are not connected, the graph defined in this way is not connected.
Actually, a disconnected graph is best described as the union of its connected components.
Hence, we can require that components are connected.

19

Figure 2: The graph G(T) for T in Figure 1.

nent Hu can be eliminated by a node-joining of u with one of its two neighbours.
This elimination being done as much as possible, the resulting tree has no node
of degree 2.

However in a graph-labelled tree T that defines a graph with at least 2
vertices, it may be useful to insert a component consisting of a single edge (cf.
Section 4.5 below) : consider an edge uv of T , replace it by two edges uw and
wv where w is new node, and define the new component corresponding to w as
consisting of a single edge.

The following lemma is implicit in [14, 27]. We will generalize it for directed
graphs.

If uv is an edge of a tree T , we denote by NT,u\v the set of nodes of the
connected component of T −u that contains v. Notation is in Definition 4.1(b).

Lemma 4.3 : Let T be a graph labelled tree and G = G(T).
(1) For each vertex x of S(T), the set A(x) ∩ LT is not empty.
(2) Let x, y be distinct vertices of some component H. If xy is an edge of

H, there is an alternating path between any leaf in A(x) and any leaf of A(y).
Conversely, if an alternating path links a leaf in A(x) and a leaf of A(y), then
this path goes through H, and more precisely, through x and y, and xy ∈ EH .
Each component is isomorphic to an induced subgraph of G.

(3) Let uv be an edge of T . There is an alternating path between any leaf in
A(x) where x is a neighbour of ρu(uv) in Hu and any leaf in A(y) where y is a
neighbour of ρv(uv) in Hv. Any such path goes through the edge ρu(uv)ρv(uv).

Proof: (1) Let x belong to Hu. Then x = ρu(uv) for some (unique) edge uv
of T . We use induction on the cardinality of NT,u\v.

If
��NT,u\v

�� = 1, then v is a leaf in A(x) as A(x) = {v} = {ρv(uv)}.

20

Otherwise, Hv has an edge ρv(uv)y and y = ρv(vw) for some edge vw of T .
Then NT,v\w ⊂ NT,u\v and A(y) ∩ LT ⊆ A(x) ∩ LT . The set A(y) ∩ LT is not
empty by induction, so is A(x) ∩LT .

(2) Let xy = ρu(uv)ρu(uw) be an edge of component Hu. Let z ∈ A(x)∩LT
and z′ ∈ A(y) ∩ LT . By connecting alternating paths between z and x, and z′

and y with the edge xy, we get an alternating path between z and z′. Any such
path must through xy as one checks from the definitions.

For each vertex x of Hu, let us choose a vertex �x of G in A(x)∩LT . By the
previous observations, the induced subgraph of G whose vertices are the �x’s is
isomorphic to Hu.

(3) The proof is similar to that of (2). �

The following corollary illustrates these notions in the basic case of trees.

Corollary 4.4 : Let T be a graph-labelled tree. The graph G(T) is a tree
if and only if :

(1) each component of T is a tree, and

(2) if e = uv ∈ ET is not a pendant edge, then at least one of ρu(e)
and/or ρv(e) is a leaf of, respectively, Hu and/or Hv.

Proof : Assume G(T) is a tree. By Lemma 4.3(2), each component of T is
isomorphic to an induced subgraph ofG(T), hence is a tree since components are
connected. For Property (2), if none of ρu(e) and ρv(e) is a leaf, then the node-
joining of u and v (Definition 4.1(d)) merges Hu and Hv into a component that
contains a complete bipartite graph Kr,s such that r, s ≥ 2. This component
has a cycle and G(T) is not a tree by (1).

Conversely, let T satisfy (1) and (2). Consider e = uv satisfying Property
(2) : if we apply to it the node-joining operation, the component H ′

w created
in this way is still a tree. The obtained graph-labelled tree T ′ satisfies (1) and
(2) and describes G(T). By repeating this operation until all edges are pendant,
we obtain a graph-labelled tree that defines G(T) and that has one component
that is a tree, all others being leaves. Hence G(T) is a tree. �

A tree may be defined from several nonisomorphic graph-labelled trees. A
stronger condition than (2) of Corollary 4.4, namely Condition (2) of Theorem
4.6, yields unicity, up to isomorphism, of the graph-labelled trees that define
connected graphs.

Definition 4.5 : Split decompositions.
(1) A split of a graph G is a bipartition of VG into two sets V1 and V2 having

each at least 2 vertices, such that the edges between V1 and V2 induce a complete
bipartite graph with at least one edge. These edges link any vertex of some set
A1 ⊆ V1 and any vertex of some A2 ⊆ V2. Hence, G is κ(G1 ⊗ G2) where the

21

induced subgraphs G1 := G[V1] and G2 := G[V1] have labels in D := {⊤,⊥} in
such a way that the vertices in A1 ∪A2 are labelled by ⊤ and the others by ⊥.

(2) A graph is defined as prime30 if it has at least 4 vertices and no split.
The connected graphs with 3 vertices are the stars S3 and the triangles, i.e.,
the graphs isomorphic to K3. A star Sn, n ≥ 3, has a center and n−1 adjacent
vertices that are leaves: Sn is a tree. Stars and cliques are not prime. No prime
graph has less than 5 vertices. The cycles Cn for n ≥ 5 are prime. �

Theorem 3 of [18], also proved as Theorem 2.9 in [27], states the following
existence and unicity theorem.

Theorem 4.6 : Every connected graph with at least 3 vertices is G(T) for
a unique graph-labelled tree T such that :

(1) each component Hv is singleton, or prime, or is a clique Kn or a star Sn,
for some n ≥ 3,

(2) if e = uv ∈ ET , then Hu and Hv are not both cliques, and, if they are
both stars, then ρu(e) and ρv(e) are both centers or both leaves.

Unicity is understood up to isomorphism. �

Such a graph-labelled tree is called ��� split decomposition of G. It is
canonical because of its unicity, up to isomorphism. It can be obtained from
an arbitrary graph-labelled tree that defines G by the node-splittings and the
node-joinings of Definition 4.1(d) (see [27] for details). The resulting tree has
no node of degree 2 (cf. Remark 4.2). We will also consider graph-labelled trees
that need not be canonical.

Remarks 4.7 : (1) The split decomposition of a clique Kn, n ≥ 3, has a
unique component that is a clique. But any graph-labelled tree all components
of which are cliques defines a clique. A clique Kn, n ≥ 3 can be defined by a
graph labelled tree all components of which are triangles or isolated vertices.
By using node splitting, we can replace a component Kr+s+2 where r, s > 1 by
two components Kr+1 and Ks+1.

(2) In the split decomposition of a tree, all components are stars, and if
e = uv ∈ ET , then ρu(e) and ρv(e) are both leaves of Hu and Hv by Corollary
4.5 and Theorem 4.7. Every tree with at least 3 nodes can be defined by a
graph-labelled tree all components of which are stars S3 or isolated vertices. As
above, this can be achieved by node-splitting.

Examples 4.8 : Distance-hereditary (DH) graphs and 3-leaf powers.
A graph-labelled tree defines a distance-hereditary graph if and only if all its

components are stars and cliques, as proved in [27], Section 3.1. This article also
studies particular DH graphs called 3-leaf powers. A 3-leaf power G is defined
as follows from a tree S : VG is LS and two vertices are adjacent if and only if
they are at distance at most 3 in S. A graph is a 3-leaf power if and only if it

30A different notion of prime graph is used in the theory of modular decomposition, cf. [31].

22

is obtained from a tree by substitutions of cliques to its vertices [2]. It follows
that a graph is a 3-leaf power if and only if it is a clique or is G(T) for some
graph-labelled tree T having one component, say H0, that is a tree whereas all
others are cliques (an isolated vertex is a clique K1). Hence, the set L of 3-leaf
powers is defined, up to labels, by the two equations:

L = K ∪ Λ(L,L),

K =⊤ ∪ (K ⊗K).

The set K is that of cliques where all vertices are alive. The equation for
L is derived from the first equation for rooted trees in Example 2.6(2). In
the characterization of 3-leaf powers of [27], the component H0 that is a tree is
decomposed in the canonical way of Theorem 4.7. �

4.2 Graph-labelled trees and substitution operations.

We will use D-graphs, where D := {⊤,⊥}.

Definitions 4.9 : Rooted graph-labelled trees and related notions.
(a) Let T be a graph-labelled tree, with underlying tree T , not reduced to a

single node. Let us select a node r ∈ NT and make it a root for T . We call then
T a rooted graph-labelled tree. If r is a leaf, we call it a leaf-rooted graph-labelled
tree, and otherwise, a non-leaf-rooted graph-labelled tree.

(b) If u ∈ NT , we let31 Nu := {x ∈ NT | x ≤T u} and Vu := {x ∈ LT |
x ≤T u}. Hence, Vr = LT = VG and Vu = {u} if u ∈ LT − {r}.

(c) If u ∈ NT − LT has father w, we say that ρu(uw) is the leader of
Hu, denoted by u, and we define Hu\u as the D-graph Hu − u (possibly not
connected) where a vertex x is alive (labelled by ⊤) if it is adjacent to u in
Hu and is dead (labelled by ⊥) otherwise. We define also Hr\r := Hr, all its
vertices being defined as dead. If r is a leaf, then Hr\r is undefined.

(d) If u ∈ NT , we define Gu as G[Vu] labelled as follows :

(d.1) if u = r, then every vertex of Gu = G is labelled by ⊥,

(d.2) if u �= r, a vertex y of Gu is labelled by ⊤ if it is in A(z)
for some neighbour z (in Hu) of the leader of Hu; otherwise, it is
labelled by ⊥.

Note that if r is a leaf and u is its neighbour in T , then G = Gr =
κ(Λ(⊤(r), Gu). �

31T will denote the rooted tree, without explicit mention of r ; in particular, ≤T depends
on the choice of r.

23

For an example, consider the graph-labelled tree of Figure 1 in Section 4.1
with root x. The vertices 4 and 5 are alive in Gv, but not in Gu. The vertices
2,6,7 are alive in Gu.

The following lemma relates graph-labelled trees and substitution opera-
tions. Note that the graphs Hu\u depend on the root r that is chosen for T .

Lemma 4.10 : Let T be a rooted graph-labelled tree that defines G. If u
in NT − LT has sons u1, ..., up, and the corresponding p vertices of Hu\u are
x1, ..., xp (that is, xi := ρu(uui)), then we have :

Gu = (Hu\u)[x1 ← Gu1 , ..., xp ← Gup].

Proof : Let K := (Hu\u)[x1 ← Gu1 , ..., xp ← Gup].
1) The vertex set of Gu is Vu := {x ∈ VG | x ≤T u} (VG = LT) hence, is

the union the sets Vui := {x ∈ VG | x ≤T ui} that are the vertex sets of the
graphs Gui . Hence, Gu and K have the same vertices.

2) As the graphs Gw are induced subgraphs of G, two vertices of Gui are
adjacent in Gu if and only if they are in G as well as in Gui , hence also in K.

Consider vertices x of Gui and y of Guj , j �= i. If they are adjacent in Gu,
hence in G, they are linked by an alternating path, that must go through Hu,
and not through its leader u, and use its edge ρu(uiu)ρu(uju) = xixj , an edge
of Hu\u. This path goes through the leader ρui(uiu) of Hui . Hence, x is alive
in Gui . Similarly, y is alive in Guj . Hence xy is an edge of K.

Conversely, if xy ∈ EK , then xixj is an edge of Hu\u, the vertex x is alive
in Gui and y is alive in Guj . Going back to definitions, we have an alternating
path between x and y. Hence, xy is a edge of G hence of Gu.

3) If u is the root r and is not a leaf, then all vertices of Hu\u are dead,
hence, so are those of K, as well as those of G = Gr.

Otherwise, let x be a vertex of Gui that is alive. Hence, there an alterning
path P between x and the leader ρui(uiu) of Hui . If ρu(uiu) = xi is a neighbour
of the leader u of Hu, then x is alive in K. It is also in Gu because P can be
extended into an alterning path from x to u. If ρu(uiu) = xi is not a neighbour
of u, then x is dead in K. It is also in Gu because P cannot be extended into
an alterning path from x to u.

If x is dead in Gui , then it is also in K and in Gu, because otherwise, the
alternating path between x and u would give a path P as above. �

4.3 From graph-labelled trees to grammars

If M is a finite set of connected (unlabelled) graphs having at least 2 vertices,
we define G(M) as the set of graphs described by graph-labelled trees whose
components are in M. These graphs are connected (Definition 4.1(c)).

24

As before, D := {⊤,⊥}. For each H ∈ M, we define H⊥ as H with all
vertices labelled by ⊥. We denote by ΣM the set of operations σ[H⊥, x1, ..., xp]
for H ∈M and by Σ′M the set of operations σ[H\x, x1, ..., xp] for H ∈M and
x ∈ VH (cf. Definition 4.9(c) for the notation H\x).

Theorem 4.11 : IfM is a finite set of connected graphs having at least 2
vertices, then G(M) is the set S defined by the two equations :

S = κ(⊤) ∪ ∪σ∈ΣMσ(U, ..., U) and

U = ⊤ ∪ ∪σ∈Σ′
M
σ(U, ..., U).

Another grammar for G(M) consists of :

S′ = κ(⊤) ∪ κ(Λ(⊤, U))

and the above equation that defines U .

Proof : Let G belong to S. If it is a dead isolated vertex κ(⊤), it is in
G(M). Otherwise, it is defined by a finite term t = σ(t1, ..., tp) where σ ∈ ΣM
and t1, ..., tp are terms in T (Σ′M∪{⊤}). By Lemma 4.10, this term represents a
non-leaf-rooted graph-labelled tree T . The component at the root is isomorphic
to H such that σ = σ[H,x1, ..., xp]. The terms t1, ..., tp represent the subtrees
of T issued from the p sons of the root. Hence, G is described by a rooted
graph-labelled tree with components in M, and so, G ∈ G(M).

Let conversely G ∈ G(M). If it is a dead isolated vertex, then it is in S,
defined by κ(⊤). Otherwise it is defined by a non-leaf rooted graph-labelled
tree T , hence, by a term t = σ(t1, ..., tp) as above. The subtrees of T issued from
the sons of the root are defined by the terms t1, ..., tp.

The second grammar is based on leaf-rooted graph-labelled trees. The proof
is similar, by the remark in Definition 4.9(d). �

The equation W = ⊤ ∪ Λ(⊤, U) with U as above defines the rooted graphs
in G(M) defined as those having exactly one live vertex (labelled by ⊤). We
will apply this remark to DH graphs in Section 4.5.

4.4 Clique-width bounds from graph-labelled trees

Theorem 4.12 : Let G be a connected graph defined by a rooted graph-labelled
tree T such that each operation σ[Hu\u, x1, ..., xp] has width at most k ≥ 2.
Then cwd⊥(G) ≤ k and cwd(G) ≤ k + 1.

Proof: Immediate consequence of Proposition 3.2 and Theorem 4.11. �

The next lemma gives an upper-bound to the widths of the terms in T⊥(FC)
that define the D-graphs Hu\u.

25

Lemma 4.13 : LetH be aD-graph such that cwd(H) = k. Then cwd⊥(H) ≤
k +min{k,

��V live
H

�� ,
��V dead
H

��}.

Proof: We have cwd⊥(H) ≤ cwd∗(H) ≤ 2k by Lemma 1.3 (with |τ(G)| ≤
2).

For proving that cwd⊥(H) ≤ k +
��V live
H

��, we consider a term that defines
H with a set C′ of k labels different from ⊥. Assume that V live

H = {x1, ..., xp}.
We add new labels c1, ..., cp to C′ so that ci will only label xi. We transform t
into t′ accordingly. In particular, to take a typical case, if at some position in t
the operation adda,b adds edges between xi, labelled at this point by a (there
may be other a-labelled vertices) and b-labelled vertices, then we replace it by
addci,b ◦ adda,b.

Hence, we can use p+ k labels different from ⊥.
If V dead

H = {x1, ..., xp}. We do a similar construction. �

Theorem 4.14 : Let G be defined by a graph-labelled tree T whose compo-
nents have maximal clique-width m and maximal degree d, then m ≤ cwd(G) ≤
m+min{m,d}+ 1 ≤ 2m+ 1.

Proof : The inequalitym ≤ cwd(G) follows from Lemma 4.3(2) since clique-
width is monotone with respect to the induced subgraph relation.

We now prove the other inequality32 . For each component Hu, the number
of live vertices in Hu\u is at most d. Hence, Lemma 4.13 gives cwd⊥(Hu\u) ≤
m + min{m,d} and Theorem 4.12 gives cwd⊥(G) ≤ m + min{m,d}, so that
cwd(G) ≤ m+min{m,d}+ 1 ≤ 2m+ 1. �

For an example, if G is a tree that is not a star and is defined by T whose
components are stars with three nodes, hence of clique-width 2, we have m = 2
and cwd(G) = 3.

Remark 4.15 : A bound based on rank-width.
Rank-width is another graph complexity measure initially defined for undi-

rected graphs33 , denoted by rwd. It is based on ternary trees (without root) that
define layouts of the considered graphs. The DH graphs are those of rank-width
1, as proved in [37].

Rank-width is related to clique-width by the inequalities rwd(G) ≤ cwd(G) ≤
2rwd(G)+1 − 1, cf. [37]. Furthermore, if G = G(T) for some graph-labelled tree
T , and m is the maximal rank-width of a component Hu, then rwd(G) = m
(Theorem 4.3 of [33]). Hence, if cwd(Hu) ≤ m for all u, we get rwd(G) ≤ m
and cwd(G) ≤ 2m+1 − 1.

Example 4.16 : Parity graphs.

32By using monadic second-order transductions [7] proves that cwd(G) is bounded in terms
of m by a superexponential function.

33The extension to directed graphs is in [34].

26

A graph is a parity graph if for any two vertices, the induced paths joining
them have the same parity. Bipartite graphs and DH graphs are parity graphs.
The article [5] establishes that the parity graphs are the graphs having a split
decomposition whose components are cliques and bipartite graphs. We do not
obtain a finite grammar as bipartite graphs, whence also parity graphs, have
unbounded clique-width.

4.5 Unambigous grammars for cographs and distance-hereditary

graphs

We first examine some of the operations σ[H,x1, ..., xp] that arise in split de-
compositions.

Observation 4.17 : Substitution operations related to split decompositions.
Case 1 : H is a clique Kp, p ≥ 2 whose vertices x1, ..., xp are all alive. We

have :

σ[Kp, x1, ..., xp](G1,, Gp) = G1 ⊗ ...⊗Gp.

Case 2 : H = Sp\xp where p ≥ 3 and Sp has center x1 that is alive, all other
vertices being dead. We have :

σ[Sp\xp, x1, ..., xp−1](G1,, Gp−1) = Λ(Λ(...Λ(G1, G2),G3), ..., Gp−1))...))

= Λ(G1, G2 ⊕G3 ⊕ ...⊕Gp−1) by Equality (5) of Definition 2.5.

Case 3 : H = Sp\xp where p ≥ 3, Sp has center xp and all vertices of Sp\xp
are alive. Then we have :

σ[Sp\xp, x1, ..., xp−1](G1,, Gp−1) = G1 ⊕ ...⊕Gp−1.

Constructions 4.18 : Grammars for DH graphs revisited.
A connected DH graph without live vertices is defined by a graph-labelled

tree T whose components are stars, cliques and single vertices. By rooting T at
a leaf, we obtain from Theorem 4.11 the following grammar, where S defines
the connected DH graphs :

S = κ(⊤) ∪ κ(Λ(⊤, U)),

U = ⊤ ∪ (U ⊕ U) ∪ (U ⊗ U) ∪ Λ(U,U).

Here is an alternative construction, where the chosen root is not a leaf. By
means of node splittings (Definition 4.1(d)), we can transform T as above into a
graph-labelled tree whose components are stars S3, triangles K3, together with
one component34 K2 : for n ≥ 4, a component (isomorphic to) Kn can be split

34By Remark 4.2.

27

into K3 and Kn−1, and a component Sn can be split into S3 and Sn−1 where
the center of S3 is linked to a leaf of Sn−1.

Let us take as root the component K2. We obtain from Theorem 4.11 the
following equations :

S = κ(⊤) ∪ κ(U ⊗ U),

U = ⊤∪ (U ⊕ U) ∪ (U ⊗ U) ∪ Λ(U,U),

that are the two equations of Proposition 2.7(2).
The equations of Proposition 2.7 can be used to generate DH graphs having a

given number n of vertices, but not, at least immediately, with equal probability
for each fixed n. The reason is that because of the associativity and commuttivity
of ⊕ and ⊗, and also because of Equality (5) of Definition 2.5, this grammar
is ambigous. For the same reason, it cannot be used for counting35 the number
of DH graphs having n vertices. However, it can be transformed so as to allow
that.

Construction 4.19 : An unambigous grammar for cographs.
Cographs are DH and defined by the equation :

C =⊤ ∪ (C ⊕C) ∪C ⊗C.

They have a canonical description as follows, where C⊗ (resp. C⊕) denotes
the set of connected (resp. disconnected) cographs with at least two vertices. A
(⊤-labelled, abstract) cograph G is :

a single vertex ⊤,
or it is connected and of the form G1 ⊗ ... ⊗Gp, p ≥ 2, where G1, ..., Gp ∈

C⊕ ⊎ {⊤},
or it is disconnected and of the form G1⊕ ...⊕Gp, p ≥ 2, where G1, ..., Gp ∈

C⊗ ⊎ {⊤}.
The corresponding term is (or represents) the (canonical) modular decom-

position of G [31]. For a finite or countable set L of labelled graphs, we define:

⊕≥2(L) as the set of labelled graphs G1 ⊕ ...⊕Gp and

⊗≥2(L) as the set of labelled graphs G1 ⊗ ...⊗Gp,

where, in both cases, p ≥ 2 and G1, ..., Gp ∈ L.

With these "metaoperations", we can define cographs by the three equations:

C =⊤ ∪C⊕ ∪C⊗,

C⊕ = ⊕≥2(⊤ ∪C⊗),

C⊗ = ⊗≥2(⊤ ∪C⊕).

35The term enumerating creates confusion with the problem of listing graphs or configura-
tions in graphs.

28

These three equations form an unambigous grammar because of the unicity of
the decomposition recalled above, and because G1⊕...⊕Gp = Gπ(1)⊕...⊕Gπ(p)

for any permutation π of the indices, and similarly for ⊗. Hence, ⊕≥2 can be
seen as an operation of variable arity extended to sets. One obtains a bijection
of the set connected (abstract) cographs with the rooted trees whose internal
nodes have at least two sons. The sons of a node form a set and not a sequence.
These trees, called hierarchies, have been used in [38] to evaluate the number
of cographs of a given size.

Construction 4.20 : An unambigous grammar for DH graphs.
For distance-hereditary graphs, the situation is similar, by using canonical

split decompositions. The grammars given in Construction 4.18 are ambigous.
We can obtain an unambigous one for rooted and connected DH graphs. Rooted
means that one vertex is distinguished as alive and all others are dead. We only
generate such graphs having at least 3 vertices.

Theorem 4.6 and Example 4.8 yield the following description that we give
as a grammar written with the two above metaoperations:

D = Λ(⊤,D⊗ ∪D⊕ ∪DΛ),

D⊗ = ⊗≥2(⊤ ∪D⊕ ∪DΛ),

D⊕ = ⊕≥2(⊤ ∪D⊗ ∪DΛ),

DΛ = Λ(J,D⊕) ∪ Λ(J,⊤ ∪D⊗ ∪DΛ),

J = ⊤ ∪D⊕ ∪D⊗.

The equation D = Λ(⊤,D⊗∪D⊕∪DΛ) defines the root by⊤ andD⊗∪D⊕∪
DΛ correspond to the three types of components Hu of its son u, respectively
Cases 1,3 and 2 in Observations 4.17.

The equation D⊗ = ⊗≥2(⊤ ∪ D⊕ ∪DΛ) corresponds to a component that
is a clique (cf. Case 1). The righthand side does not include D⊗ because two
clique components cannot be neighbour in a canonical split decomposition.

The equation D⊕ = ⊕≥2(⊤ ∪D⊗ ∪ DΛ) corresponds to a star component
whose center is the leader. The righthand side does not include D⊕ because two
star components cannot be linked by their centers.

The rules for DΛ correspond a star component Hu whose center is not the
leader. The set J corresponds to the son of u linked to the center. It does
not does not include DΛ because two star components cannot be linked by two
leaves. The term Λ(J,⊤ ∪D⊗ ∪DΛ) corresponds to a star S3 = Hu, and the
term Λ(J,D⊕) to larger stars.

In this grammar, an equation like D⊗ = ⊗≥2(⊤∪D⊕∪DΛ) creates no ambi-
guity because the three sets {⊤},D⊕ andDΛ are disjoint and the metaoperation
⊗≥2 avoids the ambiguities created by the associativity and commutativity of⊗.
That the full grammar is unambigous follows from the unicity part of Theorem
4.6.

These rules appear in Appendix A of [4], written so as to yield correspond-
ing generating functions. We recall that unambiguity is essential for counting
purposes, and also for random generation (cf. [25]).

29

Distance-hereditary graphs without root (without any vertex distinguished
as the unique live one) are obtained by adding the rule E = κ(D), but the
resulting grammar becomes ambigous because the derivation trees correspond-
ing to different roots are different. A more complex grammar that is appro-
priate for counting the DH graphs without root is given in [4]. It uses rules
with substractions so as to avoid double counting. (They apply the equality
|A ∪B| = |A|+ |B| − |A ∩B| .) This article also handles 3-leaf powers (cf. Ex-
ample 4.8) in a similar way.

5 Directed graphs

We now extend our results to directed graphs. Cunnigham defines a canonical
split decomposition for the directed graphs that are strongly connected (Theo-
rem 1 in [18]). An undirected graph can be seen as a directed one where each
arc (directed edge) has an opposite one. It is connected if and only if the corre-
sponding directed graph is strongly connected. Hence, Theorem 4.7 is a special
case of a more general one for directed graphs36 .

We will use graph-labelled trees and split decomposition graphs as in [7]. In
order to extend to directed graphs the results of Section 4, we will revise the
notion of substitution of Section 2 for graphs with labels that encode the direc-
tions of arcs. The set of live vertices is partitioned into three sets, designated by
the tags ⊤,+,− , attached to the labels of the sets C used to construct graphs
with the clique-width operations of Definition 1.2.

We study directed graphs. However, the graphs representing graph-labelled
trees will have undirected edges as well as arcs.

5.1 Substitution

Definition 5.1 : Substitutions of directed graphs to vertices
We let D := {⊥,+,−,⊤} be ordered in such a way that ⊥ < + < ⊤,

⊥ < − < ⊤, and + and − are incomparable. Let K be a D-graph with vertex
set {x1, . . . , xp} and H1, . . . ,Hp be pairwise disjoint D-graphs, that are disjoint
from K. We define a D-graph G := K[x1 ← H1, . . . , xp ← Hp] :

VG := VH1
⊎ . . . ⊎ VHp

,

πG(v) := inf{πHi
(v), πK(xi)} if v ∈ VHi

.

Its arcs are as follows, for u, v ∈ VG (they do not depend on πK) :

36We thought better to begin with undirected graphs, because the formal setting is much
simpler and most of Graph Structure Theory and Graph Algorithmics is devoted to undirected
graphs.

30

Figure 3: Graphs from Example 5.2

uv ∈ EG if and only if :

uv ∈ EHi
for some i,

or πHi
(u) ∈ {⊤,+}, πHj

(v) ∈ {⊤,−} and xixj ∈ EK (and so i �= j).

Lemma 5.13 below motivates this definition. If we consider an undirected
graph as a directed graph where each arc has an opposite one, and whose vertices
are labelled by ⊥ or ⊤, then, Definition 5.1 gives the same notion of substitution
as Definition 2.1.

Example 5.2 : LetK have vertices x, y and z, respectively labelled by +,−
and ⊤, and arcs xy, yz and zy. Let X be the edgeless graph with vertices 0,1,2,3
labelled respectively by ⊥,+,−,⊤. Let similarly Y have vertices 4,5,6 labelled
by +,−,⊤ and Z, vertices 7,8,9 labelled by +,−,⊤. The graphs K,X, Y,Z
and G := K[x ← X,y ← Y, z ← Z] are shown in Figures 3 and 4. The
labels of vertices 0,1,5,7,8 and 9 are as in X,Y and Z. Those of 2,3,4 and 6 are
respectively ⊥ = inf{+,−}, + = inf{+,⊤}, ⊥ = inf{+,−} and − = inf{−,⊤},
cf. Definition 5.1(a). �

We obtain graph operations, as in Section 2, that we will use to describe the
directed graphs defined by graph-labelled trees.

Definition 5.3 : Graph operations based on substitution.
For each D-graph K with vertex set enumerated as {x1, . . . , xp}, we define

as follows a p-ary operation on D-graphs denoted by σ[K,x1, . . . , xp] :

σ[K,x1, . . . , xp](H1, . . . ,Hp) := K[x1 ← H1, . . . , xp ← Hp]

31

Figure 4: Graph G of Example 5.2.

where H1, . . . ,Hp are pairwise disjoint and disjoint from K. If they are not,
we replace them by isomorphic copies, so that σ[K,x1, . . . , xp] becomes a p-ary
operation on abstract D-graphs. �

If we extend Definition 5.1, so thatK can have other vertices than x1, . . . , xp,
then Proposition 2.2 is still valid.

We will express substitutions in terms of clique-width operations. For di-
rected graphs, we use the operations

−−→
adda,b that create arcs from a-labelled

vertices to b-labelled ones. Our objective is to bound the clique-width of G :=
K[x1 ← H1, . . . , xp ← Hp] as O(max{cwd(K), cwd(H1), . . . , cwd(Hp)}).

Definitions 5.4 : Clique-width operations and substitution.
The set D := {⊥,⊤,+,−} is ordered by Definition 5.1. Let K,H1, . . . ,Hp

be D-graphs and G := K[x1 ← H1, . . . , xp ← Hp].
We assume that the graphs K,H1, . . . ,Hp are defined, up to their labels in

D, by terms in T (FC) where C ∩ D = ∅. We define C# := {(a, α, β) | a ∈
C,α, β ∈ D,β ≤ α} and f : C# → D such that f((a, α, β)) := β for all (a, α, β)
in C#.

We will define the D-graph G by a term tG in T (FC#) in such a way that
G = relabf (val(tG)).

Assume that K = val(tK) for tK ∈ T (FC). Let x1, . . . , xp be the vertices of
K. Each vertex xi is defined by a nullary symbol ai(xi) in tK . We construct a
term �tK in T (FC# , {u1, . . . , up}) as follows :

- we replace each ai(xi) by the variable ui,
- we replace each operation relabh by relab�h where

�h((a, α, β)) := (h(a), α, β)
for all (a, α, β) ∈ C#,

32

- we replace each operation
−−→
adda,b by the composition (in any order) of the

operations
−−→
add(a,α,β),(b,α′,β′) such that α ∈ {⊤,+}, α′ ∈ {⊤,−} and β, β′ ∈ D,

β ≤ α, β′ ≤ α′.
Furthermore, for each i := 1, ..., p, we define hi : C# → C# by hi((a,α, β)) :=

(ai, β, inf{β, πK(xi)}) for (a, α, β) ∈ C#.�

Lemma 5.5 : Let K,H1, . . . ,Hp,G, tK and �tK be as in Definition 5.4. As-
sume that for each i, we have a term ti ∈ T (FC#) such thatHi = relabf (val(ti)).
Then :

K[x1 ← H1, . . . , xp ← Hp] = relabf (val(�tK [relabh1(t1)/u1, ..., relabhp(tp)/up])).

Proof : Let

G := K[x1 ← H1, . . . , xp ← Hp] and

G′ := relabf (val(�tK [relabh1(t1)/u1, ..., relabhp(tp)/up])).

These two graphs have the same vertex set, VH1
⊎ . . . ⊎ VHp

. We compare
their labels.

Let u ∈ VHi
and (a, α, β) be its label in val(ti). Its label is β in Hi, and

it is (ai, β, inf{β, πK(xi)}) in relabhi(ti). Its label in G′ is thus inf{β, πK(xi)}
because the relabellings in �tK do not modify the third components of labels. It
is the same in G by Definition 5.1.

We now compare the arcs of G and G′.
Case 1 : u, v ∈ VHi

. If uv ∈ EHi
, it is also an arc of G and of G′. If

uv /∈ EHi
, it is not an arc of G either. And it is not an arc of G′ because the

labels of u and v have the same first components, namely ai, in relabhi(ti) and
the relabellings in �tK maintain this equality. Hence, no arc between u and v is
created by the operations

−−→
add(a,α,β),(b,α′,β′) of �tK (where we must have a �= b).

Hence, uv /∈ EG′ .
Case 2 : u ∈ VHi

, v ∈ VHj
, i �= j. If uv ∈ EG, then xixj is an arc of K and

the labels of u and v in Hi and Hj are respectively α ∈ {⊤,+} and α′ ∈ {⊤,−}
by Definition 5.1. Let us now consider G′. At some position p in tK the arc
xixj is created by an operation

−−→
adda,b.

In val(relabhi(ti)) and val(relabhj (tj)), the labels of u and v are respec-
tively (ai, α, β) and (aj , α′, β′) for some β and β′, and ai and aj are relabelled
in tK into a and b at position p. The labels of u and v are thus (a,α, β) and
(b, α′, β′) in �tK at the place corresponding to p in the construction of �tK from
tK (

−−→
adda,b is replaced by a composition of arc additions). Hence, uv is an arc of

G′, created by
−−→
add(a,α,β),(b,α′,β′).

Hence every arc of G is one of G′. The proof is similar in the other direction.
Hence, G = G′. �

No label (a,⊥,⊥) occurs in an arc addition operation of �tK . Furthermore,
f((a,⊥,⊥)) = ⊥ for each a ∈ C. Hence, all labels (a,⊥,⊥) can be replaced
by the unique label (c,⊥,⊥) for some fixed c ∈ C. It follows that �tK and the
relabellings hi only use the following 8 |C|+ 1 labels :

33

(a,⊤,⊤), (a,⊤,+), (a,⊤,−), (a,⊤,⊥), (a,+,+), (a,+,⊥),

(a,−,−), (a,−,⊥) for all a ∈ C and (c,⊥,⊥).

By using this remark, we obtain:

Proposition 5.6 : If a graph G is defined up to vertex labels by a composi-
tion of operations σ[K,x1, . . . , xp] such that each graph K has clique-width at
most k, then, cwd(G) ≤ 8k + 1.

Proof : Let G be defined by a term over nullary symbols and operations
σ[K,x1, . . . , xp] such that cwd(K) ≤ k. The terms tK can be written with the
labels of a set C of k labels. By composing the terms �tK and the relabellings hi
according to Lemma 5.5, we obtain a term in T (FC#) that defines G by using
at most 8k + 1 labels. Hence, cwd(G) ≤ 8k + 1. �

5.2 Directed graph-labelled trees.

Definition 5.7 : Graph-labelled trees describing directed graphs.
In the following definition, unspecified notions and notation are as in Def-

inition 4.1. Graph labelled-trees will be represented by graphs with (directed)
arcs and (undireceted) edges. Let us consider an edge as a pair of opposite arcs.
Then a directed path or walk37 can go through an edge, that is, through one of
the two arcs of this edge.

(a) A directed graph-labelled tree, denoted by T is an undirected tree T with
at least 3 nodes, that is equipped, for each node v ∈ NT , with a directed graph
Hv, called a component, and a bijection ρv : IncT (v) → VHv

. Components are
pairwise disjoint and need not be connected, see Example 5.8(2) below. If v is
a leaf, then Hv has a single vertex that we identify with v.

(b) We define S(T) as the graph consisting of the union of the components
augmented with the (undirected) edges ρu(e)ρv(e) for e = uv, (cf. Figure 5,
where the edges ρu(e)ρv(e) are shown by dotted lines). The arcs are inside the
components. A directed path or walk in S(T) is alternating if no two consecutive
arcs are in a same component. Hence, in a directed path, arcs alternate with
edges. In a directed walk, an edge can be traversed consecutively several times.

There is at most one alternating path from a vertex x to a vertex y, but
there may also exist one from y to x. This is the case if and only if each arc
zz′ on this path inside a component has an opposite arc z′z (we are considering
paths, not walks).

In view of Proposition 5.9, for a vertex x in a component Hu, we define
A−(x) as the set of vertices y of S(T) accessible from x by an alternating path
(from x to y) whose first edge or arc is not in Hu, and A+(x) as the set of
vertices w of S(T) such that there is an alternating path from w to x whose
last edge or arc is not in Hu.

37A walk is like a path but it can go several times through a vertex or an arc.

34

Figure 5: The directed graph-labelled tree T of Example 5.8(1).

(c) The graph described by T , denoted by G(T), has vertex set LT (the set
of leaves of T) and an arc uv if and only if there is an alternating path from u
to v. If there is a directed path u1 → u2... → up in G(T), the concatenation
of the alternating paths corresponding to the arcs uiui+1 forms an alternating
walk from u1 to up.

(d) The node-joining operation38 (called elimination of an edge e of T in [7])
is defined as follows. If e = uv is an edge between two internal nodes of T , its
contraction fuses u and v into a single node say w, giving tree T ′, and replaces
the graphs Hu and Hv by H ′

w := (Hu ⊎ Hv) − {ρu(e), ρv(e)} augmented with
an arc from any vertex x in Hu to any vertex y in Hv such that xρu(e) ∈ EHu

and ρv(e)y ∈ EHv
. We obtain a directed graph-labelled tree T ′ that describes

the same graph : this is easy to check by considering alternating paths. By
iterating as much as possible this elimination step, we obtain a star whose
central component is isomorphic to G(T).

The opposite transformation called node-splitting also preserves the defined
graph. �

Theorem 2 of [18] defines canonical decompositions for strongly connected
graphs whose components are cliques, stars and particular graphs called cycles
of transitive tournaments that have clique-width at most 4 by Proposition 4.16
of [7]. We will not use this difficult notion. We will describe directed, possibly
disconnected graphs by directed graph-labelled trees, either canonical or not.

Examples 5.8 : (1) Figures 5 shows a directed graph-labelled tree T and
Figure 6 the graph G(T). The double arrows in the components Hx and Hu

38Similar to that in Definition 4.1(d).

35

Figure 6: The graph defined by T of Figure 5.

indicate pairs of opposite arcs. For a comparison with Figure 1, there is here no
alternating path between 2 and 7, in either direction. Hence, these two vertices
are not adjacent in G(T).

(2) A directed graph-labelled tree may define a disconnected graph although
its components are connected. As a small example, consider S(T) defined as
x − z′ −→ z − u ←− u′ − y, whose internal components are z′ −→ z and
u ←− u′. (The undirected edges between components are x − z′, z − u and
u′ − y). Then G(T) consists of the two isolated vertices x and y. Eliminating
the edge z − u yields a component consisting of two isolated vertices u′ and
z′. Because of this observation, it is pointless to require that components be
connected. �

Proposition 5.9 : Let G be defined by a directed graph-labelled tree T
whose components are strongly connected.

(1) For each vertex x of S(T), we have A+(x) ∩ LT �= ∅ and A−(x) ∩ LT
�= ∅.

(2) If xy is an arc of Hu, then zz′ ∈ EG for all z ∈ A+(x) ∩ LT and
z′ ∈ A

_
(y)∩LT . Conversely, if x = ρu(uv) and y = ρu(uw) are distinct vertices

of Hu, if z ∈ LT ∩NT,u\v, z′ ∈ LT ∩NT,u\w and zz′ ∈ EG, then z ∈ A+(x)∩LT ,
z′ ∈ A−(y) ∩ LT and xy is an arc of Hu.

(3) G is strongly connected.

Note that T has at least two leaves and so, that G has at least two vertices.

Proof : (1) Let x be a vertex of a component Hu. Hence, x = ρu(uv) for
some node v. We use induction on the cardinality of NT,u\v (the set nodes of T
reachable from by a path going through v; cf. Lemma 4.3). If it is 1, then v is
a leaf and A+(x) ∩LT = A−(x) ∩ LT = {v}.

36

Otherwise, we have in Hv an arc zy such that y = ρv(uv) and z = ρv(vw) for
some edge vw of T . We have NT,v\w ⊂ NT,u\v, hence, by induction, A+(z)∩LT
�= ∅. As A+(z) ∩ LT ⊆ A+(x) ∩ LT we have A+(x) ∩ LT �= ∅. The proof that
A−(x) ∩LT �= ∅ is similar39 .

(2) Just consider alternating paths, as in the proof of Lemma 4.3.
(3) The node-joining operation preserves the strong connectedness of the

components as one checks from Definition 5.7(d). By repeating this operation,
one obtains a directed graph-labelled tree that defines G and consists of one
"central" strongly connected component and leaves. This component is isomor-
phic to G, hence G is strongly connected. �

Proposition 5.10 : Let G be defined by a directed graph-labelled tree T .
Then G is strongly connected if and only if all components of T are strongly
connected.

Proof : The "if" direction is proved in the previous proposition. For the
converse, let x and y be distinct vertices of a component Hu. Let s ∈ A+(x)∩LT
and t ∈ A

_
(y) ∩ LT . There is a path in G from s to t. Each arc of this path

corresponds to an alternating path in S(T). The concatenation of these paths
is an alternating walk in S(T). It is not necessarly a path because some edges
of the tree may be traversed twice. (In the example of Figure 6 the path 2 −→
6 −→ 7 −→ 4 corresponds to a walk in S(T) (Figure 5) that traverses twice the
edge between Hu and Hw). This walk must enter Hu first via x and exit it last
via y. Its arcs belonging to Hu form a directed path from x to y. Hence, Hu is
strongly connected. �

Remark 5.11 : Even if G(T) is strongly connected, some components of
T may not be isomorphic to induced subgraphs of G(T) (by contrast with
Lemma 4.3(2)). Consider for an example a directed graph-labelled tree having
two internal components isomorphic to the directed cycles

−→
C 3. It defines

−→
C 4

that does not contain
−→
C 3 as an induced subgaph. We will compare below the

clique-widths of a graph and its components.

5.3 Evaluating graph-labelled trees by means of substitu-

tions.

We will use the set of labels D := {⊥,+,−,⊤}.

Definitions 5.12 : Rooted graph-labelled trees and related notions.
(a) Let T be a directed graph-labelled tree with underlying tree T and

G := G(T). Let us select a node r ∈ NT and make it a root for T . As in

39The sets A−(x) ∩ LT and A+(x) ∩ LT may be different. In the example of Figure 7, we
have A−(a) ∩ LT = {1} and A+(x) ∩ LT = {0, 1}.

37

Definition 4.9(a,b), for u in NT , we define Nu := {x ∈ NT | x ≤T u} and
Vu := {x ∈ LT | x ≤T u} ⊆ VG. Hence, Vr = LT = VG and Vu = {u} if
u ∈ LT − {r}.

(b) Let u ∈ NT . The leader of a component Hu such that u �= r is the vertex
ρu(wu) denoted by u, where w is the father of u. We define a D-graph Hu\\u
as the follows :

if u �= r and u not leaf, we define Hu\\u := Hu− u where a vertex
x is labelled as follows : its label is ⊤ if xu and ux are in EHu

, it is
+ if xu ∈ EHu

and ux /∈ EHu
, it is − if ux ∈ EHu

and xu /∈ EHu
,

and it is ⊥ if xu and ux are not in EHu
;

if u �= r and u is a leaf, then Hu\\u is undefined (or is empty).

if u = r, we define Hu\\u := Hr, and all its vertices as dead (we use
the notation Hu\\u for uniformity, although u is not defined).

As in Definition 4.9, the graphs Hu\\u depend on the chosen root r.

(c) If u ∈ NT , we define Gu := G[Vu] labelled as follows:

If u = r, all vertices of Gu = G are dead.

Otherwise, a vertex x has label ⊤ if there are alternating paths from
x to u and from u to x; it has label + if there is an alternating
path from x to u and no such path from u to x; it has label − if
there is an alternating path from u to x and no such path from x
to u and label ⊥ if there are no alternating paths between x and u.
�

The following lemma, stated for the objects of the previous definition, gen-
eralizes Lemma 4.10.

Lemma 5.13 : If u ∈ NT − LT has sons u1, ..., up and the corresponding
p vertices of Hu\\u are x1, ..., xp (that is, xi := ρu(uui)), then we have Gu =
(Hu\\u)[x1 ← Gu1 , ..., xp ← Gup].

Proof : Let K := (Hu\\u)[x1 ← Gu1 , ..., xp ← Gup]. As in the proof of
Lemma 4.10, the vertex sets of Gu and K are the same and the arcs of Gui are
the same as in Gu and K.

We consider x in Gui and y in Guj , j �= i. If xy is an arc of G, there is an al-
ternating path from x to y. It must go through Hu via the arc ρu(uiu)ρu(uju) =
xixj in Hu\\u. This path goes through the leader ρui(uiu) of Hui . Hence, x is
alive in Gui and has label + or ⊤. Similarly, y has label − or ⊤ in Guj . Hence
xy is an arc of K.

Conversely, if xy ∈ EK , then xixj is an arc of Hu\\u, x has label + or ⊤
in Gui and y has label − or ⊤ in Guj . Going back to definitions, we have an

38

alternating path from x and y built from alternating paths from x to xi, and
from xj to y, and the arc xixj . Hence, xy is an arc of G, hence of Gu.

It remains to compare the vertex labels in K and in Gu.
Let x be a vertex of Gui labelled by + in Gu. There is an alternating path

from x to the leader u of Hu and no such path from u to x. Hence, there is an
alternating path from x to ui and an arc in Hu from ρu(uui) to u. Hence the
label of ρu(uui) is either + or ⊤. The label of x in Gui is either either + or ⊤,
hence its label in K is either + or ⊤. If it would be ⊤, we would have an arc in
Hu from u to ρu(uui) and an alternating path from u to x and x would have
label ⊤ in Gu. Hence x has label + in K.

The proofs are similar for the other labels. �

Theorem 5.14 : Let G be defined by directed graph-labelled tree T whose
components have clique-width at most k. Then cwd(G) ≤ 8k + 1.

Proof: From Proposition 5.6 and Lemma 5.13, along the lines of Theorem
4.11.

If one chooses a leaf as root r, and its unique son is u, then G = Λ′(⊥, Gu)
where Λ′(G,H) := σ[K,x1, x2] and K consists of the the arcs x1x2 and x2x1,
with x1 is labelled by ⊤ and x2 by ⊥. Hence, Λ′ generalizes for {⊤,⊥,+,−}-
graphs the operation Λ of Definition 2.5. �

Example 5.15 : There exist graph-labelled trees T that have components
of arbitrary large clique-width but define graphs without arcs, hence of clique-
width 1. For an example, we take T to be a non-leaf-rooted graph-labelled tree
with any connected graph H as root component. We attach to each vertex x of
H a path of the form x−vx −→ v′x−w′x ←− wx−�x (cf. Example 5.8(2)). Then
G(T) consists of the isolated vertices �x because there is no directed alternating
path between �x and any different �y. �

For strongly connected graphs, we have a better situation.

Proposition 5.16 : There is a function f such that cwd(H) ≤ f(cwd(G))
whenever G is strongly connected andH is a component of some directed graph-
labelled tree that defines it.

We need some technical definitions.

Definition 5.17 : Arc contractions.
Contracting the edges or arcs of set F in a graph G yields a graph G\F,

usually defined up to isomorphism or with vertices that are subsets of VG. This
is not convenient for our proof that uses logic.

If F is a set of arcs of a directed graph G, we denote by x ∼F y the fact
that vertices x and y are linked by a path whose arcs can be traversed in either
direction. If X is a set of vertices containing one and only one vertex of each
equivalence class of ∼F , we denote by G\(F,X) the directed graph H such that

39

Figure 7: The directed graph-labelled tree T of Example 5.19.

VH := X and xy ∈ EH if and only if x �= y and there is in G an arc xy such
that x ∼F x and y ∼F y.

Proof of Proposition 5.16 : Let G be strongly connected and defined
by a directed graph-labelled tree T . Let Hu be a component not reduced to a
single vertex. We will construct an induced subgraph G′ of G such that Hu

is isomorphic to G′\F for some set of arcs F . That G′\F is in some sense
monadic second-order definable from G yields the existence of f by Corollary
7.38(2) of [14].

Step 1 : By performing node-joinings (cf. Definition 5.7(d)) that do not
involve Hu, we obtain a directed graph-labelled tree T ′ that defines G, such
that u ∈ NT ′ , H′

u = Hu and all nodes that are not leaves are neighbours of u.
The graph-labelled tree of Figure 7 is of this type.

Step 2 : From now on, we assume that T satisfies this condition. We recall
from Definition 5.7 that we identify v and the vertex in Hv if Hv has only one
vertex, so that LT = VG. We will define an injective mapping h : VHu

→ VG, an
induced subgraph G′ of G whose vertex set contains h(VHu

) and a set F ⊆ EG′

such that h is an isomorphism Hu → G′\(F,X) for some set X.
For each x ∈ VHu

, we define h(x) and a few related objects by one of the
following three cases.

Case 1 : x = ρu(uy) where uy ∈ ET and y ∈ LT = VG. Then, we define
h(x) := y. In Figure 7, we have h(b) = 2 and h(c) = 3 by these conditions.

40

Figure 8: The strongly connected graph G defined by the graph-labelled tree of
Figure 7.

Case 2 : x = ρu(uv) where v /∈ LT and there are in Hv two opposite arcs
between z := ρv(uv) and some vertex z. We choose one such z and we define
h(x) as the vertex y ∈ VG = LT such that ρv(vy) = z. In Figure 7, we have in
this way h(a) = 1.

We denote by Y0 the set of vertices h(x) obtained by these two cases.

Case 3 : x = ρu(uv) where v /∈ LT and the conditions of Case 2 do not hold.
We let z := ρv(uv). There is in Hv a directed cycle z → z1 → ...→ zp → z with
p ≥ 2 because this graph is strongly connected by Proposition 5.10. We choose
one such that p is minimal. It follows that there is no arc in Hv between z and
any of z2, ..., zp−1, and from zi to zj if j > i+ 1.

Let y1, ..., yp be the vertices of G such that zi = ρv(vyi) for each i. We have
a path y1 → ... → yp such that there is no arc yiyj with j > i + 1. We define
h(x) := y1, h′(x) := yp, Vx := {y2, ..., yp−1} and Fx as the set of arcs from
{h(x)} ⊎ Vx to {h′(x)} ⊎ Vx.

In Figure 7, we have in Hw a minimal directed cycle ρw(uw)→ z1 → z2 →
ρw(uw), y1 = h(e) = 6 and y2 = h′(e) = 9.

We denote by Y1 and Y2 the sets of such vertices h(x) and, respectively,
h′(x). We denote by Y3 the union of the sets Vx, and by F the union of the sets
Fx. We define G′ as the induced subgraph G[Y0⊎Y1⊎Y2⊎Y3] and X := Y0⊎Y1.

In Figure 7, we have Y0 = {1, 2, 3}, Y1 = {4, 6}, Y2 = {5, 9} and Y3 = ∅.
The corresponding graph is in Figure 8. The set F consists of the arcs 45 and
69. The vertex set of G′ is {1,2,3,4,5,6,9}. By contracting the arcs 45 and 69
of G′, we obtain a graph isomorphic to Hu by : a &−→ 1, b &−→ 2, c &−→ 3,
d &−→ 4, e &−→ 6.

Claim 1 : The mapping h is an isomorphism : Hu → G′\(F,X).

41

Proof : By the definitions, h is a bijection : VHu
→ X = VG′\(F,X).

Let xx′ be an arc of Hu. There is in T an alternating path from h(x) or
h′(x) to h(x′). For proving this, we should conider the nine cases depending
on the three possible cases for defining h(x) and h(x′). We only consider the
following two, the others being similar or straightforward.

Case (a) : h(x) is defined by Case 2 and h(x′) by Case 3.
Let x, z, z and y = h(x) be as in Case 2. Let z′ → z′1 → ... → z′p′ → z′,

y′1, ..., y
′
p′ be as in Case 3 for x′, with h(x′) := y′1. There is an alternating

path y − z → z − x → x′ − z′ → z′1 − y′1 and y′1 = h(x′). Hence we have
yy′1 = h(x)h(x′) ∈ EG′ . This arc is also in G′\(F,X).

Case (b) : h(x) and h(x′) are defined by Case 3. In Hv we have a minimal
directed cycle z → z1 → ... → zp → z with p ≥ 2. We let y1, ..., yp be the
corresponding vertices of G′ so that we have h(x) := y1 and h′(x) := yp. There
is an alternating path yp − zp → z − x→ x′ − z′ → y′1. Hence we have ypy

′
1 =

h′(x)h(x′) ∈ EG′ . As h′(x) ∼F h(x), the arc h(x)h(x′) is in G′\(F,X).

Conversely, let yu be an arc of G′\(F,X). We have yu ∈ EG′ such that
y ∼F y, u ∼F u and there is an alternating path from y to u. As y �= u, y and u
are not in a same set {h(x), h′(x)} ⊎ Vx, and so, we have y = h(x) or y = h′(x)
and u = u = h(x′) for some arc xx′ of Hu. It follows that y = h(x), hence
yu = h(x)h(x′), which proves that h is an isomorphism. �

Step 3 : We now prove that the transformation of G into G′\(F,X) is
monadic second-order definable. We let G and the sets Y0, Y1, Y2, Y3 and F be
as above in Step 2.

Claim 2 : Let x be as in Case 3. Let P be a directed path in G′ of the form
y1 = h(x) → s1 → s2 → ... → sq with s1, ..., sq−1 in Y3 and sq ∈ Y2. Then
Vx = {s1, ..., sq−1} and sq = h′(x).

Proof. We use the notation of Case 3.
The arc y1s1 is defined by an alternating path of the form : y1 − z1 →

t1 − t′1 → ... − s1. By the conditions of Case 3, t1 �= z. Hence t′1 = s1. We may
have t1 = zp. In this case s1 = yp = h′(x), Vx = ∅ and the assertion holds.
Otherwise, t1 is some zi. We cannot have i > 2 by the minimality of p (cf. Case
3). Hence t1 = z2 and s1 = y2.

We now consider y2s2, the next arc on P . We have an alternating path
y2− z2 → t2− t′2 → ...− s2. By the definitions, if t2 = zp, then s2 = yp = h′(x),
Vx = {y2} and the assertion holds. Otherwise, t2 is some zi. We cannot have
i = 1 or 2, otherwise P is a cycle, and neither i > 3 by the minimality of p.
Hence t2 = z3 and s2 = y3. The proof continues similarly. Considering the next
arc y3s3 yields that s3 = y4, either in Y2 (in that case y4 = yp = h′(x)) or in Y3.

Finally, we can prove that the directed path y1 = h(x)→ s1 → s2 → ...→ sq
is identical to y1 → y2 → y3 → ...→ yp = h′(x). We have Vx = {s1, ..., sq−1} =
{y2, y3, ..., yp−1} and sq = yp = h′(x). �

The graph G′\(F,X) is obtained from G by fusing the vertices h(x) and
h′(x) for all vertices x as in Case 3, by keeping h(x) as result of such a fusion

42

and removing all vertices not in X := Y0 ∪ Y1. Our next aim is to describe the
pairs (h(x), h′(x)) by a monadic second-order formula.

Claim 3 : There exists a monadic second-order formula θ(Y0, Y1, Y2, Y3, y, z)
such that, if G, Y0, Y1, Y2, Y3 are as in Step 2, then for every two vertices y, z
of G, we have :

y = h(x) and z = h′(x) for some vertex x of Hu if and only if
G |= θ(Y0, Y1, Y2, Y3, y, z).

Proof : By Claim 2, the formula θ(Y0, Y1, Y2, Y3, y, z) need only express the
following :

y ∈ Y1, z ∈ Y2 and there exists a directed path from y to z whose
intermediate vertices are in Y3.

Since transitive closure, whence path properties, can be expressed in monadic
second-order logic (cf. [14]), we can construct such a formula θ. �

To finish the proof, we define θ(Y0, Y1, Y2, Y3, y, z) as :

y = z ∨ θ(Y0, Y1, Y2, Y3, y, z) ∨ θ(Y0, Y1, Y2, Y3, z, y).

and α(Y0, Y1, Y2, Y3, y, z) as :

∃y, z.[θ(Y0, Y1, Y2, Y3, y, y) ∧ θ(Y0, Y1, Y2, Y3, z, z) ∧ edg(y, z)].

Given a directed graph G and pairwise disjoint sets of vertices Y0, Y1, Y2, Y3,
we define H(Y0, Y1, Y2, Y3) as the directed graph with vertex set Y0 ∪ Y1 and
arcs yz such that G |= α(Y0, Y1, Y2, Y3, y, z). In the words of [14], this graph
is obtained from G by a monadic second-order transduction taking as argu-
ments (called there parameters) pairwise disjoint sets of vertices Y0, Y1, Y2, Y3.
By Corollary 7.38(2) of [14], there exists a function f such that cwd(H(Y0, Y1,
Y2, Y3)) ≤ f(cwd(G)) for all such graph G and sets Y0, Y1, Y2 and Y3. If
G,Hu,Y0, Y1, Y2 and Y3 are40 as in Steps 1 and 2, then H(Y0, Y1, Y2, Y3) is iso-
morphic to Hu. This completes the proof. �

This proof does not give a good bound for f . It is an open question whether
cwd(Hu) ≤ cwd(G) or even cwd(Hu) = O(cwd(G)) in such a case.

Remark 5.18 : The special case of Proposition 5.16 where Hu is a compo-
nent of the canonical split-decomposition of a strongly connected graph can be
derived from Theorem 4.21 in [7]. The proof of Proposition 4.16 of [7] giving
that result is incorrect : Lemma A.2.3 shows correctly that cwd(H) ≤ 4cwd(G)
if H is obtained from G by fusing any two vertices, but, in order to prove the
statement, one must fuse the vertices of several pairs (as we do above for defin-
ing G′\(F,X) from G′), hence, one does not obtain a bounding function f as
claimed. �

40For some sets Y0, Y1, Y2, Y3, the graph H(Y0, Y1, Y2, Y3) may not be isomorphic to any
component Hu of a graph-labelled tree. Nevertheless cwd(H(Y0, Y1, Y2, Y3)) ≤ f(cwd(G))

43

5.4 Related work

Kanté and Rao have defined in [35] the displit decomposition of a directed graph.
For an undirected graph, it is the same as the split decomposition. It is incom-
parable with the split decomposition of [18] because the prime components are
different. However, every connected directed graph has a unique decomposition.
Furthermore, for an appropriate notion of rank-width for directed graphs, they
obtain that the rank-width of a graph is the least upper-bound of the rank-
widths of the components of its displit decomposition (cf. Remark 4.15).

They also characterize the directed graphs of rank-width at most 1 in a way
that generalizes the various characterizations of distance-hereditary graphs, in
particular that of [37].

We think that the results of this section and those of [7] about the exis-
tence of monadic second-order transformations between directed graphs and
their canonical split decompositions can be extended to displit decompositions.

6 Conclusion

Our purpose was to clarify the relationships between split-decompositions for
directed and undirected graphs, substitutions to vertices and the related graph
grammars, and also to obtain good bounds on the clique-widths of the defined
graphs. For doing that we have generalized, in Definitions 2.1 and 5.1, the
notion of substitution used in the theory of modular decomposition .

One open problem is the study of the operations defined in Definition 2.5
and their equational properties.

The methods of Section 5 should help to investigate particular classes of
directed graphs regarding their clique-width and their generation by unambigous
grammars (if possible), along the lines of Section 4.5. Manipulating grammars
so as to reach unambiguity in view of counting and random generation has
proved useful in Section 4.5. It would be interesting to investigate in a similar
way the undirected graphs whose prime components are cycles. These graphs
have bounded clique-width by Theorem 4.14 and the upper-bound of 4 to the
clique-width of cycles. This fact encourages to try to define them by grammars.

References

[1] H.-J. Bandelt and H. Mulder, Distance-hereditary graphs, Journal of Com-
binatorial Theory, Series B, 41 (1986) 182—208.

[2] A. Brandstädt and V.B. Le, Structure and linear-time recognition of 3-leaf
powers. Inf. Process. Lett. 98 (2006) 133-138.

[3] M.S. Chang, S.Y. Hsieh and G.H. Chen, Dynamic programming on
distance-hereditary graphs, Proceedings of ISAAC 1997, Algorithms and
Computation, Lec. Notes Comput. Sci 1350, Springer, 1997, 344-353.

44

[4] C. Chauve, É. Fusy and J. Lumbroso, An exact enumeration of distance-
hereditary graphs. Proceedings of ANALCO (14th Workshop on Analytic
Algorithmics and Combinatorics), Barcelona, January 2017, Proceedings
pp. 31-45

[5] S. Cicerone and G. Di Stefano, On the extension of bipartite to parity
graphs. Discrete Applied Mathematics 95 (1999) 181-195.

[6] B. Courcelle, An axiomatic definition of context-free rewriting and its ap-
plication to NLC graph grammars. Theor. Comput. Sci. 55 (1987) 141-181.

[7] B. Courcelle, The monadic second-order logic of graphs XVI : Canonical
graph decompositions. Logical Methods in Computer Science 2 (2006).

[8] B. Courcelle, On the model-checking of monadic second-order formulas
with edge set quantifications, Discrete Applied Mathematics 160 (2012)
866-887.

[9] B. Courcelle, Clique-width and edge contraction. Inf. Process. Lett. 114

(2014) 42-44.

[10] B. Courcelle, From tree decompositions to clique-width terms, Discrete
Applied Mathematics, 248 (2018) 125-144.

[11] B. Courcelle, On quasi-planar graphs : clique-width and log-
ical description. 2018, Discrete Applied Mathematics, this issue,
https://doi.org/10.1016/j.dam.2018.07.022.

[12] B. Courcelle and I. Durand, Automata for the verification of monadic
second-order graph properties, J. Applied Logic 10 (2012) 368-409.

[13] B. Courcelle and I. Durand, Computations by fly-automata beyond
monadic second-order logic, Theor. Comput. Sci, 619 (2016) 32-67.

[14] B. Courcelle and J. Engelfriet, Graph structure and monadic second-order
logic, a language theoretic approach, Volume 138 of Encyclopedia of math-
ematics and its application, Cambridge University Press, June 2012.

[15] B. Courcelle, P. Heggernes, D. Meister, C. Papadopoulos and U. Rotics, A
characterisation of clique-width through nested partitions, Discrete Applied
Maths, 187 (2015) 70-81.

[16] B. Courcelle and M. Kanté, Graph operations characterizing rank-width,
Discrete Applied Mathematics 157 (2009) 627-640.

[17] B. Courcelle, J. Makowsky and U. Rotics, Linear-time solvable optimization
problems on graphs of bounded clique-width, Theory Comput. Syst. 33

(2000) 125-150.

[18] W. Cunningham, Decomposition of directed graphs, SIAM. J. on Algebraic
and Discrete Methods, 3 (1981) 214—228.

45

[19] R. Diestel, Graph theory, Springer, 2006.

[20] R. Downey and M. Fellows, Fundamentals of parameterized complexity,
Springer-Verlag, 2013.

[21] I. Durand, TRAG: Term Rewriting Automata and Graphs, a software de-
velopped since 2015, http://dept-info.labri.u-bordeaux.fr/~idurand/trag

[22] I. Durand and M. Raskin, TRAG-WEB: Term Rewriting Au-
tomata and Graphs (online), Web interface under development, 2018,
https://trag.labri.fr

[23] M. Fellows, F. Rosamond, U. Rotics and S. Szeider, Clique-width is NP-
complete. SIAM J. Discrete Math. 23 (2009) 909-939.

[24] E. Fischer J. Makowsky and E. Ravve, Counting truth assignments of for-
mulas of bounded tree-width or clique-width. Discrete Applied Mathematics
156 (2008) 511-529.

[25] P. Flajolet, P. Zimmermann and B. Van Cutsem, A calculus for the random
generation of labelled combinatorial structures. Theor. Comput. Sci. 132

(1994) 1-35.

[26] F. Fomin, S. Oum, D. Thilikos, Rank-width and tree-width of H-minor-free
graphs. Eur. J. Comb. 31 (2010) 1617-1628.

[27] E. Gioan and C. Paul, Split decomposition and graph-labelled trees: Char-
acterizations and fully dynamic algorithms for totally decomposable graphs.
Discrete Applied Mathematics 160 (2012) 708-733.

[28] E. Gioan, C. Paul, M. Tedder and D. Corneil, Practical and efficient split
decomposition via graph-labelled trees. Algorithmica 69(2014): 789-843.

[29] M. Golumbic and U. Rotics, On the clique-width of some perfect graph
classes. Int. J. Found. Comput. Sci. 11 (2000) 423-443.

[30] F. Gurski, The behavior of clique-width under graph operations and graph
transformations. Theory Comput. Syst. 60 (2017) 346-376.

[31] M. Habib and C. Paul, A survey of the algorithmic aspects of modular
decomposition. Computer Science Review 4 (2010) 41-59.

[32] P. Heggernes, D. Meister and C. Papadopoulos, Characterising the linear
clique-width of a class of graphs by forbidden induced subgraphs, Discrete
Applied Mathematics 160 (2012) 888-90.

[33] P. Hlinený, S. Oum, D. Seese and G. Gottlob, Width parameters beyond
tree-width and their applications. Comput. J. 51 (2008) 326-362.

[34] M. Kanté and M. Rao, The rank-width of edge-coloured graphs. Theory
Comput. Syst. 52 (2013) 599-644.

46

[35] M. Kanté and M. Rao, Directed rank-width and displit decomposition.
Proceedings of WG 2009, Lecture Notes in Computer Science 5911 (2010)
214-225.

[36] D. Meister, Clique-width with an inactive label. Discrete Mathematics 337

(2014) 34-64.

[37] S. Oum, Rank-width and vertex-minors, Journal of Combinatorial Theory,
Series B, 95 (2005) 79—100.

[38] V. Ravelomanana and L.Thimonier, Asymptotic enumeration of cographs.
Electronic Notes in Discrete Mathematics :7 (2001) 58-61.

47

