Grammars and clique-width bounds from split decompositions

Bruno Courcelle

To cite this version:

Bruno Courcelle. Grammars and clique-width bounds from split decompositions. 2019. hal02093211v1

HAL Id: hal-02093211
 https://hal.science/hal-02093211v1

Preprint submitted on 8 Apr 2019 (v1), last revised 31 Jul 2019 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Grammars and clique-width bounds from split decompositions

Bruno Courcelle
Labri, CNRS and Bordeaux University*
33405 Talence, France
email: courcell@labri.fr

December 28, 2018

Abstract

Graph decompositions are important for algorithmic purposes and for graph structure theory. We relate the split decomposition introduced by Cunnigham to vertex substitution, graph grammars and clique-width.

For this purpose, we extend the usual notion of substitution, upon which modular decomposition is based, by considering graphs with dead (or non-boundary) vertices. We obtain a simple grammar for distancehereditary graphs. We also bound the clique-width of a graph in terms of those of the components of a split decomposition that need not be canonical.

For extending these results to directed graphs and their split decompositions (that we handle formally as graph-labelled trees), we need another extension of substitution : instead of two types of vertices, dead or alive as for undirected graphs, we need four types, in order to encode edge directions. We bound linearly the clique-width of a directed graph G in terms of the maximal clique-width of a component arising in a graph-labelled tree that defines G. This result concerns all directed graphs, not only the strongly connected ones considered by Cunningham.

Introduction

Hierarchical graph decompositions and the associated graph complexity measures such as tree-width and clique-width are important for algorithmic purposes and graph structure theory. Tree-width and clique-width occur as parameters

[^0]in many fixed-parameter tractable (FPT) algorithms [15, 18, 21, 25], in particular for the verification of monadic second-order properties of graphs. They are actually linearly related in many interesting cases $[10,11, ?]$.

These algorithms are based on the construction of finite automata that run on algebraic terms representing tree-decompositions, or on clique-width terms in the case where the parameter is clique-width (see Definition 1.2). However, these automata cannot be implemented in the classical way because their sets of states are much to large. The notion of fly-automaton [13, 14] can overcome this difficulty in many cases ${ }^{1}$: these automata compute their transitions instead of looking into transition tables.

Even for checking properties of graphs of bounded tree-width, it is convenient to input graphs by clique-width terms, and we develop the theory and practice of fly-automata for graphs defined in this way in [13, 14]. As for tree-width, computing the exact clique-width of a graph is an NP-complete problem [24]. However, clique-width terms witnessing "good" approximations of clique-width can be used with fly-automata. Such terms can be constructed by different algorithms, and with help of modular or split decomposition ${ }^{2}$, in preliminary steps. Let us point a difference between the two : modular decomposition is based on a rooted tree, and is clearly hierachical. Split decomposition is based on trees without root ; by choosing a root for such a tree, one can turn the decomposition into a hierachical one, but one needs an appropriate notion of graph substitution : we define one in this article. Rank-width, in a similar way, is based on unrooted trees. However, by choosing a root and using appropriate graph operations, derived from those upon which clique-width is defined, one obtains also a hierachical decomposition [17].

Modular decomposition is related to clique-width as follows. Each undirected graph has a canonical (i.e., unique up to isomorphism) modular decomposition. Its clique-width is the maximal clique-width of a prime module of the modular decomposition (Proposition 2.112 of [15]). It has also a canonical split decomposition. Theorems 4.11 establishes that its clique-width is linearly bounded in terms of the maximal clique-width of a prime component of this decomposition 3, the other components being stars and cliques. Theorem 5.13 shows the same for directed graphs. These theorems improve boundings based on logic or rank-width (cf. Sections 4.4 and 5.3).

Our initial motivating example was the class of distance-hereditary graphs ($D H$ graphs in short). They are the undirected graphs G in which the distance in any connected induced subgraph is the same as in G. They are known to have clique-width at most $3[29,36,37]$. However, recognizing the clique-width terms that define them is not easy. For the purpose of testing fly-automata, one may wish to generate large "random" DH graphs together with the algebraic terms of clique-width 3 that denote them. A good tool consists in using a context-

[^1]free graph grammar, built from clique-width operations that use three labels ${ }^{4}$. The characterization of DH graphs from [1], based on the addition of pendant edges and twins (see Definition 1.1), uses rewriting rules that are not those of a context-free graph grammar appropriate for using fly-automata intended to run on their derivation trees or on the equivalent clique-width terms. However, from this characterization, we can construct such a context-free grammar based on vertex-replacement, a notion developped in [15] (also [6] for an axiomatic definition of context-free graph grammars).

This construction uses a generalization of the standard notion of substitution of a graph for a vertex, that underlies the theory of modular decomposition. We distinguish in a graph H some vertices as alive and the others as dead. Dead vertices will not be linked to any others in case H is substituted into another graph ${ }^{5}$. We use this notion of substitution to define an associated notion of context-free vertex-replacement grammar (see [6, 15] for these graph grammars defined in a more general setting). We obtain a very simple grammar for DH graphs. Distance-hereditary graphs are also easily characterized in terms of their canonical split decompositions, and our grammar is based on these decompositions.

Generalizing this observation, we use grammars to generate the graphs whose components relative to split decomposition belong (up to isomorphism) to a fixed finite set \mathcal{M}. We bound their clique-width in terms of the maximal clique-width of a graph in \mathcal{M}, in a better way than what is known from [7].

Split decomposition ${ }^{6}$ for strongly connected (directed) graphs has also been studied in [7, 19]. We extend to directed graphs our results for undirected graphs. For expressing split decompositions in terms of graph substitution, we need a more involved notion of substitution. Whereas for undirected graphs, we distinguish dead vertices from live ones (the others), for directed graphs, we need three types of live vertices, in order to encode three types of connections between two vertices u and v : from u to v (only), from v to u (only) or in both directions.

We consider split decompositions of directed graphs that need not be strongly connected, and we handle them formally as graph-labelled trees, a notion used in $[7,27]$. We prove that the clique-width of a directed graph G is bounded by $8 k+1$, where k is the maximum clique-width of a component of a graph-labelled tree that defines G.

Some properties of undirected graphs do not extend immediately to directed ones. It is well-known that each component of a graph-labelled tree that defines an undirected graph G is isomorphic to an induced subgraphs of G, hence

[^2]has no larger clique-width. For strongly connected directed graphs, each such component H is isomorphic to an induced minor of the considered graph G. An induced minor of G is obtained from an induced subgraph by edge contractions. Here, we contract edges having particular degree constraints. We obtain a bounding of the form $c w d(H) \leq f(c w d(G))$ where f is an exponential function. Improving this bound is an open problem.

To summarize, the purpose of this article is to clarify the close relationships between split decomposition, clique-width and vertex-replacement graph grammars based on vertex substitutions. In particular, we translate split decompositions of undirected graphs into graph grammars and we bound linearly the clique-width of a decomposed graph, either directed or not, in terms of those of the components. Our graph grammars can be used for counting graphs of special types and for random generation, along the lines of, e.g., $[4,26,38]$.

Section 1 is devoted to basic definitions. In particular, we present our view of context-free graph grammars in terms of equation systems by using the example of cographs. Section 2 introduces vertex substitutions for undirected graphs with dead vertices, and the corresponding grammars. Section 3 relates clique-width and substitutions. Section 4 studies split decomposition of undirected graphs in this perspective, with the help of graph-labelled trees. Section 5 develops the case of directed graphs.

Acknowledgement: I thank M. Bousquet-Mélou, I. Durand, E. Gioan, M. Kanté, S. Oum, C. Paul and the referees for their useful comments and suggestions (in particular the reference to [4]). I also thank the editors of the special issue of Discrete Applied Mathematics relative to the GROW meeting in Toronto, in 2017 for wellcoming this submission, and Fields Institute for organizing this excellent workshop.

1 Graphs and clique-width

Most definitions are well-known, we mainly review notation. We state a few facts that are either well-known or easy to prove.

The union of two sets is denoted by \uplus in cases where we stress they are disjoint. The cardinality of a set X is denoted by $|X|$ and its powerset by $\mathcal{P}(X)$. The set of integers $\{1, \ldots, n\}$ is denoted by $[n]$.

All trees and graphs are nonempty and finite.

Trees

The set of nodes of a tree T is denoted by N_{T}, and its set of leaves, i.e., of nodes of degree 1 , by L_{T}. A node that is not a leaf is internal.

If T has a root, then $<_{T}$ denotes the corresponding ancestor relation, a strict partial order on N_{T} (a node is not an ancestor of itself). The root, denoted by root_{T}, is the unique maximal element and the leaves different from the root are
the minimal ones. A star S_{n} is a tree with $n-1$ leaves, $n \geq 3$, linked to a single node called its center.

Graphs

We consider finite simple graphs, i.e., that are loop-free and without parallel edges. Graphs ${ }^{7}$ are directed or not. Directed edges are called arcs. A graph G has a vertex set V_{G} included in a fixed countably infinite set \mathcal{V}. Its set of edges or arcs is denoted by E_{G}. The corresponding binary adjacency relation is denoted by $e d g_{G}$ (even if G is directed). If G is undirected, we denote by $u v$, equvalently by $v u$, an edge linking vertices u and v. If G is directed, we denote by $u v$ an arc from u to v.

We denote by $G[X]$ the induced subgraph of G with vertex set $X \subseteq V_{G}$, by $G-X$ the graph $G\left[V_{G}-X\right]$ and by $G-x$ the graph $G\left[V_{G}-\{x\}\right]$ where $x \in V_{G}$.

Definition 1.1: Distance-hereditary graph

An undirected graph G is distance-hereditary (DH in short) if the distance of two vertices in every connected induced subgraph is the same as in G. For an example, the cycle C_{4} (with 4 vertices) is DH whereas C_{5} is not. The DH graphs are characterized as follows ${ }^{8}$: a DH graph is an isolated vertex, or the disjoint union of two DH graphs or is obtained from a DH graph by the addition of a pendant edge to a vertex x, or of a true or false twin to x. Adding to x a true twin is adding a new vertex y linked to x and to the neighbours of x. Adding a false twin is similar with y not linked to x.

Clique-width

Clique-width is based on operations that modify or combine vertex-labelled graphs. There will be some restrictions regarding the special label \perp to be used in Section 3.

Definition 1.2: Labelled graphs and clique-width
(a) Let C be a finite set of labels. A C-labelled graph, or simply, a C-graph, is a triple $G=\left(V_{G}, E_{G}, \pi_{G}\right)$ where π_{G} is a mapping : $V_{G} \rightarrow C$. Its type, denoted by $\tau(G)$ is $\pi_{G}\left(V_{G}\right)$, i.e., the finite set of labels from C that label some vertex of G.

We denote by \simeq the isomorphism of C-graphs up to vertex labels, i.e., the isomorphism of the underlying unlabelled graphs, and by \equiv the existence of an isomorphism that respects labels. An abstract C-graph (resp. abstract graph) is an equivalence class of \equiv (resp. of \simeq).
(b) We define operations on C-graphs :

- the union of two disjoint C-graphs ; it is denoted by the binary function symbol $^{9} \oplus$,

[^3]- the unary operation $a d d_{a, b}$ for $a, b \in C, a \neq b$ adds an undirected edge between each a-labelled vertex x and each b-labelled vertex y (unless there is already an edge $x y$),
- for building directed graphs, we use similarly $\overrightarrow{a d d}_{a, b}$ to add arcs from a-labelled to b-labelled vertices,
- the unary operation ${ }^{10}$ relab $_{h}$ changes every vertex label a into $h(a)$ where h is a partial mapping : $C \rightarrow C$ (a label a is not modified if $h(a)$ is undefined).
- for each $a \in C$, the nullary symbol $\mathbf{a}(x)$ denotes the isolated vertex $x(x \in \mathcal{V})$ labelled by a.

Hence, $\tau(G \oplus H)=\tau(G) \cup \tau(H), \tau\left(a d d_{a, b}(G)\right)=\tau\left(\overrightarrow{\operatorname{add}}_{a, b}(G)\right), \tau\left(\operatorname{relab}_{h}(G)\right)=$ $h^{\prime}(\tau(G))$ where h^{\prime} is the total mapping on C such that $h^{\prime}(a):=\operatorname{if} h(a)$ is undefined then a else $h(a)$, and $\tau(\mathbf{a}(x))=\{a\}$.
(c) We denote by F_{C} the countable set of these operations. A term over F_{C} is well-formed if no two occurrences of nullary symbols denote the same vertex ; in particular, the graphs defined by the two arguments of an operation \oplus are disjoint. We denote by $T\left(F_{C}\right)$ the set of well-formed terms. We call them clique-width terms. Each such term t denotes a C-graph $\boldsymbol{v a l}(t)$ whose vertices are those specified by the nullary symbols of t. Its width is the number of labels that occur in t.

Using a standard convention, we will denote in the same way a function symbol and the graph operation it defines. Hence, $\operatorname{relab}_{h}(t)$ is a term if t is a term in $T\left(F_{C}\right)$, and $\operatorname{relab}_{h}(G)$ denotes a C-graph if G denotes a C-graph.
(d) The clique-width of a C-graph ${ }^{11} G$, denoted by $\operatorname{cwd}(G)$, is the least width of a term t such that $G \simeq \boldsymbol{v a l}(t)$. We denote by $c w d^{*}(G)$ the least width of a term t such that $G \equiv \boldsymbol{v a l}(t)$. Hence, $c w d(G) \leq c w d^{*}(G)$. Clearly, $c w d(G)=c w d^{*}\left(G^{\prime}\right)$ where G^{\prime} is obtained from G by relabelling all its vertices in the same way.
(e) If G and H are not disjoint, we define $G \oplus H$ as the union of two disjoint isomorphic copies of G and H. The resulting C-graph is well-defined up to isomorphism, hence as an abstract C-graph.

Here are some examples (cf. [15]). The clique-width of a tree is at most 3, that of the clique K_{n} is 2 for $n \geq 2$. The undirected cycles C_{3}, C_{4} have cliquewidth $2, C_{5}, C_{6}$ have clique-width 3 , and C_{n} has clique-width 4 for $n \geq 7$. For directed cycles \vec{C}_{n}, we have $\operatorname{cwd}\left(\vec{C}_{3}\right)=3$ and $\operatorname{cwd}\left(\vec{C}_{n}\right)=4$ if $n \geq 4$.

Lemma 1.3: For every C-graph G, we have :

$$
\max \{|\tau(G)|, \operatorname{cwd}(G)\} \leq c w d^{*}(G) \leq|\tau(G)| \cdot \operatorname{cwd}(G)
$$

[^4]Proof: The first inequality is clear from definitions. To prove the second one, we assume without loss of generality, that the type of G is $[p]$. Let H be G with all vertices labelled in the same way. Let C be the set of k labels of a term t that defines H. For each a in C and $i \in[p]$, we define a new label (a, i) that will only label the vertices x such that $\pi_{G}(x)=i$.

Consider in t a nullary symbol $\boldsymbol{a}(x)$. If $\pi_{G}(x)=i$, we replace it by $(\boldsymbol{a}, \boldsymbol{i})(x)$.
Each relabelling relab h_{h} is replaced by relab $h_{h^{\prime}}$ where h^{\prime} maps (a, i) to (b, i) whenever h maps a to b. Similarly, we replace $a d d_{a, b}$ by the composition of the operations $a d d_{(a, i),(b, j)}$ for $i, j \in[p]$. We obtain in this way a term ${ }^{12} t^{\prime}$ over the set of labels $[p] \uplus(C \times[p])$. We let $h^{\prime \prime}: C \times[p] \rightarrow[p] \operatorname{map}(a, i)$ to i for $a \in C$ and $i \in[p]$. Then $G=\operatorname{relab}_{h^{\prime \prime}}\left(\boldsymbol{v a l}\left(t^{\prime}\right)\right)=\boldsymbol{v a l}\left(\operatorname{relab}_{h^{\prime \prime}}\left(t^{\prime}\right)\right)$. The term $\operatorname{relab}_{h^{\prime \prime}}\left(t^{\prime}\right)$ uses at most $p(1+k)$ labels. However, we can fix some $a \in C$ and replace everywhere (a, i) by i, for each i. We obtain a term of width at most $p k$ that defines G.

Hence if the type of G consists of p labels and k is the clique-width of the corresponding unlabelled graph, then one can define G, with its labelling, by a term with at most $p k$ labels. This lemma implies that $\operatorname{cwd}(G) \leq 2 c w d(G-x)$ if x is a vertex of G. This bound is proved in [30].

Questions 1.4: Can one improve the bounds ${ }^{13} c w d(G) \leq 2 c w d(G-x)$ and $|\tau(G)| \cdot \operatorname{cwd}(G)$ (of Lemma 1.3)?

Definition 1.5 : Abstract graphs

We will also use nullary "generic" symbols a that do not denote any particular vertex. The vertex defined by an occurrence ${ }^{14} u$ of \mathbf{a} in a term t is u itself. We will also consider that a term written with such nullary symbols denotes an abstract C-graph (cf. Definition 1.2(a,e)). See [15], Section 2.52 .

We will denote by \bar{F}_{C} the signature F_{C} where each symbol $\mathbf{a}(x)$ is replaced by a, and by \bar{t} the term in $T\left(\bar{F}_{C}\right)$ obtained from a term $t \in T\left(F_{C}\right)$ by replacing each $\mathbf{a}(x)$ by a. Then $\boldsymbol{v a l}(\bar{t}) \equiv \boldsymbol{v a l}(t)$.

Example 1.6: The grammar for cographs.
We present context-free graph grammars, defined as equation systems whose unknowns are sets of abstract graphs, by using the example of cographs.
(1) One characterization of cographs is the following recursive one. Graphs are simple and undirected. The product of two disjoint graphs G and H, denoted by $G \otimes H$ is defined as their union augmented with all edges between G and H.

A cograph is either an isolated vertex, $G \oplus H$ or $G \otimes H$ for disjoint cographs G and H. Hence, the set \mathcal{C} of abstract cographs is the least set (least for inclusion) that satisfies the recurive equation :

[^5]$$
\mathcal{C}=\{*\} \cup(\mathcal{C} \oplus \mathcal{C}) \cup(\mathcal{C} \otimes \mathcal{C})
$$
where $*$ denotes an isolated vertex (up to isomorphism), $\mathcal{D} \oplus \mathcal{E}:=\{G \oplus H \mid$ $G \in \mathcal{D}, H \in \mathcal{E}\}$ and similarly for \otimes.

We call such a description a (context-free) graph grammar.
Each cograph has thus a hierchical description, in terms of smaller cographs and the two operations \oplus and \otimes. Hence, it is defined by, or more formally, is the value of a term in $T(\{\oplus, \otimes, *\})$, i.e., a term written with \oplus, \otimes and $*$. For example the term $t:=((* \oplus *) \oplus *) \otimes(* \oplus *)$ defines the complete bipartite graph $K_{3,2}$.

A fundamental property ([15], Proposition 3.23) states that the same recursive equation in sets of terms $X \subseteq T(\{\oplus, \otimes, *\})$, hence :

$$
X=\{*\} \cup(X \oplus X) \cup(X \otimes X)
$$

defines (by taking the least solution) the terms representing cographs. (If $Y, Z \subseteq T(\{\oplus, \otimes, *\})$, then $Y \oplus Z$ denotes the set of terms $t \oplus t^{\prime}$ such that $t \in Y$ and $t^{\prime} \in Z$.)

Actually, this equation defines the full set $T(\{\oplus, \otimes, *\})$. Cographs are the graphs defined by all terms in $T(\{\oplus, \otimes, *\})$. A cograph can be defined by several different terms, hence, this grammar is ambigous, which makes difficult its use for counting. However, an unambigous grammar can be used (See Section 4.5).

The general notion of a grammar allows systems of mutually recursive equations that define sets of graphs or sets of terms. An example is :

$$
\begin{aligned}
& \mathcal{D}=\{* \otimes *\} \cup(\mathcal{D} \oplus \mathcal{E}) \cup(\mathcal{E} \otimes \mathcal{E}), \\
& \mathcal{E}=\{*\} \cup(\mathcal{D} \oplus *) \cup(\mathcal{E} \otimes \mathcal{E})
\end{aligned}
$$

The least sets \mathcal{D} and \mathcal{E} satisfying these equations are particular sets of cographs. The two sets of terms that form the least solution in $T(\{\oplus, \otimes, *\})$ of the (identical) system :

$$
\begin{aligned}
& Y=\{* \otimes *\} \cup(Y \oplus Z) \cup(Z \otimes Z), \\
& Z=\{*\} \cup(Y \oplus *) \cup(Z \otimes Z) .
\end{aligned}
$$

define the sets \mathcal{D} and \mathcal{E}.
To simplify notation, we will write $*$ instead of $\{*\}$ and $* \otimes *$ instead of $\{* \otimes *\}$ in such equations, and similarly for terms without unknowns. The same letters $X, Y, Z \ldots$ will be used for sets of terms and the sets of graphs they denote.
(2) Systems of recursive set equations, written with union and the extensions of functions to sets, make sense in any F-algebra $\mathbb{M}=\left(M,\left(f_{\mathbb{M}}\right)_{f \in F}\right)$ where M is a set equipped with functions $f_{\mathbb{M}}$ indexed by a functional signature F. Take for example F consisting of a, b, f, g, h of respective arities $0,0,1,2,3$. Then a system of equations like :

$$
\begin{aligned}
& \mathcal{D}=a \cup f(b) \cup f(\mathcal{D}) \cup g(\mathcal{E}, \mathcal{E}) \\
& \mathcal{E}=b \cup h(\mathcal{D}, \mathcal{E}, \mathcal{E}) \cup g(\mathcal{E}, \mathcal{D})
\end{aligned}
$$

where $\mathcal{D}, \mathcal{E} \subseteq M$ has a least solution. Its least solution in subsets of $T(a, b, f, g, h)$ consists of two sets whose sets of values in \mathbb{M} are \mathcal{D} and \mathcal{E}.

Such sets are the equational sets \mathbb{M}. This notion is relative to the algebraic structure specified by the operations $\left(f_{\mathbb{M}}\right)_{f \in F}$, cf. [15], Chapter 3 .

2 Substitution to vertices

In this section, we consider undirected graphs. We will adapt the definitions to directed graphs in Section 5.

Let C be a set of labels containing \perp. The vertices of a graph G labelled by \perp will be said to be dead ; they form the set $V_{G}^{\text {dead }}$. The others, said to be alive form the set $V_{G}^{\text {live }}$. The unary operation κ, read kill, relabels all vertices by \perp, hence makes them dead.

Definition 2.1 : Substitution.

Let K be a C-graph and x_{1}, \ldots, x_{p} be pairwise distinct vertices. Let H_{1}, \ldots, H_{p} be pairwise disjoint C-graphs, that are disjoint ${ }^{15}$ from K. We define a C graph $G:=K\left[x_{1} \leftarrow H_{1}, \ldots, x_{p} \leftarrow H_{p}\right]$ as follows ${ }^{16}$:

$$
\begin{aligned}
V_{G} & :=\left(V_{K}-\left\{x_{1}, \ldots, x_{p}\right\}\right) \uplus V_{H_{1}} \uplus \ldots \uplus V_{H_{p}}, \\
\pi_{G}(v) & :=\pi_{K}(v) \text { if } v \in V_{K}-\left\{x_{1}, \ldots, x_{p}\right\}, \\
\pi_{G}(v) & :=\pi_{K}\left(x_{i}\right) \text { if } v \in V_{H_{i}}^{\text {live }}, \\
\pi_{G}(v) & :=\perp \text { if } v \in V_{H_{i}}^{\text {dead }} .
\end{aligned}
$$

Its edges are as follows, for u, v in V_{G} :
$u v \in E_{G}$ if and only if :
either $u v \in E_{K}$ and neither u nor v is in $\left\{x_{1}, \ldots, x_{p}\right\}$,
or $u v \in E_{H_{i}}$ for some i,
or $u \in V_{K}, u x_{i} \in E_{K}$ and $v \in V_{H_{i}}^{\text {live }}$ (or vice-versa by exchanging u and v since we define undirected graphs, so that $u v$ and $v u$ designate the same edge),

$$
\text { or } u \in V_{H_{i}}^{\text {live }}, v \in V_{H_{j}}^{\text {live }} \text { and } x_{i} x_{j} \in E_{K} \text { (so that } i \neq j \text {). }
$$

[^6]The type of G is thus that of K, possibly augmented with \perp if some H_{i} has dead vertices : these vertices are dead in G. The labels of K have no influence on the definition of the edges of G, they only specify the labels of the resulting graph G. To the opposite, the labels of the graphs H_{i} other than \perp do not contribute to the labelling of G : if for each i, a mapping $h_{i}: C \rightarrow C$ satisfies $h_{i}(a)=\perp$ if and only if $a=\perp$, then :

$$
K\left[x_{1} \leftarrow H_{1}, \ldots, x_{p} \leftarrow H_{p}\right]=K\left[x_{1} \leftarrow \operatorname{relab}_{h_{1}}\left(H_{1}\right), \ldots, x_{p} \leftarrow \operatorname{relab}_{h_{p}}\left(H_{p}\right)\right] .
$$

If all vertices of H_{p} are dead, then

$$
\begin{aligned}
& K\left[x_{1} \leftarrow H_{1}, \ldots, x_{p} \leftarrow H_{p}\right]=\left(K-x_{p}\right)\left[x_{1} \leftarrow H_{1}, \ldots, x_{p-1} \leftarrow H_{p-1}\right] \\
& \oplus H_{p}
\end{aligned}
$$

Because of dead vertices, this notion of substitution differs from the classical one, used in particular in the theory of modular decomposition (see the survey [31]). If K, H_{1}, \ldots, H_{p} have no dead vertices, then $K\left[x_{1} \leftarrow H_{1}, \ldots, x_{p} \leftarrow H_{p}\right]$ is the usual substitution, as in [15], Section 2.5.

Proposition 2.2: Let K, H_{1}, H_{2} be pairwise disjoint C-graphs and $x_{1} \in$ V_{K}.
(1) If x_{2} is another vertex of K, then $K\left[x_{1} \leftarrow H_{1}\right]\left[x_{2} \leftarrow H_{2}\right]=K\left[x_{1} \leftarrow\right.$ $H_{1}, x_{2} \leftarrow H_{2}$].
(2) If $x_{2} \in V_{H_{1}}$, then $K\left[x_{1} \leftarrow H_{1}\right]\left[x_{2} \leftarrow H_{2}\right]=K\left[x_{1} \leftarrow H_{1}\left[x_{2} \leftarrow H_{2}\right]\right]$.

Proof: (1) Straightforward verification from the definitions.
(2) Let $G:=K\left[x_{1} \leftarrow H_{1}\right]\left[x_{2} \leftarrow H_{2}\right]$ and $G^{\prime}:=K\left[x_{1} \leftarrow H_{1}\left[x_{2} \leftarrow H_{2}\right]\right]$.Clearly, $V_{G}=V_{G^{\prime}}$.
(2.1) Let u, v belong to V_{G}. If u and v are both, either in V_{K}, or in $V_{H_{1}}$ or in $V_{H_{2}}$, then $u v \in E_{G}$ if and only if $u v \in E_{G^{\prime}}$. Otherwise we distinguish three cases.
(i) $u \in V_{K}$ and $v \in V_{H_{1}}$; then, $u v \in E_{G}$ if and only if $u x_{1} \in E_{K}$ and v is live in H_{1}, if and only if $u v \in E_{G^{\prime}}$.
(ii) $u \in V_{K}$ and $v \in V_{H_{2}}$; then, $u v \in E_{G}$ if and only if $u x_{2} \in E_{K\left[x_{1} \leftarrow H_{1}\right]}$ and v is live in H_{2}. The condition $u x_{2} \in E_{K\left[x_{1} \leftarrow H_{1}\right]}$ is equivalent to : $u x_{1} \in E_{K}$ and x_{2} is live in H_{1}.

Now $u v \in E_{G^{\prime}}$ if and only if $u x_{1} \in E_{K}$ and v is live in $H_{1}\left[x_{2} \leftarrow H_{2}\right]$ which is true if and only if v is live in H_{2} and x_{2} is live in H_{1}. Hence, $u v \in E_{G}$ if and only if $u v \in E_{G^{\prime}}$.
(iii) $u \in V_{H_{1}}-\left\{x_{2}\right\}$ and $v \in V_{H_{2}}$; then $u v \in E_{G}$ if and only if $u x_{2} \in E_{H_{1}}$ and v is live in H_{2}, if and only if $u v \in E_{H_{1}\left[x_{2} \leftarrow H_{2}\right]}$, if and only if $u v \in E_{G^{\prime}}$.

Hence, G and G^{\prime} have the same edges.
(2.2) It remains to verify that $\pi_{G}=\pi_{G^{\prime}}$.

If $u \in\left(V_{K}-\left\{x_{1}\right\}\right) \uplus\left(V_{H_{1}}-\left\{x_{2}\right\}\right)$, then $\pi_{G}(u)=\pi_{G^{\prime}}(u)$ because u is not affected by the substitutions to x_{2}.

If $u \in V_{H_{2}}$, then $\pi_{G}(u)=\perp$ if u is dead in H_{2}; it is $\pi_{K\left[x_{1} \leftarrow H_{1}\right]}\left(x_{2}\right)$ otherwise. We have $\pi_{K\left[x_{1} \leftarrow H_{1}\right]}\left(x_{2}\right)=\perp$ if x_{2} is dead in H_{1}, and otherwise, it is $\pi_{K}\left(x_{1}\right)$.

Now, $\pi_{G^{\prime}}(u)=\perp$ if u is dead in $H_{1}\left[x_{2} \leftarrow H_{2}\right]$ and it is $\pi_{K}\left(x_{1}\right)$ otherwise; observe that u is dead in $H_{1}\left[x_{2} \leftarrow H_{2}\right]$ if and only if it is dead in H_{2} or x_{2} is dead in H_{1}. We obtain $\pi_{G}(u)=\pi_{G^{\prime}}(u)$ in this case; this value is either $\pi_{K}\left(x_{1}\right)$ or \perp (if u is dead in H_{2} or x_{2} is dead in H_{1}).

This completes the proof.
Properties (1) and (2) are called respectively commutativity and associativity of substitution in [6]. They are axioms for the definition of context-free graph grammars based on an abstract notion of substitution and on equation systems, as explained in Example 1.6. These grammars are particular vertex replacement grammars [15].

Definition 2.3: Graph operations based on substitution.
(a) For each C-graph K with vertex set enumerated as $\left\{x_{1}, \ldots, x_{p}\right\}$, we define as follows a p-ary graph operation ${ }^{17}$ on C-graphs denoted by $\sigma\left[K, x_{1}, \ldots, x_{p}\right]$:
$\sigma\left[K, x_{1}, \ldots, x_{p}\right]\left(H_{1}, \ldots, H_{p}\right):=K\left[x_{1} \leftarrow H_{1}, \ldots, x_{p} \leftarrow H_{p}\right]$
where H_{1}, \ldots, H_{p} are pairwise disjoint C-graphs that are disjoint from K. Note that the vertex set of $\sigma\left[K, x_{1}, \ldots, x_{p}\right]\left(H_{1}, \ldots, H_{p}\right)$ is $V_{H_{1}} \uplus \ldots \uplus V_{H_{p}}$.

If H_{1}, \ldots, H_{p} are not pairwise disjoint, we replace them by isomorphic copies in a standard way (cf. Definitions $1.2(\mathrm{e})$ and 1.5, and Chapter 2 of [15]), so that $\sigma\left[K, x_{1}, \ldots, x_{p}\right]$ becomes a p-ary operation on abstract C-graphs.
(b) We denote by Σ_{C} the countable set of these operations together with the nullary symbols $\boldsymbol{a}(x)$ (this symbol denote the a-labelled vertex $x \in \mathcal{V}$, as in Definition 1.2(b)). A term $t \in T\left(\Sigma_{C}\right)$ is well-formed if each vertex x occurs at most once in some symbol $\boldsymbol{a}(x)$. It defines a C-graph $\boldsymbol{v} \boldsymbol{a l}(t)$, by using (1) to evaluate $\sigma\left[K, x_{1}, \ldots, x_{p}\right]\left(H_{1}, \ldots, H_{p}\right)$.
(c) The signature $\bar{\Sigma}_{C}$ is obtained from Σ_{C} by replacing, for each a, each symbol $\boldsymbol{a}(x)$ by \boldsymbol{a}. As for clique-width terms in $T\left(\bar{F}_{C}\right)$, each term in $T\left(\bar{\Sigma}_{C}\right)$ denotes an abstract C-graph.

We denote by relab ${ }_{a}$ the relabelling relab $_{h}$ such that $h(\perp):=\perp$ and $h(b):=a$ if $b \neq \perp$.

Proposition 2.4: Let $t, t^{\prime} \in T\left(\Sigma_{C}\right)$ and x be a vertex in the C-graph $\boldsymbol{v a l}(t)$ defined in t by $\boldsymbol{a}(x)$. Let t^{\prime} be a term such that $V_{\boldsymbol{v a l}\left(t^{\prime}\right)} \cap\left(V_{\boldsymbol{v a l}(t)}-\{x\}\right)=\emptyset$. Then, we have :

$$
\boldsymbol{v a l} \boldsymbol{l}(t)\left[x \leftarrow \boldsymbol{v} \boldsymbol{a} \boldsymbol{l}\left(t^{\prime}\right)\right]=\boldsymbol{v} \boldsymbol{a l}\left(t\left[r e l a b_{a}\left(t^{\prime}\right) / \boldsymbol{a}(x)\right]\right) .
$$

The C-graph $\boldsymbol{v a l}(t)\left[x \leftarrow \boldsymbol{v a l}\left(t^{\prime}\right)\right]$ is obtained by substituting in $\boldsymbol{v a l}(t)$ the C-graph $\boldsymbol{v a l}\left(t^{\prime}\right)$ to the vertex x. The term $t\left[\operatorname{relab}_{a}\left(t^{\prime}\right) / \boldsymbol{a}(x)\right]$ is obtained by substituting in t the term $\operatorname{relab}_{a}\left(t^{\prime}\right)$ to the unique occurrence of $\boldsymbol{a}(x)$. It is welldefined because $V_{\boldsymbol{v a l}\left(t^{\prime}\right)} \cap\left(V_{\boldsymbol{v a l}(t)}-\{x\}\right)=\emptyset$ (cf. the first footnote in Definition 2.1).

[^7]Proof : By induction on the structure of t.
If $t=\boldsymbol{a}(x)$, then $\boldsymbol{v a l}(t)\left[x \longleftarrow \boldsymbol{v a l}\left(t^{\prime}\right)\right]=\boldsymbol{a}(x)\left[x \longleftarrow \boldsymbol{v a l}\left(t^{\prime}\right)\right]=\operatorname{relab}_{a}\left(\boldsymbol{v a l}\left(t^{\prime}\right)\right)$ $=\boldsymbol{v a l}\left(\right.$ relab $\left._{a}\left(t^{\prime}\right)\right)=\boldsymbol{v a l}\left(t\left[\operatorname{relab}_{a}\left(t^{\prime}\right) / \boldsymbol{a}(x)\right]\right)$.
Let now $t=\sigma\left[K, v_{1}, \ldots, v_{p}\right]\left(t_{1}, \ldots, t_{p}\right)$. Without loss of generality and to simplify notation, we assume that $\boldsymbol{a}(x)$ occurs in t_{1}. Then, for every term s :

$$
\begin{align*}
& t[s / \boldsymbol{a}(x)]=\sigma\left[K, v_{1}, \ldots, v_{p}\right]\left(t_{1}[s / \boldsymbol{a}(x)], t_{2}, \ldots, t_{p}\right) \text { and so } \\
& \boldsymbol{v a l}(t[s / \boldsymbol{a}(x)])= \\
& K\left[v_{1} \leftarrow \boldsymbol{v a l}\left(t_{1}[s / \boldsymbol{a}(x)]\right), v_{2} \leftarrow \boldsymbol{v a l}\left(t_{2}\right), \ldots, v_{p} \leftarrow \boldsymbol{v a l}\left(t_{p}\right)\right] . \tag{2}
\end{align*}
$$

By induction :

$$
\boldsymbol{v a l}\left(t_{1}\left[\operatorname{relab}_{a}\left(t^{\prime}\right) / \boldsymbol{a}(x)\right]\right)=\boldsymbol{v a l}\left(t_{1}\right)\left[x \leftarrow \boldsymbol{v} \boldsymbol{a l}\left(t^{\prime}\right)\right],
$$

hence, Equality (2) where $s=\operatorname{relab}_{a}\left(t^{\prime}\right)$ yields

$$
\begin{aligned}
& \boldsymbol{v a l}\left(t\left[r e l a b_{a}\left(t^{\prime}\right) / \boldsymbol{a}(x)\right]\right)=K\left[v_{1} \leftarrow \boldsymbol{v a l}\left(t_{1}\right)\left[x \leftarrow \boldsymbol{v a l}\left(t^{\prime}\right)\right], \ldots, v_{p} \leftarrow\right. \\
& \left.\boldsymbol{v a l}\left(t_{p}\right)\right] \\
& =K\left[v_{1} \leftarrow \boldsymbol{v a l}\left(t_{1}\right), \ldots, v_{p} \leftarrow \boldsymbol{v a l}\left(t_{p}\right)\right]\left[x \leftarrow \boldsymbol{v a l}\left(t^{\prime}\right)\right] \text { by Propoposition } \\
& 2.2(2), \\
& =\boldsymbol{v a l}(t)\left[x \leftarrow \boldsymbol{v a l}\left(t^{\prime}\right)\right] .
\end{aligned}
$$

By using these operations, one can define graph grammars, formalized by systems of recursive equations in sets of abstract C-graphs, of which one takes least solutions (cf. Example 1.6 and [15], Chapters 3 and 4).

Definitions 2.5 : Some useful operations.
Here are some operations on D-graphs, where $D:=\{\perp, \top\}$ and \top labels the live vertices. The first two equalities are mere observations.
$\kappa(H)=\sigma\left[K, x_{1}\right](H)$ where K consists of the dead vertex x_{1}.
$H_{1} \oplus H_{2}=\sigma\left[K, x_{1}, x_{2}\right]\left(H_{1}, H_{2}\right)$ where K consists of two isolated live vertices x_{1} and x_{2}.

We define :
$H_{1} \otimes H_{2}:=\sigma\left[K, x_{1}, x_{2}\right]\left(H_{1}, H_{2}\right)$ where K is the edge $x_{1} x_{2}$ where x_{1} and x_{2} are alive.
$\Lambda\left(H_{1}, H_{2}\right):=\sigma\left[K, x_{1}, x_{2}\right]\left(H_{1}, H_{2}\right)$ where K is the edge $x_{1} x_{2}, x_{1}$ is alive and x_{2} is dead.

The operations \oplus and \otimes are associative and commutative. Here are some other algebraic properties ${ }^{18}$:

[^8]\[

$$
\begin{align*}
& \kappa(G \otimes H)=\kappa(\Lambda(G, H)) \tag{3}\\
& \kappa(G \oplus H)=\kappa(G) \oplus \kappa(H)=\Lambda(\kappa(G), H)=\Lambda(\kappa(G), \kappa(H)), \tag{4}\\
& \Lambda\left(G, H_{1} \oplus H_{2}\right)=\Lambda\left(\Lambda\left(G, H_{1}\right), H_{2}\right) \tag{5}
\end{align*}
$$
\]

We let $\bar{\Sigma}_{d h}$ be the signature $\{\oplus, \otimes, \Lambda, \kappa, \top\} \subseteq \bar{\Sigma}_{D}$. For every vertex x, we have $\perp(x)=\kappa(T(x))$. Hence, we need not put the nullary symbol \perp in $\bar{\Sigma}_{D}$. Actually, a vertex introduced by $\perp(x)$ is dead from the very beginning and is isolated in the defined graph.

Examples 2.6: Some grammars over $\bar{\Sigma}_{d h}$.
Grammars are defined as equation systems that define sets of abstract D graphs.
(1) The equation for cographs that we have already seen in Example 1.6 can be solved in sets of abstract D-graphs :

$$
X=\top \cup(X \oplus X) \cup(X \otimes X)
$$

All vertices of the generated D-graphs are labelled by \top because \oplus and \otimes do not introduce dead vertices. We recall that $X \oplus X:=\{G \oplus H \mid G, H \in X\}$ if X is a set of labelled graphs and similarly for \otimes and the other operations considered below.

As observed in Example 1.6, this equation can also be solved in $T(\{\oplus, \otimes, \top\})$. Its solution is a set of terms ${ }^{19}$ that we will denote by $L(X)$. More generally, for a system of set equations over a functional signature F that has unknowns $X, Y, Z \ldots$, we will denote by $L(X), L(Y), L(Z) \ldots$ the associated sets of terms in $T(F)$. If the system is solved in an F-algebra \mathbb{M}, the corresponding sets of objects $X, Y, Z \ldots$ are the sets of values in \mathbb{M} of the terms in $L(X), L(Y), L(Z) \ldots$.
(2) The rooted trees are defined recursively as follows : a unique node x is a tree with root x; if A and B are disjoint rooted trees with respective roots a and b, than one obtains a rooted tree C by taking the union of A and B, linked by an edge $a b$, and a is taken as root of C.

We turn a rooted tree into a $\{\top, \perp\}$-graph such that the root is the only live node. Then, $C=\Lambda(A, B)$ if A, B, C are as above. The equation that defines the set R of rooted trees is thus :

$$
R=\top \cup \Lambda(R, R) .
$$

Another grammar for trees is :

$$
Y=\top \cup \Lambda(\top, Z), Z=Y \cup(Z \oplus Z) .
$$

[^9]Here, Z defines the nonempty disjoint unions of rooted trees.
(3) Unrooted trees are defined by T and the additional equation $T=\kappa(R)$ or $T=\kappa(Y)$, with R, Y, Z as in (2).

For an example, the tree with nodes u, v, w, x, y, z, root x and edges $x y, x z, x v, z u$ and $v w$ is defined by the term :

$$
\Lambda(\Lambda(\Lambda(\top(x), \top(y)), \Lambda(\top(z), \top(u))), \Lambda(\top(v), \top(w)))
$$

belonging to $L(R)$ or by the term :

$$
\Lambda(\top(x), \top(y) \oplus \Lambda(\top(z), \top(u)) \oplus \Lambda(\top(v), \top(w)))
$$

in $L(Y)$.
The paths with one live vertex at one end are defined by the equation

$$
P=\top \cup \Lambda(\top, P)
$$

(4) We will prove in the next proposition that the equation

$$
W=\top \cup(W \oplus W) \cup(W \otimes W) \cup \Lambda(W, W)
$$

defines, up to vertex labels, the distance-hereditary graphs (cf. Definition 1.1).

From these equations, we obtain that the rooted trees are defined by all terms in $T(\{\Lambda, \top\})$ or by certain terms in $T(\{\oplus, \Lambda, \top\})$, and that the distancehereditary graphs are defined by terms in $T(\{\oplus, \otimes, \Lambda, \top\})$. In these equations and the generated terms, the label \perp for dead vertices does not appear explicily, but it is introduced by the operations Λ and κ.

In the following description of distance-hereditary (DH) graphs, all vertices are defined as dead, equivalently, unlabelled. The following recursive definition of DH graphs has been established in [3], but we think interesting to prove it by using the concepts of the present article. We recall that equation systems always define abstract graphs.

Proposition 2.7 : (1) The distance-hereditary graphs form the set X defined by the two equations :

$$
\begin{aligned}
& X=\kappa(W) \\
& W=\top \cup(W \oplus W) \cup(W \otimes W) \cup \Lambda(W, W) .
\end{aligned}
$$

(2) The connected distance-hereditary graphs form the set Y defined by the equation :

$$
Y=\kappa(\top) \cup \kappa(W \otimes W)
$$

and the equation of (1) that defines W.
Proof : (1) Note that ${ }^{20} L(W)=T(\{\oplus, \otimes, \Lambda, \top\})$. For both directions we will use the characterization of DH graphs recalled in Definition 1.1.

Claim 1: Every DH graph G is in the set $\boldsymbol{v a l}(X)=\boldsymbol{v a l}(\kappa(W))$.
Proof: We use induction on the number n of vertices of G.
If $n=1$, then G is a single dead vertex, hence $G \equiv \kappa(\top) \in \kappa(W)$.
Otherwise there are four cases.
(i) G is the disjoint union of two DH graphs H, H^{\prime}. Then, $H \equiv \kappa(t), H^{\prime} \equiv$ $\kappa\left(t^{\prime}\right)$ for some $t, t^{\prime} \in W=T(\{\oplus, \otimes, \Lambda, \top\})$. Hence, $G \equiv \kappa\left(t \oplus t^{\prime}\right)$ where $t \oplus t^{\prime} \in$ $L(W)$ because $\kappa\left(t \oplus t^{\prime}\right) \equiv \kappa(t) \oplus \kappa\left(t^{\prime}\right)$.
(ii) If G is obtained from a DH graph G^{\prime} by adding a pendant vertex y to a vertex x of G^{\prime}, we have $G=G^{\prime}[x \leftarrow H]$ where H is the edge $x y$, with x alive and $y \operatorname{dead}^{21}$; hence $H=\boldsymbol{v a l}(\Lambda(\top(x), \top(y)))$.

We have $G^{\prime}=\kappa\left(\boldsymbol{v a l}\left(t^{\prime}\right)\right)$ where t^{\prime} is a well-formed term over \oplus, \otimes, Λ and the nullaries that define vertices. It has one occurrence of $\top(x)$.

We let $t:=t^{\prime}[\Lambda(\top(x), \top(y)) / \top(x)]$. By Proposition 2.4, we have $\boldsymbol{v a l}(t)=$ $\boldsymbol{v a l}\left(t^{\prime}[\Lambda(\top(x), \top(y)) / \top(x)]\right)=\boldsymbol{v a l}\left(t^{\prime}\left[\operatorname{relab}_{\top}(\Lambda(\top(x), \top(y))) / \top(x)\right]\right)$
$\boldsymbol{v a l}\left(t^{\prime}\left[x \leftarrow \boldsymbol{v a l}\left(r e l a b_{\top}(\Lambda(\top(x), \top(y)))\right)\right]=\boldsymbol{v a l}\left(t^{\prime}[x \leftarrow H]\right)\right.$.
Hence $G=\kappa(t)$, so that $G \equiv \kappa(\bar{t})$ where $\bar{t} \in L(W)$ is obtained from t by replacing by \top the symbols $\top(z)$ that define vertices.
(iii) Let G be obtained from a DH graph G^{\prime} by adding a false twin y to a vertex x. We have $G=G^{\prime}[x \leftarrow H]$ where H consists of two isolated live vertices x and y. Hence $H=\boldsymbol{v} \boldsymbol{a l l}(\top(x) \oplus \top(y))$. The proof continues as in (ii) with $\top(x) \oplus \top(y)$ instead of $\Lambda(\top(x), \top(y))$.
(iv) Let G be obtained from a DH graph G^{\prime} by adding a true twin y to a vertex x. Here $G=G^{\prime}[x \leftarrow H]$ where H consists of two live vertices x and y linked by an edge, hence $H=\boldsymbol{v a l}(\top(x) \otimes \top(y))$. The proof continues as in (iii) with $T(x) \otimes T(y)$ instead of $T(x) \oplus \top(y)$.

Claim 2 : If $G=\boldsymbol{v a l}(t)$ for some well-formed term t over \oplus, \otimes, Λ and the nullaries that define vertices, then $\kappa(G)$ is DH .

Proof: By induction on the size of t.
If $t=\mathrm{T}(x)$, the result holds because an isolated vertex is DH . Otherwise, we can find a position u in t such that t / u, the subterm of t issued from position u, is either $\Lambda(\top(x), \top(y)), \top(x) \oplus \top(y)$, or $\top(x) \otimes \top(y)$. Then $t=t^{\prime}[(t / u) / \top(x)]$ for some well-formed term $t^{\prime}\left(t^{\prime}\right.$ is obtained by replacing in t the subterm t / u by $\top(x))$. By induction, $\kappa\left(\boldsymbol{v a l}\left(t^{\prime}\right)\right)$ is a DH graph G^{\prime} and $G=G^{\prime}[x \leftarrow H]$ by Proposition 2.6, where H is respectively as in cases (ii), (iii) or (iv).

[^10](2) It is clear that a term t in $L(X)$ defines a connected graph if and only if it is not of the form $\kappa\left(t_{1} \oplus t_{2}\right)$. Hence, the connected DH graphs can be defined by the equation :
$$
Y=\kappa(\top) \cup \kappa(W \otimes W) \cup \kappa(\Lambda(W, W))
$$
where W is as in (1). However, we observed in Definition 2.5 that $\kappa(\Lambda(G, H))=$ $\kappa(G \otimes H)$ for all D-graphs G and H. Hence, the term $\kappa(\Lambda(W, W))$ can be removed.

The bipartite DH graphs are built from isolated vertices by the addition of pendant edges and of false twins [1]. Hence, they form the set B defined by the two equations $B=\kappa\left(W^{\prime}\right)$ and $W^{\prime}=\top \cup\left(W^{\prime} \oplus W^{\prime}\right) \cup \Lambda\left(W^{\prime}, W^{\prime}\right)$.

3 Clique-width and substitution operations.

A derived operation ${ }^{22}$ relative to an F-algebra \mathbb{M} is defined by a term t in $T\left(F,\left\{u_{1}, \ldots, u_{p}\right\}\right)$, i.e., a term over F with variables (or indeterminates, i.e, nullary symbols to which values or terms can be substituted) u_{1}, \ldots, u_{p}. The corresponding p-ary function $t_{\mathbb{M}}$ is defined by evaluating t with p arguments from the domain of \mathbb{M} as values of u_{1}, \ldots, u_{p}.

For an example using clique-width operations, the operation \otimes on graphs of type $\{T\}$ (cf. Definitions 1.6 and 2.5) satisfies the equality for all D-graphs G, H.

$$
G \otimes H=\operatorname{relab}_{a \rightarrow \mathrm{\top}}\left(a d d_{\top, a}\left(G \oplus \operatorname{relab}_{\top \rightarrow a}(H)\right)\right) .
$$

Hence, \otimes is a derived operation defined by the term ${ }^{23} \operatorname{relab}_{a \rightarrow \top}\left(a d d_{\perp, a}\left(u_{1} \oplus\right.\right.$ $\left.\operatorname{relab}_{\top \rightarrow a}\left(u_{2}\right)\right)$).

Our objective is to express the operations $\sigma\left[K, x_{1}, \ldots, x_{p}\right]$ as derived operations over F_{C}, the signature upon which clique-width is based.

We let $\operatorname{Lin}\left(F_{C},\left\{u_{q}, \ldots, u_{p}\right\}\right)$ be the set of terms in $T\left(F_{C},\left\{u_{q}, \ldots, u_{p}\right\}\right), q \leq p$, where each variable u_{i} has a unique occurrence and no other nullary symbol occurs. Every such term defines a $(p-q+1)$-ary mapping on C-graphs denoted by $t_{\mathbb{G}}$. For pairwise disjoint graphs H_{q}, \ldots, H_{p}, the vertex set of $t_{\mathbb{G}}\left(H_{q}, \ldots, H_{p}\right)$ is $V_{H_{q}} \uplus \ldots \uplus V_{H_{p}}$.

We define $T_{\perp}\left(F_{C}\right)$ as the set of terms that use none of the operations ${ }^{24}$ $a d d_{a, \perp}, a d d_{\perp, a}, \overrightarrow{a d d}_{a, \perp}, \overrightarrow{a d d}_{\perp, a}$, relab$b_{h}$ if $h(\perp) \neq \perp$, and no nullary symbol $\perp(x)$. We denote by $c w d^{\perp}(G)$ the minimal cardinality of $C-\{\perp\}$ such that ${ }^{25}$

[^11]$G \equiv \boldsymbol{v a l}(t)$ for some term $t \in T_{\perp}\left(F_{C}\right)$. Clearly, $\operatorname{cwd}(G) \leq c w d^{\perp}(G)+1$. We have $c w d(T)=3$ and $c w d^{\perp}(T)=2$ for any tree T that is not a star.

Let K be a C-graph with vertex set $\left\{x_{q}, \ldots, x_{p}\right\}$ defined by a term t in $T_{\perp}\left(F_{C}\right)$. Each vertex x_{i} occurs in a nullary symbol $\boldsymbol{a}_{\boldsymbol{i}}\left(x_{i}\right)$ in t such that $a_{\boldsymbol{i}} \neq \perp$. We define $\widehat{t}:=t\left[u_{q} / \boldsymbol{a}_{\boldsymbol{q}}\left(x_{q}\right), \ldots, u_{p} / \boldsymbol{a}_{\boldsymbol{p}}\left(x_{p}\right)\right] \in \operatorname{Lin}\left(F_{C},\left\{u_{q}, \ldots, u_{p}\right\}\right)$. We recall that $r e l a b_{a}$ is the relabelling that replaces by a every label except \perp.

Lemma 3.1: Let K be a C-graph with vertex set $\left\{x_{1}, \ldots, x_{p}\right\}$ defined by $t \in T_{\perp}\left(F_{C}\right)$. Let $\widehat{t}:=t\left[u_{1} / \boldsymbol{a}_{\mathbf{1}}\left(x_{1}\right), \ldots, u_{p} / \boldsymbol{a}_{\boldsymbol{p}}\left(x_{p}\right)\right]$. For pairwise disjoint C-graphs H_{1}, \ldots, H_{p}, we have:

$$
\sigma\left[K, x_{1}, \ldots, x_{p}\right]\left(H_{1}, \ldots, H_{p}\right)=\widehat{t}_{\mathbb{G}}\left(\operatorname{relab}_{a_{1}}\left(H_{1}\right), \ldots, \operatorname{relab}_{a_{p}}\left(H_{p}\right)\right) .
$$

Proof: By induction on the structure of t.
If $t=\boldsymbol{a}_{\mathbf{1}}\left(x_{1}\right)$, then $\hat{t}=u_{1}, K$ only has the a_{1}-vertex x_{1} and $\sigma\left[K, x_{1}\right]\left(H_{1}\right)=$ $\operatorname{relab}_{a_{1}}\left(H_{1}\right)=\widehat{t}_{\mathbb{G}}\left(\right.$ relab $\left._{a_{1}}\left(H_{1}\right)\right)$ (by the behaviour of labels in substitution).

If $t=t_{1} \oplus t_{2}$, then, without loss of generality, we assume that the vertices of $K_{1}:=\boldsymbol{v} \boldsymbol{\operatorname { l }}\left(t_{1}\right)$ are x_{1}, \ldots, x_{i} and those of $K_{2}:=\boldsymbol{v} \boldsymbol{a l}\left(t_{2}\right)$ are x_{i+1}, \ldots, x_{p}. We have $\widehat{t}=\widehat{t_{1}} \oplus \widehat{t_{2}}$. Then, since substitution distributes over disjoint union ${ }^{26}$ and by induction:

$$
\begin{aligned}
& \sigma\left[K, x_{1}, \ldots, x_{p}\right]\left(H_{1}, \ldots, H_{p}\right)= \\
& \sigma\left[K_{1}, x_{1}, \ldots, x_{i}\right]\left(H_{1}, \ldots, H_{i}\right) \oplus \sigma\left[K_{2}, x_{i+1}, \ldots, x_{p}\right]\left(H_{i+1}, \ldots, H_{p}\right)= \\
& \widehat{t_{1 G}}\left(\operatorname{relab}_{a_{1}}\left(H_{1}\right), \ldots, \operatorname{relab}_{a_{i}}\left(H_{i}\right)\right) \oplus \widehat{t_{2 \mathbb{G}}}\left(\operatorname{relab}_{a_{i}}\left(H_{i}\right), \ldots, \operatorname{relab}_{a_{p}}\left(H_{p}\right)\right)= \\
& \widehat{t_{\mathbb{G}}}\left(\operatorname{relab}_{a_{1}}\left(H_{1}\right), \ldots, \operatorname{relab}_{a_{p}}\left(H_{p}\right)\right) .
\end{aligned}
$$

If $t=f\left(t_{1}\right)$ where f is relab $_{h}$ or $a d d_{a, b}$, then the result holds because, for every C-graph K with vertices x_{1}, \ldots, x_{p}, we have :

$$
\sigma\left[f(K), x_{1}, \ldots, x_{p}\right]\left(H_{1}, \ldots, H_{p}\right)=f\left(\sigma\left[K, x_{1}, \ldots, x_{p}\right]\left(H_{1}, \ldots, H_{p}\right)\right)
$$

The equality to be proved follows then by induction.
We will denote by t_{K} and $\widehat{t_{K}}$ terms associated with K as above. We say that an operation $\sigma\left[K, x_{1}, \ldots, x_{p}\right]$ has width k if $c w d^{\perp}(K)=k$. The operations \oplus, \otimes, Λ and κ have respective widths $2,2,2$ and 1 .

Proposition 3.2 : If $G \equiv \boldsymbol{v} \boldsymbol{a l}(s)$ for some term s in $T\left(\Sigma_{C}\right)$ whose operations have width at most k, then $c w d^{\perp}(G) \leq k$ and $c w d(G) \leq k+1$.

Proof : By induction on the structure of s, we define a term \widetilde{s} in $T\left(F_{C}\right)$ such that $\boldsymbol{v a l}(\widetilde{s}) \equiv \boldsymbol{v a l}(s)$.

If $s=\boldsymbol{a}(w)$, then $\widetilde{s}:=s$.
If $s=\sigma\left[K, x_{1}, \ldots, x_{p}\right]\left(s_{1}, \ldots, s_{p}\right)$, then we define $\widetilde{s}:=\widehat{t_{K}}\left[\operatorname{relab}_{a_{1}}\left(\widetilde{s_{1}}\right) / u_{1}, \ldots, \operatorname{relab}_{a_{p}}\left(\widetilde{s_{p}}\right) / u_{p}\right]$.
It is clear that $\boldsymbol{v a l}(\widetilde{s}) \equiv \boldsymbol{v a l}(s)$.

[^12]The set of labels used in \widetilde{s} is the set of all those used in the terms $\widehat{t_{K}}$ where $\sigma\left[K, x_{1}, \ldots, x_{p}\right]$ occurs in s. We now bound $c w d^{\perp}(G)$. Without loss of generality, we can assume that all labels of the terms t_{K} for K occurring in s (via some $\sigma\left[K, x_{1}, \ldots, x_{p}\right]$) are in a set C such that $C-\{\perp\}$ has cardinality k. Hence $c w d^{\perp}(G) \leq k$ and $c w d(G) \leq k+1$.

If in s, all the operations of maximal width k do not use \perp in their definitions by terms, then $c w d(G)=c w d^{\perp}(G) \leq k$.

Corollary 3.3 : Distance hereditary graphs have clique-width at most 3
Proof : Distance hereditary graphs are defined with the operations κ, Λ, \oplus and \otimes of width at most 2 .

This result is known from [29, 37] with different proofs. As the operation Λ of width 2 needs \perp in its defining term, we do not have $c w d(G)=c w d^{\perp}(G) \leq 2$. Proposition 4.9 of [36] establishes that conversely, G is distance-hereditary if $c w d^{\perp}(G) \leq 2$.

4 Split decomposition

The split decomposition of directed and undirected graphs has been defined and studied by Cunnigham in [19]. We will formulate it in terms of graph-labelled trees as in [27, 28] (also called split-decomposition graphs in [7]). We only consider undirected graphs in this section.

4.1 Definitions and basic facts

Definition 4.1 : Graph-labelled trees and the graphs they describe.
We denote by L_{T} the set of leaves of a tree T and by $\operatorname{Inc} c_{T}(v)$ the set of edges incident to a node v.
(a) A graph-labelled tree, denoted by \mathcal{T}, is a tree T with at least three nodes that is equipped, for each node $v \in N_{T}$, with a connected graph H_{v}, called a component, and a bijection $\rho_{v}: \operatorname{Inc}_{T}(v) \rightarrow V_{H_{v}}$. The components are pairwise disjoint. We identify u and the unique vertex of H_{u} if u is a leaf.

Figure 1 shows a graph-labelled tree with leaves $1, \ldots, 8$ and internal nodes u, v, w, x. The components are surrounded by elipses. The dotted lines are the edges of the tree T. Each of them links two vertices of two different components, and each vertex x in a component H_{v} is incident to one and only one "dotted edge", namely, $\rho_{v}^{-1}(x)$.
(b) The corresponding split-graph $S(\mathcal{T})$ is the union of the components together with the edges $\rho_{u}(e) \rho_{v}(e)$ for $e=u v$, (the "dotted edges" of Figure 1).

Figure 1: A graph-labelled tree \mathcal{T} (cf. Definition 4.1(a).

A path in $S(\mathcal{T})$ is alternating if no two consecutive edges are in a same component ${ }^{27}$. Between any two vertices x, y of $S(\mathcal{T})$, there is at most one alternating path. If there is one, we say that x is accessible from y, and we precise through z (or e) to indicate that this path goes through a particular vertex z (or edge $e)$. For a vertex w of $S(\mathcal{T})$ belonging to a component H_{u}, we denote by $A(w)$ (respectively by $P(w)$) the set of vertices accessible from w by a nonempty alternating path whose first edge is not in H_{u} (respectively, reachable from w by a nonempty path in $S(\mathcal{T})$ whose first edge is not in $\left.H_{u}\right)$.
(c) The graph described by \mathcal{T}, denoted by $G(\mathcal{T})$, has vertex set L_{T} and an edge $u v$ if and only if u is accessible from v. It is connected ([27], Lemma 2.3) because the components are defined as connected ${ }^{28}$.

We continue to examine the graph-labelled tree \mathcal{T} of Figure 1 and the associated graph $G(\mathcal{T})$ in Figure 2. There is an alternating path between leaf 7 and leaf 1 . Hence, they are adjacent vertices in $G(\mathcal{T})$. On any path between 3 and 7 , there are two consecutive edges of H_{u}, hence, 7 is not adjacent to 3 .
(d) Let $e=u v$ be an edge of T between two internal nodes. The node-joining operation (cf. [27]) contracts this edge, hence fuses u and v into a single new node say w, giving tree T^{\prime}; the new component H_{w}^{\prime} is defined as $H_{u} \uplus H_{v}$ minus the two vertices $\rho_{u}(e), \rho_{v}(e)$ and augmented with an edge between any vertex x in H_{u} and any vertex y in H_{v} such that $x \rho_{u}(e) \in E_{H_{u}}$ and $\rho_{v}(e) y \in E_{H_{v}}$. This graph is connected graph. We obtain a graph-labelled tree \mathcal{T}^{\prime} (nothing else is modified from \mathcal{T}) that describes the same graph. If $\rho_{u}(e)$ has degree r in H_{u} and $\rho_{v}(e)$ has degree s in H_{s}, the resulting component H_{w}^{\prime} has a subgraph isomorphic to the complete bipartite graph $K_{r, s}$.

The opposite transformation is called node-splitting. It preserves also the defined graph.

[^13]

Figure 2: The graph $G(\mathcal{T})$ for \mathcal{T} in Figure 1.

Remark 4.2 : A graph G consisting of a single edge is defined by a graphlabelled tree one component of which is an edge. Otherwise, a single edge component H_{u} can be eliminated by a node-joining of u with one of its two neighbours. The resulting tree has no node of degree 2 .

However in a graph-labelled tree \mathcal{T} that defines a graph with at least 2 vertices, it may be useful to insert a component consisting of a single edge (cf. Section 4.5 below) : consider an edge $u v$ of T, replace it by two edges $u w$ and $w v$ where w is new node, and define the new component corresponding to w as consisting of a single edge.

The following lemma is implicit in $[15,27]$. We will generalize it for directed graphs.

If $u v$ is an edge of a tree T, we denote by $N_{T, u \backslash v}$ the set of nodes of the connected component of $T-u$ that contains v. Notation is in Definition 4.1(b).

Lemma 4.3: Let \mathcal{T} be a graph labelled tree and $G=G(\mathcal{T})$.
(1) For each vertex x of $S(\mathcal{T})$, the set $A(x) \cap L_{T}$ is not empty.
(2) Let x, y be distinct vertices of some component H. If $x y$ is an edge of H, there is an alternating path between any leaf in $A(x)$ and any leaf of $A(y)$. Conversely, if an alternating path links a leaf in $A(x)$ and a leaf of $A(y)$, then this path goes through H, and more precisely, through x and y, and $x y \in E_{H}$. Each component is isomorphic to an induced subgraph of G.
(3) Let $u v$ be an edge of T. There is an alternating path between any leaf in $A(x)$ where x is a neighbour of $\rho_{u}(u v)$ in H_{u} and any leaf in $A(y)$ where y is a neighbour of $\rho_{v}(u v)$ in H_{v}. Any such path goes through the edge $\rho_{u}(u v) \rho_{v}(u v)$.

Proof: (1) Let x belong to H_{u}. Then $x=\rho_{u}(u v)$ for some (unique) edge $u v$ of T. We use induction on the cardinality of $N_{T, u \backslash v}$.

If $\left|N_{T, u \backslash v}\right|=1$, then v is a leaf in $A(x)$ as $A(x)=\{v\}=\left\{\rho_{v}(u v)\right\}$.
Otherwise, H_{v} has an edge $\rho_{v}(u v) y$ and $y=\rho_{v}(v w)$ for some edge $v w$ of T. Then $N_{T, v \backslash w} \subset N_{T, u \backslash v}$ and $A(y) \cap L_{T} \subseteq A(x) \cap L_{T}$. The set $A(y) \cap L_{T}$ is not empty by induction, so is $A(x) \cap L_{T}$.
(2) Let $x y=\rho_{u}(u v) \rho_{u}(u w)$ be an edge of component H_{u}. Let $z \in A(x) \cap L_{T}$ and $z^{\prime} \in A(y) \cap L_{T}$. By connecting alternating paths between z and x, and z^{\prime} and y with the edge $x y$, we get an alternating path between z and z^{\prime}. Any such path must through $x y$ as one checks from the definitions.

For each vertex x of H_{u}, let us choose a vertex \widehat{x} of G in $A(x) \cap L_{T}$. By the previous observations, the induced subgraph of G whose vertices are the \widehat{x} 's is isomorphic to H_{u}.
(3) The proof is similar to that of (2).

The following corollary illustrates these notions in the basic case of trees.
Corollary 4.4 : Let \mathcal{T} be a graph-labelled tree. The graph $G(\mathcal{T})$ is a tree if and only if :
(1) each component of \mathcal{T} is a tree, and
(2) if $e=u v \in E_{T}$ is not a pendant edge, then at least one of $\rho_{u}(e)$ and/or $\rho_{v}(e)$ is a leaf of, respectively, H_{u} and/or H_{v}.

Proof : Assume $G(\mathcal{T})$ is a tree. By Lemma 4.3(2), each component of \mathcal{T} is isomorphic to an induced subgraph of $G(\mathcal{T})$, hence is a tree since components are connected. For Property (2), if none of $\rho_{u}(e)$ and $\rho_{v}(e)$ is a leaf, then the nodejoining of u and v (Definition 4.1(d)) merges H_{u} and H_{v} into a component that contains a complete bipartite graph $K_{r, s}$ such that $r, s \geq 2$. This component has a cycle and $G(\mathcal{T})$ is not a tree by (1).

Conversely, let \mathcal{T} satisfy (1) and (2). Consider $e=u v$ satisfying Property (2) : if we apply to it the node-joining operation, the component H_{w}^{\prime} created in this way is still a tree. The obtained graph-labelled tree \mathcal{T}^{\prime} satisfies (1) and (2) and describes $G(\mathcal{T})$. By repeating this operation until all edges are pendant, we obtain a graph-labelled tree that defines $G(\mathcal{T})$ and that has one component that is a tree, all others being leaves. Hence $G(\mathcal{T})$ is a tree.

A tree may be defined from several nonisomorphic graph-labelled trees. A stronger condition than (2) of Corollary 4.4, namely Condition (2) of Theorem 4.6, yields unicity, up to isomorphism, of the graph-labelled trees that define connected graphs.

Definition 4.5: Split decompositions.

(1) A split of a graph G is a bipartition of V_{G} into two sets V_{1} and V_{2} having each at least 2 vertices, such that the edges between V_{1} and V_{2} induce a complete bipartite graph with at least one edge. These edges link any vertex of some set $A_{1} \subseteq V_{1}$ and any vertex of some $A_{2} \subseteq V_{2}$. Hence, G is $\kappa\left(G_{1} \otimes G_{2}\right)$ where the induced subgraphs $G_{1}:=G\left[V_{1}\right]$ and $G_{2}:=G\left[V_{1}\right]$ have labels in $D:=\{\top, \perp\}$ in such a way that the vertices in $A_{1} \cup A_{2}$ are labelled by \top and the others by \perp.
(2) A graph is defined as prime ${ }^{29}$ if it has at least 4 vertices and no split. The connected graphs with 3 vertices are the stars S_{3} and the triangles, i.e.,

[^14]the graphs isomorphic to K_{3}. A star $S_{n}, n \geq 3$, has a center and $n-1$ adjacent vertices that are leaves: S_{n} is a tree. Stars and cliques are not prime. No prime graph has less than 5 vertices. The cycles C_{n} for $n \geq 5$ are prime.

Theorem 3 of [19], also proved as Theorem 2.9 in [27], states the following existence and unicity theorem.

Theorem 4.6 : Every connected graph with at least 3 vertices is $G(\mathcal{T})$ for a unique graph-labelled tree \mathcal{T} such that:
(1) each component H_{v} is singleton, or prime, or is a clique K_{n} or a star S_{n}, for some $n \geq 3$,
(2) if $e=u v \in E_{T}$, then H_{u} and H_{v} are not both cliques, and, if they are both stars, then $\rho_{u}(e)$ and $\rho_{v}(e)$ are both centers or both leaves.

Unicity is understood up to isomorphism.
Such a graph-labelled tree is called THE split decomposition of G. It is canonical because of its unicity, up to isomorphism. It can be obtained from an arbitrary graph-labelled tree that defines G by the node-splittings and the node-joinings of Definition 4.1(d) (see [27] for details). The resulting tree has no node of degree 2 (cf. Remark 4.2). We will also consider graph-labelled trees that need not be canonical.

Remarks 4.7 : (1) The split decomposition of a clique $K_{n}, n \geq 3$, has a unique component that is a clique. But any graph-labelled tree all components of which are cliques defines a clique. A clique $K_{n}, n \geq 3$ can be defined by a graph labelled tree all components of which are triangles or isolated vertices. By using node splitting, we can replace a component K_{r+s+2} where $r, s>1$ by two components K_{r+1} and K_{s+1}.
(2) In the split decomposition of a tree, all components are stars, and if $e=u v \in E_{T}$, then $\rho_{u}(e)$ and $\rho_{v}(e)$ are both leaves of H_{u} and H_{v} by Corollary 4.5 and Theorem 4.7. Every tree with at least 3 nodes can be defined by a graph-labelled tree all components of which are stars S_{3} or isolated vertices. As above, this can be achieved by node-splitting.

Examples 4.8 : Distance-hereditary graphs and 3-leaf powers.
A graph-labelled tree defines a DH graph if and only if all its components are stars and cliques as proved in [27], Section 3.1.

This article also studies particular DH graphs called 3-leaf powers. A 3-leaf power is a graph G defined as follows from a tree $R: V_{G}:=L_{R}$ and two vertices are adjacent if and only if they are at distance at most 3 in R. A graph is a 3-leaf power if and only if it is obtained from a tree by substitutions of cliques to its vertices [2]. It follows that a graph G is a 3-leaf power if and only if it is a clique or is $G(\mathcal{T})$ for some graph-labelled tree \mathcal{T} having one component, say H_{0}, that is a tree whereas all others are cliques (an isolated vertex is a clique K_{1}). Hence, the set L of 3 -leaf powers is defined, up to labels, by the two equations:

$$
L=K \cup \Lambda(L, L), K=\top \cup(K \otimes K)
$$

The set K is that of cliques where all vertices are alive. The equation for L is derived from the first equation for rooted trees in Example 2.6(2). In the characterization of 3-leaf powers of [27], the component H_{0} that is a tree is decomposed in the canonical way of Theorem 4.7.

4.2 Graph-labelled trees and substitution operations.

We will use D-graphs, where $D:=\{\top, \perp\}$.
Definitions 4.9: Rooted graph-labelled trees and related notions.
(a) Let \mathcal{T} be a graph-labelled tree, with underlying tree T, not reduced to a single node. Let us select a node $r \in N_{T}$ and make it a root for T. We call then \mathcal{T} a rooted graph-labelled tree. If r is a leaf, we call it a leaf-rooted graph-labelled tree, and otherwise, a non-leaf-rooted graph-labelled tree.
(b) If $u \in N_{T}$, we let ${ }^{30} N_{u}:=\left\{x \in N_{T} \mid x \leq_{T} u\right\}$ and $V_{u}:=\left\{x \in L_{T} \mid\right.$ $\left.x \leq_{T} u\right\}$. Hence, $V_{r}=L_{T}=V_{G}$ and $V_{u}=\{u\}$ if $u \in L_{T}-\{r\}$.
(c) If $u \in N_{T}-L_{T}$ has father w, we say that $\rho_{u}(u w)$ is the leader of H_{u}, denoted by \bar{u}, and we define $H_{u} \backslash \bar{u}$ as the D-graph $H_{u}-\bar{u}$ (possibly not connected) where a vertex x is alive (labelled by T) if it is adjacent to \bar{u} in H_{u} and is dead (labelled by \perp) otherwise. We let also $H_{r} \backslash \bar{r}:=H_{r}$, all its vertices being defined as dead. If r is a leaf, then H_{r}^{\prime} is undefined.
(d) If $u \in N_{T}$, we define G_{u} as $G\left[V_{u}\right]$ labelled as follows :
(d.1) if $u=r$, then every vertex of $G_{u}=G$ is labelled by \perp,
(d.2) if $u \neq r$, a vertex y of G_{u} is labelled by \top if it is in $A(z)$ for some neighbour $z\left(\right.$ in $\left.H_{u}\right)$ of the leader of H_{u}; otherwise, it is labelled by \perp.

Note that if r is a leaf and u is its neighbour in T, then $G=G_{r}=$ $\kappa\left(\Lambda\left(\top(r), G_{u}\right)\right.$.

For an example, consider the graph-labelled tree of Figure 1 with root x. The vertices 4 and 5 are alive in G_{v}, but not in G_{u}. The vertices $2,6,7$ are alive in G_{u}.

The following lemma relates graph-labelled trees and substitution operations. Note that the graphs H_{u}^{\prime} depend on the root that is chosen.

Lemma 4.10: Let \mathcal{T} be a rooted graph-labelled tree that defines G. If u in $N_{T}-L_{T}$ has sons u_{1}, \ldots, u_{p}, and the corresponding p vertices of $H_{u} \backslash \bar{u}$

[^15]are x_{1}, \ldots, x_{p} (that is, $x_{i}:=\rho_{u}\left(u u_{i}\right)$), then we have $G_{u}=\left(H_{u} \backslash \bar{u}\right)\left[x_{1} \leftarrow\right.$ $\left.G_{u_{1}}, \ldots, x_{p} \leftarrow G_{u_{p}}\right]$.

Proof : Let $K:=\left(H_{u} \backslash \bar{u}\right)\left[x_{1} \leftarrow G_{u_{1}}, \ldots, x_{p} \leftarrow G_{u_{p}}\right]$.

1) The vertex set of G_{u} is $V_{u}:=\left\{x \in V_{G} \mid x \leq_{T} u\right\}\left(V_{G}=L_{T}\right)$ hence, is the union the sets $V_{u_{i}}:=\left\{x \in V_{G} \mid x \leq_{T} u_{i}\right\}$ that are the vertex sets of the graphs $G_{u_{i}}$. Hence, G_{u} and K have the same vertices.
2) As the graphs G_{w} are induced subgraphs of G, two vertices of $G_{u_{i}}$ are adjacent in G_{u} if and only if they are in G as well as in $G_{u_{i}}$, hence also in K.

Consider vertices x of $G_{u_{i}}$ and y of $G_{u_{j}}, j \neq i$. If they are adjacent in G_{u}, hence in G, they are linked by an alternating path, that must go through H_{u}, and not through its leader \bar{u}, and use its edge $\rho_{u}\left(u_{i} u\right) \rho_{u}\left(u_{j} u\right)=x_{i} x_{j}$, an edge of $H_{u} \backslash \bar{u}$. This path goes through the leader $\rho_{u_{i}}\left(u_{i} u\right)$ of $H_{u_{i}}$. Hence, x is alive in $G_{u_{i}}$. Similarly, y is alive in $G_{u_{j}}$. Hence $x y$ is an edge of K.

Conversely, if $x y \in E_{K}$, then $x_{i} x_{j}$ is an edge of $H_{u} \backslash \bar{u}$, the vertex x is alive in $G_{u_{i}}$ and y is alive in $G_{u_{j}}$. Going back to definitions, we have an alternating path between x and y. Hence, $x y$ is a edge of G hence of G_{u}.
3) If u is the root r and is not a leaf, then all vertices of $H_{u} \backslash \bar{u}$ are dead, hence, so are those of K, as well as those of $G=G_{r}$.

Otherwise, let x be a vertex of $G_{u_{i}}$ that is alive. Hence, there an alterning path P between x and the leader $\rho_{u_{i}}\left(u_{i} u\right)$ of $H_{u_{i}}$. If $\rho_{u}\left(u_{i} u\right)=x_{i}$ is a neighbour of the leader \bar{u} of H_{u}, then x is alive in K. It is also in G_{u} because P can be extended into an alterning path from x to \bar{u}. If $\rho_{u}\left(u_{i} u\right)=x_{i}$ is not a neighbour of \bar{u}, then x is dead in K. It is also in G_{u} because P cannot be extended into an alterning path from x to \bar{u}.

If x is dead in $G_{u_{i}}$, then it is also in K and in G_{u}, because otherwise, the alternating path between x and \bar{u} would give a path P as above.

4.3 From graph-labelled trees to grammars

If \mathcal{M} is a finite set of connected (unlabelled) graphs having at least 2 vertices, we define $\mathcal{G}(\mathcal{M})$ as the set of graphs described by graph-labelled trees whose components are in \mathcal{M}. These graphs are connected (Definition 4.1(c)).

As before, $D:=\{\top, \perp\}$. For each $H \in \mathcal{M}$, we define H_{\perp} as H with all vertices labelled by \perp. We denote by $\Sigma_{\mathcal{M}}$ the set of operations $\sigma\left[H_{\perp}, x_{1}, \ldots, x_{p}\right]$ for $H \in \mathcal{M}$ and by $\Sigma_{\mathcal{M}}^{\prime}$ the set of operations $\sigma\left[H \backslash x, x_{1}, \ldots, x_{p}\right]$ for $H \in \mathcal{M}$ and $x \in V_{H}$ (cf. Definition 4.9(c) for the notation $H \backslash x$).

Theorem 4.11: If \mathcal{M} is a finite set of connected graphs having at least 2 vertices, then $\mathcal{G}(\mathcal{M})$ is the set S defined by the two equations :

$$
\begin{aligned}
& S=\kappa(\top) \cup \cup_{\sigma \in \Sigma_{\mathcal{M}}} \sigma(U, \ldots, U), \\
& U=\top \cup \cup_{\sigma \in \Sigma_{\mathcal{M}}^{\prime}} \sigma(U, \ldots, U) .
\end{aligned}
$$

Another grammar for $\mathcal{G}(\mathcal{M})$ is :
$T=\kappa(T) \cup \kappa(\Lambda(T, U))$
where U is defined as above.
Proof : Let G belong to S. If it is a dead isolated vertex $\kappa(\top)$, it is in $\mathcal{G}(\mathcal{M})$. Otherwise, it is defined by a finite term $t=\sigma\left(t_{1}, \ldots, t_{p}\right)$ where $\sigma \in \Sigma_{\mathcal{M}}$ and t_{1}, \ldots, t_{p} are terms in $T\left(\Sigma_{\mathcal{M}}^{\prime} \cup\{T\}\right)$. By Lemma 4.10, this term represents a non-leaf-rooted graph-labelled tree \mathcal{T}. The component at the root is isomorphic to H such that $\sigma=\sigma\left[H, x_{1}, \ldots, x_{p}\right]$. The terms t_{1}, \ldots, t_{p} represent the subtrees of T issued from the p sons of the root. Hence, G is described by a rooted graph-labelled tree with components in \mathcal{M}, and so, $G \in \mathcal{G}(\mathcal{M})$.

Let conversely $G \in \mathcal{G}(\mathcal{M})$. If it is a dead isolated vertex, then it is in S, defined by $\kappa(T)$. Otherwise it is defined by a non-leaf rooted graph-labelled tree T, hence, by a term $t=\sigma\left(t_{1}, \ldots, t_{p}\right)$ as above. The subtrees of T issued from the sons of the root are defined by the terms t_{1}, \ldots, t_{p}.

The second grammar is based on leaf-rooted graph-labelled trees. The proof is similar, by the remark in Definition 4.9(d).

The equation $W=\top \cup \Lambda(\top, U)$ with U as above defines the rooted graphs in $\mathcal{G}(\mathcal{M})$ defined as those having exactly one live vertex (labelled by \top). We will apply this remark to DH graphs in Section 4.5.

4.4 Clique-width bounds from graph-labelled trees

Theorem 4.12 : Let G be a connected graph defined by a rooted graph-labelled tree \mathcal{T} such that each operation $\sigma\left[H_{u} \backslash \bar{u}, x_{1}, \ldots, x_{p}\right]$ has width at most $k \geq 2$. Then $c w d^{\perp}(G) \leq k$ and $c w d(G) \leq k+1$.

Proof: Immediate consequence of Proposition 3.2 and Theorem 4.11.
The next lemma gives an upper-bound to the widths of the terms in $T_{\perp}\left(F_{C}\right)$ that define the D-graphs $H_{u} \backslash \bar{u}$.

Lemma 4.13: Let H be a D-graph such that $c w d(H)=k$. Then $c w d^{\perp}(H) \leq$ $k+\min \left\{k,\left|V_{H}^{\text {live }}\right|,\left|V_{H}^{\text {dead }}\right|\right\}$.

Proof: We have $c w d^{\perp}(H) \leq c w d^{*}(H) \leq 2 k$ by Lemma 1.3 (with $|\tau(G)|=$ 2).

For proving that $c w d^{\perp}(H) \leq k+\left|V_{H}^{\text {live }}\right|$, we consider a term that defines H with a set C of k labels different from \perp. Assume that $V_{H}^{\text {live }}=\left\{x_{1}, \ldots, x_{p}\right\}$. We add new labels c_{1}, \ldots, c_{p} to C such that c_{i} will only label x_{i}. We transform t into t^{\prime} accordingly. In particular, to take a typical case, if at some position in t the operation $a d d_{a, b}$ adds edges between x_{i}, labelled at this point by a (there may be other a-labelled vertices) and b-labelled vertices, then we replace it by $a d d_{c_{i}, b} \circ a d d_{a, b}$.

Hence, we can use $p+k$ labels different from \perp.
If $V_{H}^{\text {dead }}=\left\{x_{1}, \ldots, x_{p}\right\}$. We do a similar construction.

Theorem 4.14 : Let G be defined by a graph-labelled tree \mathcal{T} whose components have maximal clique-width m and maximal degree d, then $m \leq c w d(G) \leq$ $m+\min \{m, d\}+1 \leq 2 m+1$.

Proof : The inequality $m \leq c w d(G)$ follows from Lemma 4.3(2) since cliquewidth is monotone with respect to the induced subgraph relation.

We now prove the other inequality ${ }^{31}$. For each component H_{u}, the number of live vertices in $H_{u} \backslash \bar{u}$ is at most d. Hence, Lemma 4.13 gives $c w d^{\perp}\left(H_{u} \backslash \bar{u}\right) \leq$ $m+\min \{m, d\}$ and Theorem 4.12 gives $c w d^{\perp}(G) \leq m+\min \{m, d\}$, so that $\operatorname{cwd}(G) \leq m+\min \{m, d\}+1 \leq 2 m+1$.

For an example, if G is a tree that is not a star and is defined by \mathcal{T} whose components are stars with three nodes, hence of clique-width 2 , we have $m=2$ and $\operatorname{cwd}(G)=3$.

Remark 4.15 : A bound based on rank-width.
Rank-width is another graph complexity measure initially defined for undirected graphs ${ }^{32}$, denoted by rwd. It is based on ternary trees (without root) that define a layout of the considered graphs. The DH graphs are those of rank-width 1 [37].

Rank-width is related to clique-width by the inequalities $\operatorname{rwd}(G) \leq \operatorname{cwd}(G) \leq$ $2^{r w d(G)+1}-1, \quad[37]$. Furthermore, if $G=G(\mathcal{T})$ for some graph-labelled tree \mathcal{T}, and m is the maximal rank-width of a component H_{u}, then $\operatorname{rwd}(G)=m$ (Theorem 4.3 of [33]). Hence, if $c w d\left(H_{u}\right) \leq m$ for all u, we get $r w d(G) \leq m$ and $\operatorname{cwd}(G) \leq 2^{m+1}-1$.

Example 4.16 : Parity graphs.
A graph is a parity graph if for any two vertices, the induced paths joining them have the same parity. Bipartite graphs and DH graphs are parity graphs. The article [5] establishes that the parity graphs are the graphs having a split decomposition whose components are cliques and bipartite graphs. We do not obtain a finite grammar as bipartite graphs, whence also parity graphs, have unbounded clique-width.

4.5 Unambigous grammars for cographs and distance-hereditary graphs

We first examine some of the operations $\sigma\left[H, x_{1}, \ldots, x_{p}\right]$ that arise in split decompositions.

Observation 4.17 : Substitution operations related to split decompositions.
Case 1: H is a clique $K_{p}, p \geq 2$ whose vertices x_{1}, \ldots, x_{p} are all alive. We have :

[^16]$$
\sigma\left[K_{p}, x_{1}, \ldots, x_{p}\right]\left(G_{1}, \ldots, G_{p}\right)=G_{1} \otimes \ldots \otimes G_{p}
$$

Case 2 : $H=S_{p} \backslash x_{p}$ where $p \geq 3$ and S_{p} has center x_{1} that is alive, all other vertices being dead. We have :

$$
\begin{aligned}
& \left.\left.\left.\sigma\left[S_{p} \backslash x_{p}, x_{1}, \ldots, x_{p-1}\right]\left(G_{1}, \ldots, G_{p-1}\right)=\Lambda\left(\Lambda\left(\ldots \Lambda\left(G_{1}, G_{2}\right), G_{3}\right), \ldots, G_{p-1}\right)\right) \ldots\right)\right) \\
& =\Lambda\left(G_{1}, G_{2} \oplus G_{3} \oplus \ldots \oplus G_{p-1}\right) \text { by Equality (5) of Definition 2.5. }
\end{aligned}
$$

Case 3: $H=S_{p} \backslash x_{p}$ where $p \geq 3, S_{p}$ has center x_{p} and all vertices of $S_{p} \backslash x_{p}$ are alive. Then we have :

$$
\sigma\left[S_{p} \backslash x_{p}, x_{1}, \ldots, x_{p-1}\right]\left(G_{1}, \ldots, G_{p-1}\right)=G_{1} \oplus \ldots \oplus G_{p-1}
$$

Constructions 4.18 : Grammars for $D H$ graphs revisited.

A connected DH graph without live vertices is defined by a graph-labelled tree \mathcal{T} whose components are stars, cliques and single vertices. By rooting T at a leaf, we obtain from Theorem 4.11 the following grammar, where S defines the connected DH graphs:

$$
S=\kappa(\top) \cup \kappa(\Lambda(\top, U)), U=\top \cup(U \oplus U) \cup(U \otimes U) \cup \Lambda(U, U)
$$

Here is an alternative construction, where the chosen root is not a leaf. By means of node splittings (Definition 4.1(d)), we can transform \mathcal{T} as above into a graph-labelled tree whose components are stars S_{3}, triangles K_{3}, together with one component ${ }^{33} K_{2}$: for $n \geq 4$, a component (isomorphic to) K_{n} can be split into K_{3} and K_{n-1}, and a component S_{n} can be split into S_{3} and S_{n-1} where the center of S_{3} is linked to a leaf of S_{n-1}.

Let us take as root the component K_{2}. We obtain from Theorem 4.11 the following equations:

$$
S=\kappa(T) \cup \kappa(U \otimes U), U=\top \cup(U \oplus U) \cup(U \otimes U) \cup \Lambda(U, U)
$$

that are the two equations of Proposition 2.7(2).
The equations of Proposition 2.7 can be used to generate DH graphs having a given number n of vertices, but not, at least immediately, with equal probability for each fixed n. The reason is that because of the associativity and commuttivity of \oplus and \otimes, and also because of Equality (5) of Definition 2.5, this grammar is ambigous. For the same reason, it cannot be used for counting ${ }^{34}$ the number of DH graphs having n vertices. However, it can be transformed so as to allow that.

Construction 4.19 : An unambigous grammar for cographs.
We first consider the special case of cographs (they are DH) defined by the equation :

$$
C=\top \cup(C \oplus C) \cup C \otimes C .
$$

[^17]They have a canonical description as follows, where C_{\otimes} (resp. C_{\oplus}) denotes the set of connected (resp. disconnected) cographs with at least two vertices. A (\top-labelled, abstract) cograph G is :
a single vertex \top,
or it is connected and of the form $G_{1} \otimes \ldots \otimes G_{p}, p \geq 2$, where $G_{1}, \ldots, G_{p} \in$ $C_{\oplus} \uplus\{\top\}$,
or it is disconnected and of the form $G_{1} \oplus \ldots \oplus G_{p}, p \geq 2$, where $G_{1}, \ldots, G_{p} \in$ $C_{\otimes} \uplus\{T\}$.

The corresponding term is (or represents) the (canonical) modular decomposition of G [31]. For a set H of labelled graphs, we define :

$$
\begin{aligned}
& \oplus \geq 2(H) \text { as the set of labelled graphs } G_{1} \oplus \ldots \oplus G_{p} \text { and } \\
& \otimes_{\geq 2}(H) \text { as the set of labelled graphs } G_{1} \otimes \ldots \otimes G_{p},
\end{aligned}
$$

where, in both cases, $p \geq 2$ and $G_{1}, \ldots, G_{p} \in H$.
With these metaoperations, we can define cographs by the three equations:

$$
\begin{aligned}
& C=\top \cup C_{\oplus} \cup C_{\otimes}, \\
& C_{\oplus}=\oplus_{\geq 2}\left(\top \cup C_{\otimes}\right), \\
& C_{\otimes}=\otimes_{\geq 2}\left(\top \cup C_{\oplus}\right) .
\end{aligned}
$$

These three equations form an unambigous grammar because of the unicity of the decomposition recalled above, and because $G_{1} \oplus \ldots \oplus G_{p}=G_{\pi(1)} \oplus \ldots \oplus$ $G_{\pi(p)}$ for any permutation π of the indices, and similarly for \otimes. Hence, $\oplus \geq 2$ is an operation of variable arity. One obtains a bijection of the set connected (abstract) cographs with the rooted trees whose internal nodes have at least two sons. The sons of a node form a set and not a sequence. These trees, called hierarchies, have been used in [38] to evaluate the number of cographs of a given size.

Construction 4.20 : An unambigous grammar for DH graphs.
For distance-hereditary graphs, the situation is similar, by using canonical split decompositions. The grammars given in Construction 4.17 are ambigous. We can obtain an unambigous one for rooted and connected DH graphs. Rooted means that one vertex is distinguished as alive and all others are dead. We consider such graphs having at least 3 vertices.

Theorem 4.6 and Example 4.8 yield the following description that we give as a grammar written with the two above metaoperations:

$$
\begin{aligned}
& D=\Lambda\left(\top, D_{\otimes} \cup D_{\oplus} \cup D_{\Lambda}\right), \\
& D_{\otimes}=\otimes_{\geq 2}\left(\top \cup D_{\oplus} \cup D_{\Lambda}\right), \\
& D_{\oplus}=\oplus_{\geq 2}\left(\top \cup D_{\otimes} \cup D_{\Lambda}\right), \\
& D_{\Lambda}=\Lambda\left(J, D_{\oplus}\right) \cup \Lambda\left(J, \top \cup D_{\otimes} \cup D_{\Lambda}\right), \\
& J=\top \cup D_{\oplus} \cup D_{\otimes}
\end{aligned}
$$

The equation $D=\Lambda\left(\top, D_{\otimes} \cup D_{\oplus} \cup D_{\Lambda}\right)$ defines the root by \top and $D_{\otimes} \cup D_{\oplus} \cup$ D_{Λ} correspond to the three types of components H_{u} of its son u, respectively Cases 1,3 and 2 in Observations 4.17.

The equation $D_{\otimes}=\otimes_{\geq 2}\left(\top \cup D_{\oplus} \cup D_{\Lambda}\right)$ corresponds to a component that is a clique (cf. Case 1). The righthand side does not include D_{\otimes} because two clique components cannot be neighbour in a canonical split decomposition.

The equation $D_{\oplus}=\oplus \geq 2\left(\top \cup D_{\otimes} \cup D_{\Lambda}\right)$ corresponds to a star component whose center is the leader. The righthand side does not include D_{\oplus} because two star components cannot be linked by their centers.

The rules for D_{Λ} correspond a star component H_{u} whose center is not the leader. The set J corresponds to the son of u linked to the center. It does not does not include D_{Λ} because two star components cannot be linked by two leaves. The term $\Lambda\left(J, \top \cup D_{\otimes} \cup D_{\Lambda}\right)$ corresponds to a star $S_{3}=H_{u}$, and the term $\Lambda\left(J, D_{\oplus}\right)$ to larger stars.

In this grammar, an equation like $D_{\otimes}=\otimes_{\geq 2}\left(T \cup D_{\oplus} \cup D_{\Lambda}\right)$ creates no ambiguity because the three sets $\{\top\}, D_{\oplus}$ and D_{Λ} are disjoint and the metaoperation $\otimes \geq 2$ avoids the ambiguities created by the associativity and commutativity of \otimes. That the full grammar is unambigous follows from the unicity part of Theorem 4.6.

These rules appear in Appendix A of [4], written so as to yield corresponding generating functions. We recall that unambiguity is essential for counting purposes, and also for random generation (cf. [26]).

DH graphs without root (distinguished as the unique live vertex) are obtained by adding the rule $E=\kappa(D)$, but the resulting grammar becomes ambigous because the derivation trees corresponding to different roots are different. A more complex grammar that is appropriate for counting the DH graphs without root is given in [4]. It uses rules with substractions so as to avoid double counting. (They apply the equality $|A \cup B|=|A|+|B|-|A \cap B|$.) This article also handles 3-leaf powers (cf. Example 4.8) in a similar way.

5 Directed graphs

We now extend our results to directed graphs. Cunnigham defines a canonical split decomposition for the directed graphs that are strongly connected (Theorem 1 in [19]). An undirected graph can be seen as a directed one where each arc (directed edge) has an opposite one. It is connected if and only if the corresponding directed graph is strongly connected. Hence, Theorem 4.7 is a special case of a more general one for directed graphs ${ }^{35}$.

We will use graph-labelled trees and split decomposition graphs as in [7]. In order to extend to directed graphs the results of Section 4, we will revise the notion of substitution of Section 2 for graphs with labels that encode the

[^18]directions of the arcs. The set of live vertices is partitioned into three sets, designated by the tags $\top,+,-$, attached to the labels of the sets C used to construct graphs with the "clique-width" operations of Definition 1.2.

We study directed graphs. However, the graphs representing graph-labelled trees will have undirected edges as well as arcs.

5.1 Substitution

Definition 5.1: Substitutions of directed graphs to vertices
We let $D:=\{\perp,+,-, \top\}$ be ordered in such a way that $\perp<+<\top$, $\perp<-<\top$, and + and - are incomparable. Let K be a D-graph with vertex set $\left\{x_{1}, \ldots, x_{p}\right\}$ and H_{1}, \ldots, H_{p} be pairwise disjoint D-graphs, that are disjoint from K. We define a D-graph $G:=K\left[x_{1} \leftarrow H_{1}, \ldots, x_{p} \leftarrow H_{p}\right]$:

$$
\begin{aligned}
& V_{G}:=V_{H_{1}} \uplus \ldots \uplus V_{H_{p}}, \\
& \pi_{G}(v):=\inf \left\{\pi_{H_{i}}(v), \pi_{K}\left(x_{i}\right)\right\} \text { if } v \in V_{H_{i}} .
\end{aligned}
$$

Its arcs are as follows, for $u, v \in V_{G}$ (they do not depend on π_{K}):

```
uv\inE EG if and only if :
uv\in\mp@subsup{E}{\mp@subsup{H}{i}{}}{}\mathrm{ for some i,}
or }\mp@subsup{\pi}{\mp@subsup{H}{i}{}}{}(u)\in{\top,+},\mp@subsup{\pi}{\mp@subsup{H}{j}{}}{}(v)\in{\top,-} and \mp@subsup{x}{i}{}\mp@subsup{x}{j}{}\in\mp@subsup{E}{K}{}\mathrm{ (and so }i\not=j)
```

Lemma 5.13 below motivates this definition. If we consider an undirected graph as a directed graph where each arc has an opposite one, and whose vertices are labelled by \perp or \top, then, Definition 5.1 gives the same notion of substitution as Definition 2.1.

Example 5.2 : Let K have vertices x, y and z, respectively labelled by,+and \top, and $\operatorname{arcs} x y, y z$ and $z y$. Let X be the edgeless graph with vertices $0,1,2,3$ labelled respectively by $\perp,+,-, \top$. Let similarly Y have vertices $4,5,6$ labelled by,,$+- \top$ and Z, vertices $7,8,9$ labelled by,,$+- \top$. The graphs K, X, Y, Z and $G:=K[x \leftarrow X, y \leftarrow Y, z \leftarrow Z]$ are shown in Figures 3 and 4. The labels of vertices $0,1,5,7,8$ and 9 are as in X, Y and Z. Those of $2,3,4$ and 6 are respectively $\perp=\inf \{+,-\},+=\inf \{+, \top\}, \perp=\inf \{+,-\}$ and $-=\inf \{-, \top\}$, cf. Definition 5.1(a).

We obtain graph operations, as in Section 2, that we will use to describe the directed graphs defined by graph-labelled trees.

Definition 5.3 : Graph operations based on substitution.
For each D-graph K with vertex set enumerated as $\left\{x_{1}, \ldots, x_{p}\right\}$, we define as follows a p-ary operation on D-graphs denoted by $\sigma\left[K, x_{1}, \ldots, x_{p}\right]$:

${ }^{+} X \longrightarrow$	$y \longrightarrow Z^{\top}$	
K		
$0 \perp$	$4+$	$7+$
$1+$	$5-$	$8-$
$2-$	$6 \boldsymbol{T}$	9 т
$3 \boldsymbol{T}$	Y	Z

Figure 3: Graphs from Example 5.2

Figure 4: Graph G of Example 5.2.

$$
\sigma\left[K, x_{1}, \ldots, x_{p}\right]\left(H_{1}, \ldots, H_{p}\right):=K\left[x_{1} \leftarrow H_{1}, \ldots, x_{p} \leftarrow H_{p}\right]
$$

where H_{1}, \ldots, H_{p} are pairwise disjoint and disjoint from K. If they are not, we replace them by isomorphic copies, so that $\sigma\left[K, x_{1}, \ldots, x_{p}\right]$ becomes a p-ary operation on abstract D-graphs.

If we extend Definition 5.1 so that K has other vertices than x_{1}, \ldots, x_{p}, then Proposition 2.2 are still valid.

We will express substitutions in terms of clique-width operations. For directed graphs, we use the operations $\overrightarrow{a d d}_{a, b}$ that create arcs from a-labelled vertices to b-labelled ones. Our objective is to bound the clique-width of $G:=$ $K\left[x_{1} \leftarrow H_{1}, \ldots, x_{p} \leftarrow H_{p}\right]$ as $O\left(\max \left\{c w d(K), c w d\left(H_{1}\right), \ldots, c w d\left(H_{p}\right)\right\}\right)$.

Definitions 5.4 : Clique-width operations and substitution.
The set $D:=\{\perp, \top,+,-\}$ is ordered by Definition 5.1. Let K, H_{1}, \ldots, H_{p} be D-graphs and $G:=K\left[x_{1} \leftarrow H_{1}, \ldots, x_{p} \leftarrow H_{p}\right]$.

We assume that the graphs K, H_{1}, \ldots, H_{p} are defined, up to their labels in D, by terms in $T\left(F_{C}\right)$ where $C \cap D=\emptyset$. We define $C^{\#}:=\{(a, \alpha, \beta) \mid a \in$ $C, \alpha, \beta \in D, \beta \leq \alpha\}$ and $f: C^{\#} \rightarrow D$ such that $f((a, \alpha, \beta)):=\beta$ for all (a, α, β) in $C^{\#}$.

We will define the D-graph G by a term t_{G} in $T\left(F_{C \#}\right)$ in such a way that $G=\operatorname{relab}_{f}\left(\boldsymbol{v a l}\left(t_{G}\right)\right)$.

Assume that $K=\boldsymbol{v a l}\left(t_{K}\right)$ for $t_{K} \in T\left(F_{C}\right)$. Let x_{1}, \ldots, x_{p} be the vertices of K. Each vertex x_{i} is defined by a nullary symbol $\boldsymbol{a}_{\boldsymbol{i}}\left(x_{i}\right)$ in t_{K}. We construct a term $\widehat{t_{K}}$ in $T\left(F_{C \#},\left\{u_{1}, \ldots, u_{p}\right\}\right)$ as follows :

- we replace each $\boldsymbol{a}_{\boldsymbol{i}}\left(x_{i}\right)$ by the variable u_{i},
- we replace each operation relab_{h} by $\operatorname{relab}_{\widehat{h}}$ where $\widehat{h}((a, \alpha, \beta)):=(h(a), \alpha, \beta)$ for all $(a, \alpha, \beta) \in C^{\#}$,
- we replace each operation $\overrightarrow{a d d}_{a, b}$ by the composition (in any order) of the operations $\overrightarrow{a d d}_{(a, \alpha, \beta),\left(b, \alpha^{\prime}, \beta^{\prime}\right)}$ such that $\alpha \in\{\top,+\}, \alpha^{\prime} \in\{\top,-\}$ and $\beta, \beta^{\prime} \in D$, $\beta \leq \alpha, \beta^{\prime} \leq \alpha^{\prime}$.

Furthermore, for each $i:=1, \ldots, p$, we define $h_{i}: C^{\#} \rightarrow C^{\#}$ by $h_{i}((a, \alpha, \beta)):=$ $\left(a_{i}, \beta, \inf \left\{\beta, \pi_{K}\left(x_{i}\right)\right\}\right)$ for $(a, \alpha, \beta) \in C^{\#}$

Lemma 5.5 : Let $K, H_{1}, \ldots, H_{p}, G, t_{K}$ and $\widehat{t_{K}}$ be as in Definition 5.4. Assume that for each i, we have a term $t_{i} \in T\left(F_{C^{\#}}\right)$ such that $H_{i}=\operatorname{relab}_{f}\left(\boldsymbol{v a l}\left(t_{i}\right)\right)$. Then :
$K\left[x_{1} \leftarrow H_{1}, \ldots, x_{p} \leftarrow H_{p}\right]=\operatorname{relab}_{f}\left(\boldsymbol{v a l}\left(\widehat{t_{K}}\left[\operatorname{relab}_{h_{1}}\left(t_{1}\right) / u_{1}, \ldots, \operatorname{relab}_{h_{p}}\left(t_{p}\right) / u_{p}\right]\right)\right)$.
Proof : Let $G:=K\left[x_{1} \leftarrow H_{1}, \ldots, x_{p} \leftarrow H_{p}\right]$ and

$$
G^{\prime}:=\operatorname{relab}_{f}\left(\boldsymbol{v a l}\left(\widehat{t_{K}}\left[\operatorname{relab}_{h_{1}}\left(t_{1}\right) / u_{1}, \ldots, \operatorname{relab}_{h_{p}}\left(t_{p}\right) / u_{p}\right]\right)\right) .
$$

These two graphs have the same vertex set, $V_{H_{1}} \uplus \ldots \uplus V_{H_{p}}$. We compare their labels.

Let $u \in V_{H_{i}}$ and (a, α, β) be its label in $\boldsymbol{v a l}\left(t_{i}\right)$. Its label is β in H_{i}, and it is $\left(a_{i}, \beta, \inf \left\{\beta, \pi_{K}\left(x_{i}\right)\right\}\right)$ in $\operatorname{relab}_{h_{i}}\left(t_{i}\right)$. Its label in G^{\prime} is thus $\inf \left\{\beta, \pi_{K}\left(x_{i}\right)\right\}$
because the relabellings in $\widehat{t_{K}}$ do not modify the third components of labels. It is the same in G by Definition 5.1.

We now compare the arcs of G and G^{\prime}.
Case $1: u, v \in V_{H_{i}}$. If $u v \in E_{H_{i}}$, it is also an arc of G and of G^{\prime}. If $u v \notin E_{H_{i}}$, it is not an arc of G either. And it is not an arc of G^{\prime} because the labels of u and v have the same first components, namely a_{i}, in $\operatorname{relab}_{h_{i}}\left(t_{i}\right)$ and the relabellings in $\widehat{t_{K}}$ maintain this equality. Hence, no arc between u and v is created by the operations $\overrightarrow{a d d}_{(a, \alpha, \beta),\left(b, \alpha^{\prime}, \beta^{\prime}\right)}$ of $\widehat{t_{K}}$ (where we must have $a \neq b$). Hence, $u v \notin E_{G^{\prime}}$.

Case 2 : $u \in V_{H_{i}}, v \in V_{H_{j}}, i \neq j$. If $u v \in E_{G}$, then $x_{i} x_{j}$ is an arc of K and the labels of u and v in H_{i} and H_{j} are respectively $\alpha \in\{\top,+\}$ and $\alpha^{\prime} \in\{\top,-\}$ by Definition 5.1. Let us now consider G^{\prime}. At some position p in t_{K} the arc $x_{i} x_{j}$ is created by an operation $\overrightarrow{a d d}_{a, b}$.

In $\boldsymbol{v a l}\left(\operatorname{relab}_{h_{i}}\left(t_{i}\right)\right)$ and $\boldsymbol{v a l}\left(\operatorname{relab}_{h_{j}}\left(t_{j}\right)\right)$, the labels of u and v are respectively $\left(a_{i}, \alpha, \beta\right)$ and $\left(a_{j}, \alpha^{\prime}, \beta^{\prime}\right)$ for some β and β^{\prime}, and a_{i} and a_{j} are relabelled in t_{K} into a and b at position p. The labels of u and v are thus (a, α, β) and $\left(b, \alpha^{\prime}, \beta^{\prime}\right)$ in $\widehat{t_{K}}$ at the place corresponding to p in the construction of $\widehat{t_{K}}$ from $t_{K}\left(\overrightarrow{a d d}_{a, b}\right.$ is replaced by a composition of arc additions). Hence, $u v$ is an arc of G^{\prime}, created by $\overrightarrow{a d d}_{(a, \alpha, \beta),\left(b, \alpha^{\prime}, \beta^{\prime}\right)}$.

Hence every arc of G is one of G^{\prime}. The proof is similar in the other direction. Hence, $G=G^{\prime}$.

No label (a, \perp, \perp) occurs in an arc addition operation of $\widehat{t_{K}}$. Furthermore, $f((a, \perp, \perp))=\perp$ for each $a \in C$. Hence, all labels (a, \perp, \perp) can be replaced by the unique label (c, \perp, \perp) for some fixed $c \in C$. It follows that $\widehat{t_{K}}$ and the relabellings h_{i} only use the following $8|C|+1$ labels :

$$
\begin{aligned}
& (c, \perp, \perp) \text { and }(a, \top, \top),(a, \top,+),(a, \top,-),(a, \top, \perp), \\
& (a,+,+),(a,+, \perp),(a,-,-),(a,-, \perp) \text { for all } a \in C .
\end{aligned}
$$

By using this remark, we obtain:
Proposition 5.6 : If a graph G is defined up to vertex labels by a composition of operations $\sigma\left[K, x_{1}, \ldots, x_{p}\right]$ such that each graph K has clique-width at most k, then, $\operatorname{cwd}(G) \leq 8 k+1$.

Proof: Let G be defined by a term over nullary symbols and operations $\sigma\left[K, x_{1}, \ldots, x_{p}\right]$ such that $c w d(K) \leq k$. The terms t_{K} can be written with the labels of a set C of k labels. By composing the terms $\widehat{t_{K}}$ and the relabellings h_{i} according to Lemma 5.5 , we obtain a term in $T\left(F_{C \#}\right)$ that defines G by using at most $8 k+1$ labels. Hence, $c w d(G) \leq 8 k+1$.

5.2 Directed graph-labelled trees.

Definition 5.7: Graph-labelled trees describing directed graphs.

In the following definition, unspecified notions and notation are as in Definition 4.1. Graph labelled-trees will be represented by graphs with (directed) arcs and (undireceted) edges. Let us consider an edge as a pair of opposite arcs. Then a directed path or walk ${ }^{36}$ can go through an edge, that is, through one of the two arcs of this edge.
(a) A directed graph-labelled tree, denoted by \mathcal{T} is an undirected tree T with at least 3 nodes, that is equipped, for each node $v \in N_{T}$, with a directed graph H_{v}, called a component, and a bijection $\rho_{v}: \operatorname{Inc} c_{T}(v) \rightarrow V_{H_{v}}$. Components are pairwise disjoint and need not be connected, see Example 5.8(2) below. If v is a leaf, then H_{v} has a single vertex that we identify with v.
(b) We define $S(\mathcal{T})$ as the graph consisting of the union of the components augmented with the edges $\rho_{u}(e) \rho_{v}(e)$ for $e=u v$, (cf. Figure 5, where the edges $\rho_{u}(e) \rho_{v}(e)$ are dotted lines). The arcs are inside the components. A directed path or walk in $S(\mathcal{T})$ is alternating if no two consecutive arcs are in a same component. Hence, in a directed path, arcs alternate with edges. In a directed walk, an edge can be traversed consecutively several times.

There is at most one alternating path from a vertex x to a vertex y, but there may also exist one from y to x. This is the case if and only if each arc $z z^{\prime}$ on this path inside a component has an opposite $\operatorname{arc} z^{\prime} z$ (we are considering paths, not walks).

In view of Proposition 5.9, for a vertex x in a component H_{u}, we define $A^{-}(x)$ as the set of vertices y of $S(\mathcal{T})$ accessible from x by an alternating path (from x to y) whose first edge is not in H_{u}, and $A^{+}(x)$ as the set of vertices w of $S(\mathcal{T})$ such that there is an alternating path from w to x whose last edge is not in H_{u}.
(c) The graph described by \mathcal{T}, denoted by $G(\mathcal{T})$, has vertex set L_{T} (the set of leaves of T) and an arc $u v$ if and only if there is an alternating path from u to v. If there is a directed path $u_{1} \rightarrow u_{2} \ldots \rightarrow u_{p}$ in $G(\mathcal{T})$, the concatenation of the alternating paths corresponding to the $\operatorname{arcs} u_{i} u_{i+1}$ forms an alternating walk from u_{1} to u_{p}.
(d) The node-joining operation ${ }^{37}$ (called elimination of an edge e of T in [7]) is defined as follows. If $e=u v$ is an edge between two internal nodes of T, its contraction fuses u and v into a single node say w, giving tree T^{\prime}, and replaces the graphs H_{u} and H_{v} by $H_{w}^{\prime}:=\left(H_{u} \uplus H_{v}\right)-\left\{\rho_{u}(e), \rho_{v}(e)\right\}$ augmented with an arc from any vertex x in H_{u} to any vertex y in H_{v} such that $x \rho_{u}(e) \in E_{H_{u}}$ and $\rho_{v}(e) y \in E_{H_{v}}$. We obtain a directed graph-labelled tree \mathcal{T}^{\prime} that describes the same graph : this is easy to check by considering alternating paths. By iterating as much as possible this elimination step, we obtain a star whose central component is isomorphic to $G(\mathcal{T})$.

The opposite transformation called node-splitting also preserves the defined graph.

Theorem 2 of [19] defines canonical decompositions for strongly connected graphs whose components are cliques, stars and particular graphs called cycles

[^19]

Figure 5: The directed graph-labelled tree T of Example 5.8(1).

Figure 6: The graph defined by \mathcal{T} of Figure 5.
of transitive tournaments that have clique-width at most 4 by Proposition 4.16 of [7]. We will not use this difficult notion. We will describe directed, possibly disconnected graphs by directed graph-labelled trees, either canonical or not.

Examples 5.8:(1) Figures 5 shows a directed graph-labelled tree \mathcal{T} and Figure 6 the graph $G(\mathcal{T})$. The double arrows in the components H_{x} and H_{u} indicate pairs of opposite arcs. For a comparison with Figure 1, there is here no alternating path between 2 and 7, in either direction. Hence, these two vertices are not adjacent in $G(\mathcal{T})$.
(2) A directed graph-labelled tree may define a disconnected graph although its components are connected. As a small example, consider $S(\mathcal{T})$ defined as $x-z^{\prime} \longrightarrow z-u \longleftarrow u^{\prime}-y$, whose internal components are $z^{\prime} \longrightarrow z$ and $u \longleftarrow u^{\prime}$. (The undirected edges between components are $x-z^{\prime}, z-u$ and $\left.u^{\prime}-y\right)$. Then $G(\mathcal{T})$ consists of the two isolated vertices x and y. Eliminating the edge $z-u$ yields a component consisting of two isolated vertices u^{\prime} and z^{\prime}. Because of this observation, it is pointless to require that components be connected.

Proposition 5.9 : Let G be defined by a directed graph-labelled tree \mathcal{T} whose components are strongly connected.
(1) For each vertex x of $S(\mathcal{T})$, we have $A^{+}(x) \cap L_{T} \neq \emptyset$ and $A^{-}(x) \cap L_{T}$ $\neq \emptyset$.
(2) If $x y$ is an arc of H_{u}, then $z z^{\prime} \in E_{G}$ for all $z \in A^{+}(x) \cap L_{T}$ and $z^{\prime} \in A^{-}(y) \cap L_{T}$. Conversely, if $x=\rho_{u}(u v)$ and $y=\rho_{u}(u w)$ are distinct vertices of H_{u}, if $z \in L_{T} \cap N_{T, u \backslash v}, z^{\prime} \in L_{T} \cap N_{T, u \backslash w}$ and $z z^{\prime} \in E_{G}$, then $z \in A^{+}(x) \cap L_{T}$, $z^{\prime} \in A^{-}(y) \cap L_{T}$ and $x y$ is an arc of H_{u}.
(3) G is strongly connected.

Note that T has at least two leaves and so, that G has at least two vertices.
Proof : (1) Let x be a vertex of a component H_{u}. Hence, $x=\rho_{u}(u v)$ for some node v. We use induction on the cardinality of $N_{T, u \backslash v}$ (the set nodes of T reachable from by a path going through v; cf. Lemma 4.3). If it is 1 , then v is a leaf and $A^{+}(x) \cap L_{T}=A^{-}(x) \cap L_{T}=\{v\}$.

Otherwise, we have in H_{v} an arc $z y$ such that $y=\rho_{v}(u v)$ and $z=\rho_{v}(v w)$ for some edge $v w$ of T. We have $N_{T, v \backslash w} \subset N_{T, u \backslash v}$, hence, by induction, $A^{+}(z) \cap L_{T}$ $\neq \emptyset$ and $A^{+}(z) \cap L_{T} \subseteq A^{+}(x) \cap L_{T}$ which proves $A^{+}(x) \cap L_{T} \neq \emptyset$. The proof that $A^{-}(x) \cap L_{T} \neq \emptyset$ is similar.
(2) Just consider alternating paths, as in the proof of Lemma 4.3.
(3) The node-joining operation preserves the strong connectedness of the components as one checks from Definition 5.7(d). By repeating this operation, one obtains a directed graph-labelled tree that defines G and consists of one "central" strongly connected component and leaves. This component is isomorphic to G, hence G is strongly connected.

Proposition 5.10 : Let G be defined by a directed graph-labelled tree \mathcal{T}. Then G is strongly connected if and only if all components of \mathcal{T} are strongly connected.

Proof : The "if" direction is proved in the previous proposition. For the converse, let x and y be distinct vertices of a component H_{u}. Let $s \in A^{+}(x) \cap L_{T}$ and $t \in A^{-}(y) \cap L_{T}$. There is a path in G from s to t. Each arc of this path corresponds to an alternating path in $S(\mathcal{T})$. The concatenation of these paths is an alternating walk ${ }^{38}$ in $S(\mathcal{T})$. It is not necessarly a path because some edges of the tree may be traversed twice. (In the example of Figure 6 the path $2 \longrightarrow$ $6 \longrightarrow 7 \longrightarrow 4$ corresponds to a walk in $S(\mathcal{T})$ (Figure 5) that traverses twice the edge between H_{u} and H_{w}). This walk must enter H_{u} first via x and exit it last via y. Its arcs belonging to H_{u} form a directed path from x to y. Hence, H_{u} is strongly connected.

Remark 5.11: Even if $G(\mathcal{T})$ is strongly connected, some components of \mathcal{T} may not be isomorphic to induced subgraphs of $G(\mathcal{T})$ (by contrast with

[^20]Lemma 4.3(2)). Consider for an example a directed graph-labelled tree having two internal components isomorphic to the directed cycles \vec{C}_{3}. It defines \vec{C}_{4} that does not contain \vec{C}_{3} as an induced subgaph. We will compare below the clique-widths of a graph and its components.

5.3 Evaluating graph-labelled trees by means of substitutions.

We will use the set of labels $D:=\{\perp,+,-, \top\}$.
Definitions 5.12 : Rooted graph-labelled trees and related notions.
(a) Let \mathcal{T} be a directed graph-labelled tree with underlying tree T and $G:=$ $G(\mathcal{T})$. Let us select a node $r \in N_{T}$ and make it a root for T. As in Definition 4.9(a,b) we let $N_{u}:=\left\{x \in N_{T} \mid x \leq_{T} u\right\}$ and $V_{u}:=\left\{x \in L_{T} \mid x \leq_{T} u\right\} \subseteq V_{G}$. Hence, $V_{r}=L_{T}=V_{G}$ and $V_{u}=\{u\}$ if $u \in L_{T}-\{r\}$.
(b) The leader of a component H_{u} such that $u \neq r$ is the vertex $\rho_{u}(w u)$ denoted by \bar{u}, where w is the father of u. For $u \in N_{T}$, we define a D-graph $H_{u} \backslash \backslash \bar{u}$ as the follows :
if $u \neq r$ and u not leaf, we define $H_{u} \backslash \backslash \bar{u}:=H_{u}-\bar{u}$ where a vertex x is labelled as follows: its label is T if $x \bar{u}$ and $\bar{u} x$ are in $E_{H_{u}}$, it is + if $x \bar{u} \in E_{H_{u}}$ and $\bar{u} x \notin E_{H_{u}}$, it is - if $\bar{u} x \in E_{H_{u}}$ and $x \bar{u} \notin E_{H_{u}}$, and it is \perp if $x \bar{u}$ and $\bar{u} x$ are not in $E_{H_{u}}$;
if $u \neq r$ and u is a leaf, then $H_{u} \backslash \backslash \bar{u}$ is undefined (or is empty).
if $u=r$, we define $H_{u} \backslash \backslash \bar{u}:=H_{r}$, and all its vertices as dead (we use the notation $H_{u} \backslash \backslash \bar{u}$ for uniformity, although \bar{u} is not defined).

As in Definition 4.9, the graphs $H_{u} \backslash \backslash \bar{u}$ depend on the chosen root r.
(c) If $u \in N_{T}$, we define $G_{u}:=G\left[V_{u}\right]$ labelled as follows:

If $u=r$, all vertices of $G_{u}=G$ are dead. Otherwise, a vertex x has label \top if there are alternating paths from x to \bar{u} and from \bar{u} to x; it has label + if there is an alternating path from x to \bar{u} and no such path from \bar{u} to x; it has label - if there is an alternating path from \bar{u} to x and no such path from x to \bar{u} and label \perp if there are no alternating paths between x and \bar{u}.

The following lemma, stated for the objects of the previous definition, generalizes Lemma 4.10.

Lemma 5.13: If $u \in N_{T}-L_{T}$ has sons u_{1}, \ldots, u_{p} and the corresponding p vertices of $H_{u} \backslash \backslash \bar{u}$ are x_{1}, \ldots, x_{p} (that is, $x_{i}:=\rho_{u}\left(u u_{i}\right)$), then we have $G_{u}=$ $\left(H_{u} \backslash \backslash \bar{u}\right)\left[x_{1} \leftarrow G_{u_{1}}, \ldots, x_{p} \leftarrow G_{u_{p}}\right]$.

Proof : Let $K:=\left(H_{u} \backslash \backslash \bar{u}\right)\left[x_{1} \leftarrow G_{u_{1}}, \ldots, x_{p} \leftarrow G_{u_{p}}\right]$. As in the proof of Lemma 4.10, the vertex sets of G_{u} and K are the same and the arcs of $G_{u_{i}}$ are the same as in G_{u} and K.

We consider x in $G_{u_{i}}$ and y in $G_{u_{j}}, j \neq i$. If $x y$ is an arc of G, there is an alternating path from x to y. It must go through H_{u} via the $\operatorname{arc} \rho_{u}\left(u_{i} u\right) \rho_{u}\left(u_{j} u\right)=$ $x_{i} x_{j}$ in $H_{u} \backslash \backslash \bar{u}$. This path goes through the leader $\rho_{u_{i}}\left(u_{i} u\right)$ of $H_{u_{i}}$. Hence, x is alive in $G_{u_{i}}$ and has label + or \top. Similarly, y has label - or \top in $G_{u_{j}}$. Hence $x y$ is an arc of K.

Conversely, if $x y \in E_{K}$, then $x_{i} x_{j}$ is an edge of $H_{u} \backslash \backslash \bar{u}, x$ has label + or \top in $G_{u_{i}}$ and y has label - or \top in $G_{u_{j}}$. Going back to definitions, we have an alternating path from x and y built from alternating paths from x to x_{i}, and from x_{j} to y, and the edge $x_{i} x_{j}$. Hence, $x y$ is an arc of G, hence of G_{u}.

It remains to compare the vertex labels in K and in G_{u}.
Let x be a vertex of $G_{u_{i}}$ labelled by + in G_{u}. There is an alternating path from x to the leader \bar{u} of H_{u} and no such path from \bar{u} to x. Hence, there is an alternating path from x to $\overline{u_{i}}$ and an arc in H_{u} from $\rho_{u}\left(u u_{i}\right)$ to \bar{u}. Hence the label of $\rho_{u}\left(u u_{i}\right)$ is either + or \top. The label of x in $G_{u_{i}}$ is either either + or \top, hence its label in K is either + or T. If it would be T, we would have an arc in H_{u} from \bar{u} to $\rho_{u}\left(u u_{i}\right)$ and an alternating path from \bar{u} to x and x would have label \top in G_{u}. Hence x has label + in K.

The proofs are similar for the other labels.
Theorem 5.14 : Let G be defined by directed graph-labelled tree \mathcal{T} whose components have clique-width at most k. Then $\operatorname{cwd}(G) \leq 8 k+1$.

Proof: From Proposition 5.6 and Lemma 5.13, along the lines of Theorem 4.11.

If one chooses a leaf as root r with son u, then $G=\kappa\left(\Lambda\left(\top, G_{u}\right)\right)$ where Λ is as in Definition 2.5, but here for $\{\top, \perp,+,-\}$-graphs : $\Lambda(G, H):=\sigma\left[K, x_{1}, x_{2}\right]$ where K is the edge $x_{1} x_{2}, x_{1}$ is labelled by \top and x_{2} by \perp.

Example 5.15: There exist graph-labelled trees \mathcal{T} that have components of arbitrary large clique-width but define graphs without arcs, hence of cliquewidth 1.

We let \mathcal{T} be a non-leaf-rooted graph-labelled tree with any connected graph H as root component; We attach to each vertex x of H a path of the form $x-v_{x} \longrightarrow v_{x}^{\prime}-w_{x}^{\prime} \longleftarrow w_{x}-\widetilde{x}$ (cf. Example 5.8(2)). Then $G(\mathcal{T})$ consists of the isolated vertices \widetilde{x} because there is no directed alternating path between \widetilde{x} and any different \widetilde{y}.

For strongly connected graphs, we have a better situation.
Proposition 5.16: There is a function f such that $c w d(H) \leq f(c w d(G))$ whenever G is strongly connected and H is a component of some directed graphlabelled tree that defines it.

We need some definitions. An arc $x y$ of a graph G is special if x has outdegree 1 and y has indegree 1 . Let F be a set special arcs. A path with all its edges in F is called an F-path. The graph $G \backslash F$, obtained from G by contracting the
arcs of F is defined as follows, where X is the set of terminal ends ${ }^{39}$ of the arcs of F :
$V_{G \backslash F}:=V_{G}-X$,
$x y \in E_{G \backslash F}$ if and only if $x, y \notin X$ and, either $x y \in E_{G}$ or there exist a vertex $z \in X$ such that $z y \in E_{G}$ and a nonempty F-path from x to z.

If F forms a directed cycle (necessarily disconnected from $G-X$), then $V_{G \backslash F}=V_{G}-X$, hence, this cycle vanishes.

Lemma 5.17: There is a function f such that $c w d(G \backslash F) \leq f(c w d(G))$ for every directed graph G and every set F of special arcs.

Proof: There exists a monadic second-order transduction (not using edge set quantifications) that maps the pair (G, X) of a graph G and a set X that is the set of terminal ends of the arcs of a set F of special arcs (uniquely determined from X) to $G \backslash F$. Its definition is a straightforward translation from the definition. The existence of f follows from of Corollary 7.38(2) of [15].

However, this proof does not give a good bound ${ }^{40}$ for f. It is an open question whether $\operatorname{cwd}(G \backslash F) \leq \operatorname{cwd}(G)$ or even $\operatorname{cwd}(G \backslash F)=O(c w d(G))$.

An induced minor of a directed or undirected graph G is obtained by contracting arcs or edges of an induced subgraph of G.

Proposition 5.18 : If G is strongly connected and defined by a directed graph-labelled tree, then each component of it is isomorphic to an induced minor of G obtained by contracting the arcs of pairwise vertex disjoint special paths.

Proof : Let G be strongly connected and defined by a directed graphlabelled tree \mathcal{T}. Let H_{u} be a component not reduced to a single vertex. We will construct an induced subgraph G^{\prime} of G such that H_{u} is isomorphic to $G^{\prime} \backslash F$ for some set F of special arcs.

Step 1 : By performing node-joinings (cf. Definition 5.7(d)) that do not involve H_{u}, we can obtain a directed graph-labelled tree \mathcal{T}^{\prime} that defines G, such that $u \in N_{T^{\prime}}, H_{u}^{\prime}=H_{u}$ and all components that are not leaves of T^{\prime} are neighbours of u. The graph-labelled tree of Figure 7 satisfies this condition).

From now on, we assume that \mathcal{T} satisfies this condition.
Step 2: We let N be the set of neighbours v of u in T that are not leaves. We take u as root.

If x is a vertex of H_{v}, where v is u or is in N, then we denote by \widetilde{x} the vertex of H_{w} such that $x=\rho_{v}(v w)$ and $\widetilde{x}=\rho_{w}(v w)$. If H_{w} is singleton, then w is a

[^21]

Figure 7: The directed graph-labelled tree \mathcal{T} of Example 5.8.

Figure 8: The strongly connected graph $G(\mathcal{T})$, cf. Figure 7 and Proposition 5.18??
leaf and $w=\widetilde{x} \in V_{G}$. All vertices are of this form. Otherwise, $w \in N$ and x is the leader \bar{w} of H_{w}.

For each $v \in N$, as H_{v} is strongly connected (by Proposition 5.9(3)), we can choose in it a directed cycle of the form $\widetilde{x}=\bar{v} \rightarrow y_{1} \rightarrow \ldots \rightarrow y_{p} \rightarrow \widetilde{x}$ that we denote by C_{v}. We have in G a directed path $P_{v}: \widetilde{y_{1}} \rightarrow \ldots \rightarrow \widetilde{y_{p}}$.

Then, we remove from all the components H_{v}, where $v \in N$, the vertices z not in C_{v} the associated vertices \widetilde{w}, and their incident arcs. We obtain an induced subgraph G^{\prime} of G and a directed graph-labelled tree \mathcal{T}^{\prime} that defines it, such that $N \cup\{u\} \subseteq N_{T^{\prime}} \subseteq N_{T}$ and $H_{u}^{\prime}=H_{u}$ (easy verification). Its components are H_{u}, the cycles C_{v} and the singleton components containing the vertices of G^{\prime}. Hence they are all strongly connected, and so is G^{\prime}. We have $H_{v}^{\prime} \subseteq_{i} H_{v}$ for all $v \in N$. The arcs of the path P_{v} are special in G^{\prime} (but not necessarily in G). We let F the set of these arcs. The paths Pv are pairwise vertex disjoint ????

Step 3: We will verify that H_{u} is isomorphic to $G^{\prime} \backslash F$.
Contracting the arcs of F eliminates all vertices of G^{\prime} of the form $\widetilde{y_{2}}, \ldots, \widetilde{y_{p}}$, as in Step 2 for all $v \in N$. For each vertex x of H_{u} such that $\widetilde{x} \in V_{G}$, we define $\widehat{x}:=\widetilde{x}$.

Otherwise, $\widehat{x}:=\widetilde{y_{1}}$ cf. Step 2 for v such that $\widetilde{x} \in H_{v}$.
Claim : H_{u} is isomorphic to $G^{\prime} \backslash F$ by the mapping $x \mapsto \widehat{x}$.
Proof: As noted in Step 2, the vertices of G is of the form \widetilde{x}.
The vertices of G^{\prime} are of the form \widetilde{x} for some x in H_{u} or $\widetilde{y_{i}}$ (in a path P_{v}, cf. Step 2).

A vertex of $G^{\prime} \backslash F$ is of the form \widetilde{x} for x in H_{u} or $\widetilde{y_{1}}\left(\right.$ in a path $\left.P_{v}\right)$.
Hence, we have a bijection between vertex sets.
Let $x z$ be an arc of H_{u}. We have four cases:
Case $1: \widetilde{x}, \widetilde{z} \in V_{G}$ and $\widetilde{x}=\widehat{x}, \widetilde{z}=\widehat{z}$. We have an alternating path $\widetilde{x} \rightarrow x \rightarrow$ $z \rightarrow \widetilde{z}$ in $\mathcal{S}\left(\mathcal{T}^{\prime}\right)$ hence $\widetilde{x} \widetilde{z}=\widehat{x} \widehat{z} \in E_{G^{\prime}}$. It is also an arc of $G^{\prime} \backslash F$.

Case 2 : $\widehat{x}=\widetilde{x} \in V_{G}, \widehat{z}=\widetilde{y_{1}} \in P_{v}$. Then we have an alternating path $\widetilde{x} \rightarrow x \rightarrow z \rightarrow \widetilde{z} \rightarrow y_{1} \rightarrow \widetilde{y_{1}}$. in $\mathcal{S}\left(\mathcal{T}^{\prime}\right)$. The arc $\widetilde{z} y_{1}$ is in H_{v} and it is not modified by arc contractions.VERIF ARC cont. We have $\widetilde{x} \widetilde{y_{1}}=\widehat{x} \widehat{z} \in E_{G^{\prime}}$. It is also an arc of $G^{\prime} \backslash F$.

Case 3 : $\widehat{x}=\widetilde{y_{1}}, \widehat{z}=\widetilde{z} \in V_{G}$, where $\widetilde{y_{1}} \in P_{v}$. We have a path $\widetilde{y_{1}} \rightarrow \ldots \rightarrow \widetilde{y_{p}}$ in G^{\prime} and an alternating path $\widetilde{y_{p}} \rightarrow y_{p} \rightarrow \widetilde{x} \rightarrow x \rightarrow z \rightarrow \widetilde{z}$ in $\mathcal{S}\left(\mathcal{T}^{\prime}\right)$ where $y_{p} \widetilde{x}$ is in H_{v} and so an arc $\widetilde{y_{p}} \widetilde{z}$ in G^{\prime}. After the contraction of the path $\widetilde{y_{1}} \rightarrow \ldots \rightarrow \widetilde{y_{p}}$, we get the $\operatorname{arc} \widetilde{y_{1}} \widetilde{z}=\widehat{x} \widetilde{z}_{1}$ is in $G^{\prime} \backslash F$. If $p=1$, no contraction is needed.

Case $4: \widehat{x}=\widetilde{y_{1}}, \widetilde{z}=\widetilde{w_{1}}$, where $\widetilde{y_{1}} \in P_{v}, \widetilde{w_{1}} \in P_{v^{\prime}}$ for some distinct v, v^{\prime} in N. By combining the observations used in Cases 2 and 3, we get paths $\widetilde{y_{1}} \rightarrow \ldots \rightarrow \widetilde{y_{p}}$ and $\widetilde{y_{p}} \widetilde{w_{1}}$ in G^{\prime}.
alternating path $\widetilde{y_{p}} \rightarrow y_{p} \rightarrow \widetilde{x} \rightarrow x \rightarrow z \rightarrow \widetilde{z} \rightarrow w_{1} \rightarrow \widetilde{w_{1}}$ in $\mathcal{S}\left(\mathcal{T}^{\prime}\right)$. We get an arc $\widetilde{y_{p}} \tilde{z}$ in G^{\prime}. After the contraction of the path $\widetilde{y_{1}} \rightarrow \ldots \rightarrow \widetilde{y_{p}}$, we get the arc $\widetilde{y_{1}} \widetilde{z}=\widehat{x} \widehat{z}_{1}$ in $G^{\prime} \backslash F$.

Similarly, we can prove that every arc of $G^{\prime} \backslash F$ is of the form $\widehat{x} \widehat{z}$ for some $\operatorname{arc} x z$ of H_{u}. W

Example 5.19: A directed graph-labelled \mathcal{T} is shown in Figure 7 and the associated strongly connected graph G is in Figure 8. It satisfies the requirement
of Step 1. The set N of the proof is $\{x, v, w\}$. By removing 0 and its neighbour in H_{x}, we get a component of size 2 , hence, a cycle of two opposite arcs. No arc contraction is here needed.

By removing 7 and 8 and their neighbours in H_{w}, we get a component of size 3 . We also have a directed cycle as H_{v}. By contracting the special arcs 45 and 69 of $G-\{0,7,8\}$, we obtain a graph isomorphic to H_{u} by : $a \longmapsto 1, b \longmapsto$ $2, c \longmapsto 3, d \longmapsto 4, e \longmapsto 6$.

Proof of Proposition 5.16 :
This completes the proof of the proposition because $c w d\left(G^{\prime}\right) \leq c w d(G)$.
Remarks 5.20 : (1) In Lemma 5.17 and Proposition 5.16, we can use the mapping $f(k)=: k^{2} .3^{k-1}$ to bound the clique-widths of components ([12]).
(2) The proof of Proposition 5.16 given in [7] as Proposition 4.16 is incorrect: Lemma A.2.3 shows (correctly) that $\operatorname{cwd}(H) \leq 4 c w d(G)$ if H is obtained from G by fusing two vertices. But, in order to prove the statement, one must fuse the vertices of several pairs (as we do above to define H from G^{\prime}), hence, one does not obtain any bounding function f as claimed.

5.4 Related work

Kanté and Rao have defined in [35] the displit decomposition of a directed graph. For an undirected graph, it is the same as the split decomposition. It is incomparable with the split decomposition of [19] because the prime components are different. However, every connected directed graph has a unique decomposition. Furthermore, for an appropriate notion of rank-width for directed graphs, they obtain that the rank-width of a graph is the least upper-bound of the rankwidths of the components of its displit decomposition (cf. Remark 4.15).

They also characterize the directed graphs of rank-width at most 1 in a way that generalizes the various characterizations of distance-hereditary graphs, in particular that of [37].

We think that the results of this section and those of [7] about the existence of monadic second-order transformations between directed graphs and their canonical split decompositions can be extended to displit decompositions.

6 Conclusion

Our purpose was to clarify the relations between split-decompositions for directed and undirected graphs, substitutions and the related graph grammars, and also to obtain good bounds on the clique-widths of the defined graphs. For doing that we have generalized, in Definitions 2.1 and 5.1, the notion of substitution used in the theory of modular decomposition .

Our open questions concern the study of the operations defined in Definition 2.5 and their equational properties.

The methods of Section 5 should help to investigate particular classes of directed graphs regarding their clique-width and generation by, hopefully unambigous grammars, along the lines of Section 4.5.

Manipulating grammars so as to reach unambiguity in view of counting and random generation has proved useful in Section 4.5. It would be interesting to investigate in a similar way the undirected graphs whose prime components are cycles. These graphs have bounded clique-width by Theorem 4.14 and the upper-bound of 4 to the clique-width of cycles. This encourages to defining them by grammars.

References

[1] H.-J. Bandelt and H. Mulder, Distance-hereditary graphs, Journal of Combinatorial Theory, Series B, 41 (1986) 182-208.
[2] A. Brandstädt and V.B. Le, Structure and linear time recognition of 3-leaf powers. Inf. Process. Lett. 98 (2006) 133-138.
[3] M.S. Chang, S.Y. Hsieh and G.H. Chen, Dynamic programming on distance-hereditary graphs, Proceedings of ISAAC 1997, Algorithms and Computation, Lec. Notes Comput. Sci 1350, Springer, 1997, 344-353.
[4] C. Chauve, É. Fusy and J. Lumbroso, An exact enumeration of distancehereditary graphs. Proceedings of ANALCO (14th Workshop on Analytic Algorithmics and Combinatorics), Barcelona, 2017, pp. 31-45
[5] S. Cicerone and G. Di Stefano, On the extension of bipartite to parity graphs. Discrete Applied Mathematics 95 (1999) 181-195.
[6] B. Courcelle, An axiomatic definition of context-free rewriting and its application to NLC graph grammars. Theor. Comput. Sci. 55 (1987) 141-181.
[7] B. Courcelle, The monadic second-order logic of graphs XVI : Canonical graph decompositions. Logical Methods in Computer Science 2 (2006).
[8] B. Courcelle, On the model-checking of monadic second-order formulas with edge set quantifications, Discrete Applied Mathematics 160 (2012) 866-887.
[9] B. Courcelle, Clique-width and edge contraction. Inf. Process. Lett. 114 (2014) 42-44.
[10] B. Courcelle, From tree decompositions to clique-width terms, Discrete Applied Mathematics, 248 (2018) 125-144.
[11] B. Courcelle, On quasi-planar graphs : clique-width and logical description. 2018, Discrete Applied Mathematics, this issue, https://doi.org/10.1016/j.dam.2018.07.022.
[12] B. Courcelle, Clique-width and edge contractions in directed graphs. In preparation.
[13] B. Courcelle and I. Durand, Automata for the verification of monadic second-order graph properties, J. Applied Logic 10 (2012) 368-409.
[14] B. Courcelle and I. Durand, Computations by fly-automata beyond monadic second-order logic, Theor. Comput. Sci, 619 (2016) 32-67.
[15] B. Courcelle and J. Engelfriet, Graph structure and monadic second-order logic, a language theoretic approach, Volume 138 of Encyclopedia of mathematics and its application, Cambridge University Press, June 2012.
[16] B. Courcelle, P. Heggernes, D. Meister, C. Papadopoulos and U. Rotics, A characterisation of clique-width through nested partitions, Discrete Applied Maths, 187 (2015) 70-81.
[17] B. Courcelle and M. Kanté: Graph operations characterizing rank-width. Discrete Applied Mathematics 157 (2009) 627-640.
[18] B. Courcelle, J. Makowsky and U. Rotics, Linear-time solvable optimization problems on graphs of bounded clique-width, Theory Comput. Syst. 33 (2000) 125-150.
[19] W. Cunningham, Decomposition of directed graphs, SIAM. J. on Algebraic and Discrete Methods, 3 (1981) 214-228.
[20] R. Diestel, Graph theory, Springer, 2006.
[21] R. Downey and M. Fellows, Fundamentals of parameterized complexity, Springer-Verlag, 2013.
[22] I. Durand, TRAG: Term Rewriting Automata and Graphs, a software developped since 2015, http://dept-info.labri.u-bordeaux.fr/~idurand/trag
[23] I.Durand and M.Raskin, TRAG-WEB: Term Rewriting Automata and Graphs (online), Web interface under development, 2018, https://trag.labri.fr
[24] M. Fellows, F. Rosamond, U. Rotics and S. Szeider, Clique-width is NPcomplete. SIAM J. Discrete Math. 23 (2009) 909-939.
[25] E. Fischer J. Makowsky and E. Ravve, Counting truth assignments of formulas of bounded tree-width or clique-width. Discrete Applied Mathematics 156 (2008) 511-529.
[26] P. Flajolet, P. Zimmermann and B. Van Cutsem, A calculus for the random generation of labelled combinatorial structures. Theor. Comput. Sci. 132 (1994) 1-35.
[27] E.Gioan and C. Paul, Split decomposition and graph-labelled trees: Characterizations and fully dynamic algorithms for totally decomposable graphs. Discrete Applied Mathematics 160 (2012) 708-733.
[28] E. Gioan, C. Paul, M. Tedder and D. Corneil, Practical and efficient split decomposition via graph-labelled trees. Algorithmica 69(2014): 789-843.
[29] M. Golumbic and U. Rotics, On the Clique-Width of Some Perfect Graph Classes. Int. J. Found. Comput. Sci. 11 (2000) 423-443.
[30] F. Gurski, The behavior of clique-width under graph operations and graph transformations. Theory Comput. Syst. 60 (2017) 346-376.
[31] M. Habib and C. Paul, A survey of the algorithmic aspects of modular decomposition. Computer Science Review 4 (2010) 41-59.
[32] P. Heggernes, D. Meister and C. Papadopoulos, Characterising the linear clique-width of a class of graphs by forbidden induced subgraphs, Discrete Applied Mathematics 160 (2012) 888-90.
[33] P. Hlinený, S. Oum, D. Seese and G. Gottlob, Width parameters beyond tree-width and their applications. Comput. J. 51 (2008) 326-362.
[34] M. Kanté and M. Rao, The rank-width of edge-coloured graphs. Theory Comput. Syst. 52 (2013) 599-644.
[35] M. Kanté and M. Rao, Directed rank-width and displit decomposition. Proceedings of WG 2009, Lecture Notes in Computer Science 5911 (2010) 214-225.
[36] D.Meister, Clique-width with an inactive label. Discrete Mathematics 337 (2014) 34-64.
[37] S. Oum, Rank-width and vertex-minors, Journal of Combinatorial Theory, Series B, 95 (2005) 79-100.
[38] V. Ravelomanana and L.Thimonier, Asymptotic enumeration of cographs. Electronic Notes in Discrete Mathematics :7 (2001) 58-61.

[^0]: *This work has been supported by the French National Research Agency (ANR) within the IdEx Bordeaux program "Investments for the future", CPU, ANR-10-IDEX-03-02, and also within the project GraphEn started in October 2015.

[^1]: ${ }^{1}$ A software is developped by Irène Durand [22]. Some parts of it are accessible online [23].
 ${ }^{2}$ See [31] and the references in that article for modular decomposition. Split decomposition defined by Cunnigham [19] is studied in [7, 27, 28]. We give definitions in Sections 4 and 5. Modular and split decomposition can both be computed in linear time for undirected graphs.
 ${ }^{3}$ Prime components cannot be split, cf. Section 4.1.

[^2]: ${ }^{4}$ But we do not get an equal probability for two DH graphs of same size. See Section 4.5 for an unambigous grammar.
 ${ }^{5}$ In [36], dead vertices are defined in clique-width terms by inactive labels. We will use \perp as an inactive label. Dead vertices may be called non-boundary by analogy with the case of graphs of bounded tree-width, built by gluing small graphs at boundary vertices [21], also called sources in [15].
 ${ }^{6}$ A different notion of split decomposition for directed graphs, that generalizes also the one for undirected graphs, has been defined in [34]. We will say a few words about it in Section 5.4.

[^3]: ${ }^{7}$ Undefined notions are as in [20].
 ${ }^{8}$ This characterization is from [1]. The DH graphs are also the graphs of rank-width 1 [37]. They have clique-width at most 3 , as we will prove in detail.
 ${ }^{9} \mathrm{As} \oplus$ is associative, we will write $t=t_{1} \oplus t_{2} \oplus \ldots \oplus t_{n}$ instead of $t_{1} \oplus\left(t_{2} \oplus\left(\ldots \oplus t_{n}\right) \ldots\right)$ or any equivalent writing. It is also comutative.

[^4]: ${ }^{10}$ If h modifies only one label, we call relab ${ }_{h}$ an elementary relabelling. By using only elementary relabellings, one obtains the same notion of clique-width ([15], Proposition 2.118).
 ${ }^{11}$ In [15], we denote $c w d^{*}$ by $c w d$.

[^5]: ${ }^{12}$ The construction is similar for directed graphs and it needs no more labels.
 ${ }^{13}$ It not hard to prove that $\operatorname{lcwd}(G) \leq \operatorname{lcwd}(G-x)+2$ where lcwd denotes the linear clique-width. This variant is defined by requiring that at least one of the two arguments of an operation \oplus is a nullary symbol. See e.g., [15, 32].
 ${ }^{14}$ Occurrences in terms can be designated by Dewey words or by integers, cf. Definition 2.3 in [15],

[^6]: ${ }^{15}$ It is actually enough to assume that $\left(V_{H_{1}} \uplus \ldots \uplus V_{H_{p}}\right) \cap\left(V_{K}-\left\{x_{1}, \ldots, x_{p}\right\}\right)=\emptyset$.
 ${ }^{16} \mathrm{Read}$ " H_{i} is substituted to x_{i} in K ".

[^7]: ${ }^{17}$ We use the same notation $\sigma\left[K, v_{1}, \ldots, v_{p}\right]$ for the p-ary function symbol and the corresponding operation. Cf. Definition $1.2(\mathrm{c})$.

[^8]: ${ }^{18}$ We leave as an open problem to find a complete set of equational axioms for $\oplus, \otimes, \Lambda, \kappa, \top$.

[^9]: ${ }^{19}$ We call language a set of terms, whence the notation $L(X)$. A set of graphs is not called a language, in order to have a coherent terminology.

[^10]: ${ }^{20}$ See Example 1.6 for the solution of equations in sets of terms. If t is a term, we will write $G \equiv t$ to indicate that $G \equiv \boldsymbol{v a l}(t)$.
 ${ }^{21}$ We use here the footnote in Definition 2.1.

[^11]: ${ }^{22}$ See, e.g. [15], Section 2.1
 ${ }^{23}$ This term uses an auxiliary label $a \neq \perp, \top$ however, it defines graphs of type $\{T\}$ from graphs of same type. The label a can be replaced by any other label different from \top or \perp.
 ${ }^{24}$ These limitations on the use of \perp make it an inactive label in [36].
 ${ }^{25}$ The equivalence \equiv respects vertex labels, cf. Definition 1.2(a).

[^12]: ${ }^{26}$ This is clear from Definition 2.1.

[^13]: ${ }^{27}$ Because of definitions, no two consecutive edges in a path can be tree-edges.
 ${ }^{28}$ If some components are not connected, the graph defined in this way is not connected. Actually, a disconnected graph is best described as the union of its connected components. Hence, we require that components are connected.

[^14]: ${ }^{29}$ A different notion of prime graph is used in the theory of modular decomposition, cf. [31].

[^15]: ${ }^{30} T$ will denote the rooted tree, without explicit mention of r; in particular, \leq_{T} depends on the choice of r.

[^16]: ${ }^{31}$ By using monadic second-order transductions [7] proves that $c w d(G)$ is bounded in terms of m by a superexponential function.
 ${ }^{32}$ Extension to directed graphs is in [34].

[^17]: ${ }^{33}$ By Remark 4.2.
 ${ }^{34}$ The term enumerating creates confusion with the problem of listing graphs or configurations in graphs.

[^18]: ${ }^{35}$ We thought better to begin with undirected graphs, because the formal setting is much simpler and most of graph structure theory and graph algorithmics concern undirected graphs.

[^19]: ${ }^{36} \mathrm{~A}$ walk is like a path but it can go several times through a vertex or an arc.
 ${ }^{37}$ Similar to that in Definition 4.1(d).

[^20]: ${ }^{38} \mathrm{~A}$ vertex may occur several times on a walk.

[^21]: ${ }^{39}$ The terminal end of an arc $u v$ is v.
 ${ }^{40}$ For a comparison, if an undirected graph H is obtained from G by erasing degree 2 vertices, that is by contracting a set of edges that have all an end vertex of degree 2, then $\operatorname{cwd}(H) \leq 2^{c w d(G)+1}-1$ (Proposition 2 of [9]).

