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Finite element fingertip models are useful tools to assess product ergonomics. While ”real
geometry” approaches provide accurate results, developing models requires medical im-
ages. ”Simpified geometry” approaches have to date not been tested to see whether
they can provide equally accurate results in terms of mechanical response, i.e. force-
displacement response and dimensions of fingertip contact area. Four fingertip models
were built either from medical images (Visible Human project) or from simplified ge-
ometries. Simulations of fingertip flat contact compression at 20◦ were performed. A 2nd

order hyperelastic material property was used to effectively reproduce the mechanical
behavior of the fingertip. Models based on simplified geometries such as conics proved as
accurate as models reconstructed from medical images. However, accurate positioning of
the bony phalanx is paramount if a biofidelic mechanical response is to be reproduced.

Keywords: Fingertip; Soft tissue; Finite element modeling; material properties; Hypere-
lasticity

1. Introduction

In the context of human-environment interactions, the fingertips play a key role.

During dexterous manipulations, fingertips are submitted to flat contact loadings up

to 10N , at various angles1,2. Numerical fingertip models submitted to such bound-

aries conditions can be helpful in the field of computer aided design. Indeed, the
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ergonomics of a product has been proven to be linked with the peak pressure at

the contact interface3. However, such models have to be both biofidelic in terms

of mechanical response (force versus displacement, dimensions of the contact area,

contact pressure) and in terms of geometry. Indeed geometrical differences can gen-

erate peak contact pressure discrepancies up to 27%3.

Several finite element (FE) models of fingertips are described in the literature.

The degree of anatomical detail varies according to the model’s application: some

models include both the dermis and epidermis4, others feature a liquid phase in

the adipose tissue5 or include mecanoreceptors6. For ergonomics applications, FE

models commonly use a single tissue to represent both the skin and the pulp soft

tissues7,8,9. Fingertip behavior under compression is non-linear, as experimentally

observed by several authors10,11,12,13: stress-strain curves from fingertip compres-

sion usually show low stress at first, followed by a major increase in stress even for

small additional strains. This typical effect is called strain-hardening14, and can only

be overcome by material properties with a high-degree potential (n ≥ 2)15, even

though such non-linear behavior depends on both material properties and geometry.

Geometry is tackled using two main approaches: a ”real geometry”

approach3,8,9,16,17 and a ”simplified geometry” approach4,7,18. The first generally

involves segmentation of medical images like MRI images3,8. This method provides

biofidelic models from an anatomical point of view, but the reconstruction process is

lengthy and requires medical images with high resolution. The commonest simplified

geometries are 2D ellipse cross-sectional models4,7,19. There are a few 3D models

of simplified geometry : Wu et al.20 proposed a ”smooth mathematical surface fit-

ting” adaptable to digitized fingertip shapes and Yin et al.21 proposed a parametric

model based on 21 measurements taken on the finger. While the advantages of 3D

over 2D models have already been shown22, the 3D ”simplified geometry” models

have yet to be validated. Concerning material properties, fingertip models can refer

to various behavior laws, from basic linear elasticity4,8,18 to hyperelasticity7,20,23.

Since soft tissues are known to show non-linear hyperelastic behavior (also called

the strain-hardening effect), hyperelastic laws should be preferred24,3. Nevertheless,

complex material properties may be difficult to deal with due to the large number

of parameters that need to be obtained either experimentally or by inverse simu-

lations. The level of complexity required for material properties has not yet been

determined.

Despite this diversity of approaches to fingertip modeling, the criteria for model

choice and validation appear inadequate3,7,8,18,23. This raises the question of the

level of modeling complexity required to simulate fingertip compression with bound-

ary conditions close to the loads imposed during dexterous tasks. The present study

examines the simulated mechanical responses (force versus displacement and dimen-

sions of the contact area) of FE fingertip models to determine whether ”simplified

geometry” approaches can be as accurate as ”real geometry” approaches. An opti-

mal material property for fingertip soft tissues is proposed.
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2. Methods

2.1. Geometry of the models

To observe the influence of geometry on the mechanical response of fingertip models,

four models of different complexity were examined: one based on a ”real geometry”

approach and three based on ”simplified geometry” approaches.

• A geometrically accurate model reconstructed from images of the Visible

Human project25 (V H model).

• A geometrically simplified model based on ellipsoids (Ellipsoid model).

• Two geometrically simplified models based on conics (Conics1 and Conics2

models).

Each model had three parts: the bony phalanx, the nail and the pulp representing

both the soft tissue and the skin (Fig.1).

Fig. 1. a) V H model, b) Ellipsoid model, c) Conics1&2 models

2.1.1. VH model

The V H model was built after segmentation of the bony phalanx, the nail and the

outer envelope of the skin on the medical images (Fig. 1.a). Its dimensions were:

height 12mm, width 16.7mm and soft tissue thickness 6.4mm. To fit the dimensions

of experimental subjects’ fingertips, this model was scaled as required, using an

isotropic homothety whose coefficient was defined by the finger width ratio.

2.1.2. Ellipsoid model

The external geometry of this model is based on an elliptic cylinder along the lon-

gitudinal finger axis and an ellipsoid in the sagittal plane at the fingertip extremity

(Fig. 1.b).
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The ellipsoid parameters were chosen based on the external dimensions of the

V H geometry: its height h0 and width w0. The following ratio (α = h0

w0
) was then

calculated. The bony phalanx is represented as an elliptic cylinder as proposed by

Gerling et al.6. The dimensions and position of the phalanx were also defined to

fit the V H geometry. The thickness of the nail was set at 0.6mm as proposed by

Shimawaki et al.8.

2.1.3. Conics models

For these models, the outer envelope was defined by two conics: the first was defined

by the frontal curvature (γ1) and the second was defined by the sagittal curvature

(γS) (Fig. 1.c). Conics (Eq. 1) were chosen by a manuel inverse method so as to fit

a variety of fingertip morphologies.

Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0 (1)

For the Conics1 model, the phalanx was designed and positioned as for the

Ellipsoidmodel. For the Conics2 model, the phalanx location was defined according

to the method suggested by a previous study7: the bottom of the bony cylinder is

placed at 42% of the fingertip height. The nail thickness was similar to that in the

Ellipsoid model.

2.2. Material properties of the models

For each model, the distal phalanx was considered as a rigid body19, and the nail was

associated with a linear elastic material property (E = 170MPa, ν = 0.30)3,5,7,8.

For the material properties of the soft tissues, the simplest hyperelastic law

(i.e. involving the fewest parameters) able to reproduce biofidelic behavior of the

fingertip under compression loading was sought. Hyperelastic laws are generally

used to model biological tissues known to be non-linear3,9,20,26,27,28. A previous

study showed that a simple first degree hyperelastic potential was not sufficient to

model the non-linear behavior of the soft tissue of the fingertip29. Thus, a higher

degree potential was chosen here, starting from the second degree. A power law

formulation, based on the generalized Rivlin model was considered (Eq. 2).

W =
N∑

p,q=0

Cpq(I1 − 3)p(I2 − 3)q +
K

2
(J − 1)2 (2)

A manual inverse method, based on experimental results was performed: both the

Cpq coefficients and the bulk modulus were adjusted until the V H model response

(force versus displacement) was as close as possible to the experimental response10.

2.3. Mesh

Each model was meshed with linear tetrahedral elements. A convergence study seek-

ing the optimal element size was performed. It determined a characteristic length

of about 1mm, which approximately corresponds to 20 000 elements per model.
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2.4. Simulations and experimental data sets

Simulations were run with a finite element implicit free code (Code Aster, EDF,

France). The contact was solved by a penalty method without friction, as common in

the literature7,5,16,20. The penalty coefficient was chosen to avoid interpenetration.

Two different experimental data sets from the literature were used in this study

to 1/ determine the material property of the soft tissues of the V H model via an

inverse method and 2/ validate the V H model. The first data set10 comes from

index compression tests at 0◦ performed on 20 subjects; the second data set 12 is

from compression tests at 20◦ performed on 4 subjects. The results considered were

force versus displacement (averaged over the subjects). The boundary conditions of

the simulations aimed at reproducing the experimental conditions (Fig. 2). A rigid

planar surface was displaced to create a contact at a given angle with the fingertip

model. The bony phalanx of the finger model could not move.

Fig. 2. Schematic representation of the compression angle

The first simulations were performed with the V H model to identify the fingertip

soft tissue material property and its associated parameters (inverse method based

on the first experimental data set10) and to validate its mechanical response by

comparison with the second data set12.

Finally, simulations were also performed with the three geometrically simplified

models at a compression angle of 20◦ (i.e. where the V H model is validated). The

results in terms of force versus displacement curves and dimensions of the contact

area for the 3 simplified models were compared to the results for the V H model.

3. Results

3.1. Material properties

The inverse method was used with the V H model and experimental data at 0◦10

to determine the constant p and q of the generalized Rivlin model. Determining a

second degree potential (Eq. 3) depending on both the first and second invariant

enabled us to fit the average force versus displacement plus or minus 10% (Fig. 3).

W = C01(I2 − 3) + C20(I1 − 3)2 (3)

The following parameters were obtained : C01 = 2.5 kPa, C20 = 1 kPa with a bulk
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modulus of K = 200 kPa. The value obtained for the bulk modulus, typical of

nearly-incompressible material behavior, approximatively corresponds to a Poisson

coefficient of ν = 0.496.

Fig. 3. Force versus displacement at 0◦ from Serina et al.’s experiments and from simulation with
the V H model

3.2. V H model validation

The simulated force versus displacement response at 20◦ from the V H model was

compared to the experimental force versus displacement response found in the study

by Wu et al.12 (Fig. 4). The V H model response fits the experimental ”average

±25%” corridor and can be considered as validated for a 20◦-compression loading

configuration.

3.3. Geometry

The Ellipsoid model dimensions fitting the Visible Human fingertip were defined

in such a way that : α = 0.82. This ratio is in agreement with values from the

literature, which go from 0.704 to 1.0019.

With the Conics models, the two best-fitting conics were a parabola (A = B =

E = F = 0) for the sagittal curvature and a circle (B = D = E = 0) for the frontal

curvature.

With the Conics1 and Conics2 models, the two different approaches to posi-

tioning the bony phalanx resulted in a vertical offset of 2 mm (i.e. 2mm less pulp

for the Conics2 model).
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Fig. 4. Force versus displacement at 20◦ from Wu et al.’s experiments and from simulation with
the V H model

3.4. Comparison of the models

Force versus displacement results (Figure 5) showed that the response of the

Conics1 model is very similar to the response of the V H model and within the ex-

perimental ”average ±25%” corridor. The responses of the Ellipsoid and Conics2

models were very different from the response of the V H model and from the exper-

imental average ±25% corridor. The Conics2 model was stiffer (higher forces for

similar displacements), while the Ellipsoid model was less stiff.

The contact area results (Figures 6 and 7) did not differentiate between the

lengths predicted by the Ellipsoid, Conics1 and V H models given the ±1mm of un-

certainty deriving from the element size. However, there were more discrepancies in

width of contact area: from 1mm of deflection, the Ellipsoid model over-estimated

this parameter compared to the VH results. The Conics2 model over-estimated

both length and width of contact area.

4. Discussion

In this study, a fingertip FE model based on realistic geometry (V H model) was

used to identify a 2nd degree hyperelastic law from the generalized Rivlin model

that can be applied to reproduce the non-linear behavior of the fingertip under flat

contact compression. The simplicity of this law means that multiple parameters can

be avoided. This is a valuable contribution to the literature, where fingertip models

using hyperelastic potential can require six, ten or twelve parameters7,20,23, making

the identification of parameters based on experimental data time-consuming. The

three parameters (C01, C20 and K) of this behavior law were identified in a 0◦-
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Fig. 5. Force versus displacement at 20◦ from Wu et al.’s experiments and from simulations with
the V H, Ellipsoid, Conics1 and Conics2 models

Fig. 6. Length of the contact area for plane contact compression at 20◦ from simulations with
the V H, Ellipsoid, Conics1 and Conics2 models

compression-loading configuration. Then, this fingertip FE model was validated for

a 20◦−compression configuration by comparison with experimental data. It should

be noted that the term ”validation” signifies here that the model’s response fits an

”average ±25%” corridor. Since the standard deviation (std) of this experimental

data set was not available, the authors chose to use an ”average ±25%” corridor30
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Fig. 7. Width of the contact area for plane contact compression at 20◦ from simulations with the
V H, Ellipsoid, Conics1 and Conics2 models

instead of an ”average ± std” corridor.

Three models based on simplified geometries were built. The Ellipsoid modeling

approach offers the easiest implentation, requiring measurement of only the height

and weight of the fingertip. The advantage of the Conics approach is that conics

should be able to fit the geometry of any subject’s finger. However, the external

geometry of the fingertip needs to be acquired. In a ”real geometry” approach,

medical images are required. The mechanical responses of these models suggest

that Conics is the only simplified approach providing results as accurate as the

”real geometry” approach. Thus, measuring the outer envelope of the fingertip and

finding the conics that best fit the sagittal and frontal curvatures appears to be a

mandatory step.

There were discrepancies between the Ellipsoid and Conics1 models in width

of contact area. The width of soft tissue in contact increases faster for the Ellipsoid

model than for the Conics1 model, generating higher width of contact area values.

Yet trends for length of contact area in the Ellipsoid and Conics1 models were sim-

ilar. The differences between these two models lie in their outer envelope, especially

the curvatures along the sagittal and frontal planes. These curvatures determine

the width of the cross-sectional tissue. Thus, our results show that the evolving

width of contact area with respect to the displacement is linked to the width of

the cross-sectional tissue,in contact with the plate. Taken together, these results

highlight the influence of the outer envelope curvatures on the model’s outputs, and

more specifically on width of contact area. These observations also point to the need

to perform a sensitivity study assessing the influence of both anatomical fingertip

curvatures on model simulation outputs.
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Simulations with the Conics2 model showed that the position of the bony pha-

lanx, and consequently the thickness of the soft tissues to be compressed, plays a

very large role in the force versus displacement response. Obtaining a stiffer response

for a smaller quantity of soft tissue may seem trivial. However, the authors are not

aware of any studies pointing out the importance of the bony phalanx position or

documenting the soft tissue thickness of the fingertip over a large population. Ex-

periments providing such data are sorely needed.

The conclusions of this study are restricted to a single simulation configuration,

i.e. a flat contact compression at 20◦. To confirm the benefits of a model based on

conics with a 2nd order hyperelastic law, this study should be extended to different

kinds of mechanical loading (compression at a higher angle, indentation, transver-

sal loading, etc.). A second limitation concerns the ±1mm of uncertainty regarding

contact area dimensions (length and width). This limitation is linked to the size

of the elements and could have been avoided by using smaller elements. Neverthe-

less, while using this size of elements did not always lead to differentiation between

models in the results (Lengths of the Ellipsoid and Conics1 models, for instance),

discrimination was efficient in most cases (Length of the Conics2 model for in-

stance, Widths of the Ellipsoid and Conics2 models). Finally, the models were not

subject-specific and could not be compared to specific results. Future experimental

perspectives include an experimental campaign involving both medical images and

fingertip loading tests.

5. Conclusion

The study showed that a 2nd order hyperelastic material property can be used to

reproduce the mechanical behavior of the fingertip under compression at 20◦. In

terms of geometry, care should be taken in positioning the bony phalanx within

the fingertip envelope of a simplified model, since its position can greatly affect the

models force versus displacement response. The performance of simplified models

based on conics was comparable to models built from medical images in terms of

force versus displacement response and dimensions of contact area.
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